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We study the effect of strong magnetic field on competing chiral and diquark order parameters in a regime of moderately dense
quarkmatter.The interdependence of the chiral and diquark condensates through nonperturbative quarkmass and strong coupling
effects is analyzed in a two-flavor Nambu-Jona-Lasinio (NJL)model. In the weakmagnetic field limit, our results agree qualitatively
with earlier zero-field studies in the literature that find a critical coupling ratio𝐺𝐷/𝐺𝑆 ∼ 1.1 below which chiral or superconducting
order parameters appear almost exclusively. Above the critical ratio, there exists a significant mixed broken phase region where
both gaps are nonzero. However, a strongmagnetic field 𝐵 ≳ 1018 G disrupts this mixed broken phase region and changes a smooth
crossover found in the weak-field case to a first-order transition for both gaps at almost the same critical density. Our results suggest
that in the two-flavor approximation to moderately dense quark matter strong magnetic field enhances the possibility of a mixed
phase at high density, with implications for the structure, energetics, and vibrational spectrum of neutron stars.

1. Introduction

The existence of deconfined quark matter in the dense
interior of a neutron star is an interesting question that
has spurred research in several new directions in nuclear
astrophysics. On the theoretical side, it has been realized
that cold and dense quark matter must be in a supercon-
ductor/superfluid state [1–6] with many possible intervening
phases [7–14] between a few times nuclear matter density
and asymptotically high density, where quarks and gluons
interact weakly. The observational impact of these phases
on neutron star properties can be varied and dramatic [15–
22]. Therefore, it is of interest to situate theoretical ideas and
advances in our understanding of dense quark matter in the
context of neutron stars, which serve as unique astrophysical
laboratories for such efforts.Thephase structures of hot quark
matter have been probed in experiments such as in heavy
ion collisions at the Relativistic Heavy Ion Collider (RHIC)
and at the Large Hadron Collider (LHC). It is estimated in
[23–25] that the magnetic field originating from off-central
nucleon-nucleon collisions at these colliders can be as large

as 1018–1020 G. On the astrophysical side, the strength of the
magnetic field in some magnetars is of the order 1014–1015 G
[26], while in the core of such objects, magnetic field might
reach up to 1018–1019 G. Therefore, it is not surprising that
many recent works have stressed the role of strong magnetic
fields on hot or dense quark matter [27–35].

At very high density (i.e., 𝜇 ≫ ΛQCD, where 𝜇 is the
baryon chemical potential and ΛQCD is the scale of quantum
chromodynamics) and for number of flavors 𝑁𝑓 = 3, the
preferred pairing pattern is a flavor and color democratic
one termed as the color-flavor-locked (CFL) phase [7]. This
idealized phase, while displaying the essentially novel features
of the color superconducting state, is unlikely to apply to
the bulk of the neutron star matter, since even ten times
nuclear matter saturation density (𝜌0) only corresponds to a
quark chemical potential 𝜇 ∼ 500MeV. At these densities,
quark mass and strong coupling effects can be important and
must be treated nonperturbatively. It is reasonable to think
that the strange quark current mass, being much larger than
that of the up and down quarks, inhibits pairing of strange
quarks with light quarks. For the purpose of this work, we
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therefore adopt the scenario of quark matter in the two-
flavor superconducting phase, which breaks the color SU(3)
symmetry to SU(2), leaving light quarks of one color (say
“3”) and all colors of the strange quark unpaired. Although
this phase initially appeared to be disfavored in compact stars
[36, 37] once constraints of neutrality were imposed within a
perturbative approach to quarkmasses, the NJLmodel where
masses are treated dynamically still allows for the 2SC phase.
Since the issue is not settled, we proceed by adopting the
NJL model which best highlights the competition between
the chiral and diquark condensates in a straightforward way.
Also, our results will be qualitatively true for the 2SC+s phase
[9, 10], which can be studied similarly by simply embedding
the strange quark, which is inert with respect to pairing, in
the enlarged three-flavor space.The additional complications
of compact star constraints have been examined before [27,
35, 38] and do not change the main qualitative conclusions of
the present work, namely, that strongmagnetic field alters the
competition between the chiral and diquark order parameters
from the weak-field case.

Our objective in this paper is a numerical study of the
competition between the chiral and diquark condensates at
moderately large 𝜇 and large magnetic field using the NJL
model, similar in some respects to previous works [8, 9, 39–
41], which treat the quarkmass nonperturbatively. Instanton-
based calculations and random-matrix methods have also
been employed in studying the interplay of condensates [42–
44]. In essence, smearing of the Fermi surface by diquark
pairing can affect the onset of chiral symmetry restoration,
which happens at 𝜇 ∼ 𝑀𝑞, where 𝑀𝑞 is the constituent
quark mass scale [45]. Since𝑀𝑞 appears also in the (Nambu-
Gorkov) quark propagators in the gap equations, a coupled
analysis of chiral and diquark condensates is required. This
was done for the two-flavor case with a common chemical
potential in [8], but for zero magnetic field. We use a self-
consistent approach to calculate the condensates from the
coupled gap equations and find small quantitative (but not
qualitative) differences from the results of Huang et al. [8]
for zero magnetic field. This small difference is most likely
attributed to a difference in numerical procedures in solving
the gap equations. We also address the physics of chiral and
diquark condensates affected by large in-medium magnetic
field that are generated by circulating currents in the core
of a neutron or hybrid star. Magnetic field in the interior of
neutron stars may be as large as 1019 G, pushing the limits of
structural stability of the star [46, 47]. There is no Meissner
effect for the rotated photon, which has only a small gluonic
component; therefore, magnetic flux is hardly screened [48],
implying that studies of magnetic effects in color supercon-
ductivity are highly relevant. Note that the rotated gluonic
field, which has a very small photonic component, is essen-
tially screened due to the 2SC phase. Including the magnetic
interaction of the quarks with the external field leads to
qualitatively different features in the competition between the
two condensates, and this is the main result of our work.

In Section 2, we state the NJL model Lagrangian for
the 2SC quark matter. In Section 3, we recast the partition
function and thermodynamic potential in terms of inter-
polating bosonic variables. In Section 4, we obtain the gap

equations for the chiral and diquark order parameters by
minimizing the thermodynamic potential (we work at zero
temperature throughout since typical temperature in stars𝑇star ≪ 𝜇). In Section 5, we discuss our numerical results
for the coupled evolution of the condensates as functions of
a single ratio of couplings, chemical potential, and magnetic
field before concluding in Section 6.

2. Lagrangian for 2SC Quark Matter

The Lagrangian density for two quark flavors (𝑁𝑓 = 2)
applicable to the scalar and pseudoscalar mesons and scalar
diquarks is

L = 𝑞 [𝑖𝛾𝜇 (𝜕𝜇 − 𝑖𝑒𝑄𝐴𝜇 − 𝑖𝑔𝑇8𝐺8
𝜇) + 𝜇𝛾0 − 𝑚̂] 𝑞

+ 𝐺𝑆 [(𝑞𝑞)2 + (𝑞𝑖𝛾5 ⃗𝜏𝑞)2]
+ 𝐺𝐷 [(𝑞𝑖𝛾5𝜖𝑓𝜖𝑐𝑞𝐶) (𝑞𝐶𝑖𝛾5𝜖𝑓𝜖𝑐𝑞)] ,

(1)

where 𝑞 ≡ 𝑞𝑖𝑎 is a Dirac spinor which is a doublet (where 𝑖 ={𝑢, 𝑑}) in flavor space and triplet (where 𝑎 = {1, 2, 3}) in color
space.The charge-conjugated fields are defined as 𝑞𝐶 = −𝑞𝑇𝐶
and 𝑞𝐶 = 𝐶𝑞𝑇 with charge-conjugation matrix 𝐶 = −𝑖𝛾0𝛾2.
The components of ⃗𝜏 = (𝜏1, 𝜏2, 𝜏3) are the Pauli matrices
in flavor space and (𝜖𝑓)𝑖𝑗 and (𝜖𝑐)𝛼𝛽3 are the antisymmetric
matrices in flavor and color spaces, respectively.The common
quark chemical potential is denoted as 𝜇 (for simplicity we
assume a common chemical potential for all quarks; in an
actual neutron star containing some fraction of charge neu-
tral 2SC or 2SC+s quark matter in 𝛽-equilibrium, additional
chemical potentials for electric charge and color chargesmust
be introduced in the NJL model; furthermore, there can be
more than one diquark condensate and in general 𝑀𝑢 ̸=𝑀𝑑 ̸= 𝑀𝑠[9]) and 𝑚̂ = diag(𝑚𝑢, 𝑚𝑑) is the current quark
mass matrix in the flavor basis. We take the exact isospin
symmetry limit, 𝑚𝑢 = 𝑚𝑑 = 𝑚0 ̸= 0. The U(1) and
SU(3)𝑐 gauge fields are denoted by 𝐴𝜇 and 𝐺𝜇, respectively.
Here, 𝑒 is the electromagnetic charge of an electron and 𝑔
is the SU(3)𝑐 coupling constant. The electromagnetic charge
matrix for quark is defined as 𝑄 = 𝑄𝑓 ⊗ 1c with 𝑄𝑓 ≡
diag(2/3, −1/3) (in unit of 𝑒). The couplings of the scalar and
diquark channels are denoted as 𝐺𝑆 and 𝐺𝐷, respectively. In
general, one can extend the NJL Lagrangian considered in (1)
by including vector and ’t Hooft interaction terms which can
significantly affect the equation of state of the compact stars
with superconducting quark core [49, 50]. In this paper, our
main aim is to investigate the competition between chiral and
diquark condensates and therefore we do not consider other
interactions in our analysis.

We introduce auxiliary bosonic fields to bosonize the
four-fermion interactions in Lagrangian (1) via a Hubbard-
Stratonovich (HS) transformation. The bosonic fields are

𝜎 = (𝑞𝑞) ,
𝜋⃗ = (𝑞𝑖𝛾5 ⃗𝜏𝑞) ,
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Δ = (𝑞𝐶𝑖𝛾5𝜖𝑓𝜖𝑐𝑞) ,
Δ∗ = (𝑞𝑖𝛾5𝜖𝑓𝜖𝑐𝑞𝐶) ,

(2)

and after the HS transformation, the bosonized Lagrangian
density becomes

L = 𝑞 [𝑖𝛾𝜇 (𝜕𝜇 − 𝑖𝑒𝑄𝐴𝜇 − 𝑖𝑔𝑇8𝐺8
𝜇) + 𝜇𝛾0] 𝑞

− 𝑞 (𝑚 + 𝑖𝛾5𝜋⃗ ⋅ ⃗𝜏) 𝑞 − 12Δ∗ (𝑞𝐶𝑖𝛾5𝜖𝑓𝜖𝑐𝑞)
− 12Δ (𝑞𝑖𝛾5𝜖𝑓𝜖𝑐𝑞𝐶) − 𝜎2 + 𝜋⃗24𝐺𝑠

− Δ∗Δ4𝐺𝐷

,
(3)

where 𝑚 = 𝑚0 + 𝜎. We set 𝜋⃗ = 0 in our analysis, which
excludes the possibility of pion condensation for simplicity
[51]. Order parameters for chiral symmetry breaking and
color superconductivity in the 2SC phase are represented by
nonvanishing vacuum expectation values (VEVs) for 𝜎 andΔ. The diquark condensates of 𝑢 and 𝑑 quarks carry a net
electromagnetic charge, implying that there is a Meissner
effect for ordinary magnetism, while a linear combination
of the photon and gluon leads to a “rotated” massless U(1)
field which is identified as the in-medium photon. We can
write the Lagrangian in terms of rotated quantities using the
following identity:

𝑒𝑄𝐴𝜇 + 𝑔𝑇8𝐺8
𝜇 = 𝑒𝑄𝐴𝜇 + 𝑔𝑇̃8𝐺8

𝜇. (4)

In the r.h.s. of (4) all quantities are rotated. In 𝑓𝑙𝑎V𝑜𝑟 ⊗𝑐𝑜𝑙𝑜𝑟 space in units of the rotated charge of an electron 𝑒 =√3𝑔𝑒/√3𝑔2 + 𝑒2 the rotated charge matrix is

𝑄 = 𝑄𝑓 ⊗ 1𝑐 − 1𝑓 ⊗ 𝑇8
𝑐2√3 . (5)

The other diagonal generator 𝑇3
𝑐 plays no role here because

the degeneracy of colors 1 and 2 ensures that there is no long
range 3-field gluon. We take a constant rotated background
U(1) magnetic field B = 𝐵𝑧̂ along +𝑧 axis. The gapped
2SC phase is 𝑄-neutral, requiring a neutralizing background
of strange quarks and/or electrons. The strange quark mass
is assumed to be large enough at the moderate densities
under consideration so that strange quarks do not play any
dynamical role in the analysis.

3. Thermodynamic Potential

Thepartition function in the presence of an externalmagnetic
field 𝐵 in the mean field approximation is given by

Z = N∫ [𝑑𝑞] [𝑑𝑞] exp{∫𝛽

0
𝑑𝜏∫𝑑3𝑥⃗ (L̃ − 12𝐵2)} , (6)

where N is the normalization factor, 𝛽 = 𝑇−1 is the inverse
of the temperature 𝑇, 𝐵 is the external magnetic field, and L̃

is the Lagrangian density in terms of the rotated quantities.
The full partition function Z can be written as a product
of three parts, Z = Z𝑐Z1,2Z3. Here, Z𝑐 serves as a
constant multiplicative factor, Z1,2 denotes the contribution
for quarks with colors “1” and “2,” andZ3 is for quarks with
color “3.” These three parts can be expressed as

Z𝑐 = N exp{−∫𝛽

0
𝑑𝜏∫𝑑3𝑥⃗ [ 𝜎24𝐺𝑆

+ Δ24𝐺𝐷

+ 𝐵22 ]} ,
Z1,2 = ∫ [𝑑𝑄] [𝑑𝑄] exp{∫𝛽

0
𝑑𝜏∫𝑑3𝑥⃗ [12Lkin (𝑄, 𝑄𝑐)

+ 12𝑒𝑄 (𝑄�𝐴𝑄 − 𝑄𝑐
�𝐴𝑄𝑐) + 12𝑄Δ−𝑄𝑐 + 12𝑄𝑐Δ+𝑄]} ,

Z3 = ∫ [𝑑𝑞3] [𝑑𝑞3] exp{∫𝛽

0
𝑑𝜏∫𝑑3𝑥⃗ [12Lkin (𝑞3, 𝑞𝑐3)

+ 12𝑒𝑄 (𝑞3�𝐴𝑞3 − 𝑞𝑐3�𝐴𝑞𝑐3)]} .

(7)

The kinetic operators Lkin(𝑞, 𝑞𝑐) now read (𝑖�𝜕 + 𝜇𝛾0 − 𝑀),
where 𝑀 = 𝑚0 + 𝜎, and we use the notation Δ−(/Δ+) =−𝑖𝛾5𝜖𝑓𝜖𝑐Δ(/Δ∗). In 𝑓𝑙𝑎V𝑜𝑟 ⊗ 𝑐𝑜𝑙𝑜𝑟 space in units of 𝑒 =√3𝑔𝑒/√3𝑔2 + 𝑒2 the rotated charge matrix is given by 𝑄 =𝑄⊗1𝑐−1𝑓⊗𝑇8/2√3. Here, 1𝑐 and 1𝑓 are unit matrix on color
and flavor spaces, respectively. In our case, this translates to𝑄 charges 𝑢1,2 = 1/2, 𝑑1,2 = −1/2, 𝑢3 = 1 and 𝑑3 = 0. With𝑠-quarks as inert background, we also have 𝑠1,2 = −1/2 and𝑠3 = 0. Imposing the charge neutrality and 𝛽-equilibrium
conditions is known to stress the pairing and lead to gluon
condensation and a strong gluo-magnetic field [52]. The role
of such effects has been studied in [27], but here our focus is
on the interdependence of the condensates and their response
to the strong magnetic field.

Evaluation of the partition function and the thermody-
namic potential, Ω = −𝑇 lnZ/𝑉 (where 𝑉 is the volume
of the system), is facilitated by introducing eight-component
Nambu-Gorkov spinors for each color and flavor of quark,
leading to

ln𝑍1,2 = 12 ln {Det (𝛽𝐺−1)} ,
ln𝑍3 = 12 ln {Det (𝛽𝐺−1

0 )} , (8)

where 𝐺 and 𝐺0 are the quark propagators and inverse of the
propagators is given by

𝐺−1 = ([𝐺+

0,𝑄̃
]−1 Δ−

Δ+ [𝐺−

0,−𝑄̃
]−1),

𝐺−1
0 = ([𝐺+

0,𝑄̃
]−1 0

0 [𝐺−

0,−𝑄̃
]−1),

(9)
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with [𝐺±

0,𝑄̃
]−1 = (�𝜕 ± 𝜇𝛾0 + 𝑒𝑄�𝐴 − 𝑚). The determinant

computation is simplified by reexpressing the 𝑄-charges in
terms of charge projectors in the color-flavor basis, follow-
ing techniques applied for the CFL phase [53]. The color-
flavor structure of the condensates can be unraveled for the
determinant computation by introducing energy projectors
[8] and moving to momentum space, whereby we find

ln𝑍1,2

= tr𝑐,𝑓∑
𝑎

∑
𝑝0,p

[ln (𝛽2 (𝑝2
0 − (𝐸+

Δ,𝑎)2) 𝛽2 (𝑝2
0 − (𝐸−

Δ,𝑎)2))] ,
ln𝑍3

= tr𝑐,𝑓∑
𝑎

∑
𝑝0,p

[ln (𝛽2 (𝑝2
0 − (𝐸+

𝑝,𝑎)2) 𝛽2 (𝑝2
0 − (𝐸−

𝑝,𝑎)2))] ,
(10)

where 𝐸±
Δ,𝑎 = √(𝐸±

𝑝,𝑎)2 + Δ2 with 𝐸±
𝑝,𝑎 = 𝐸𝑝,𝑎 ± 𝜇 and𝑎 = {0, 1, ±1/2}. The energy 𝐸𝑝,𝑎 is defined as 𝐸𝑝,𝑎 =√p2⊥,𝑎 + 𝑝2

𝑧 + 𝑚2; if 𝑎 = 0 then p2⊥,0 = 𝑝2
𝑥 + 𝑝2

𝑦; else p
2
⊥,𝑎 =2|𝑎|𝑒𝐵𝑛.The sumover𝑝0 = 𝑖𝜔𝑘 denotes the discrete sum over

the Matsubara frequencies; 𝑛 labels the Landau levels in the
magnetic field which is taken in the 𝑧̂ direction.
4. Gap Equations and Solution

Using the following identity we can perform the discrete
summation over the Matsubara frequencies

∑
𝑝0

ln [𝛽2 (𝑝2
0 − 𝐸2)] = 𝛽 [𝐸 + 2𝑇 ln (1 + 𝑒−𝛽𝐸)]

≡ 𝛽𝑓 (𝐸) . (11)

Then we go over to the 3-momentum continuum using the
replacement ∑p → 𝑉(2𝜋)−3 ∫𝑑3p, where 𝑉 is the thermal
volume of the system. Finally, the zero-field thermodynamic
potential can be expressed as

Ω𝐵=0 = 𝜎24𝐺𝑆

+ Δ24𝐺𝐷

− 2∫∞

0

𝑑3p(2𝜋)3
⋅ [𝑓 (𝐸+

𝑝) + 𝑓 (𝐸−
𝑝) + 2𝑓 (𝐸+

Δ) + 2𝑓 (𝐸+
Δ)] .

(12)

In presence of a quantizing magnetic field, discrete Landau
levels suggest the following replacement:

∫∞

0

𝑑3p(2𝜋)3 󳨀→ |𝑎| 𝑒𝐵8𝜋2

∞∑
𝑛=0

𝛼𝑛 ∫∞

−∞
𝑑𝑝𝑧, (13)

where 𝛼𝑛 = 2−𝛿𝑛0 is the degeneracy factor of the 𝑛th Landau
level (all levels are doubly degenerate except the zeroth level).

The thermodynamic potential in presence ofmagnetic field is
given by

Ω𝐵 ̸=0 = 𝜎24𝐺𝑆

+ Δ24𝐺𝐷

− ∫∞

0

𝑑3p(2𝜋)3 [𝑓 (𝐸+
𝑝,0)

+ 𝑓 (𝐸−
𝑝,0)] − 𝑒𝐵8𝜋2

∞∑
𝑛=0

𝛼𝑛 ∫∞

−∞
𝑑𝑝𝑧 [𝑓 (𝐸+

𝑝,1)
+ 𝑓 (𝐸−

𝑝,1) + 2𝑓 (𝐸+
Δ,1/2) + 2𝑓 (𝐸−

Δ,1/2)] .
(14)

In either case, we can now solve the gap equations
obtained by minimizing the (zero-temperature) thermody-
namic potential Ω obtained in presence of magnetic field.

Chiral gap equation: 𝜕Ω𝜕𝑚 = 0,
Diquark gap equation: 𝜕Ω𝜕Δ = 0. (15)

Since the above equations involve integrals that diverge in
the ultraviolet region, we must regularize the divergences in
order to obtain physically meaningful results. We choose to
regulate these functions using a sharp cutoff (step function
in |p|), which is common in effective theories such as the
NJL model [39, 40], although one may also employ a smooth
regulator [7, 53] without changing the results qualitatively
for fields that are not too large (e.g., a smooth cutoff was
employed in [53] to demonstrate the de Haas-van Alphen
oscillations in the gap parameter at very largemagnetic field).
The momentum cutoff restrict the number of completely
occupied Landau levels 𝑛max which can be determined as
follows:

∫Λ

0

𝑑3p(2𝜋)3 󳨀→ |𝑎| 𝑒𝐵8𝜋2

𝑛max∑
𝑛=0

𝛼𝑛 ∫Λ󸀠

−Λ󸀠
𝑑𝑝𝑧,

𝑛max = Int[ Λ22 |𝑎| 𝑒𝐵] ,
Λ󸀠 = √Λ2 − 2 |𝑎| 𝑒𝐵𝑛.

(16)

We use the fact that 𝑝2
𝑧 ≥ 0 to compute 𝑛max. For magnetic

field 𝐵 ≲ 0.02GeV2 (∼1017 G, conversion to Gauss is given
by 1GeV2 = 5.13 × 1019 G), 𝑛max is of the order of 50, and
the discrete summation over Landau levels becomes almost
continuous. In that case, we recover the results of the zero
magnetic field case as described in the next section. For fixed
values of the free parameters, we were able to solve the chiral
and diquark gap equations self-consistently, for 𝐵 = 0 as well
as large 𝐵. Before discussing our numerical results, we note
the origin of the interdependence of the condensates. The
chiral gap equation contains only 𝐺𝑆 which is determined
by vacuum physics but also depends indirectly on 𝐺𝐷/𝐺𝑆

(a free parameter) through Δ, which is itself dependent on
the constituent 𝑚 = 𝑚0 + 𝜎. Our numerical results can be
understood as a consequence of this coupling and the fact that
a large magnetic field stresses the 𝑞𝑞 pair (same𝑄 charge and



Advances in High Energy Physics 5

opposite spins implied antialignedmagnetic moments) while
strengthening the 𝑞𝑞 pair (opposite 𝑄 charge and opposite
spins implied aligned magnetic moments).

5. Numerical Analysis

In order to investigate the competition between the chiral
and the diquark condensates, in this section, we solve the two
coupled gap equations (15) numerically. These gap equations
involve integrals that have diverging behavior in the high-
energy region (this is an artifact of the nonrenormalizable
nature of the NJL model). Therefore, to obtain physically
meaningful behavior, one has to regularize the diverging
integrals by introducing some cutoff scale Λ. A sharp cutoff
function sometimes leads to unphysical oscillations in ther-
modynamical quantities of interest and especially for a system
with discrete Landau levels. A novel regularization procedure
called “Magnetic Field Independent Regularization” (MFIR)
scheme [54, 55] can remove the unphysical oscillations
completely even if a sharp cutoff function is used within
MFIR. To reduce the unphysical behavior, it is very common
in literature to use various smooth cutoff functions although
they cannot completely remove the spurious oscillations.
Here, we list a few of them:

(i) Fermi-Dirac type [56]: 𝑓𝑐(𝑝𝑎) = (1/2)[1 − tanh((𝑝𝑎 −Λ)/𝛼)], where 𝛼 is a smoothness parameter.

(ii) Woods-Saxon type [38]: 𝑓𝑐(𝑝𝑎) = [1 + exp((𝑝𝑎 −Λ)/𝛼)]−1, where 𝛼 is a smoothness parameter.

(iii) Lorentzian type [57]: 𝑓𝑐(𝑝𝑎) = [1 + (𝑝2
𝑎/Λ2)𝑁]−1,

where𝑁 is a positive integer,

where 𝑝𝑎 = √p2⊥,𝑎 + 𝑝2
𝑧, with p2⊥,0 = 𝑝2

𝑥 + 𝑝2
𝑦 for 𝑎 = 0 and

p2⊥,𝑎 = 2|𝑎|𝑒𝐵𝑛 for 𝑎 = 1, ±1/2. Cutoff functions become
smoother for larger values of 𝛼 or𝑁 in case of the Lorentzian
type of regulator. We have checked our numerical results
for different cutoff schemes like sharp cutoff (Heaviside step
function) and various smooth cutoff parameterizations as
mentioned above and found that our main results are almost
insensitive for different cutoff schemes. We therefore use
a smooth Fermi-Dirac type of regulator with 𝛼 = 0.01Λ
throughout numerical analysis.

One can fix various NJL model parameters, the bare
quark mass 𝑚0, the momentum cutoff Λ, and the scalar
coupling constant𝐺𝑆 by fitting the pion properties in vacuum,
namely, the pion mass 𝑚𝜋 = 134.98MeV, the pion decay
constant 𝑓𝜋 = 92.30MeV, and the constituent quark mass𝑚 (𝜇 = 0) = 0.33GeV. Similarly, one can fix the diquark
coupling constant 𝐺𝐷 by fitting the scalar diquark mass (∼
600MeV) to obtain vacuum baryon mass of the order of∼900MeV [58]. There are some factors that can, in principle,
alter those model parameters, for example, strength of the
external magnetic field, temperature, and choice of the cutoff
functions. Assuming that those factors have only small effects
on the parameters and expecting that our numerical results
would not change qualitatively, we fix the parameters in

the isospin symmetric limit as follows (a discussion of the
parameter choice can be found in [59]):𝑚𝑢,𝑑 = 𝑚0 = 5.5MeV,Λ = 0.6533GeV,

𝐺𝑆 = 5.0163GeV−2,𝐺𝐷 = 𝜌𝐺𝑆,
(17)

where 𝜌 is a free parameter. Although Fierz transforming
one gluon exchange implies 𝜌 = 0.75 for 𝑁𝑐 = 3 and
fitting the vacuum baryon mass gives 𝜌 = 2.26/3 [58],
the underlying interaction at moderate density is bound
to be more complicated; therefore we choose to vary the
coupling strength of the diquark channel 𝐺𝐷 to investigate
the competition between the condensates.

We investigate the behavior of the chiral and diquark
gaps along the chemical potential direction in presence of
magnetic field for different magnitudes of the coupling ratio𝜌 (= 𝐺𝐷/𝐺𝑆) at zero temperature. Before we discuss the
influence of diquark gap on the chiral phase transition, we
first demonstrate the behavior of the chiral gap for Δ = 0
case (equivalently 𝜌 = 0) for different magnitudes of 𝑒𝐵.
The choice of 𝑒𝐵 is made to see the effects of the inclusion
of different Landau levels in the system. In Table 1, we show
the values of 𝑛max

1 and 𝑛max
1/2 and the corresponding values

of the transition magnetic field 𝑒𝐵𝑡. For example, if 𝑒𝐵 <𝑒𝐵𝑡, then the number of fully occupied Landau levels 𝑛 >𝑛max. In Figure 1, we show 𝑚 as functions of 𝜇 in absence
of diquark gap for different choices of 𝑒𝐵. In Figures 1(a)
and 1(b), we show 𝑚 in absence of magnetic field (𝑒𝐵 = 0)
and in the weak magnetic field limit (𝑒𝐵 = 0.005GeV2 or
equivalently ∼2.5 × 1017G), respectively. One can see that
these two figures look almost identical. The reason is that the
number of completely occupied Landau levels, 𝑛max, becomes
very large (e.g., 𝑛max

1 ∼ 40 for 𝑒𝐵 ∼ 0.005GeV2) in the
weak magnetic field limit, making the discrete Landau level
summation quasicontinuous. As we increase the magnetic
field, noticeable deviations appear in the behavior of the
chiral gap as seen in Figures 1(c) to 1(f).

From Figure 1, it is clear that we get multiple solutions
to the chiral gap equation for a small range of 𝜇 around
the chiral phase transition region. For example, we get three
solutions to the chiral gap equation for a narrow window
of 𝜇 for zero or weak magnetic field (≲2.5 × 1017 G) cases.
These three solutions correspond to the stable, metastable,
and unstable branches of the system. In Figure 2(a), we
plot the values of Ω corresponding to the three solutions
obtained in the small 𝜇-window. The value of the gap 𝑚 for
which Ω is the lowest corresponds to the stable solution at
any given density. The critical chemical potential 𝜇𝑐 (where
the chiral and the diquark phase transitions occur) is the
point where the first derivative of Ω (and the gaps) behave
discontinuously. The location of 𝜇𝑐 gives the transition point
from the stable region to the metastable region of the system.
This can easily be identified by looking at the behavior ofΩ as shown in Figure 2(a). We follow this method to locate
the first-order phase transition point. In Figure 2(b), we
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Table 1: The value of transition magnetic field 𝑒𝐵𝑡 at successive numbers of fully occupied lowest Landau levels 𝑛max
𝑎 where 𝑎 = 1, 1/2 are the

two possible values of the rotated charge 𝑄.
𝑛max
1 = Int[ Λ22𝑒𝐵] 𝑒𝐵𝑡 (GeV2) 𝑛max

1/2 = Int[Λ2𝑒𝐵] 𝑒𝐵𝑡 (GeV2)
1 0.213 1 0.427
2 0.107 2 0.213
3 0.071 3 0.142
4 0.053 4 0.107
5 0.043 5 0.085
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ẽB = 0.10GeV2

0.25 0.3 0.35 0.40.2
𝜇 (GeV)

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

m
(G

eV
)

(d)
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Figure 1: Chiral gap𝑚 as functions of 𝜇 for 𝜌 = 𝐺𝐷/𝐺𝑆 = 0 with increasing magnetic field 𝑒𝐵 at 𝑇 = 0.
plot 𝜇𝑐 as a function of 𝑒𝐵. We observe that 𝜇𝑐 oscillates
with 𝑒𝐵 with dips whenever Λ2/(2|𝑎|𝑒𝐵) takes an integer
value, following the Shubnikov de Haas-van Alphen effect.
Similar oscillations in the density of states and various
thermodynamic quantities are observed inmetals in presence
of magnetic field at very low temperature. The magnitude
of oscillations becomes more pronounced as we increase the
magnetic field. If 𝑒𝐵 ≳ 0.21GeV2 (∼1019 G), only the zeroth
Landau level is completely occupied as evident from Table 1.

We observe multiple intermediate transitions (from Fig-
ures 1(c) to 1(d)) due to the filling of successive Landau
levels, and for a particular 𝜇, sometimes there are two
stable solutions at different densities for the same pressure.
Similar multiple solutions of the gaps have been observed in
the context of magnetized-NJL model with repulsive vector
interactions [30]. Comparing the values of𝑚 at 𝜇 = 0 for very
strongmagnetic field, one finds that𝑚 increases with 𝑒𝐵.This
is the magnetic catalysis effect [60–63]. It is also interesting

to note that with increasing magnetic fields the spread of
the metastable region (the 𝜇-window where we have multiple
solutions) becomes wider. For example, the spread of the
metastable regions for 𝑒𝐵 = 0.5GeV2 is about 0.22GeV and
for 𝑒𝐵 = 0.25GeV2 is about 0.12GeV. These findings suggest
the possibility of multiple phases with different values of
dynamical mass in the presence of inhomogeneous magnetic
fields, which we postpone to a future investigation. It is
important to mention that the multiple solutions observed
in chiral condensate as function of chemical potential would
disappear when plotted as function of baryon density defined
as ⟨𝑞𝛾0𝑞⟩ (see, e.g., Section 4.2 in [64]).

In Figure 3, we show 𝑚 and Δ as functions of 𝜇 for
different 𝜌 in presence of strong magnetic field. In [8],
the competition of chiral and diquark gaps without any
magnetic field was discussed in great detail. We observe that𝑚 increases with the increase of 𝑒𝐵. For example, 𝑚 ∼0.35GeV for 𝑒𝐵 = 0.15GeV2 and 𝑚 ∼ 0.48GeV for 𝑒𝐵 =



Advances in High Energy Physics 7

𝜇c

0.342 0.344 0.346 0.348 0.35 0.3520.34
𝜇 (GeV)

−0.02848

−0.02847

−0.02846

−0.02845

−0.02844

−0.02843

−0.02842
Ω
(G

eV
4 )

Unstable

Metastable

Metastable

Stable

Stable

(a)

0.2 0.3 0.4 0.5 0.60.1
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Figure 2: (a) Thermodynamic potential (Ω) for Δ = 0 and 𝑒𝐵 = 0 as a function of 𝜇. The stable metastable and unstable branches of Ω are
shown beside the curves. (b) The critical chemical potential for chiral phase transition (𝜇𝑐) for Δ = 0 as a function of 𝑒𝐵.
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Figure 3:The gaps𝑚 (different blue colors) andΔ (different brown colors) as functions of𝜇 for different 𝜌 in presence of strongmagnetic field:
(a) 𝑒𝐵 = 0.15GeV2 and (b) 𝑒𝐵 = 0.5GeV2. The curves with square, circle, triangle, and diamond represent 𝜌 = 0.75, 1, 1.25, 1.5, respectively.
The discontinuities in gaps signify a first-order phase transition.

0.5GeV2. In [8], it was shown that with the increase of 𝜌 the
first-order transition of the chiral and diquark gaps becomes
crossover through a second-order phase transition. When a
strong magnetic field is present, we find that the crossover
becomes a first-order transition.This is an important finding
of this work, which has several implications for neutron star

physics as discussed in the conclusion. The critical chemical
potential 𝜇𝑐 is almost same for both the chiral and diquark
phase transition but takes on smaller values as we increase 𝜌
for a fixed 𝑒𝐵 (as shown in Figure 3).

In the weak (or zero) magnetic field limit, Δ appears at
a smaller 𝜇 with increasing 𝜌 and rises smoothly from zero,
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Table 2: Critical chemical potential, 𝜇𝑐, jumps in the chiral (𝛿𝑚) and superconducting (𝛿Δ) order parameters at 𝜇𝑐 for zero and 𝑒𝐵 = 0.1GeV2

(∼5 × 1018 G) for various values of 𝜌 = 𝐺𝐷/𝐺𝑆. The nature of the transition is also indicated.

𝜌 𝑒𝐵 = 0 𝑒𝐵 = 0.1GeV2𝛿𝑚 (GeV) 𝛿Δ (GeV) 𝜇𝑐 (GeV) Nature 𝛿𝑚 (GeV) 𝛿Δ (GeV) 𝜇𝑐 (GeV) Nature
0.75 0.250 0.077 0.332 First order 0.227 0.084 0.323 First order
1.05 0.133 0.063 0.295 First order 0.214 0.074 0.301 First order
1.09 0 0 0.289 Second order 0.198 0.066 0.297 First order
1.15 Smooth Smooth 0.280 Crossover 0.185 0.051 0.295 First order
1.25 Smooth Smooth 0.255 Crossover 0.122 0.038 0.284 First order

until it becomes discontinuous at 𝜇𝑐. At 𝜇𝑐, the chiral gap𝑚 also changes discontinuously, with the jumps in the gaps
decreasing with increasing 𝜌. For instance, in Table 2 we see
the jump in the chiral gap (𝛿𝑚) decreases from 0.250GeV to
0.133GeV as we increase 𝜌 from 0.75 to 1.05.The correspond-
ing jump in diquark gap (𝛿Δ) decreases from 0.077GeV to
0.066GeV.This picture does not change qualitatively until we
go above a critical value 𝜌 = 𝜌𝑐 ≈ 1.09. As long as 𝜌 < 𝜌𝑐, the
jumps in the gaps 𝛿𝑚 and 𝛿Δ remain nonzero but decrease
as 𝜌moves towards 𝜌𝑐. In other words, the metastable region
in Ω as shown in Figure 2(a) shrinks with increasing 𝜌. At𝜌 = 𝜌𝑐 themetastable and unstable regions vanish completely.
This qualifies it to be a second-order phase transition. Above𝜌 > 𝜌𝑐, the gaps 𝑚 and Δ are smoothly varying resulting in
a smooth crossover. However, there always exists a pseudo-
transition point (𝜇𝑝𝑐 ) around which fluctuations/variations of
the condensates (i.e., derivatives of𝑚 and Δ with respect to 𝜇)
are sharply peaked. The width of these peaked distributions
broadens with further increase of 𝜌, and 𝜇𝑝𝑐 moves to the
left with increasing 𝜌. These results for 𝑒𝐵 ≈ 0 agree
qualitatively with the zero-field results of [8] with minor
quantitative differences at less than a few percent level. The
region where the condensates coexist was termed by them as
the “mixed broken phase,” since both chiral and (global) color
symmetries are broken here. While it should not be confused
with a genuine mixed phase, since the free energy admits a
unique solution to the gap equations in this regime, it is clear
that the width of this overlap region increases with increasing𝜌.

The competition between the condensates is driven by
the strong magnetic field, which in the case of 𝑚 is a stress,
since the chiral condensate involves quark spinors of opposite
spin and same 𝑄-charge. On the other hand, the diquark
condensate, with opposite spin and𝑄-charge, is strengthened
by the strong magnetic field.Thus, we expect a strengthening
of the competition between the two condensates, resulting in
a qualitative change from the zero-field case. With increasing𝜌, similar to the 𝑒𝐵 = 0 case, 𝛿𝑚 and 𝛿Δ decrease and
the transition is first order in nature. The dramatic effect
we observe is that the mixed broken phase for large 𝜌 at𝑒𝐵 = 0 is no longer present in case of strong magnetic
field case and the crossover region is replaced by a first-order
transition. Specifically, in Table 2, we see, for 𝜌 = 1.25, a
smooth crossover in the 𝑒𝐵 = 0 case at 𝜇𝑝𝑐 ∼ 0.255GeV
becomes a first-order transition with 𝛿𝑚 = 0.185GeV and𝛿Δ = 0.122GeV at 𝜇𝑐 ∼ 0.284GeV for 𝑒𝐵 = 0.1GeV2. The

simultaneous appearance of the discontinuity in the gaps for
large magnetic field case, at almost the same 𝜇 = 𝜇𝑐, where
both the condensates have their most rapid variation in the𝑒𝐵 = 0 case, is a physical feature and is also cutoff insensitive.
We have checked that magnetic field 𝑒𝐵 ≲ 5×1017 G does not
notably alter the competition between the condensates from
the zero magnetic field case.

6. Conclusions

We study the effects of a strong homogeneous magnetic
field on the chiral and diquark condensates in a two-
flavor superconductor using the NJL model. We implement
a self-consistent scheme to determine the condensates, by
numerically iterating the coupled (integral) equations for the
chiral and superconducting gaps. We obtain results for the
nature of the competition between these condensates in two
cases, at weak magnetic field limit where our results are
qualitatively same as zero magnetic field results [8] and at
strongmagnetic field, wherewe find the competition between
the gaps increases strongly causing a discontinuity in the gaps
and disrupting the “mixed broken phase.” This is a result
of the modified free energy of the quarks in the condensate
when subjected to a strong magnetic field. For magnetic
fields as large as 𝐵 ∼ 1019 G, the antialigned magnetic
moments of the quarks in the chiral condensate change the
smooth crossover of the chiral transition to a sharp first-
order transition.Thediquark gap also becomes discontinuous
at this point. For magnetic fields 𝐵 ≲ 1018 G, there is no
significant effect of the magnetic field on the competition
between the condensates and zero-field results apply.

These findings can impact the physics of hybrid stars
(neutron stars with quark matter) or strange quark stars
in several ways. Firstly, the structure of neutron stars is
strongly affected by a first-order phase transition, with the
possibility of a third family of compact stars in addition to
neutron stars and white dwarfs [65] that is separated from
conventional neutron stars by a radius gap of a few km.
We can speculate that strange stars or hybrid stars with
superconducting quark cores inside them belong to this third
family. Since we find that a strongmagnetic field increases the
likelihood of a first-order phase transition and hence a mixed
phase, magnetars could also possibly belong to this category
of compact stars since they permit quark nucleation [66] and
carry large interior magnetic fields which modify their mass-
radius relationship [67]. Secondly, it was pointed out in [27]
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that for large values of the local magnetic field and in the
small density window of the metastable region, it is possible
to realize domains or nuggets of superconducting regions
with different values for the gap. Charge neutrality can also
disrupt the mixed broken phase, but the oscillations of the
chiral gap remain, leading to nucleation of chirally restored
droplets. Such kinds of nucleation and domain formation
will release latent heat that might be very large owing to
the large value of the magnetic field, serving as an internal
engine for possible energetic events on the surface of the
neutron star [68, 69]. Such internal mechanisms are unlikely
to occur in a pure neutron star without a quark core. Thirdly,
strong magnetic fields and quark cores affect the radial and
nonradial oscillation modes of neutron stars, which could be
a discriminating feature in the gravitational wave signal from
vibrating neutron stars. The frequency of the fundamental
radial mode shows a kink at the density characterizing the
onset of the mixed phase, and the frequencies depend on
the magnetic field [70]. Nonradial modes such as 𝑔-modes
can probe the density discontinuity arising as a result of the
phase transition in neutron stars [71] or strange quark stars
[72], although the effect of magnetic fields in this context
is as yet unexplored. Another important aspect of rotating
compact stars is the 𝑟-modes [73], which could be responsible
for spinning down neutron stars or strange quark stars from
their Kepler frequency down to the observed values seen in
low-mass X-ray binaries.The effects of a strongmagnetic field
on the 𝑟-mode driven spin-down of neutron stars have been
studied in [74, 75], while 𝑟-modes in crystalline quark matter
are discussed in [76]. The even-parity counterpart for the 𝑟-
modes which include nonradial oscillation modes such as
the 𝑓- and 𝑝-modes have also been explored for the case of
strange quark stars in [77, 78]. Our findings give additional
motivation to the study of such interesting effects associated
with a first-order transition in neutron stars with strong
magnetic fields, and a systematic study of these effects in the
new era of gravitational waves and neutron star observations
may finally reveal the presence of quark matter in the core of
neutron stars.
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