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Compressed sensing in spectroscopy for chemical
analysis

Gerardo Gamez

Analytical chemists are instilled with the Shannon—Nyquist theorem for measuring practices: the sampling
frequency must be greater than two times the frequency of the signal of interest to avoid misrepresentation.
Furthermore, chemical analysis techniques keep evolving to yield increasing amounts of information
resulting in greater demands in data collection, data analysis and computer memory. This leads to typical
practices of performing software data compression. In addition, techniques that require increases in
spatial frequency of array detectors typically lead to expensive hardware solutions. Over the past ten

years, compressed sensing has presented a sampling paradigm shift. The main idea is to perform
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Accepted 5th September 2016 compression during data acquisition which leads to several advantages, including faster analysis time and

availability of cost effective alternatives to array detectors. In this short review, a summary of the main

DOI: 10.1039/c6ja00262e concepts of compressed sensing are presented. In addition, selected examples of compressed sensing

www.rsc.org/jaas

Introduction

Spectroscopists, and metrologists in general, are tasked with
measuring analog signals. On the other hand, computational
systems are digital and this means that one must sample the
analog signal to transform it into digital form for storage and
processing. The trick is to sample in such a way as to be able to
faithfully reconstruct the signal of interest. Here enters the
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applications in spectrochemical analysis are used to showcase its advantages and potential.

Shannon-Nyquist sampling theorem which states that the
minimum sampling rate should be higher than twice the
frequency of the signal of interest.” This has been the dogma for
quite some time now.

There are several issues associated with such practice. The
first issue is that the amount of data collected can be quite
daunting, especially when several dimensions are monitored.
Such is the case for hyperspectral imaging, where the signal
intensity is followed along the spatial x, y, z dimensions, the
spectral A dimension, and even the temporal dimension.> Such
file sizes pose a burden in terms of available computer memory.
The second issue is that of array detectors and cost. The
tendency is to try to acquire an image with a wide field-of-view
and at a high resolution which means that more elements are
needed in an array detector. This is typically translated into
prohibitive hardware costs. However, even when one has
enough computer memory and hardware resources to meet the
first two issues mentioned above, there is a third issue: time.
Such highly dimensional signals take an increasing amount of
time for data collection, processing and analysis.

The issues of computer memory burden as well as data
processing and data analysis time can be improved through
data compression practices. Data compression can be under-
taken because not all elements of such data contain relevant
information. An example of data compression is when a picture
taken with a consumer point-and-shoot camera is saved in JPEG
format instead of as a RAW data file.* The difference is hardly
discernible to the naked eye, yet the file sizes are much smaller.
In this case, the data is said to be sparse, and if not perfectly
sparse then compressible, which means that most of the
significant information is contained in a few elements.
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However, if not all data elements contain relevant information,
would it not be better to only collect those elements with the
important part of the signal? This is where compressed sensing
(CS) comes in. In CS, the compression is performed during the
signal acquisition, thus alleviating the issues mentioned above.

Several decades before compressed sensing came to be
known as such, radio astronomers* and seismic explorers® were
able to beat the limitation imposed by the Shannon-Nyquist
theorem. In the case of the geological experiments it involved
sending a seismic pulse from the surface to the sub-surface and
measuring the reflected pulse generated at the underground
layer boundaries with sensors at the surface. In principle, the
convoluted observed information is not sufficient to recreate
the shape of the layers in a unique way. Nevertheless, geologists
realized that subsurface layers are mostly homogeneous with
very few interfaces where the reflected pulses are generated,
thus a sparse spike train. It was this awareness of the signal
sparsity that allowed undersampled reconstruction. In a similar
way, in the mid-2000s, researchers showed they could recon-
struct magnetic resonance images uniquely from under-
sampled data.® This work inspired Candes, Romberg and Tao,”*
as well as Donoho,’ to publish the papers that have made
compressed sensing such a hot topic.

Only a decade has passed since these CS framework manu-
scripts were published but compressed sensing has exploded
into many different fields, including geology, medicine,
astronomy, etc. This review is not meant to be comprehensive,
but only a tutorial introduction to the subject through
a conceptual view followed by a presentation of some applica-
tions in spectroscopy relevant to chemical analysis. Several
excellent reviews and materials are available for further
reading,®"* some of which offer a more rigorous mathematical
description of the subject’>'® and describe applications in
other fields.

Compressed sensing: a conceptual
view
Group sampling and the case of the counterfeit gold coin

A quick look at group sampling will allow us to get a more
intuitive understanding of how can one obtain the information
of interest without being bound by the Shannon-Nyquist limits.
In this case there is a collection of eight gold coins but one of
them is a counterfeit. In principle, we would have to weigh each
coin to identify the bad one. However, the task is to identify the
bad one through its weight difference while making as few
weighings as possible. This can be achieved by weighing the
coins in groups because we know how much a genuine gold
coin should weigh. The coins can be weighed in groups of four
and, with the right combinations, only three weighings are
required. In the first measurement coins 1, 2, 3, and 4 are
weighed simultaneously, in the second measurement, coins 1,
2, 5,and 6, and in the third measurement, coins 1, 3, 5, and 7. If
none of the measurements give the expected, or correct, weight
then we know coin 1 is counterfeit because it was the only coin
included in all three measurements. Conversely, if all
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measurements yield the correct weight we can conclude coin 8
is the counterfeit coin because it was not included in any
measurement. If only the first measurement is incorrect then
coin 4 is counterfeit because it was only included in that
measurement. The same logic applies to the second or third
measurements to identify coin 6 or coin 7, respectively, as
counterfeit. If the first and second measurements are incorrect
but not the third it means that coin 2 is counterfeit because it
was the only coin included in the first two measurements. A
similar concept applies to coin 3 with measurements one and
three, as well as coin 5 with measurements two and three.

One might argue that three group measurements compared
to eight individual ones (probably less if the counterfeit coin is
weighed early) is not a significant improvement. Nevertheless,
what if there were 1000 coins or more? Then the advantages are
very clear. Something else to note is that in the above situation it
was known beforehand that there was one counterfeit coin,
which allowed the design of the measurement combinations, or
matrix. What if there were several counterfeit coins? In this
case, the best way to decide which coin will be included in what
measurement is randomly and independently. This would be
analogous to flipping each coin to decide if it is going to be
included in that measurement. The importance of such practice
is that it gives equal probability to each component of being
measured.

Reconstructing the signal

In the 8 coin example it is intuitive to see how to identify the
counterfeit coin from the measurement matrix. Nevertheless,
with a thousand coins it is not so clear. Typically, one is used to
solving problems that are determined, that is, systems with the
same number of independent equations and unknowns. When
the problem is determined it is certain to have a unique solu-
tion. This would be the case when each coin is measured
separately in the above example or when obtaining a 256 x 256
picture image by measuring each pixel individually from the
65 536 array.

On the other hand, compressed sensing systems are by
nature underdetermined which means there are less equations
in comparison to the number of unknowns. After all, the
purpose is to get the relevant information from less measure-
ments. At first glance, however, the problem seems insur-
mountable, if there are not enough measurements then there
are not enough restrictions on the system which results in an
infinite number of solutions. How, then, was it possible to solve
the 8 coin example above? The answer is sparsity. In the 8 coin
example it was known a priori that there was only one coun-
terfeit coin, which allowed inferring, or reconstructing, the
original signal from the measurement matrix. This can be better
illustrated by writing out the measurement matrix (¢) and
applying it to the sample, or coin, matrix (X) to obtain a result-
ing weights matrix (b), or b = ¢X. The ¢ matrix is known from
the experiment design and the b matrix is known from the
measurements performed. The task is to reconstruct the orig-
inal signal, or in this case the X matrix. It is clear from Fig. 1 that
the sparsity restriction of only one counterfeit coin leads to

This journal is © The Royal Society of Chemistry 2016
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Fig. 1 Matrix representation for finding a single counterfeit gold coin among 8 gold coins. Each row of the measurement matrix ¢ represents
a combination of coins to be weighed. Each element of a row in ¢ determines if the 1% coin, 2" coin, 3™ coin, etc., will be included (1) in that
measurement or not (0). Each row of the resulting weights matrix b denotes the weight of the corresponding combination of coins, or row, in ¢. X
is the sample matrix and each row stands for a different coin. In the sample matrix, a deviation from the nominal gold coin weight is denoted with
a 1 and the absence of a deviation with a 0. In this case, the resulting weights matrix b shows a deviation only in the first measurement, thus, it is
clear that the 4™ coin is the counterfeit one because it is only included in the first measurement and we know a priori that there is only one
counterfeit gold coin.

a unique solution of the X matrix. Thus, sparsity is a very
powerful restriction for obtaining a unique solution to under-
determined systems.

information can be contained within a few elements upon
processing with, for example, a discrete cosine transform.
Selecting only those elements for reconstructing the image is at

Then again, not all signals of interest are originally sparse. the heart of jpeg file compression (Fig. 2).

Take for example a complex wave signal which is very dense

when plotted as a function of time. Nevertheless, such signals 1,-Norm minimization, unit circles & sparsity
can be represented in a different basis, or domain, where they
are sparse (Fig. 2). Thus, upon subjecting the wave signal in
question to a Fourier transform it becomes clear that the signal
is sparse in the frequency domain. The same can be said for
images which may appear very dense originally but most of the

The unique solution to the X matrix in Fig. 1 is intuitive at
a glance but when one has many more coins, or pixels to
measure, then an algorithm to reach the unique solution has to
be followed. There are several ways to do it, for example, one can
take a brute force approach and attempt all potential answers
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2 T T T T T T T T T 1
1 | OFT
e =
& ° | — Sl i
o
_1 L
P S , o . | , . ,
10 20 30 40 : 50 60 70 80 920 100 0 50 100 200 250
(ms) f (Hz)

Inverse DCT, only
components 210

image

Fig.2 Signals which are not sparse in their original basis can be sparse when represented in another basis. (Top) A complex signal waveform that
varies as a function of time is sparse in the frequency domain. (Bottom) An originally dense image can be represented in a different basis through
a discrete cosine transform (DCT). A very accurate reconstruction of the image by inverse DCT with only the components =10 shows that the
image is highly compressible. Both examples were completed with Matlab software and the included sample autumn.tif image.
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until the correct one is found. This approach, however, is very
impractical and consumes an exceedingly long time. For
example, if someone says “I am thinking of a number between 1
and 100, what is it?” It would take an average of 50 tries (N/2) if
one were to guess individual numbers. A better way to do it is
with a game of “20 questions” where one can ask if the number
is greater than 50 and depending on the answer one can adapt
the next question until the correct number is found. This
approach would take log, N questions, or ~7 for our 100
number example above.'® Here, the approach to find the unique
solution that will be briefly introduced is called 1;-norm mini-
mization which has virtually become analogous with
compressed sensing. It is similar to the “20 questions”
approach but it is non-adaptive to make it relevant in practice.

A norm is a quantity that describes the size of a vector, or
matrix, in vector space. The 1,-norm of x is:

The lp-norm is of interest because it will yield the total
number of non-zero elements in x given that any non-zero
element to the zeroth power will result in one. Technically, the
lo-norm is not a norm but that is outside the scope of this review
so for now the nomenclature will be kept for clarity purposes.
Going back to our 8 coin example in Fig. 1 it is clear that the
unique solution is found by minimizing the l,-norm of X, i.e. its
total number of non-zero elements, again because of the spar-
sity restriction. The drawback of using the ly,-norm is that its
minimization is regarded as computationally intractable, or NP-
hard, if the system is large, which basically means it is too
complex to solve.'®'” On the other side of the spectrum is the 1,-
norm minimization, which is the very well established least
squares minimization approach. In this case, minimization can
be performed very efficiently, unfortunately it rarely leads to the
sparsest, or in this case correct, solution.***'® One can get
a conceptual view of this by looking at the geometric repre-
sentation of the line including all the possible solutions to b =
¢X and how it intersects with the two-dimensional “1,-ball”, or
for X with only two components (Fig. 3). The “l,-ball”contains all
equivalent L,-norms which are equal or less than the “ball”
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radius. The task is to have the b = ¢X line intersect with the
“l,-ball” at the minimum l,-norm which is at the axis, where one
of the two x components is zero. This is clearly the case with the
lo-norm but, again, minimization becomes a computationally
intractable problem. On the other hand, it is also clear that the
b = ¢X line does not intersect the “l,-ball” at the axis which
means it will not give the sparsest l,-norm. Consequently, one
can turn to the l;-norm."''%*” The “l;-ball” is anisotropic in
a similar way to the “lo-ball” such that the vertices lie at the axis.
Thus, there is a very high probability that 1;-norm minimization
will yield the same solution as the l,-norm minimization. This is
very powerful because there are several algorithms to minimize
the l;-norm and, even though this is not as efficient as a least
squares minimization, they have gotten to the point where it is
practical to work with thousands of measurements.'® In addi-
tion, such recovery algorithms are able to give very good
approximations even when the signal is not perfectly sparse.®
Furthermore, even when the signal is perturbed by error there
are means to recover the signal such that the recovery error is
comparable to the error in the measurement.

Challenges in compressed sensing

One of the challenges in compressed sensing is that of dynamic
range. Going back to the counterfeit gold coin example,
a smaller dynamic range is needed when weighing the coins
individually as opposed to weighing combinations of four coins.
This may not be such a problem in this case but it quickly
becomes an issue when trying to obtain a megapixel spectral
image through compressed sensing approaches. Most
measurements of random combinations will give values close to
an average but some will give much higher or much lower
values. If all the random combinations are to be included within
the dynamic range of the detector then the bit-depth will limit
the ability to distinguish the differences between the values
around the average. One way to get around this is to zoom-in
around the average such that the much higher and lower values
are outside the measuring window (i.e. saturated). Then, one
can either reject the saturated measurements or factor them
into the recovery algorithm.*® One of the reasons this works is
because each measurement carries approximately equal
amount of information.

-~ sz
S, ~~~~~ b:d)x
I T X
¢,-ball ¢,-ball

¢,-ball

Fig. 3 Simplified geometric representation of the |,-norm minimization where the dotted line including all the possible solutions to b = ¢X
intersects with different two-dimensional |,-balls. It is clear that the lo-norm minimization would yield the sparsest and correct solution as shown
by the intersection at the axis (minimum number of non-zero elements) but this is an intractable computational problem. The [,-norm mini-
mization (ball shape obtained from Euclidean geometry) is very efficient computationally but does not yield the sparsest solution as shown by the
intersection away from the axis. Nevertheless, the l;-ball does have its apex along the axis (ball shape obtained from taxi-cab geometry) thus ;-
norm minimization will yield the sparsest solution that can be computed.
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Another challenge is when the signal is shot-noise, or Pois-
son noise, limited. For example, it has been shown that in this
case the error bound decreases as the number of sensors goes
down for an image of fixed intensity.”* This may be counter
intuitive at first but no so much considering the analogous
situation of multiplex advantage turning into a disadvantage in
shot-noise limited situations.

Selected compressed sensing designs
for spectral imaging
Single pixel cameras

One of the most prominent designs for compressed sensing
spectral imaging is the single pixel camera.*»*® Here, an object
is imaged onto a digital micromirror device (DMD). The DMD
can then sequentially reflect pseudorandom combinations of
bundles of light from the image onto a detector consisting of
a single sensor (Fig. 4a). Finally, recovery of the original image
can be performed by using the known measurement matrix and
data. The advantage is that one can circumvent the need for
prohibitively expensive, or non-existing in some spectral
regions, array detectors while minimizing the time penalties of
pixel-by-pixel scanning, or whisker broom, approaches. Never-
theless, a sequence of measurements is still needed for recon-
struction such that some time sensitive applications may be
outside of the capabilities of this design. Several embodiments
now include not just spatial encoding, as described above, but
also spectral encoding and/or a one dimensional sensor array
for multi-spectral imaging applications.

Coded apertures

Another approach to compressed sensing spectral imaging is
through the use of coded apertures. A coded aperture snapshot
spectral imager (CASSI) spatially encodes the image before it

passes through a dispersive element onto an array
detector.”**** Basically, the coded aperture replaces the
Z
A - Lens !ﬁ!' ~'Lens Filter -
il gl N
i iy i
U i
Objective Sequentla[ pseudo- Single-pixel
random masks detector
Lens ; Prism - i"
g’} C i : :’i)l
y i !
Objective Coded Aperture Light Dispersion  Array

Detector

Fig.4 Typical architectures for compressed sensing spectral imaging.
In the single-pixel camera (A) a sequence of pseudo-random binary
masks encode the image such that a series of combinations of light
bundles arrive at the single-pixel detector. In the coded aperture
approach (B) a single aperture replaces the entrance slit on
a spectrograph.
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entrance slit on a spectrograph (Fig. 4b). The result will be
a “stack” of spatially encoded images which are shifted by
wavelength according to the dispersion factor of the spectro-
graph and measured simultaneously (or integrated) by the array
detector. The spectral images can then be recovered through CS
algorithms. The main advantage is that several spectral images
can be obtained with a single camera shot, although objects
with abundant spectral and spatial features need multiple shots
for a faithful reconstruction. Nevertheless, it is still more
amenable to time sensitive situations compared to the single-
pixel approach. On the other hand, it requires an array detector
which may be prohibitively expensive in some situations.

Selected examples of CS in analytical
spectrometry

Ever since the seminal paper by Candes, Romberg, and Tao in
2006,” there have been a lot of applications reported on
compressed sensing regarding imaging and spectroscopy. Table
1 shows many of the different techniques that have benefited
from CS approaches. It is evident that there are few studies
where atomic spectroscopy or elemental analysis has taken
advantage of CS but they have demonstrated that the potential
gains are superb. Here, several of these studies will be
described, together with some examples from molecular spec-
troscopy, with the aim of giving the reader a sense of the
possibilities and advantages but this is not meant to be an
exhaustive list.

The advantages of CS are uniquely harnessed by multidi-
mensional spectroscopy for chemical analysis, even when these
are not multiple spatial dimensions. A great example of CS in
atomic spectroscopy would be the work of Aspuru-Guzik et al.*®
with phase-modulation two-dimensional fluorescence of ¥Rb
vapor. In this 2D ultrafast spectroscopy technique the sample is
excited using a series of laser pulses separated by coherence
times, population times, and measurement times. The authors

Table 1 Selected examples of imaging and spectroscopy techniques
benefiting from compressed sensing

X-ray diffraction®®?’

X-ray fluorescence spectroscopy>®
Laser induced breakdown spectroscopy
Fluorescence spectroscopy”' °
Bioluminescence spectroscopy®’

Raman spectroscopy”® **

Infrared spectroscopy

Sum frequency generation spectroscopy”>>
Terahertz spectroscopy”* ™’
Multidimensional nuclear magnetic resonance
Magnetic resonance imaging®*~*®
Electron microscopy®” "
Electron energy loss spectroscopy
Atomic force microscopy”*”°
Helium atom scattering®
Super-resolution imaging®'~%*
Confocal microscopy®®**

Mass spectrometry®>*®

29,30

44-51

58,59

72,73
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showed how using the same sample data they were able to
obtain an order-of-magnitude better spectral resolution
through uniform grid sampling CS (Fig. 5). Conversely, they also
show that it is possible to get similar spectral resolution using
less than 5% of the sampled data but with random sampling in
the time domain. Kubarych and co-workers also applied CS to
multi-dimensional spectroscopy but in this case 2D-IR.** They
show that the typical features of a 2D-IR system can be repro-
duced with the CS approach in less than 1/16™ of the time. It is
worth noting that for many FT spectroscopy techniques the
Nyquist sampling theorem applied to time-domain digitization
determines maximum observable frequency rather than reso-
lution. A more recent example of compressed sensing applied to
multidimensional spectroscopy is the single-point array recon-
struction by spatial encoding (SPARSE) approach by Harel
et al.”

Another example of CS in elemental analysis is the work of
Bals et al.®® where they achieve 3D elemental mapping at the
atomic scale. The authors implement high-angle annular dark-
field (HAADF) scanning transmission electron microscopy

Absolute Value

2D DFT

2.42
24
2.38

2.36

236 238 24 242

2D CS Uniform Sampling

242

24

o (rad/fs)

2.36

236 238 24 242

2D CS Random Sampling

242

24

2.36

236 238 24 242
w (rad/fs)

Fig. 5 Phase-modulation two-dimensional fluorescence of &Rb
vapor via 2D discrete Fourier transform, 2D compressed sensing with
uniform grid sampling, and 2D compressed sensing with random
sampling. The better spectral resolution with CS techniques is evident.
Adapted with permission from Aspuru-Guzik et al.*® Copyright (2012)
American Chemical Society.
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Fig.6 3D elemental map of an Au core/Ag shell nanoparticle obtained
via HAAD STEM compressed sensing tomography. Only five projec-
tions were needed to reconstruct the image. The nanoparticles had an
average length of (35.3 + 4.6) nm and width of (20.4 + 1.9) nm.
Adapted with permission from Bals et al.%®¢ Copyright (2016) American
Chemical Society.

(STEM) where the projected image intensity depends on the
material thickness and the atomic number. Taking advantage of
compressed sensing tomography and statistical parameter
estimation, they were able to reconstruct the 3D elemental
composition of an Au/Ag core shell nanoparticle (Fig. 6) with as
little as 5 orthogonal projections.

Imaging of laser induced breakdown plasmas has also
benefited from compressed sensing approaches. Mochizuki and
co-workers* demonstrate the use of an ultra-high-speed multi-
aperture CMOS compressed sensing imager on LIBS plasmas.
This imaging architecture is interesting to examine, basically, it
features a 5 x 3 aperture array where each aperture consists of
a lens which projects an image onto a CMOS sub-region. The
binary modulation of each aperture is implemented in time,
such that the captured images are temporally-multiplexed. This
approach allows single-shot burst-readout image acquisition
rates of 200 Mfps. The authors observe the evolution of a laser
induced breakdown plasma in air and show the development of
a primary and secondary plasma under their operating condi-
tions (Fig. 7).

In 2006, Brady et al. implemented a coded aperture optical
spectrograph.*> The binary (open/closed) 2D pattern on the
aperture based on Hadamard S-matrices allowed reconstruction
from the spectral projections on the focal plane array detector.
The increased light throughput due to the size of the aperture
(1.73 mm X 4.32 mm) results in a signal-to-noise increase of
(N/2)°®° where N refers to the Hadamard matrix order. The large
coded aperture also allows for better coupling of large etendue,
i.e. geometric extent, sources. They show a proof-of-principle
spectra with the atomic emission of an argon lamp and move on
to perform a Raman spectroscopy quantitative study of ethanol
in tissue. In another interesting example, Ben-Amotz and co-
authors* designed and implemented a multivariate hyper-
spectral Raman imager. In their design, the collected Raman
scattering passes through a volume-phase holographic (VPH)

This journal is © The Royal Society of Chemistry 2016
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Fig.7 Ultra-high-speed multi-aperture CMOS compressed sensing imager on LIBS plasmas. An image frame rate of 200 Mfps was achieved with
the CS approach. Reprinted with permission from Mochizuki et al.*® Copyright (2015) IEEE.

grating onto a liquid-crystal based reflective spatial light
modulator (SLM) such that the reflected spatial/spectral enco-
ded light comes back through the VPH grating and is directed
by a beam splitter to single-pixel sensor. The programmable
optical filter can then be used to circumvent expensive array
detectors or to pre-train filter functions to look for specific
analytes which makes the chemical imaging much faster (>1 ms
per pixel image).

Baldelli and co-workers® have used compressed sensing for
sum frequency generation hyperspectral microscopy. In SFG the
non-linear optical interaction between a visible laser and an
infrared laser on a sample surface is utilized. Advantages
include the ability to obtain the surface chemical information
provided by IR but collected at visible wavelengths. In their
work, the authors encode the visible laser with a sequence of
pseudorandom patterns via a digital micromirror device. The
signal is then collected with a spectrograph and the image
recovered through CS algorithms. The authors report hyper-
spectral images recovered with acquisition in a fifth of the time
compared to typical methods.

Glass et al. have reported the use of 1D* and 2D° coded
apertures for mass spectrometry. In their 2D S-matrix coded
aperture work, they use a 90-degree magnetic sector mass
spectrometer with a 0.45 T magnet and an array detector
comprised of a micro channel plate, phosphor screen and
camera. The mass spectrometer features a large uniform ion
flux and a magnetic sector with a wide gap and better able to
preserve field homogeneity. They show proof-of-principle

This journal is © The Royal Society of Chemistry 2016

electron impact ionization mass spectra of ethanol, acetone,
and argon (Fig. 8). An increase in throughput by 3.5 times was
observed with the 2D coded aperture accompanied with a 1.3 x
to 1.4x loss in resolution. On the other hand, a similar
throughput increase (3.5x) with a typical slit would come with
an equivalent loss in resolution (3.5x).

(@) (b)
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Fig. 8 lon images from magnetic sector spectrograph with a typical
entrance slit (a) compared to a 2D coded aperture (b). The corre-
sponding recovered spectra (c) shows the better S/N for the coded
aperture (S — 15) vs. the normal slit (slit — 3). Reprinted from Glass
et al.*® with permission of Springer.
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Furthermore, CS has been shown to be advantageous with
regards to data mining. For example, Griffin et al.*® considered
the benefits of using compressed sensing for spectroscopic
classification of laser induced breakdown spectroscopy data.
They compare CS versus other approaches of LIBS materials
identification such as principal component analysis or partial
least squares. One of their main observations is that the signal
obtained via CS techniques is inherently classified, thus one
does not need to reconstruct the signal prior to classification.
Conversely, Conrad and co-authors® developed a CS approach
to pick features and classify proteomics mass spectral data and
improve bio-medical interpretation. The sparse proteomics
analysis algorithm was reported to perform better than other
popular algorithms for the cases studied.

Conclusions and perspective

The conceptual view of compressed sensing given here has
served to develop an intuition of how it works. Furthermore,
selected architectures and applications have served to demon-
strate the far-reaching and ongoing impact of compressed
sensing techniques. The CS benefits of better spatial/spectral
resolution with fully sampled data sets, faster acquisition times
with undersampled data sets, or higher throughput have been
harnessed by many techniques (see Table 1). In addition, novel
CS instrument designs and implementations are constantly
being reported, like a camera with an order-of-magnitude
thinner optics,* a lens-less camera,” or the use of a CMOS
camera's electronics to perform the encoding instead of
a physical mask.'” Nevertheless, there are only a few imple-
mentations of CS in atomic spectroscopy, or elemental analysis,
thus there are many potential benefits to be realized here. This
is illustrated in a paper describing a CS spectral imaging system
implemented on plasma optical emission spectroscopy that is
concurrently submitted to this issue.'® It is clear that
compressed sensing will keep growing in the field of spec-
trochemical analysis and will continue permeating into
different areas of study, accelerated by further research into its
current challenges.

Acknowledgements

G. Gamez would like to acknowledge funding from the National
Science Foundation under CHE - 1610849.

References

1 R. J. Marks 1II, Introduction to Shannon Sampling and
Interpolation Theory, Springer-Verlag, New York, 1991.

2 S. Lopez, T. Vladimirova, C. Gonzalez, J. Resano, D. Mozos
and A. Plaza, Proc. IEEE, 2013, 101, 698-722.

3 P. Buonora and F. Liberati, D-Lib Magazine, 2008, 14, DOI:
10.1045/july2008-buonora.

4 J. Hogbom, Astron. Astrophys., Suppl. Ser., 1974, 15, 417-426.

5 J. F. Claerbout and F. Muir, Geophysics, 1973, 38, 826-844.

6 B. Hayes, Am. Sci., 2009, 97, 276-280.

2172 | J. Anal At Spectrom., 2016, 31, 2165-2174

View Article Online

Tutorial Review

7 E.]. Candes, J. Romberg and T. Tao, IEEE Trans. Inf. Theory,
2006, 52, 489-509.

8 E. J. Candes, ]J. K. Romberg and T. Tao, Communications on
Pure and Applied Mathematics, 2006, 59, 1207-1223.

9 D. L. Donoho, IEEE Trans. Inf. Theory, 2006, 52, 1289-1306.

10 D. Mackenzie, What's Happening in the Mathematical
Sciences, 2009, vol. 7, pp. 114-127.

11 D. J. Holland and L. F. Gladden, Angew. Chem., Int. Ed.,
2014, 53, 13330-13340.

12 J. Romberg, IEEE Signal Process. Mag., 2008, 25, 14-20.

13 R. M. Willett, R. F. Marcia and J. M. Nichols, Opt. Eng., 2011,
50, 072601.

14 R. G. Baraniuk, IEEE Signal Process. Mag., 2007, 24,118-121.

15 G.R. Arce, D. J. Brady, L. Carin, H. Arguello and D. S. Kittle,
IEEE Signal Process. Mag., 2014, 31, 105-115.

16 K. Bryan and T. Leise, SIAM Rev., 2013, 55, 547-566.

17 D. L. Donoho, Communications on Pure and Applied
Mathematics, 2006, 59, 797-829.

18 J. A. Tropp and S. J. Wright, Proc. IEEE, 2010, 98, 948-958.

19 J. A. Tropp, IEEE Trans. Inf. Theory, 2006, 52, 1030-1051.

20 J. N. Laska, P. T. Boufounos, M. A. Davenport and
R. G. Baraniuk, Appl. Comput. Harmon. Anal., 2011, 31, 429-443.

21 M. Raginsky, R. M. Willett, Z. T. Harmany and R. F. Marcia,
IEEE Trans Sig. Process., 2010, 58, 3990-4002.

22 M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska,
T. Sun, K. F. Kelly and R. G. Baraniuk, IEEE Signal Process.
Mag., 2008, 25, 83-91.

23 D. Takhar, J. N. Laska, M. B. Wakin, M. E. Duarte, D. Baron,
S. Sarvotham, K. E. Kelly and R. G. Baraniuk, in
Computational Imaging 1V, ed. C. A. Bouman, E. L. Miller
and I. Pollak, 2006, vol. 6065, pp. 6509-6509.

24 D. J. Brady and M. E. Gehm, Proceedings of SPIE - The
International Society for Optical Engineering, Kissimmee,
FL, 2006.

25 R. F. Marcia, Z. T. Harmany and R. M. Willett, in
Computational Imaging Vii, ed. C. A. Bouman, E. L. Miller
and L. Pollak, 2009, vol. 7246.

26 J. A. Greenberg and D. J. Brady, in Computational Imaging
Xii, ed. C. A. Bouman and K. D. Sauer, 2014, vol. 9020.

27 J. Greenberg, K. Krishnamurthy and D. Brady, Opt. Lett.,
2014, 39, 111-114.

28 C. Hall, R. G. Acres, A. Winnett and F. Wang, J. Instrum.,
2016, 11, C03048.

29 S. T. Griffin, E. Jacobs and O. Furxhi, Proceedings of SPIE -
The International Society for Optical Engineering, Orlando,
FL, 2011.

30 F. Mochizuki, K. Kagawa, S. I. Okihara, M. W. Seo, B. Zhang,
T. Takasawa, K. Yasutomi and S. Kawahito, Digest of
Technical Papers - IEEE International Solid-State Circuits
Conference, 2015.

31 M. Dahan, Imaging Systems and Applications, ISA 2012,
Monterey, CA, 2012.

32 Q. Pian, R. Yao and X. Intes, Progress in Biomedical Optics
and Imaging - Proceedings of SPIE, 2016.

33 V. Studera, J. Bobin, M. Chahida, H. S. Mousavia, E. Candes
and M. Dahane, Proc. Natl. Acad. Sci. U. S. A., 2012, 109,
E1679-E1687.

This journal is © The Royal Society of Chemistry 2016


http://dx.doi.org/10.1039/c6ja00262e

Published on 07 September 2016. Downloaded by Texas Tech University on 25/01/2017 17:52:47.

Tutorial Review

34 J. Wang, C. Kuang, Y. Wang and X. Liu, Zhongguo Jiguang,
2013, 40, 1204003.

35 W. Zou and X. Pan, BioMedical Engineering OnLine, 2014, 13,
119.

36 J. N. Sanders, S. K. Saikin, S. Mostame, X. Andrade,
J. R. Widom, A. H. Marcus and A. Aspuru-Guzik, J. Phys.
Chem. Lett., 2012, 3, 2697-2702.

37 Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan
and A. F. Chatziioannou, Opt. Express, 2009, 17, 8062-8080.

38 D. G. Carreno and H. A. Fuentes, Symposium of Signals,
Images and Artificial Vision - 2013, STSIVA 2013, Bogota,
2013.

39 A. Cocking, N. Mehta, K. Shi and Z. Liu, Opt. Express, 2015,
23, 24991-24996.

40 B. M. Davis, A. ]J. Hemphill, D. C. Maltas, M. A. Zipper,
P. Wang and D. Ben-Amotz, Anal. Chem., 2011, 83, 5086—
5092.

41 C. Jenila and A. S. Raja, Opt. Quantum Electron., 2015, 47,
3855-3862.

42 S. T. McCain, M. E. Gehm, Y. Wang, N. P. Pitsianis and
D. J. Brady, Appl. Spectrosc., 2006, 60, 663-671.

43 J. Monsalve, H. Vargas and H. Arguello, 2015 20th
Symposium on Signal Processing, Images and Computer
Vision, STSIVA 2015-Conference Proceedings, 2015.

44 R. Bhargava, Appl. Spectrosc., 2012, 66, 1091-1120.

45 J. A. Dunbar, D. G. Osborne, J. M. Anna and K. J. Kubarych,
J. Phys. Chem. Lett., 2013, 4, 2489-2492,

46 J. R. Dupuis, M. Kirby and B. R. Cosofret, Proceedings of SPIE
- The International Society for Optical Engineering, 2015.

47 G. Frigo, S. Brigadoi, G. Giorgi, G. Sparacino and
C. Narduzzi, 2015 IEEE International Symposium on
Medical Measurements and Applications, MeMeA 2015-
Proceedings, 2015.

48 G. Frigo, S. Brigadoi, G. Giorgi, G. Sparacino and
C. Narduzzi, IEEE Trans. Instrum. Meas., 2016, 65, 1310-
1318.

49 M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons,
R. T. Kolste, J. Carriere, C. Chen, D. Prather and D. Brady,
Appl. Opt., 2008, 47, B1-B10.

50 Y. Wu, G. R. Arce and D. W. Prather, Applied Industrial
Optics: Spectroscopy, Imaging and Metrology, AIO 2012,
Monterey, CA, 2012.

51 Z.].Zhang, L. Liu, X. R. Li, L. Gan, Y. Huang and Y. C. Shen,
IET Seminar Digest, 2016.

52 D. Zheng, L. Lu, Y. Li, K. F. Kelly and S. Baldelli, J. Phys.
Chem. Lett., 2016, 7, 1781-1787.

53 X. Cai, B. Hu, T. Sun, K. F. Kelly and S. Baldelli, J. Chem.
Phys., 2011, 135, 194202.

54 S. Augustin, J. Hieronymus, P. Jung and H. W. Hiibers,
J. Infrared, Millimeter, Terahertz Waves, 2015, 36, 496-512.

55 D. Coltuc, Proceedings of SPIE - The International Society for
Optical Engineering, 2015.

56 P.Duan, Y. Wang, D. Xu, C. Yan, Z. Yang, W. Xu, W. Shi and
J. Yao, Appl. Opt., 2016, 55, 3670-3675.

57 C. C. Nadell, C. M. Watts, J. A. Montoya, S. Krishna and
W. J. Padilla, Adv. Opt. Mater., 2016, 4, 66—69.

This journal is © The Royal Society of Chemistry 2016

View Article Online

JAAS

58 M. J. Bostock, D. J. Holland and D. Nietlispach, J. Biomol
NMR, 2012, 54, 15-32.

59 D. ]J. Holland, M. J. Bostock, L. F. Gladden and
D. Nietlispach, Angew. Chem., Int. Ed., 2011, 50, 6548-6551.

60 M. Lustig, D. L. Donoho, J. M. Santos and J. M. Pauly, IEEE
Signal Process. Mag., 2008, 25, 72-82.

61 B. Deka and S. Datta, ACM International Conference
Proceeding Series, 2014.

62 S. Geethanath, R. Reddy, A. S. Konar, S. Imam,
R. Sundaresan, D. R. Ramesh Babu and R. Venkatesan,
Crit. Rev. Biomed. Eng., 2013, 41, 183-204.

63 S. G. Lingala and M. Jacob, IEEE Trans. Med. Imag., 2013, 32,
1132-1145.

64 Y. Nan, Z. Yi and C. Bingxia, Proceedings - 2015 7th
International Conference on Information Technology in
Medicine and Education, ITME 2015, 2015.

65 D. S. Smith, X. Li, R. G. Abramson, C. C. Quarles,
T. E. Yankeelov and E. B. Welch, Canc. Imag., 2013, 13,
633-644.

66 J. Trzasko and A. Manduca, IEEE Trans. Med. Imag., 2009,
28, 106-121.

67 H. S. Anderson, ]. Ilic-Helms, B. Rohrer, J. Wheeler and
K. Larson, Proceedings of SPIE - The International Society
for Optical Engineering, Burlingame, CA, 2013.

68 B. Goris, A. De Backer, S. Van Aert, S. Gomez-Grana,
L. M. Liz-Marzan, G. Van Tendeloo and S. Bals, Nano Lett.,
2013, 13, 4236-4241.

69 R. Leary, Z. Saghi, P. A. Midgley and D. ]J. Holland,
Ultramicroscopy, 2013, 131, 70-91.

70 A. Al-Afeef, W. P. Cockshott, I. MacLaren and S. McVitie,
Scanning, 2016, 38, 251-276.

71 M. D. Guay, W. Czaja, M. A. Aronova and R. D. Leapman,
Sci. Rep., 2016, 6, 27614.

72 A. Horl, A. Triigler and U. Hohenester, ACS Photonics, 2015,
2,1429-1435.

73 O. Nicoletti, F. De La Pefia, R. K. Leary, D. J. Holland,
C. Ducati and P. A. Midgley, Nature, 2013, 502, 80-84.

74 Y. Luo and S. B. Andersson, Nanotechnology, 2015, 26,
505703.

75 S. B. Andersson and L. Y. Pao, Proceedings of the American
Control Conference, Montreal, QC, 2012.

76 Y. Luo and S. B. Andersson, Proceedings of the American
Control Conference, 2015.

77 B. D. Maxwell and S. B. Andersson, Proceedings of the
American Control Conference, Portland, OR, 2014.

78 P. S. Pedersen, ]J. Ostergaard and T. Larsen, 2015 IEEE
Global Conference on Signal and Information Processing,
GlobalSIP 2015, 2015.

79 B. Song, N. Xi, R. Yang, K. W. C. Lai and C. Qu, Proceedings
of the IEEE Conference on Nanotechnology, Portland, OR,
2011.

80 A. Jones, A. Tamtogl, I. Calvo-Almazan and A. Hansen, Sci.
Rep., 2016, 6, 27776.

81 S. Gazit, A. Szameit, Y. C. Eldar and M. Segev, Opt. Express,
2009, 17, 23920-23946.

82 W. AlSaafin, S. Villena, M. Vega, R. Molina and
A. K. Katsaggelos, Digit. Signal Process., 2016, 50, 180-190.

J. Anal. At. Spectrom., 2016, 31, 2165-2174 | 2173


http://dx.doi.org/10.1039/c6ja00262e

Published on 07 September 2016. Downloaded by Texas Tech University on 25/01/2017 17:52:47.

JAAS

83 Y. Mao, Y. Wang, J. Zhou and H. Jia, Infrared Phys. Technol.,
2016, 76, 735-739.

84 R. F. Marcia and R. M. Willett, ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing -
Proceedings, Las Vegas, NV, 2008.

85 Z.Pan,]. Yu, H. Huang, S. Hu, A. Zhang, H. Ma and W. Sun,
IEEE Transactions on Geoscience and Remote Sensing, 2013,
51, 4864-4876.

86 Y. Sun, G. Gu, X. Sui and Y. Liu, IEEE Photonics J., 2016, 8,
6900112.

87 Y. Sun, X. Sui, G. Gu, Y. Liu and S. Xu, IEEE Photonics J.,
2016, 8, 6900508.

88 S. Zhang, G. Dong and G. Kuang, IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing,
2016, 9, 2184-2196.

89 R. Horisaki, Y. Tampa and J. Tanida, Computational Optical
Sensing and Imaging, COSI 2012, Monterey, CA, 2012.

90 P. Ye, J. L. Paredes, G. R. Arce, Y. Wu, C. Chen and
D. W. Prather, ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings,
Taipei, 2009.

91 P. Ye, J. L. Paredes, Y. Wu, C. Chen, G. R. Arce and
D. W. Prather, Proceedings of SPIE - The International
Society for Optical Engineering, San Jose, CA, 2009.

92 B. Andreas, D. Patrick, T. Dennis, A. Theodore and M. Peter,
Inverse Problems, 2013, 29, 125015.

2174 | J. Anal At. Spectrom., 2016, 31, 2165-2174

View Article Online

Tutorial Review

93 E. X. Chen, Z. E. Russell, J. J. Amsden, S. D. Wolter,
R. M. Danell, C. B. Parker, B. R. Stoner, M. E. Gehm,
J. T. Glass and D. ]J. Brady, J. Am. Soc. Mass Spectrom.,
2015, 26, 1633-1640.

94 J. X. Liu and Q. S. Sun, Proceedings - 2012 9th International
Conference on Fuzzy Systems and Knowledge Discovery,
FSKD 2012, Chongqing, 2012.

95 J. X. Liu and Q. S. Sun, IET Signal Processing, 2013, 7, 201-
209.

96 Z. E. Russell, E. X. Chen, J. J. Amsden, S. D. Wolter,
R. M. Danell, C. B. Parker, B. R. Stoner, M. E. Gehm,
D. ]J. Brady and J. T. Glass, J. Am. Soc. Mass Spectrom.,
2015, 26, 248-256.

97 A. P. Spencer, B. Spokoyny, S. Ray, F. Sarvari and E. Harel,
Nat. Commun., 2016, 7, 10434.

98 T. Conrad, M. Genzel, N. Cvetkovic, N. Wulkow, A. Leichtle,
J. Vybiral, G. Kutyniok and C. Schutte, arXiv:1506.03620,
2015.

99 G. Huang, H. Jiang, K. Matthews and P. Wilford, in 2013
20th IEEE International Conference on Image Processing,
2013, pp. 2101-2105.

100 R. Robucci, J. D. Gray, L. K. Chiu, J. Romberg and P. Hasler,
Proc. IEEE, 2010, 98, 1089-1101.

101 J. Usala, A. Maag, T. Nelis and G. Gamez, Compressed
Sensing Spectral Imaging for Plasma Optical Emission
Spectroscopy, J. Anal. At. Spectrom.(submitted).

This journal is © The Royal Society of Chemistry 2016


http://dx.doi.org/10.1039/c6ja00262e

	Compressed sensing in spectroscopy for chemical analysis
	Compressed sensing in spectroscopy for chemical analysis
	Compressed sensing in spectroscopy for chemical analysis
	Compressed sensing in spectroscopy for chemical analysis
	Compressed sensing in spectroscopy for chemical analysis
	Compressed sensing in spectroscopy for chemical analysis

	Compressed sensing in spectroscopy for chemical analysis
	Compressed sensing in spectroscopy for chemical analysis
	Compressed sensing in spectroscopy for chemical analysis
	Compressed sensing in spectroscopy for chemical analysis

	Compressed sensing in spectroscopy for chemical analysis
	Compressed sensing in spectroscopy for chemical analysis
	Compressed sensing in spectroscopy for chemical analysis




