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Plasma optical emission spectral imaging is critical for the development of chemical analysis applications

and plasma diagnostics. Nevertheless, typical techniques require array detectors that can be very

expensive or pixel-to-pixel rastering approaches that are highly time-consuming. Further, the acquired

image files are compressed to keep data manageable, which can be achieved without loss of critical

information, thus showing the sparsity of the data. A fairly recent paradigm in sampling, compressed

sensing (CS), allows performing compression during acquisition which results in a more efficient use of

experimental resources. As such, CS systems can be much faster, cost-effective, or even provide better

resolution or throughput. In this study, a CS spectral imaging system, featuring a single-sensor and

a variable encoding mask, is designed and implemented for plasma optical emission spectroscopy. The

performance, based on PSNR and spatial resolution, is characterized as a function of experimental and

image processing parameters such as sensing matrix selection, recovery algorithm choice, and

sparsifying basis. Spectral images of optical emissions from plasma species of interest (He I, N2, N2
+)

were collected from an atmospheric pressure plasma jet. The use of a CS spectral imaging system for

plasma diagnostics (Tvib) is reported for the first time.
Introduction

Spectral imaging is an important tool in the chemical analysis
arsenal that allows obtaining spatially-resolved qualitative and
quantitative information. Such information is important to
improve the understanding of samples of interest as well as
optimize the performance of relevant systems. In the case of
plasma optical emission spectroscopy (OES), spectral imaging
plays a critical role in application development, for example in
the case of glow discharge surface elemental mapping1,2 or
inductively coupled plasma matrix-effect agging.3,4 In addi-
tion, spectral imaging has become essential in plasma funda-
mental studies for glow discharge,5,6 inductively coupled
plasma,7–9 dielectric barrier discharges,10,11 laser induced
breakdown plasmas,12,13 etc., to better understand the under-
lying plasma mechanisms.

The spectral data cube information, intensity as a function of
two spatial dimensions and the spectral dimension, is typically
obtained with 2D array detectors by collecting the intensity
simultaneously in two dimensions and scanning the remaining
dimension. Such array detectors may function well for spectral
imaging but they reach higher costs as more complex features
(chip size, number of pixels, temporal resolution, intensiers,
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etc.) are included. The expense can be prohibitive (several tens
of thousands USD) to develop certain applications or for using
spectral imaging plasma diagnostics routinely.

A more cost-effective approach would entail using a detector
with a single sensor and rastering, that is, collecting the spec-
trally resolved intensity at adjacent positions of the object until
the whole image is obtained. On the other hand, this approach
is increasingly time-consuming to the point of becoming
impractical, depending on the analysis time per spot and the
number of spots per image. To circumvent the problem of long
acquisition times with a single sensor, compressed sensing may
be implemented.14 Compressed sensing (CS) is a relatively new
sampling paradigm that allows one to under-sample with
respect to the Nyquist criteria (sampling rate >2� the frequency
of the signal of interest) and still obtain an image of comparable
delity.15–22 For example, if one desires to obtain a 10 � 10 pixel
map, under traditional imaging, 100 individual measurements
would be required: one measurement per pixel. On the other
hand, compressed sensing allows obtaining an image of
comparable resolution with signicantly less measurements.

Several excellent materials are available to get a better
understanding of compressed sensing.15–22 In fact, a tutorial
review of CS in analytical spectroscopy is concurrently pub-
lished in this issue.23 Nevertheless, the following case will serve
to gain a better understanding of the basic compressed sensing
approach here. In traditional imaging an image such as a reso-
lution target or the emission from a plasma is projected onto
a camera, which is a 2D array of N pixels. This projection
This journal is © The Royal Society of Chemistry 2016
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corresponds to a matrix of Nmeasurements. In the CS approach
implemented here, instead of a 2D array detector the image is
projected onto a spatial light modulator (SLM) that acts as
a mask to allow selected sections of the image (i.e. an encoded
image) to simultaneously reach a single pixel detector. In this
fashion, a series of randomly generated masks result in the
single pixel measuring a series of encoded light intensity
signals. The random nature of the mask generation ensures an
equal probability of all of the sections of the image to be
measured. This process can be mathematically represented as
follows: each mask pattern projected by the SLM is a matrix that
can be concatenated and transposed to become a row of a larger
sensing matrix, A, which includes all the projected mask
patterns as rows. The sensing matrix, A, is applied to the sample
matrix, x, which is the concatenated version of the sample
image matrix to be measured:

Ax ¼ y

The result is the measurement vector, y, in which each
element is the encoded intensity measured at the single pixel
detector for each corresponding randomly generated mask. In
traditional imaging, the sensing matrix A would look like
a square matrix because there would be an equal number of
measurements (rows) vs. the number of pixels (columns). In this
sense, the system is determined, same number of equations as
unknowns, and has a unique solution. In compressive sensing, A
is a rectangular “fat” matrix because there are fewer measure-
ments than pixel values and the system is underdetermined.

Although there are innitely many solutions to an under-
determined system of equations, CS recovers signals in fewer
measurements than traditional means by two principles: spar-
sity and incoherence.22 A signal is sparse when most of its
information is contained in a few elements, for example,
a spectrum with only a couple of sharp peaks. However, even
when at rst glance a signal does not seem sparse, or
compressible, it may be sparse when it is represented in
a different basis (or domain), for example, a complex waveform
in the time domain may be represented by only a few peaks in
the frequency domain through a Fourier transform. The change
of basis does not change the intrinsic information contained in
the signal but rather the way it is represented so that the
majority of the signal is contained in fewer elements. Sparsity is
a property traditionally exploited in soware le compression
aer signal acquisition. In contrast, compressive sensing
features compression during the signal acquisition by taking
advantage of the sparsity of the signal.

Next, a suitable measurement matrix that is incoherent with
respect to the sparsifying basis must be used. Coherence, in this
case, is a measure of the correlation between the sensing matrix
and the signal basis representation. In compressive sensing,
incoherent systems yield the most efficient sampling, i.e.
require the least number of samples for signal reconstruction.
Ideally, the measurement matrix would consist of completely
independent and identically distributed entries to ensure
minimum coherence. In the CS imaging system implemented
This journal is © The Royal Society of Chemistry 2016
here, this translates into random generation of the masks
applied to the SLM, i.e. randomly selecting which parts of the
image reach the detector, through the use of structurally
random matrices. A high degree of randomness is key to an
efficient sensing matrix design, although this is not always
feasible in physical implementations.

Finally, compressive sensing reconstructs the system of
underdetermined equations using various minimization algo-
rithms.24 The techniques are all problems in convex minimi-
zation. Such algorithms include interior-point, matching
pursuit, and gradient projection methods. All reconstruction
algorithms strive to nd the sparsest solution to the original
linear programmable problem.

Baraniuk et al.14 took advantage of compressed sensing
principles to develop a single-pixel camera, featuring a photo-
diode for IR imaging. The setup includes a digital micromirror
device to generate a series of pseudo-random binary masks to
encode the light from the object that arrives at the detector. The
under-sampled measurements are then used to reconstruct the
image through compressed sensing algorithms. This approach
allowed a much more cost effective solution to array detectors.

In this work a monochromator with a photomultiplier tube
and a digital micromirror device (DMD) are used to develop
a single detector compressed sensing spectral imager. A sensing
matrix, A, design called the scrambled block Hadamard
ensemble25 is used to allow for fast reconstruction and adapt-
ability to different levels of light. The system is characterized in
terms of delity and resolution by comparing the performance
with two different sparsifying basis and two reconstruction
algorithms. The instrument capabilities are demonstrated
by obtaining spectral images of an atmospheric pressure
plasma jet.

Experimental methods
CS spectral imaging system

The light emitted from the object was collected through
a collimating lens and focused with a second lens onto a DMD
(DLP® LightCraer™ Evaluation Module with DLP 0.3 WVGA
chipset, Texas Instruments) (Fig. 1a). An area of 512 � 512
mirrors was used with 2 � 2 binning giving 256 � 256 pixel
images. The mirrors of the DMD are aligned in a diamond grid
such that the lines in one dimension are straight and in the
other they are zigzag which results in the interline distance
being twice in one dimension vs. the other. Thus, the height of
each resultant image had to be adjusted by a factor of 1

2. The
multiplexed light was then collected through another series of
collimating and focusing lenses and was focused onto the
entrance slit of a monochromator (Bentham M300, 1200 g
mm�1). The bandpass of the monochromator for plasma
images was 1.76 nm. All lenses had the following characteris-
tics: UV fused silica plano-convex, uncoated, f ¼ 200.7 mm, Ø2.
The monochromator was equipped with a PMT (R6358P,
Hamamatsu). An in-house built preamplier, amplier, and
offset modulator were used to condition the signal. The signal
was then recorded through an analogue-to-digital converter
(USB-6001 14-Bit, National Instruments) at 2.5 kHz.
J. Anal. At. Spectrom., 2016, 31, 2198–2206 | 2199
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Fig. 1 (A) Diagram of the compressed sensing spectral imaging system. L1 and L2 transfer the light onto a DMD for encoding with a series of
patterns. The light is then sent through a monochromator equipped with a PMT for detection. (B) Diagram of the APPJ used for CS spectral
imaging of plasma optical emission spectroscopy. See text for operating conditions.
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Measurements were taken and reconstructions were performed
with a Windows operating system laptop with an Intel® Core™
i7-5600U CPU @ 2.60 GHz and 16 GB RAM.
Plasma source

The atmospheric pressure plasma jet consisted of a dielectric
barrier discharge (DBD) operated with He gas (Fig. 1b). The DBD
jet was produced by placing two aluminum foil electrodes
wrapped outside with a silica capillary (150 mm id., 300 mm od.)
at a distance of 6 mm from each other. One electrode was
grounded and the other connected to an AC power supply
(PVM500, Information Unlimited) operated at 30 kHz and an
Fig. 2 Flow diagram of the sequence for constructing the scrambled bl
matrix. (B) Rows randomized. (C) Randomly selected columns. (D) Colum
The specific numbers inside the matrices are only there to facilitate follo
an ON mirror on the DMD which directs light toward the detector.

2200 | J. Anal. At. Spectrom., 2016, 31, 2198–2206
applied voltage of 8 kV. The powered electrode was placed 6 mm
from the capillary end. The He gas ow was maintained at
0.4 slpm. A copper block placed 1 mm from the capillary end
was used as a model sample.
Soware

Sensing and reconstruction design was performed with the
Structurally RandomMatrix toolbox Version 1.0. The fast_csd.m
example was adapted for measurements using the DMD.
Scrambled Block Hadamard Ensemble (SBHE) structurally
random matrices (SRMs) were used as the sensing matrix,
written into video les and streamed via HDMI to the DMD. As
ock Hadamard matrices. (A) Matrix diagonally blocked with Hadamard
ns reshaped into matrices for a 4 � 4 coded mask sequence example.
wing the example flow. In practice, each number would correspond to

This journal is © The Royal Society of Chemistry 2016

http://dx.doi.org/10.1039/c6ja00261g


Paper JAAS

Pu
bl

is
he

d 
on

 2
7 

Se
pt

em
be

r 2
01

6.
 D

ow
nl

oa
de

d 
by

 T
ex

as
 T

ec
h 

U
ni

ve
rs

ity
 o

n 
25

/0
1/

20
17

 1
7:

52
:1

7.
 

View Article Online
opposed to stored random matrices, SRMs have the advantage
of fast computation during reconstruction. Fig. 2 depicts an
example of the SBHE generation process with a 4 � 4 Hada-
mard block to create the patterns for a 4 � 4 DMD section. The
SBHE is created by diagonally arranging blocks of the Hada-
mard matrix with the selected size, in this case 4 � 4, onto
a larger matrix (Fig. 2a). If the Hadamard is composed of 1's and
�1's, then the �1's are changed to zero. Next, the rows of the
matrix are randomized (Fig. 2b). Subsequently, a subset of
columns is selected at random (Fig. 2c). It is important to note
that the act of randomizing the rows and selecting the columns
at randommust be seeded to be able to account for it during the
reconstruction process. Each resultant column is reshaped to
a matrix and sequentially applied as a pattern on the DMD
(Fig. 2d). The Hadamard blocks implemented for the matrices
used in the measurements here had sizes of 512 � 512, 1024 �
1024, 2046 � 2046, and 4096 � 4096.

Patterns were written into a video le by repeating a pattern
with two frames and then inserting an off frame between
patterns. Pattern repetition was implemented to account for
error in the display time of the DMD, and off frames were used
to better differentiate between the resultant signals. Finally, the
script was run at 30 frames per second. Thus, three frames were
used per pattern, (2 repeated and 1 off) and the pattern rate was
10 patterns per second.

The reconstruction algorithms used included Gradient
Projection for Sparse Reconstruction (GPSR),26 a gradient
projection type solver that has a penalty term derived from
a scaled l1-norm and a least-squares term, and Two-step Itera-
tive Shrinking/Thresholding Algorithm for Linear Inverse
Problems (TwIST),27 a second order two-step iterative shrinkage
Fig. 3 Images of USAF 1951 target acquired with 512 block size SBH
compression can be observed at percent samplings of 10% (a), 20% (b), 3
with respect to the total number of pixels.

This journal is © The Royal Society of Chemistry 2016
algorithm. These were selected because they are known to be
faster compared to others.24 With respect to sparsifying basis,
both the Discrete Cosine Transform (DCT) and the 9–7 Discrete
Wavelet Transform (DWT) were used.
Results and discussion

The system characterization and optimization was performed
by imaging a USAF 1951 Airforce target back illuminated with
a desk lamp. Fig. 3 shows sample images obtained at selected
conditions. It is evident by simple eye inspection that there are
differences among the images but a quantitative comparison
was undertaken by calculating the compression delity.
Compression delity

The compression delity of the system was quantied by
calculating the Peak Signal-to-Noise Ratio (PSNR). The PSNR is
dened by:

PSNR ¼ 10 log10

�
MAXI

2

MSE

�

MSE ¼ 1

mn

Xm�1

i¼0

Xn�1

j¼0

�
Iði; jÞ � Kði; jÞ�2

The mean squared error (MSE) is used to perform a pixel-to-
pixel comparison between a standard image I, made up ofm� n
pixels, and the reconstructed same-size image resulting from
compressed sampling, K. The PSNR is obtained by weighing the
E and reconstructed with GPSR algorithm with DCT. The effect of
0% (c), 40% (d), 50% (e), and 100% (f), i.e. the number of measurements

J. Anal. At. Spectrom., 2016, 31, 2198–2206 | 2201
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MSE vs. the maximum possible value (MAX) according to the bit
depth (8 bit in our case) and expressed in decibels to better
manage high dynamic ranges. Higher PSNR is interpreted as
better compression delity. An ideal standard image would be
obtained by rastering pixel-by-pixel to represent the traditional
sampling approach. Nevertheless, that type of standard image
could not be obtained because the signal-to-noise ratio was
limiting and increasing acquisition times was impractical.
Thus, the standard image was sampled in a similar fashion as
the compressed sensing images using a 512 SBHE but letting
the number of samples, or measurements, equal the number of
pixels, i.e. no compression. For the standard image, the
resulting determined system of equations was solved via
Gaussian elimination, not compressed sensing algorithms,
aer sampling the target with an invertible matrix. Further,
aer the standard image was acquired, a median lter with
a 2 � 2 neighborhood was used on the resultant image. The
same median lter was applied to the images acquired via
compressive sensing to take it into account for the PSNR
calculation. Nevertheless, the challenges encountered when
obtaining the standard image point to an important advantage
of compressed sampling through multiplexed measurements.
Also, it is worth noting that the PSNR absolute values are for
comparisons with respect to another multiplexed image and not
a typical sampling approach. Even so, the PSNR trends with
respect to the operating and reconstruction conditions serve
perfectly well for optimization. Thus, the PSNR were calculated
as a function of reconstruction algorithm choice (GPSR or
TwIST), basis choice (DCT or DWT), sampling percentage or
compression factor, and matrix density (block Hadamard size).
Finally, images were acquired with a 10% neutral density lter
in order to determine the effect of light intensity.
Fig. 4 PSNR as a function of percent sampling for different SBHE
block sizes for images reconstructed with GPSR and DWT.
Reconstruction algorithm and basis optimization

In order to determine the optimal basis and reconstruction
algorithm choice for standard light conditions with the desk
lamp, the image was sampled at a 10, 20, 30, 40, and 50%
compression factor (the number of measurements divided by
the total number of pixels, also known as sampling percentage)
with a 512, 1024, 2048, and 4096 SBHE, totaling twenty
measurements. Each image at each percent sampling and block
size was reconstructed with each basis and each reconstruction
algorithm. Thus a measurement at a specic percent sampling
and a specic block size was reconstructed in four: GPSR with
DCT, GPSR with DWT, TwIST with DCT, and TwIST with DWT.

The optimal basis was determined by performing a paired
t-test with each reconstruction algorithm for the set of twenty
measurements. Thus the difference of PSNR was measured for
the GPSR–DCT and GPSR–DWT combination and the TwIST–
DCT and TwIST–DWT combination. The mean difference of the
GPSR basis combination was DWT > DCT by 1.98 PSNR with
a p-value of 1.26 � 10�5. For the TwIST algorithm combination,
the mean difference was DWT > DCT by 1.72 PSNR with
a p-value of 6.4 � 10�4. Thus the DWT yielded a higher PSNR
value with statistical signicance for each of the reconstruction
algorithms.
2202 | J. Anal. At. Spectrom., 2016, 31, 2198–2206
Next, the optimization of the reconstruction algorithm was
determined by performing a paired t-test on the twenty
measurements reconstructed using both TwIST and GPSR with
the wavelet basis. The mean difference of reconstructions was
GPSR > TwIST by 2.42 PSNR with a p-value of 0.0020. Thus GPSR
yielded a higher PSNR value than TwIST with statistical signif-
icance for the wavelet basis. As the wavelet basis yielded
a higher PSNR value than the cosine basis, the optimal recon-
struction algorithm-basis combination was determined to be
GPSR–DWT.

Sampling percentage and block Hadamard size

It is evident from Fig. 4 that the PSNR increases steadily from
10% sampling to 30% sampling. On the other hand, increasing
the sampling percentage above 30% does not yield such
signicant improvements. A similar conclusion can be reached
by observing the contrast measured from the intensity prole
across USAF 1951 target group 4 element 1 (16 line pairs per
mm) for the different sampling percentages (Fig. 5). Thus, 30%
sampling was selected to measure the plasma images below in
order to have high quality images at fast acquisition times.

Also evident from Fig. 4 is that smaller block sizes resulted in
higher PSNR for every sampling percentage. Thus, the highest
compression delity was attained by the 512 block size. The
compressed sensing imaging process was simulated on so-
ware to better understand the PSNR trends. For this purpose,
the SBHE mask matrix/pattern sequence was applied to the
standard image le. The intensity of each resulting encoded
image was integrated to yield a sequence of intensity values
analogous to the signal measured with the CS imaging system.
Subsequent reconstruction of the original image was performed
as described in the experimental section. Fig. 6a shows that
each of the four sizes of SBHE lead to similar PSNR values.
Nevertheless, that represents an ideal case with no noise. Thus,
standard white Gaussian noise was added to the simulated
measurements to observe its effects. The signal-to-noise per
sample, measured in dbW, was 30. The same smoothing algo-
rithm, square pulse detection, and reconstruction algorithm
This journal is © The Royal Society of Chemistry 2016
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Fig. 5 Vertical intensity profile across USAF 1951 target group 4
element 1 (16 line pairs per mm) in the reconstructed images with
different sampling percentages.

Fig. 7 PSNR as a function of percent sampling for different SBHE
block sizes (GPSR, DWT) when the light intensity is decreased by an
order of magnitude.
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was then used. The resultant PSNR values in Fig. 6b show
a similar trend to Fig. 4 regarding higher PSNR values for
smaller block sizes.

A closer look at the signal variation within the sequence of
intensity values obtained from the sequence of applied mask
patterns yields an insight into the causes for the observed PSNR
trends. The relative standard deviation within the sequence for
the 512 SBHE is 7.39%, 1024 SBHE is 5.22%, 2048 SBHE is
3.81%, and 4096 SBHE is 2.86%. Thus, the smaller the block
size, the greater the relative variation between measurements.
As the noise simulation results in the same SNR irrespective of
block size, the additive noise will have a greater effect on the
relative variation of the signals when the block size is large.
Further, the strong correlation between the simulated and
experimental trend is an indication that the SNR of the exper-
imental measurements is proportional across all block sizes.
The physical source of the noise may be due to photon noise. In
this case, a larger number of mirrors of the DMD that direct
light toward the detector (i.e. larger SBHE block sizes) would
Fig. 6 PSNR as a function of percent sampling for different SBHE block
(A) and with (B) Gaussian noise added. Similar to the experimental observ
size but only in the presence of noise.

This journal is © The Royal Society of Chemistry 2016
result in more signal, but also in more noise. Willett and
co-workers28 have reported the effects of Poisson noise on
compressed sensing imaging and found that for an image with
xed intensity the error bound increases together with the
quantity of sensors.
Light intensity

Resolution target images were taken with a 10% neutral density
lter in order to characterize the system's dynamic range and
response to low levels of light in terms of PSNR (Fig. 7). Two
noticeable differences from images taken with higher light
intensity are apparent: rst, low light levels resulted in overall
lower PSNR values for all block sizes; second, the previously
observed trend of higher PSNR with smaller block size is not
present. In this case, the PSNR values were lowest for the 4096
block and increased for the 2048 block. In general, the PSNR
values at 1024 were higher or similar compared to 2048. Finally,
the PSNR values at 512 were lower or similar to those at 2048. A
sizes for simulated compressed sampling images (GPSR, DWT) without
ations, there is a trend of increasing PSNR with decreasing SBHE block

J. Anal. At. Spectrom., 2016, 31, 2198–2206 | 2203
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plausible explanation for the different trends in block size and
PSNR is the effect of signal independent noise at low light level
becoming signicant. Thus, at larger block sizes there are
photon-noise limitations but at smaller block sizes there are
signal-independent noise limitations.

With respect to other performance characteristics, it is worth
noting that the acquisition time is currently limited by the DMD
mirror switching frequency. Nevertheless, there are several
much better DMD models in this respect that are commercially
available and would allow even faster acquisition times.
Furthermore, there are some wavelength range restrictions of
DMDs toward the UV range with UV optimized models with
recommended use only down to 360 nm.
Fig. 8 CS spectral images of the atmospheric pressure DBD jet (4096
SBHE, 30% sampling, GPSR and DWT). (A) He I emission at 587.6 nm.
(B) N2

+ emission at 391.4 nm. (C) N2 emission at 380.4 nm. Each image
was normalized to the highest intensity within the image. Here, the
intensities are not comparable between images.
Compressed sensing plasma optical emission spectral
imaging

The newly developed CS spectral imaging system was imple-
mented for measuring the optical emission from a dielectric
barrier discharge (DBD)-based atmospheric pressure plasma jet
(APPJ). APPJs have received considerable attention as ambient
ionization sources for mass spectrometry.29–31 Recently, these
jets have also been proposed for sampling purposes in depth
proling analysis of metal substrates.32 In spite of the consid-
erable amount of publications describing new applications of
such sources there are few fundamental studies and there is
much to be learned of their underlying mechanisms. Spectral
imaging has proven very effective in providing information on
the spatial distribution of plasma species thus unveiling some
of the chemical pathways at the core of these plasma sources
under conditions for so desorption/ionization.10,11,33

The plasma gas used for the APPJ here is He and the imaged
region of the plasma is exposed to ambient air, thus optical
emission from excited plasma gas and air component species is
observed. Fig. 8 shows CS spectral images of the atmospheric
pressure DBD jet obtained with the 4096 SBHE at 30%
sampling, and reconstructed with the GPSR algorithm and
wavelet basis. The 4096 SBHE was used to cope with the rela-
tively lower intensity of light. The spectral image obtained at
587.6 nm corresponds to the 2p 3PJ

0–3p 3DJ transition for He I
(Fig. 8a). The spectral image obtained at 391.4 nm corresponds
to the bandhead from B2Su

+–X2Sg
+ transition for N2

+, 0–0 rst
negative system (Fig. 8b). The spectral image obtained at
380.4 nm corresponds to the bandhead from C3Pu–B

3Pg tran-
sition for N2, 0–2 second positive system (Fig. 8c). The position
of the plasma/sample interface can be clearly observed because
there is a reection of the optical emission. It is evident that the
He I emission intensity is brightest inside the fused silica
capillary and it decreases from the tip of the capillary to the
sample surface. This observation conrms that the He excited
species are generated inside the silica capillary, in the vicinity of
the active part of the discharge, where electron impact and
recombination mechanisms are favored. On the other hand, the
N2

+ emission intensity is much lower inside the capillary, then
reaches a maximum outside and nally decreases at the sample
surface. This indicates that N2

+ is formed from species gener-
ated upstream including Penning ionization34 with He
2204 | J. Anal. At. Spectrom., 2016, 31, 2198–2206
metastables or charge transfer11 with He+ and He2
+. In contrast,

the N2 emission intensity keeps increasing until it reaches
a maximum at the sample surface. This indicates that N2 is
generated from electron recombination10 with N2

+.
Another noticeable trend is that the most intense part of the

N2 emission intensity is wider at the sample surface. On the
other hand, the N2

+ emission is widest just outside the capillary
and it becomes much thinner at the sample surface. This is an
indication that the N2

+ may have an important role in the
erosion mechanism of the copper substrate given that reported
full width at half maximum of the erosion craters is smaller
than the inner diameter of the fused silica.32 This also points
out at the importance of having a full picture of the plasma OES,
and not just at the axis, otherwise this information will not be
captured.

It is also important to determine the spatially resolved
plasma temperatures in order to obtain more information on
the plasma energy pathways. Fig. 9 shows the CS spectral
images obtained (4096 SBHE, 30% sampling, GPSR, and DWT)
that correspond to the bandheads from the C3Pu–B

3Pg transi-
tion for N2 (2–4, Fig. 9a), (1–3, Fig. 9b), and (0–2, Fig. 9c). It is
important to note that the experimental settings for acquisition
of each image were optimized to maximize the signal differ-
ences between the matrix masks in order to get the best image
possible. The relative intensities between images were
This journal is © The Royal Society of Chemistry 2016
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Fig. 9 Top: CS spectral images of the atmospheric pressure DBD jet (4096 SBHE, 30% sampling, GPSR, and DWT) that correspond to the
bandheads from the C3Pu–B

3Pg transition for N2 (2–4, A), (1–3, B), and (0–2, C). Bottom: axial profile of vibrational temperatures calculated from
Boltzmann distribution plot.

Paper JAAS

Pu
bl

is
he

d 
on

 2
7 

Se
pt

em
be

r 2
01

6.
 D

ow
nl

oa
de

d 
by

 T
ex

as
 T

ec
h 

U
ni

ve
rs

ity
 o

n 
25

/0
1/

20
17

 1
7:

52
:1

7.
 

View Article Online
determined with additional measurements where all of the
mirrors of the DMD were turned to the ON position (all mirrors
direct light toward the detector) such that the “integrated total
intensity” of the plasma wasmeasured at the selected bandhead
wavelength. Subsequently, the relative intensity was calculated
by normalizing the CS image to its highest intensity, multi-
plying the normalized CS image by its corresponding “inte-
grated total intensity” measured and dividing the resulting
image by the sum of the normalized CS image pixel values.

The images of the transitions measured serve to calculate the
vibrational temperature, Tvib (Fig. 9d). The Tvib is an important
parameter because it is calculated from the Boltzmann distri-
bution plot of the vibrational levels. The vibrational levels are
separated by high enough energy such that collision of excited
N2 with colder counterparts is not efficient in equilibrating the
vibrational distribution. Thus, the Tvib is more indicative of the
processes that lead to the excitation which is mainly via inter-
actions with electrons. As such, Tvib can serve to get a clue into
the electron energy distribution. This is also part of the reason
the observed Tvib is much higher than rotational temperatures.
This journal is © The Royal Society of Chemistry 2016
The axial Tvib prole of the region between the tip of the
capillary and the plasma/surface interface shows that it is fairly
constant at around 2500 K with a typical relative standard
deviation of 10% calculated from the standard deviation of the
slope associated with the linear t of the Boltzmann plots. To
the authors' knowledge, this is the rst time a CS spectral
imaging system is used for plasma diagnostics.
Conclusions

The design and development of a compressed sensing spectral
imaging system was accomplished. This is based on spatial
encoding of the object through a series of scrambled block
Hadamard ensemble matrices. In terms of PSNR, a DWT spar-
sifying basis and GPSR reconstruction algorithm performed
better than other combinations with DCT and TwIST. In addi-
tion, it was observed that SBHE matrix size has an effect on the
PSNR which was attributed to different kinds of noise. The CS
spectral imaging system was implemented for plasma optical
emission imaging of an atmospheric pressure plasma jet. An
J. Anal. At. Spectrom., 2016, 31, 2198–2206 | 2205
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insight into the plasma can be obtained from these images but
it is evident that a systematic study of the effects of the plasma
operating parameters is required to best understand the
underlying mechanisms. Nevertheless, it is clear that the single-
sensor system yields high quality images for an order-of-
magnitude lower price vs. conventional array detector cameras
while circumventing the time restrictions of traditional pixel-by-
pixel rastering systems. These advantages will allow spectral
imaging to become more accessible and eventually open up
further applications.
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