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ABSTRACT

This paper explores the consistency strength of The Proper Forcing Ax-

iom (PFA) and the theory (T) which involves a variation of the Viale–

Weiß guessing hull principle. We show that (T) is consistent relative to

a supercompact cardinal. The main result of the paper is Theorem 0.2,

which implies that the theory “ADR +Θ is regular” is consistent relative

to (T) and to PFA. This improves significantly the previous known best

lower-bound for consistency strength for (T) and PFA, which is roughly

“ADR + DC”.

0. Introduction

Suppose κ < γ are uncountable cardinals and X ≺ Hγ is such that κ ≤ |X |.

Let ℘κ(X) = {a ∈ ℘(X) | |a| < κ}. We say that X is κ-guessing if for all

a ∈ X and for all b ⊆ a such that c ∩ b ∈ X for all c ∈ X ∩ ℘κ(X) then b

is X-guessed, i.e., there is some c ∈ X such that c ∩ X = b ∩ X . Such a b

satisfying the hypothesis of the previous sentence is called κ-approximated

by X . So a hull X is κ-guessing if whenever a ∈ X and whenever b ⊆ a is

κ-approximated by X , then b is X-guessed.

In this paper, we study the strength of the following theories:

• The Proper Forcing Axiom (PFA);
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• (T): there is a cardinal λ ≥ 2ℵ2 such that the set

{X ≺ (Hλ++ ,∈) | |X | = ℵ2, X
ω ⊆ X,ω2 ⊂ X, and X is ω2-guessing}

is stationary.

Guessing models in [26] are ω1-guessing in the above notations. It’s not clear

that the theory (T) is consistent with PFA (in contrast to Viale–Weiß principle

ISP(ω2), which asserts the existence of stationary many ω1-guessing models of

size ℵ1 of Hλ for all sufficiently large λ). However, it’s possible that (T) is a

consequence of or at least consistent with a higher analog of PFA.

The outline of the paper is as follows. In Section 1, we review some AD+ facts

that we’ll be using in this paper. In Section 2, using a Mitchell-style forcing,

we prove

Theorem 0.1: Con(ZFC + there is a supercompact cardinal) ⇒ Con(T).

Of course, it is well-known that PFA is consistent relative to the existence of

a supercompact cardinal. Theorem 0.4 suggests that it’s reasonable to expect

PFA and (T) are equiconsistent.

Recall, for an infinite cardinal λ, the principle �λ asserts the existence of a

sequence 〈Cα | α < λ+〉 such that for each α < λ+,

• Cα is club in α;

• for each limit point β of Cα, Cβ = Cα ∩ β;

• the order type of Cα is at most λ.

The principle �(λ) asserts the existence of a sequence 〈Cα | α < λ〉 such that

(1) for each α < λ,

• each Cα is club in α;

• for each limit point β of Cα, Cβ = Cα ∩ β; and

(2) there is no thread through the sequence, i.e., there is no club E ⊆ λ such

that Cα = E ∩ α for each limit point α of E.

Note that �λ implies �(λ+) (equivalently, ¬�(λ+) implies ¬�λ). The main

technical theorem of the paper, proved in Section 3, is the following:

Theorem 0.2: Supppose κ is a cardinal such that κω = κ. Suppose for each

cardinal α ∈ [κ+, (2κ)+], ¬�(α). Then letting G ⊆ Col(ω, κ) be V -generic, in

V [G], there is a transitive M containing OR ∪ R such that M � “ADR + Θ is

regular”.
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Remark 0.3: We remark that the proof of Theorem 0.2 actually shows that

we can get in V a model M containing OR ∪ R that satisfies “ADR + Θ is

regular”, see Remark 3.86. This is because we actually construct a hod pair

(P ,Σ) that generates a model of “ADR + Θ is regular” with the property that

(P ,Σ � V ) ∈ V .

Hence, as a corollary, we establish the following theorem, which improves

upon the conclusion of Corollary 0.2 of [1].

Theorem 0.4: Suppose S is one of the following theories:

(1) PFA,

(2) (T),

(3) there is a strongly compact cardinal.

If S holds, then there is a transitive model M containing R ∪ OR such that

M � “ADR +Θ is regular”.1

Proof. We apply Theorem 0.2 and Remark 0.3. We just need to verify that

S implies the hypothesis of Theorem 0.2. If S is either PFA or (T), we take

κ = ℵ2. It’s well-known that the hypothesis in Theorem 0.2 regarding thread-

ability follows from S.2 Otherwise, take κ to be a singular, strong limit cardinal

of uncountable cofinality above a strongly compact cardinal. By [15], the hy-

pothesis of Theorem 0.2 holds at κ.

In Subsection 3.1, we lay out the framework for the core model induction

which allows us to construct models of “ADR +Θ is regular” from the hypoth-

esis of Theorem 0.2. The actual construction of such models is carried out in

Subsections 3.2–3.5.

We note that the previous best known lower-bound for (T) as well as for PFA

is the sharp for a proper class model with a proper class of strong cardinals

and a proper class of Woodin cardinals (see [1, Corollary 0.2]), which is just a

bit stronger than “ADR + DC” but is weaker than “ADR + Θ is regular”. The

method used in this paper is the core model induction method, which can be

used to further improve the lower-bounds for (T) and for PFA, as opposed to the

method in [1], which seems hard to generalize. In fact, it’s possible to improve

1 To the best of the author’s knowledge, the result in this paper gives the best lower-bound

obtained from any combinatorial principle not augmented by large cardinal assumptions.
2 In the case S is (T), see [26] and [27].
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the lowerbound consistency strength for (T) and for PFA in Theorem 0.4 to

“ADR + Θ is measurable” and beyond. These results involve a combination

of the core model induction and techniques for constructing hod mice beyond

those developed in [7] and hence will appear in a future publication.

Let LSA denote the theory “AD+ + Θ = θα+1 + θα is the largest Suslin

cardinal”. LSA was first isolated by Woodin in [29] and is very recently shown

to be consistent by G. Sargsyan. It is one of the strongest determinacy theories

known to be consistent. We conjecture that

Conjecture 0.5: Con(T) ⇒ Con(LSA) and Con(PFA) ⇒ Con(LSA).

We are hopeful that methods used in this paper and their extensions can be

used to settle the conjecture.

1. Basic facts about AD+

We start with the definition of Woodin’s theory of AD+. In this paper, we

identify R with ωω. We use Θ to denote the sup of ordinals α such that there

is a surjection π : R → α. Under AC, Θ is just the successor cardinal of the

continuum. In the context of AD, Θ is shown to be the supremum of w(A) 3

for A ⊆ R. The definition of Θ relativizes to any determined pointclass (with

sufficient closure properties). We denote ΘΓ for the sup of α such that there is

a surjection from R onto α coded by a set of reals in Γ.

Definition 1.1: AD+ is the theory ZF+ AD+DCR and

(1) for every set of reals A, there are a set of ordinals S and a formula ϕ

such that x ∈ A ⇔ L[S, x] � ϕ[S, x]. (S, ϕ) is called an ∞-Borel code

for A;

(2) for every λ < Θ, for every continuous π : λω → ωω, for every A ⊆ R,

the set π−1[A] is determined.

AD+ is equivalent to “AD + the set of Suslin cardinals is closed”. Another,

perhaps more useful, characterization of AD+ is “AD+Σ1 statements reflect

into Suslin co-Suslin sets” (see [21] for the precise statement).

Let A ⊆ R; we let θA be the supremum of all α such that there is an OD(A)

surjection from R onto α. If Γ is a determined pointclass, and A ∈ Γ, we write

3 w(A) is the Wadge rank of A.
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Γ � A for the set of B ∈ Γ which is Wadge reducible to A. If α < ΘΓ, we write

Γ � α for the set of A ∈ Γ with Wadge rank strictly less than α.

Definition 1.2 (AD+): The Solovay sequence is the sequence 〈θα | α ≤ λ〉

where

(1) θ0 is the supremum of ordinals β such that there is an OD surjection

from R onto β;

(2) if α > 0 is limit, then θα = sup{θβ | β < α};

(3) if α = β+1 and θβ < Θ (i.e., β < λ), fixing a set A ⊆ R of Wadge rank

θβ , θα is the sup of ordinals γ such that there is an OD(A) surjection

from R onto γ, i.e., θα = θA.

Note that the definition of θα for α = β+1 in Definition 1.2 does not depend

on the choice of A. For a pointclass Γ that satisfies AD+ and is sufficiently

closed, we can also define the Solovay sequence 〈θΓα | α ≤ λ〉 of Γ like above.

For α ≤ λ, we say Γ � θΓα is a Solovay initial segment of Γ.

Roughly speaking, the longer the Solovay sequence is, the stronger the asso-

ciated AD+-theory is. For instance, the theory ADR + DC is strictly stronger

than ADR since by [14], DC implies cof(Θ) > ω while the minimal model 4 of

ADR satisfies Θ = θω. ADR+Θ is regular is much stronger still as it implies the

existence of many models of ADR +DC. We end this section with a theorem of

Woodin, which produces models with Woodin cardinals in AD+. The theorem

is important in the HOD analysis of such models.

Theorem 1.3 (Woodin, see [4]): Assume AD+. Let 〈θα | α ≤ Ω〉 be the Solovay

sequence. Suppose α = 0 or α = β + 1 for some β < Ω. Then HOD � θα is

Woodin.

2. Upper-bound consistency strength of (T)

In this section, we prove Theorem 0.1. We follow closely the construction of

Section 3 in [5].5 We use Even and Odd to denote the classes of even ordinals

4 From here on, whenever we talk about “models of AD+”, we always mean those M that

contain OR ∪ R and satisfy AD
+.

5 For the reader’s convenience, our ω1 will play the role of µ in Section 3 of [5], our ω2 will

play the role of κ there, and finally our α plays the same role as the α in [5].
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and odd ordinals respectively. We assume the ground model V satisfies

ωω
1 = ω1 + ωω

2 = ω2 + α is supercompact.

Consider the following forcing iteration,

〈Pi, Q̇j | i ≤ α, j < α〉,

with two partial orderings ≤ and ≤∗, where ≤ is the standard partial ordering

on posets and ≤∗ is defined by letting p ∗ ṙ ≤∗ q ∗ ṡ if p ∗ ṙ ≤ q ∗ ṡ and p = q.

Inductively, we ensure that the following hold:

(1) If i < α is even then Pi forces Q̇i = ADD(ω1), where ADD(ω1) is

the standard forcing for adding a Cohen subset of ω1 with countable

conditions.

(2) If j<α is odd, Pj−1 forces 〈Q̇j−1 ∗ Q̇j ,≤∗〉=〈ADD(ω1) ∗ Col(ω2, j),≤∗〉,

where Col(ω2, j) is the standard forcing that collapses j to ω2 using con-

ditions of size at most ℵ1. So for all i < α, Pi forces Q̇i is ω1-closed

and furthermore, if i is odd, then Pi−1 forces 〈Q̇i−1 ∗ Q̇i,≤∗〉 is ω2-

strategically closed.

(3) If i ≤ α is a limit ordinal, then Pi consists of all partial functions

p : i → V such that p � j ∈ Pj for j < i, |dom(p) ∩ Even| < ω1, and

|dom(p) ∩Odd| < ω2.

(4) For i ≤ α and p, q ∈ Pi, q ≤ p in Pi iff for all γ in the domain of p, γ is

in the domain of q and q � γ � q(γ) ≤ p(γ).

(5) For i ≤ α and p, q ∈ Pi, q ≤∗ p in Pi iff q ≤ p, dom(p) ∩ Even =

dom(q) ∩ Even, and for every γ in dom(p) ∩ Even, q � γ � q(γ) = p(γ).

By results in Section 3 of [5], we get the following:

(a) 〈Pβ ,≤〉 is ω1-closed for all β ≤ α. In particular, ADD(ω1) is the same in

the ground model and in any intermediate extension.

(b) Pα preserves ω1, ω2 (as well as stationary subsets of ω1 and ω2).

(c) ∀η ≤ α such that η is inaccessible, Pη is η-cc.

(d) Pα forces α = ω3.

(e) ∀η ≤ α such that η is inaccessible, letting Pα = Pη ∗ Q̇, then �Pη
Q̇ satisfies

the ω2-approximation property, that is, whenever G ∗ H is V -generic for

Pη ∗ Q̇, then if for all x ∈ V [G][H ], x ⊆ V [G], it holds that if x ∩ z ∈ V [G]

for all z ∈ ℘ω2(V [G])V [G] then x ∈ V [G].
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Lemma 2.1: In V [G], for any regular cardinal λ > ω2, the set

{X ≺ (Hλ,∈) | |X | = ω2, ω2 ⊂ X,Xω ⊆ X, and X is ω2-guessing}

is stationary. In particular, (T) holds in V [G].

Proof. Since Pα is ω1-closed, ω
ω
2 = ω2 in V , and ωV

2 = ω
V [G]
2 ,

(ωω
2 )

V [G] = (ωω
2 )

V = ωV
2 = ω

V [G]
2 .

It’s also clear from (a), (c), and the fact that α is an inaccessible limit of

inaccessibles that ωω
2 = ω2 and 2ω2 = ω3 in V [G].

Working in V [G], fix a regular cardinal λ > ω2. Let

T = {X ≺ Hλ | |X | = ω2 ∧ ω2 ⊂ X ∧Xω ⊆ X ∧X is ω2-guessing}.

We show T is stationary. In V , let j : V → M witness that α is Hλ-

supercompact. Let G ∗ H be Pj(α)-generic over V ; j canonically lifts to

j+ : V [G] → M [G ∗ H ], where j+(τG) = j(τ)G∗H . Let F be the normal

filter defined from j+, that is for all A ∈ ℘ω3(Hλ)
V [G],

A ∈ F ⇔ Pj(α) forces over V [G] that j+[H
V [G]
λ ] ∈ j(A).

It’s easy to check that F is a normal filter in V [G]. We now check that whenever

G∗H is V -generic, then H
V [G]
λ ∈ j+(T ). Fix such G,H and let X = j+[H

V [G]
λ ].

To simplify the notation, we also use j to denote j+. Note that X ≺ H
M [G][H]
j(λ) .

We first show inM [G][H ], Xω ⊆ X . Let a ∈ Xω and note that j−1[a] ∈ V [G].

This is because j−1[a] ⊆ V [G] and is a countable sequence in V [G][H ] and hence

is in V [G] since by construction, in V [G], �Pα
“Q̇ is ω1-closed”, where Pj(α) =

Pα ∗ Q̇. This easily implies that j−1[a] ∈ H
V [G]
λ . Hence j(j−1[a]) = a ∈ X .

Now suppose b ⊆ z ∈ X is such that b ⊆ X and whenever d ∈ X ∩ ℘ω2(X),

d ∩ b ∈ X . We want to show there is a c ∈ X such that b ∩ X = c ∩ X . To

this end, note that j−1[b] ∈ V [G]. This uses (e) and the assumption on b. Let

c = j(j−1[b]). Since j−1[b] ⊆ j−1(z) ∈ H
V [G]
λ , j−1[b] ∈ H

V [G]
λ ; this gives c ∈ X .

It’s easy then to check that c ∩X = b ∩ X (c need not equal b though). This

completes the proof of the lemma.

Proof of Theorem 0.1. Immediate from Lemma 2.1.

Remark 2.2: We note that the ω2-approximation property in (e) is crucial in

the proof of Lemma 2.1. It’s used to show that the hull X is ω2-guessing.
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3. Lower-bound consistency strength of (T)

In this section, we prove Theorem 0.2 and hence Theorem 0.4. The next several

subsections are dedicated to setting up the core model induction, constructing

hod pairs with nice properties that generate AD+ models. Fix a V -generic

G ⊆ Col(ω, κ). Let λ = 2κ. For X ≺ Hλ++ such that |X | = κ, κ ⊆ X , let

πX : MX → Hλ++ be the uncollapse map; πX naturally extends to a map,

which we also call πX from MX [G] to Hλ++ [G]. The core model induction will

occur in V [G]. Our smallness assumption throughout this paper is:

(†) : in V [G], there is no model M containing

all reals and ordinals such that M � “ADR + Θ is

regular”.

Among other things, (†) implies:

• There are no AD+ models M,N such that R ∪ OR ⊆ M,N and

℘(R) ∩M ∩N is strictly contained in ℘(R) ∩M and in ℘(R) ∩N (see

[7]). This implies that all AD+ models constructed in the core model

induction will end-extend one another.

• If M is an AD+ model, then Strong Mouse Capturing (SMC) (see

Footnote 26 for definition of SMC) and Generation of Mouse Full

Pointclasses (see [7, Section 6.1]) hold in M . This fact allows us to

use the hod analysis in [7] to construct hod mice.

Using the first consequence of (†), we define

Definition 3.1 (Maximal pointclass of AD+): In V [G], let

Ω =
⋃

{℘(R) ∩M | R ∪OR ⊂ M ∧M � AD+}.

The rest of the paper is dedicated to analyzing Ω. In particular, we show

that in V [G],

• Ω �= ∅.

• Letting 〈θΩα | α ≤ γ〉 be the Solovay sequence of Ω, then γ is a limit

ordinal.

We will then deduce that there is indeed a model M of “ADR + Θ is regular”.

This contradicts (†).

3.1. Framework for the core model induction. This section, consisting

of several subsections, develops some terminology and framework for the core
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model induction. The first subsection gives a brief summary of the theory of

hod mice developed in [7]. In the next three subsections, we briefly introduce

the notions of F -premice, strategy premice, and (Θ)-g-organized F -premice

developed in [13]. For a full development of these concepts as well as proofs

of lemmas stated below, the reader should consult [13]. These subsections

summarize the theory and results in [13] to make the paper self-contained. The

reader who wishes to see the main argument can skip them on the first read,

and go back when needed. The next subsection discusses the S-constructions,

which allow us to translate hybrid mice over a set a to hybrid mice over a set

b where a and b are closely related. The last subsection defines core model

induction operators, which are operators that we construct during the course

of the core model induction in this paper.

3.1.1. A brief introduction to hod mice. In this paper, a hod premouse P is

one defined as in [7]. The reader is advised to consult [7] for basic results

and notations concerning hod premice and mice. Let us mention some basic

first-order properties of a hod premouse P . There are an ordinal λP and

sequences 〈(P(α),ΣP
α ) | α < λP〉 and 〈δPα | α ≤ λP〉 such that

(1) 〈δPα | α ≤ λP〉 is increasing and continuous and if α is a successor ordinal

then P � δPα is Woodin;

(2) P(0) = Lpω(P|δ0)P ; for α < λP , P(α+ 1) = (Lp
ΣP

α
ω (P|δα))P ; for limit

α ≤ λP , P(α) = (Lp
⊕β<αΣ

P
β

ω (P|δα))P ;

(3) P � ΣP
α is a (ω, o(P), o(P)) 6-strategy for P(α) with hull condensation;

(4) if α < β < λP then ΣP
β extends ΣP

α .

We will write δP for δP
λP and ΣP =

⊕
β<λP ΣP

β . Note that P(0) is a pure

extender model. Suppose P and Q are two hod premice. Then P �hod Q if

there is α ≤ lQ such that P = Q(α). We say then that P is a hod initial

segment of Q; (P ,Σ) is a hod pair if P is a hod premouse and Σ is a strategy

for P (acting on countable stacks of countable normal trees) such that ΣP ⊆ Σ

and this fact is preserved under Σ-iterations. Typically, we will construct hod

pairs (P ,Σ) such that Σ has hull condensation, branch condensation, and is

Γ-fullness preserving for some pointclass Γ.

6 This just means ΣP
α acts on all stacks of ω-maximal, normal trees in P.
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Suppose (Q,Σ) is a hod pair such that Σ has hull condensation. Then P is a

(Q,Σ)-hod premouse if there are ordinal λP and sequences 〈(P(α),ΣP
α ) | α<λP〉

and 〈δPα | α ≤ λP〉 such that

(1) 〈δPα | α ≤ λP〉 is increasing and continuous, and if α is a successor

ordinal then P � δPα is Woodin;

(2) P(0) = LpΣω(P|δ0)P (so P(0) is a Σ-premouse built over Q); for

α < λP , P(α + 1) = (Lp
Σ⊕ΣP

α
ω (P|δα))P ; for limit α ≤ λP , P(α) =

(Lp
⊕β<αΣP

β
ω (P|δα))P ;

(3) P � Σ ∩ P is a (ω, o(P), o(P))-strategy for Q with hull condensation;

(4) P � ΣP
α is a (ω, o(P), o(P))-strategy for P(α) with hull condensation;

(5) if α < β < λP then ΣP
β extends ΣP

α .

Inside P , the strategies ΣP
α act on stacks above Q and every ΣP

α iterate is

a Σ-premouse. Again, we write δP for δP
λP and ΣP =

⊕
β<λP ΣP

β ; (P ,Λ) is

a (Q,Σ)-hod pair if P is a (Q,Σ)-hod premouse and Λ is a strategy for P

such that ΣP ⊆ Λ and this fact is preserved under Λ-iterations. The reader

should consult [7] for the definition of B(Q,Σ) and I(Q,Σ). Roughly speaking,

B(Q,Σ) is the collection of all hod pairs which are strict hod initial segments of

a Σ-iterate of Q and I(Q,Σ) is the collection of all Σ-iterates of Σ. In the case

λQ is limit, Γ(Q,Σ) is the collection of A ⊆ R such that A is Wadge reducible

to some Ψ for which there is some R such that (R,Ψ) ∈ B(Q,Σ). See [7] for

the definition of Γ(Q,Σ) in the case λQ is a successor ordinal.

[7] constructs under AD+ and the hypothesis that there are no models of

“ADR + Θ is regular” hod pairs that are fullness preserving, positional, com-

muting, and have branch condensation (see [7] for a full discussion of these

notions). Such hod pairs are particularly important for our computation as

they are points in the direct limit system giving rise to HOD of AD+ models.

Under AD+, for hod pairs (MΣ,Σ), if Σ is a strategy with branch condensation

and �T is a stack on MΣ with last model N , ΣN ,	T is independent of �T . There-

fore, later on we will omit the subscript �T from Σ
N,	T whenever Σ is a strategy

with branch condensation and MΣ is a hod mouse. In a core model induction,

we don’t quite have, at the moment (MΣ,Σ) is constructed, an AD+-model

M such that (MΣ,Σ) ∈ M but we do know that every (R,Λ) ∈ B(MΣ,Σ)

belongs to such a model. We then can show (using our hypothesis) that (MΣ,Σ)

belongs to an AD+-model.
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Definition 3.2 (Hod pair below κ): (P ,Σ) is a hod pair below κ if P ∈ V ,

|P|V ≤ κ, Σ is a (ω1, ω1) in V [G] 7-strategy with branch condensation, and is

commuting, positional, and Ω-fullness preserving, and for all (Q,Λ) ∈ B(Q,Σ),

Λ � HC ∈ Ω. Furthermore, Σ � V ∈ V .

3.1.2. F-premice.

Definition 3.3: Let L0 be the language of set theory expanded by unary predi-

cate symbols Ė, Ḃ, Ṡ, and constant symbols ȧ, Ṗ. Let L−
0 = L0\{Ė, Ḃ}.

Let a be transitive. Let � : a → rank(a) be the rank function. We write

â = trancl({(a, �)}). Let P ∈ J1(â).

A J -structure over a (with parameter P) (for L0) is a structure M

for L0 such that aM = a, (PM = P), and there is λ ∈ [1,Ord) such that

|M| = J SM

λ (â). ategy with Here we also let l(M) denote λ, the length of M,

and let âM denote â.

For α ∈ [1, λ] let Mα = J SM

α (â). We say that M is acceptable iff for each

α < λ and τ < o(Mα), if

P(τ<ω × â<ω) ∩Mα �= P(τ<ω × â<ω) ∩Mα+1,

then there is a surjection τ<ω × â<ω → Mα in Mα+1.

A J -structure (for L0) is a J -structure over a, for some a.

As all J -structures we consider will be for L0, we will omit the phrase “for

L0”. We also often omit the phrase “with parameter P”. Note that if M is a

J -structure over a then |M| is transtive and rud-closed, â ∈ M and o ∩M =

rank(M). This last point is because we construct from â instead of a.

F -premice will be J -structures of the following form.

Definition 3.4: A J -model over a (with parameter P) is an acceptable

J -structure over a (with parameter P), of the form

M = (M ;E,B, S, a,P)

where ĖM = E, etc., and letting λ = l(M), the following hold:

(1) M is amenable.

(2) S = 〈Sξ | ξ ∈ [1, λ)〉 is a sequence of J -models over a (with parameter

P).

7 Technically, this should be a (k, ω1, ω1)-strategy, where k is the degree of soundness of

P. But we suppress this parameter throughout our paper.
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(3) For each ξ ∈ [1, λ), ṠSξ = S � ξ and Mξ = |Sξ|.

(4) Suppose E �= ∅. Then B = ∅ and there is an extender F over M which

is â×γ-complete for all γ < crit(F ) and such that the premouse axioms

[28, Definition 2.2.1] hold for (M, F ), and E codes F̃ ∪ {G} where: (i)

F̃ ⊆ M is the amenable code for F (as in [23]); and (ii) if F is not

type 2 then G = ∅, and otherwise G is the “longest” non-type Z proper

segment of F in M.8

Our notion of a “J -model over a” is a bit different from the notion of

“model with parameter a” in [11] or [28, Definition 2.1.1] in that we build

into our notion some fine structure and we do not have the predicate l used in

[28, Definition 2.1.1]. Note that with notation as above, if λ is a successor

ordinal then M = J(SM
λ−1), and otherwise, M =

⋃
α<λ |Sα|. The predicate Ḃ

will be used to code extra information (like a (partial) branch of a tree in M).

Definition 3.5: LetM be a J -model over a (with parameterP). Let EM denote

ĖM, etc. Let λ = l(M), SM
0 = a, SM

λ = M, and M|ξ = SM
ξ for all ξ ≤ λ. An

(initial) segment of M is just a structure of the form M|ξ for some ξ ∈ [1, λ].

We write P � M iff P is a segment of M, and P �M iff P � M and P �= M.

Let M||ξ be the structure having the same universe and predicates as M|ξ,

except that EM||ξ = ∅. We say that M is E-active iff EM �= ∅, and B-active

iff BM �= ∅. Active means either E-active or B-active; E-passive means not

E-active; B-passive means not B-active; and passive means not active.

Given a J -model M1 over b and a J -model M2 over M1, we write M2 ↓ b

for the J -model M over b, such that M is “M1 ̂M2”. That is, |M| = |M2|,

aM = b, EM = EM2 , BM = BM2 , and P �M iff P � M1 or there is Q �M2

such that P = Q ↓ b, when such an M exists. Existence depends on whether

the J -structure M is acceptable.

In the following, the variable i should be interpreted as follows. When i = 0,

we ignore history, and so P is treated as a coarse object when determining

F(0,P). When i = 1 we respect the history (given it exists).

8 We use G explicitly, instead of the code γM used for G in [6, Section 2], because G does

not depend on which (if there is any) wellorder of M we use. This ensures that certain

pure mouse operators are forgetful.
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Definition 3.6: An operator F with domain D is a function with domain D,

such that for some cone C = CF , possibly self-wellordered (sword),9 D is the

set of pairs (i,X) such that either:

• i = 0 and X ∈ C, or

• i = 1 and X is a J -model over X1 ∈ C,

and for each (i,X) ∈ D, F(i,X) is a J -model over X such that for each

P � F(i,X), P is fully sound. (Note that P is a J -model over X , so soundness

is in this sense.)

Let F , D be as above. We say F is forgetful iff F(0, X) = F(1, X) whenever

(0, X), (1, X) ∈ D, and whenever X is a J -model over X1, and X1 is a J -

model over X2 ∈ C, we have F(1, X) = F(1, X ↓ X2). Otherwise we say F

is historical. Even when F is historical, we often just write F(X) instead of

F(i,X) when the nature of F is clear from the context. We say F is basic iff

for all (i,X) ∈ D and P � F(i,X), we have EP = ∅. We say F is projecting

iff for all (i,X) ∈ D, we have ρ
F(i,X)
ω = X .

Here are some illustrations. Strategy operators (to be explained in more detail

later) are basic, and as usually defined, projecting and historical. Suppose we

have an iteration strategy Σ and we want to build a J -model N (over some a)

that codes a fragment of Σ via its predicate Ḃ. We feed Σ into N by always

providing b = Σ(T ), for the <-N -least tree T for which this information is

required. So given a reasonably closed level P � N , the choice of which tree

T should be processed next will usually depend on the information regarding

Σ already encoded in P (its history). Using an operator F to build N , then

F(i,P) will be a structure extending P and over which b = Σ(T ) is encoded.

The variable i should be interpreted as follows. When i = 1, we respect the

history of P when selecting T . When i = 0 we ignore history when selecting

T . The operator F(X) = X# is forgetful and projecting, and not basic; here

F(X) = F(0, X).

Definition 3.7: For any P and any ordinal α ≥ 1, the operator Jm
α ( · ;P ) is

defined as follows.10 ForX such that P ∈ J1(X̂), let Jm
α (X ;P ) be the J -model

9 C is a cone if there are a cardinal κ and a transitive set a ∈ Hκ such that C is the set of

b ∈ Hκ such that a ∈ L1(b); a is called the base of the cone. A set a is self-wellordered

if there is a well-ordering of a in L1(a). A set C is a self-wellordered cone if C is the

restriction of a cone C′ to its own self-wellordered elements
10 The “m” is for “model”.
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M over X , with parameter P , such that |M| = Jα(X̂) and for each β ∈ [1, α],

M|β is passive. Clearly Jm
α ( · ;P ) is basic and forgetful. If P = ∅ or we wish

to supress P , we just write Jm
α ( · ).

Definition 3.8 (Potential F -premouse, CF): Let F be an operator with domain

D of self-wellordered sets. Let b ∈ CF , so there is a well-ordering of b in L1[b].

A potential F-premouse over b is an acceptable J -model M over b such

that there is an ordinal ι > 0 and an increasing, closed sequence 〈ζα〉α≤ι of

ordinals such that for each α ≤ ι, we have:

(1) 0 = ζ0 ≤ ζα ≤ ζι = l(M) (so M|ζ0 = b and M|ζι = M).

(2) If 1 < ι then M|ζ1 = F(0, b).

(3) If 1 = ι then M � F(0, b).

(4) If 1 < α+ 1 < ι then M|ζα+1 = F(1,M|ζα) ↓ b.

(5) If 1 < α+ 1 = ι then M � F(1,M|ζα) ↓ b.

(6) Suppose α is a limit. Then M|ζα is B-passive, and if E-active, then

crit(EM|ζα) > rank(b).

We say that M is (F-)whole iff ι is a limit or else, ι = α + 1 and M =

F(M|ζα) ↓ b.

A (potential) F-premouse is a (potential) F -premouse over b, for some b.

Definition 3.9: Let F be an operator and b ∈ CF . LetN be a whole F -premouse

over b. A potential continuing F-premouse over N is a J -model M over

N such that M ↓ b is a potential F -premouse over b. (Therefore N is a whole

strong cutpoint of M.)

We say that M (as above) is whole iff M ↓ b is whole.

A (potential) continuing F-premouse is a (potential) continuing F -

premouse over b, for some b.

Definition 3.10: LpF(a) denotes the stack of all countably F -iterable F -premice

M over a such that M is fully sound and projects to a.11

Let N be a whole F -premouse over b, for b ∈ CF . Then LpF+(N ) denotes the

stack of all countably F -iterable (above o(N )) continuing F -premice M over

N such that M ↓ b is fully sound and projects to N .

We say that F is uniformly Σ1 iff there are Σ1 formulas ϕ1 and ϕ2 in L−
0

such that whenever M is a (continuing) F -premouse, then the set of whole

11 Countable substructures of M are (ω, ω1 + 1)-F-iterable, i.e. all iterates are F-premice.

See [13, Section 2] for more details on F-iterability.
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proper segments of M is defined over M by ϕ1 (ϕ2). For such an operator F ,

let ϕF
wh denote the least such ϕ1.

Definition 3.11 (Mouse operator): Let Y be a projecting, uniformly Σ1 opera-

tor. A Y -mouse operator F with domain D is an operator with domain

D such for each (0, X) ∈ D, F(0, X) � LpY (X), and for each (1, X) ∈ D,

F(1, X) � LpY+(X).12 (So any Y -mouse operator is an operator.) A Y -mouse

operator F is called first order if there are formulas ϕ1 and ϕ2 in the language

of Y -premice such that F(0, X) (F(1, X)) is the first M � LpY (X) (LpY
+(X))

satisfying ϕ1 (ϕ2).

A mouse operator is a Jm
1 -mouse operator.

We can then define F -solidity, the LF [E]-construction etc. as usual (see [13]

for more details). We now define the kind of condensation that mouse operators

need to satisfy to ensure the LF [E] converges.

Definition 3.12: Let M1,M2 be k-sound J -models over a1, a2 and let

π : M1 → M2. Then π is (weakly, nearly) k-good iff π � a1 = id, π(a1) = a2,

and π is a (weak, near) k-embedding (as in [6]).

Definition 3.13: Given a J -model N over a, and M �N such that M is fully

sound, the M-drop-down sequence of N is the sequence of pairs

〈(Qn,mn)〉n<k of maximal length such that Q0 = M and m0 = ω and for

each n+ 1 < k:

(1) M �Qn+1 � N and Qn � Qn+1,

(2) every proper segment of Qn+1 is fully sound,

(3) ρmn
(Qn) is an a-cardinal of Qn+1,

(4) 0 < mn+1 < ω,

(5) Qn+1 is (mn+1 − 1)-sound,

(6) ρmn+1(Qn+1) < ρmn
(Qn) ≤ ρmn+1−1(Qn+1).

Definition 3.14: Let F be an operator and let C be some class of E-active

F -premice. Let b be transitive. A (C-certified) LF [E, b]-construction is a

sequence 〈Nα〉α≤λ with the following properties. We omit the phrase “over b”.

We have N0 = b and N1 = F(0, b).

Let α ∈ (0, λ]. Then Nα is an F -premouse, and if α is a limit then Nα is the

lim inf of the Nβ for β < α. Now suppose that α < λ. Then either:

12 This restricts the usual notion defined in [11].
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• Nα is passive and is a limit of whole proper segments and Nα+1 =

(Nα, G) for some extender G (with Nα+1 ∈ C); or

• Nα is ω-F -solid. Let Mα = Cω(Nα). Let M be the largest whole

segment of Mα. So either Mα = M or Mα ↓ M � F1(M). Let

N � F1(M) be least such that eitherN = F1(M) or for some k+1 < ω,

(N ↓ b, k + 1) is on the Mα-drop-down sequence of N ↓ b. Then

Nα+1 = N ↓ b. (Note Mα �Nα+1.)

Definition 3.15: Let Y be an operator. We say that Y condenses coarsely iff

for all i ∈ {0, 1} and (i, X̄), (i,X) ∈ dom(Y ), and all J -models M+ over X̄ , if

π : M+ → Yi(X) is fully elementary, fixes the parameters in the definition of

Y , then

(1) if i = 0 then M+ � Y0(X̄); and

(2) if i = 1 and X is a sound whole Y -premouse, then M+ � Y1(X̄).

Definition 3.16: Let Y be a projecting, uniformly Σ1 operator. We say that

Y condenses finely iff Y condenses coarsely and we have the following. Let

k < ω. Let M∗ be a Y -premouse over a, with a largest whole proper segment

M, such that M+ = M∗ ↓ M is sound and ρk+1(M+) = M. Let P∗, ā,P ,P+

be likewise. Let N be a sound whole Y -premouse over ā. Let G ⊆ Col(ω,P∪N )

be V -generic. Let N+, π, σ ∈ V [G], with N+ a sound J -model over N such

that N ∗ = N+ ↓ ā is defined (i.e., acceptable). Suppose π : N ∗ → M∗ is such

that π(N ) = M and either:

(1) M∗ is k-sound and N ∗ = Ck+1(M∗); or

(2) (N ∗, k + 1) is in the N -dropdown sequence of N ∗, and likewise

(P∗, k + 1),P , and either:

(a) π is k-good, or

(b) π is fully elementary, or

(c) π is a weak k-embedding, σ : P∗ → N ∗ is k-good, σ(P) = N and

π ◦ σ ∈ V is a near k-embedding.

Then N+ � Y1(N ).

We say that Y almost condenses finely iff N+ � Y1(N ) whenever the

hypotheses above hold with N+, π, σ ∈ V .

In fact, the two notions above are equivalent.
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Lemma 3.17: Let Y be an operator on a cone with base in HC. Suppose that

Y almost condenses finely. Then Y condenses finely.

We end this section with the following lemma (proved in Section 2 of [13]),

which states that the LF [E]-construction (relative to some class of background

extenders) runs smoothly for a certain class of operators. In the following, if

(N , G) ∈ C, then G is backgrounded as in [6] or as in [16] (we additionally

demand that the structure N in [16, Definition 1.1] is closed under F).

Lemma 3.18: Let F be a projecting, uniformly Σ1 operator which condenses

finely. Suppose F is defined on a cone with bases in HC. Let C = 〈Nα〉α≤λ

be the (C-certified) LF [E, b]-construction for b ∈ CF . Then (a) Nλ is 0-F -solid

(i.e., is an F -premouse).

Now suppose that Nλ is k-F -solid.

Suppose that for a club of countable elementary π : M → Ck(Nλ), there is

an F -putative, (k, ω1, ω1 + 1)-iteration strategy Σ for M, such that every tree

T via Σ is (π,C)-realizable.13

Then (b) Nλ is (k + 1)-F -solid.

Lemma 3.19: Let Y,F be uniformly Σ1 operators defined on a cone over some

Hκ, with bases in HC.14 Suppose that Y condenses finely. Suppose that F is a

whole continuing Y -mouse operator. Then F condenses finely.

The following lemma gives a stronger condensation property than fine con-

densation in certain circumstances. So if F satisfies the hypothesis of Lemma

3.20 (particularly, if F is one of the operators constructed in our core model

induction) then the LF [E]-construction converges by Lemma 3.18.

Lemma 3.20: Let Y,F be uniformly Σ1 operators with bases in HC. Sup-

pose that Y condenses finely. Suppose that F is a whole continuing Y -mouse

operator. Then (a) F condenses finely. Moreover, (b) let M be an F -whole

F -premouse. Let π : N → M be fully elementary with aN ∈ CF . Then N is an

F -whole F -premouse. So regarding F , the conclusion of 3.15 may be modified

by replacing “�” with “=”.

13 See [13, Section 2] for a precise definition of (π,C)-realizability. Roughly speaking this

means that models along the tree T are embedded into the Nα’s.
14 We also say “operator over Hκ with bases in HC” for short.
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Remark 3.21: In the context of the core model induction of this paper (and

elsewhere), we often construct mouse operators F defined over some Hκ with

base a /∈ HC. So given an F -premouse N , π : N ∗ → N elementary, and N ∗

countable, N ∗ may not be an F premouse. We have to make some changes for

the theory above to work for these F . For instance, in Lemma 3.18, with the

notation as there, we can modify the hypothesis of the lemma in one of two

ways:

(1) We can either require that a ∈ M, |M| = |a|, and the (π,C)-realizable

strategy Σ is (k, |a|+, |a|+ + 1)-iterable.

(2) We can still requireM is countable but the strategy Σ is a (k, ω1, ω1+1)-

Fπ-strategy, where Fπ is the π-pullback operator of F .15

3.1.3. Strategy premice. We now proceed to defining Σ-premice, for an iteration

strategy Σ. We first define the operator to be used to feed in Σ.

Definition 3.22 (B(a, T , b), bN ): Let a,P be transitive, with P ∈ J1(â). Let

λ > 0

T be an iteration tree16 on P , of length ωλ, with T � β ∈ a for all β ≤ ωλ.

Let b ⊆ ωλ. We define N = B(a, T , b) recursively on lh(T ), as the J -model N

over a, with parameter P ,17 such that:

(1) l(N ) = λ,

(2) for each γ ∈ (0, λ), N|γ = B(a, T � ωγ, [0, ωγ]T ),

(3) BN is the set of ordinals o(a) + γ such that γ ∈ b,

(4) EN = ∅.

We also write bN = b.

It is easy to see that every initial segment of N is sound, so N is acceptable

and is indeed a J -model (not just a J -structure).

In the context of a Σ-premouse M for an iteration strategy Σ, if T is the

<M-least tree for which M lacks instruction regarding Σ(T ), then M will

already have been instructed regarding Σ(T � α) for all α < lh(T ). Therefore

15 For instance, if F corresponds to a strategy Σ, then Fπ corresponds to Σπ, the π-

pullback of Σ. If F is a first order mouse operator defined by (ϕ, a), then Fπ is defined

by (ϕ, π−1(a)).
16 We formally take an iteration tree to include the entire sequence

〈
MT

α

〉
α<lh(T )

of models.

So it is Σ0(T ,P) to assert that “T is an iteration tree on P”.
17 P = MT

0 is determined by T .
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if lh(T ) > ω then B(M, T ,Σ(T )) codes redundant information (the branches

already in T ) before coding Σ(T ). This redundancy seems to allow one to prove

slightly stronger condensation properties, given that Σ has nice condensation

properties (see Lemma 3.29). It also simplifies the definition.

Definition 3.23: Let Σ be a partial iteration strategy. Let C be a class of

iteration trees, closed under initial segment. We say that (Σ, C) is suitably

condensing iff for every T ∈ C such that T is via Σ and lh(T ) = λ + 1 for

some limit λ, either (i) Σ has hull condensation with respect to T , or (ii) bT

does not drop and Σ has branch condensation with respect to T , that is, any

hull U�c of T �b is according to Σ.

When C is the class of all iteration trees according to Σ, we simply omit it

from our notation.

Definition 3.24: Let ϕ be an L0-formula. Let P be transitive. Let M be a

J -model (over some a), with parameter P . Let T ∈ M. We say that ϕ selects

T for M, and write T = T M
ϕ , iff

(a) T is the unique x ∈ M such that M � ϕ(x),

(b) T is an iteration tree on P of limit length,

(c) for every N �M, we have N �� ϕ(T ), and

(d) for every limit λ < lh(T ), there is N �M such that N � ϕ(T � λ).

One instance of φ(P , T ) is, in the case a is self-wellordered, the formula “T is

the least tree on P that doesn’t have a cofinal branch”, where least is computed

with respect to the canonical well-order of the model.

Definition 3.25 (Potential P-strategy-premouse, ΣM): Let ϕ ∈ L0. Let P , a be

transitive with P ∈ J1(â). A potential P-strategy-premouse (over a, of

type ϕ) is a J -model M over a, with parameter P , such that the B operator

is used to feed in an iteration strategy for trees on P , using the sequence of

trees naturally determined by SM and selection by ϕ. We let ΣM denote the

partial strategy coded by the predicates BM|η, for η ≤ l(M).

In more detail, there is an increasing, closed sequence of ordinals 〈ηα〉α≤ι

with the following properties. We will also define ΣM|η for all η ∈ [1, l(M)] and

Tη = T M
η for all η ∈ [1, l(M)).

(1) 1 = η0 and M|1 = Jm
1 (a;P) and ΣM|1 = ∅.

(2) l(M) = ηι, so M|ηι = M.
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(3) Given η ≤ l(M) such that BM|η = ∅, we set ΣM|η =
⋃

η′<η Σ
M|η′

.

Let η ∈ [1, l(M)]. Suppose there is γ ∈ [1, η] and T ∈ M|γ such that

T = T
M|γ
ϕ , and T is via ΣM|η, but no proper extension of T is via ΣM|η.

Taking γ minimal such, let Tη = T
M|γ
ϕ . Otherwise let Tη = ∅.

(4) Let α + 1 ≤ ι. Suppose Tηα
= ∅. Then ηα+1 = ηα + 1 and M|ηα+1 =

Jm
1 (M|ηα;P) ↓ a.

(5) Let α + 1 ≤ ι. Suppose T = Tηα
�= ∅. Let ωλ = lh(T ). Then for some

b ⊆ ωλ, and S = B(M|ηα, T , b), we have:

(a) M|ηα+1 � S.

(b) If α+ 1 < ι then M|ηα+1 = S.

(c) If S � M then b is a T -cofinal branch.18

(d) For η ∈ [ηα, l(M)] such that η < l(S), ΣM|η = ΣM|ηα .

(e) If S � M then ΣS = ΣM|ηα ∪ {(T , bS)}.

(6) For each limit α ≤ ι, BM|ηα = ∅.

Definition 3.26 (Whole): Let M be a potential P-strategy-premouse of type ϕ.

We say P is ϕ-whole (or just whole if ϕ is fixed) iff for every η < l(M), if

Tη �= ∅ and Tη �= Tη′ for all η′ < η, then for some b, B(M|η, Tη, b) � M.19

Definition 3.27 (Potential Σ-premouse): Let Σ be a (partial) iteration strategy

for a transitive structure P . A potential Σ-premouse (over a, of type ϕ)

is a potential P-strategy premouse M (over a, of type ϕ) such that ΣM ⊆ Σ.20

Definition 3.28: LetR,M be J -structures for L0, a = aR and b = aM. Suppose

that a, b code P ,Q respectively. Let π : R → M (or

π : o(R) ∪ P ∪ {P} → o(M) ∪ Q ∪ {Q}

respectively). Then π is a (P ,Q)-weak 0-embedding (resp., (P ,Q)-very

weak 0-embedding) iff π(P) = (Q) and with respect to the language L0, π is

Σ0-elementary, and there is an X ⊆ R (resp., X ⊆ o(R)) such that X is cofinal

in ∈R and π is Σ1-elementary on parameters in X∪P ∪{P}. If also P = Q and

18 We allow MT
b to be illfounded, but then T ̂ b is not an iteration tree, so is not continued

by ΣM.
19 ϕ-whole depends on ϕ as the definition of Tη does.
20 If M is a model all of whose proper segments are potential Σ-premice, and the rules for

potential P-strategy premice require that BM code a T -cofinal branch, but Σ(T ) is not

defined, then M is not a potential Σ-premouse, whatever its predicates are.
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π � P ∪ {P} = id, then we just say that π is a P-weak 0-embedding (resp.,

P-very weak 0-embedding).

Note that, for (P ,Q)-weak 0-embeddings, we can in fact take X ⊆ o(R). The

following lemma is again proved in [13, Section 3].

Lemma 3.29: Let M be a P-strategy premouse over a, of type ϕ, where ϕ is

Σ1. Let R be a J -structure for L0 and a′ = aR, and let P ′ be a transitive

structure coded by a′.

(1) Suppose π : R → M is a partial map such that π(P ′) = P and either:

(a) π is a (P ′,P)-weak 0-embedding, or

(b) π is a (P ′,P)-very weak 0-embedding, and if ER �= ∅ then item 4

of 3.4 holds for ER.

ThenR is a P ′-strategy premouse of type ϕ. Moreover, if π �{P ′} ∪ P ′=

id and if M is a Σ-premouse, where (Σ, dom(ΣM)) is suitably condens-

ing, then R is also a Σ-premouse.

(2) Suppose there is π : M → R is such that π(a,P) = (a′,P ′) and either

(a) π is Σ2-elementary; or

(b) π is cofinal and Σ1-elementary, and BM = ∅.

Then R is a P ′-strategy premouse of type ϕ, and R is whole iff M is

whole.

(3) Suppose BM �= ∅. Let T = T M
η where η < l(M) is largest such that

M|η is whole. Let b = bM and ωγ =
⋃
b. So M � B(M|η, T , b).

Suppose there is π : M → R such that π(P) = P ′ and π is cofinal and

Σ1-elementary. Let ωγ′ = supπ“ωγ.

(a) R is a P ′-strategy premouse of type ϕ iff we have either (i) ωγ′ =

lh(π(T )), or (ii) ωγ′ < lh(π(T )) and bR = [0, ωγ′]π(T ).

(b) If either bM ∈ M or π is continuous at lh(T ), then R is a P ′-

strategy premouse of type ϕ.

Remark 3.30: The preceding lemma left open the possibility that R fails to

be a P-strategy premouse under certain circumstances (because BR should be

coding a branch that has in fact already been coded at some proper segment

of R, but codes some other branch instead). In the main circumstance we are

interested in, this does not arise, for a couple of reasons. Suppose that Σ is an

iteration strategy for P with hull condensation, M is a Σ-premouse, and Λ is

a Σ-strategy for M. Suppose π : M → R is a degree 0 iteration embedding



628 NAM TRANG Isr. J. Math.

and BM �= ∅ and π is discontinuous at lh(T ). Then [13, Section 3] shows that

bM ∈ M. (It’s not relevant whether π itself is via Λ.) It then follows from 0b

of Lemma 3.29 that R is a Σ-mouse.

The other reason is that, supposing π : M → R is via Λ (so π � P∪{P} = id),

then trivially, BR must code branches according to Σ. We can obtain such a

Λ given that we can realize iterates of M back into a fixed Σ-premouse (with

P-weak 0-embeddings as realization maps).

Definition 3.31: Let P be transitive and Σ a partial iteration strategy for P .

Let ϕ ∈ L0. Let F = FΣ,ϕ be the operator such that:

(1) F0(a) = Jm
1 (a;P), for all transitive a such that P ∈ J1(â).

(2) Let M be a sound ϕ-whole Σ-premouse of type ϕ. Let λ = l(M)

and with notation as in 3.25, let T = Tλ. If T = ∅ then F1(M) =

Jm
1 (M;P). If T �= ∅ then F1(M) = B(M, T , b) where b = Σ(T ).

We say that F is a strategy operator.

Lemma 3.32: Let P be countable and transitive. Let ϕ be a formula of L0.

Let Σ be a partial strategy for P . Let Dϕ be the class of iteration trees T on P

such that for some J -model M, with parameter P , we have T = T M
ϕ . Suppose

that (Σ, Dϕ) is suitably condensing. Then FΣ,ϕ is uniformly Σ1, projecting,

and condenses finely.

Definition 3.33: Let a be transitive and let F be an operator. We say that

MF ,#
1 (a) exists iff there is a (0, |a|, |a|++1)-F -iterable, non-1-smallF -premouse

over a. We write MF ,#
1 (a) for the least such sound structure. For Σ,P , a, ϕ as

in 3.31, we write MΣ,ϕ,#
1 (a) for M

FΣ,ϕ,#
1 (a).

Let L+
0 be the language L0 ∪ { ≺̇, Σ̇}, where ≺̇ is the binary relation defined

by “ȧ is self-wellordered, with ordering ≺ȧ, and ≺̇ is the canonical wellorder

of the universe extending ≺ȧ”, and Σ̇ is the partial function defined by “Ṗ is a

transitive structure and the universe is a potential Ṗ-strategy premouse over ȧ

and Σ̇ is the associated partial putative iteration strategy for Ṗ”. Let ϕall(T )

be the L0-formula “T is the ≺̇-least limit length iteration tree U on Ṗ such

that U is via Σ̇, but no proper extension of U is via Σ̇”. Then for Σ,P , a as in

3.31, we sometimes write MΣ,#
1 (a) for M

FΣ,ϕall
,#

1 (a).

Let κ be a cardinal and suppose that M = MF ,#
1 (a) exists and is (0, κ++1)-

iterable. We write ΛM for the unique (0, κ++1)-iteration strategy for M (given

that κ is fixed).
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Definition 3.34: We say that (F ,Σ, ϕ,D, a,P) is suitable iff a is transitive and

MF ,#
1 (a) exists, where either

(1) F is a projecting, uniformly Σ1 operator, CF is the (possibly swo’d)

cone above a, D is the set of pairs (i,X) ∈ dom(F) such that either

i = 0 or X is a sound whole F -premouse, and Σ = ϕ = 0, or

(2) P ,Σ, ϕ,Dϕ are as in 3.32, F = FΣ,ϕ, Dϕ ⊆ D, D is a class of limit

length iteration trees on P , via Σ, Σ(T ) is defined for all T ∈ D, (Σ, D)

is suitably condensing and P ∈ J1(â).

We write GF for the function with domain CF , such that for all x ∈ CF ,

GF (x) = Σ(x) in case (ii), and in case (i), GF (0, x) = F(0, x) and GF (1, x) is

the least R � F1(x) ↓ ax such that either R = F1(X) ↓ aX or R is unsound.

Lemma 3.35: Let F be as in 3.34 and M = MF ,#
1 . Then ΛM has branch

condensation and hull condensation.

3.1.4. g-organized F-premice. Now we give an outline of the general treatment

of [13] on F -premice over an arbitrary set; following the terminology of [13],

we will call these g-organized F -premice and Θ-g-organized F -premice. For

(Θ)-g-organized F -premice to be useful, we need to assume that the following

absoluteness property holds for the operator F . We then show that if F is the

operator for a nice enough iteration strategy, then it does hold. We write M

for MF and fix a,P,F ,P , C as in the previous subsection. In the following, δM

denotes the Woodin cardinal of M. Again, the reader should see [13] for proofs

of lemmas stated here.

Definition 3.36: Let (F ,Σ, ϕ, C, a,P) be suitable. We say that MF ,�
1 (a) gener-

ically interprets F21 iff, writing M = MF ,#
1 (a), there are formulas Φ,Ψ in

L0 such that there is some γ > δM such that M|γ � Φ and for any non-dropping

ΣM-iterate N of M, via a countable iteration tree T , any N -cardinal δ, any

γ ∈ Ord such that N|γ � Φ & “δ is Woodin”, and any g which is set-generic

over N|γ (with g ∈ V ), then (N|γ)[g] is closed under GF , and GF � (N|γ)[g] is

defined over (N|γ)[g] by Ψ. We say such a pair (Φ,Ψ) generically determines

(F ,Σ, ϕ, C, a) (or just F).

We say an operator F is nice iff for some Σ, ϕ, C, a,P, (F ,Σ, ϕ, C, a,P) is

suitable and MF ,�
1 generically interprets F .

21 In [13], this notion is called F determines itself on generic extensions. In this paper,

“determines itself on generic extensions” will have a different meaning, as defined later.
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Let P ∈ HC, let Σ be an iteration strategy for P and let C be the class of all

limit length trees via Σ. SupposeMΣ,#
1 (P) exists, (Σ, C) is suitably condensing.

We say that MΣ,#
1 (P) generically interprets Σ iff some (Φ,Ψ) generically

determines (FΣ,ϕall
,Σ, ϕall, C,P). (Note then that the latter is suitable.)

Lemma 3.37: Let N , δ, etc. be as in 3.36, except that we allow T to have

uncountable length, and allow g to be in a set-generic extension of V . Then

(N|γ)[g] is closed under GF and letting G′ be the interpretation of Ψ over

(N|γ)[g], G′ � C = GF � (N|γ)[g].

We fix a nice F , M, ΛM = Λ, (Φ,Ψ) for the rest of the section. We define

MΣ
1 from M in the standard way.

See [13, Section 4] for a proof that if Σ is a strategy (of a hod mouse, a suitable

mouse) with branch condensation and is fullness preserving with respect to mice

in some sufficiently closed, determined pointclass Γ or if Σ is the unique strategy

of a sound (Y )-mouse for some mouse operator Y that is projecting, uniformly

Σ1, M
Y,�
1 generically interprets Y , and condenses finely, then MF ,�

1 generically

interprets F .

Now we are ready to define g-organized F -premice.

Definition 3.38 (Sargsyan, [7]): Let M be a transitive structure. Let Ġ be the

name for the generic G ⊆ Col(ω,M) and let ẋĠ be the canonical name for

the real coding {(n,m) | G(n) ∈ G(m)}, where we identify G with
⋃
G. The

tree TM for making M generically generic is the iteration tree T on M of

maximal length such that:

(1) T is via Λ and is everywhere non-dropping.

(2) T � o(M)+1 is the tree given by linearly iterating the first total measure

of M and its images.

(3) Suppose lh(T ) ≥ o(M)+2 and let α+1 ∈ (o(M), lh(T )). Let δ = δM
T
α ,

the Woodin cardinal of MT
α , and let B = B(MT

α ) be the extender

algebra of MT
α at δ. Then ET

α is the extender E with least index in

MT
α such that for some condition p ∈ Col(ω,M), p �“There is a B-

axiom induced by E which fails for ẋĠ”.

Assuming that M is sufficiently iterable, then TM exists and has successor

length.
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Sargsyan noticed that one can feed in F into a structure N indirectly, by

feeding in the branches for TM, for various M � N . The operator gF , defined

below, and used in building g-organized F -premice, feeds in branches for such

TM. We will also ensure that being such a structure is first-order — other than

wellfoundedness and the correctness of the branches — by allowing sufficient

spacing between these branches.

In the following, we let N T denote the last model of the tree T .

Definition 3.39: Given a formula Φ. Given a successor length, nowhere dropping

tree T on M, let PΦ(T ) be the least P � N T such that for some cardinal δ′ of

N T , we have δ′ < o(P ) and P � Φ+“δ′ is Woodin”. Let λ = λΦ(T ) be least

such that PΦ(T ) � MT
λ . Then δ′ is a cardinal of MT

λ . Let IΦ = IΦ(T ) be the

set of limit ordinals ≤ λ.

We can now define the operator used for g-organization:

Definition 3.40 (gF): We define the forgetful operator gF , for F such thatMF ,�
1

generically interprets F as witnessed by a pair (Φ,Ψ). Let b be a transitive

structure with M ∈ J1(b̂).

We define M = gF(b), a J -model over b, with parameter M, as follows.

For each α ≤ l(M), EM|α = ∅.

Let α0 be the least α such that Jα(b) � ZF. Then M|α0 = Jm
α0
(b;M).

Let T = TM|α0
. We use the notation PΦ = PΦ(T ), λ = λΦ(T ), etc., as in

3.39. The predicates BM|γ for α0 < γ ≤ l(M) will be used to feed in branches

for T � λ+1, and therefore PΦ itself, into M. Let 〈ξα〉α<ι enumerate IΦ ∪{0}.

There is a closed, increasing sequence of ordinals 〈ηα〉α≤ι and an increasing

sequence of ordinals 〈γα〉α≤ι such that:

(1) η1 = γ0 = η0 = α0.

(2) For each α < ι, ηα ≤ γα ≤ ηα+1, and if α > 0 then γα < ηα+1.

(3) γι = l(M), so M = M|γι.

(4) Let α ∈ (0, ι). Then γα is the least ordinal of the form ηα + τ such that

T � ξα ∈ Jτ (M|ηα) and if α > α0 then δ(T � ξα) < τ . (We explain

below why such τ exists.) And M|γα = Jm
τ (M|ηα;M) ↓ b.

(5) Let α ∈ (0, ι). Then M|ηα+1 = B(M|γα, T � ξα,Λ(T � ξα)) ↓ b.

(6) Let α < ι be a limit. Then M|ηα is passive.

(7) γι is the least ordinal of the form ηι + τ such that T � λ + 1 ∈

Jηι+τ (M|ηι) and τ > o(MT
λ ); with this τ , M = Jm

τ (M|ηι;M) ↓ b
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and furthermore, gF(b) is acceptable and every strict segment of gF(b)

is sound.

Remark 3.41: It’s not hard to see (cf. [13]) M̄ � M = gF(b), the sequences

〈M|ηα〉α≤ι ∩ M̄ and 〈M|γα〉α≤ι ∩ M̄ and 〈T � α〉α≤λ+1 ∩ M̄ are ΣM̄
1 in L−

0 ,

uniformly in b and M̄.

Definition 3.42: Let b be transitive with M ∈ J1(b̂). A potential g-organized

F-premouse over b is a potential gF -premouse over b, with parameter M.

Lemma 3.43: There is a formula ϕg in L0, such that for any transitive b with

M ∈ J1(b̂), and any J -structure M over b, M is a potential g-organized F -

premouse over b iff M is a potential ΛM-premouse over b, of type ϕg.

Lemma 3.44: gF is projecting, uniformly Σ1, basic, and condenses finely.

Definition 3.45: Let M be a g-organized F -premouse over b. We say M is

F-closed iff M is a limit of gF -whole proper segments.

Because MF ,�
1 generically interprets F , F -closure ensures closure under GF :

Lemma 3.46: Let M be an F -closed g-organized F -premouse over b. Then

M is closed under GF . In fact, for any set generic extension M[g] of M, with

g ∈ V , M[g] is closed under GF and GF � M[g] is definable over M[g], via a

formula in L−
0 , uniformly in M, g.

The analysis of scales in Lp
gF (R) runs into a problem (see [13, Remark 6.8]

for an explanation). Therefore we will analyze scales in a slightly different

hierarchy.

Definition 3.47: Let X ⊆ R. We say that X is self-scaled iff there are scales

on X and R\X which are analytical (i.e., Σ1
n for some n < ω) in X .

Definition 3.48: Let b be transitive with M ∈ J1(b̂).

Then GF(b) denotes the least N � gF(b) such that either N = gF(b) or

J1(N ) �“Θ does not exist”. (Therefore Jm
1 (b;M) � GF(b).)

We say that M is a potential Θ-g-organized F-premouse over X iff

M ∈ HCM and for some X ⊆ HCM, M is a potential GF -premouse over

(HCM, X) with parameter M and M �“X is self-scaled”. We write XM = X .
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In our application to core model induction, we will be most interested in

the cases that either X = ∅ or X = F � HCM. Clearly Θ-g-organized F -

premousehood is not first order. Certain aspects of the definition, however,

are:

Definition 3.49: Let “I am a Θ-g-organized premouse overX” be the L0 formula

ψ such that for all J -structures M and X ∈ M we have M � ψ(X) iff (i)

X ⊆ HCM; (ii) M is a J -model over (HCM, X); (iii) M|1 �“X is self-scaled”;

(iv) every proper segment of M is sound; and (v) for every N � M:

(1) if N �“Θ exists” then N ↓ (N|ΘN ) is a PN -strategy premouse of type

ϕg;

(2) if N �“Θ does not exist” then N is passive.

Lemma 3.50: Let M be a J -structure and X ∈ M. Then the following are

equivalent: (i) M is a Θ-g-organized F -premouse over X ; (ii) M �“I am a

Θ-g-organized premouse over X” and PM = M and ΣM ⊆ ΛM; (iii) M|1 is a

Θ-g-organized premouse over X and every proper segment of M is sound and

for every N � M,

(1) if N �“Θ exists” then N ↓ (N|ΘN ) is a g-organized F -premouse;

(2) if N �“Θ does not exist” then N is passive.

Lemma 3.51: GF is basic and condenses finely.

Definition 3.52: Suppose F is a nice operator and is an iteration strategy and

X ⊆ R is self-scaled. We define Lp
GF(R, X) as the stack of all Θ-g-organized

F -mice N over (Hω1 , X) (with parameter M). We also say (Θ-g-organized)

F -premouse over R to in fact mean over Hω1 .

Remark 3.53: It’s not hard to see that for any such X as in Definition 3.52,

℘(R) ∩ Lp
gF (R, X) = ℘(R) ∩ Lp

GF (R, X). Suppose M is an initial segment of

the first hierarchy and M is E-active. Note that M � “Θ exists” and M|Θ is

F -closed. By induction below M|ΘM, M|ΘM can be rearranged into an initial

segment N ′ of the second hierarchy. Above ΘM, we simply copy the E- and

B-sequence from M over to obtain an N � Lp
GF (R, X) extending N ′.

In core model induction applications, we often have a pair (P ,Σ) where P

is a hod premouse and Σ is P ’s strategy with branch condensation and is full-

ness preserving (relative to mice in some pointclass) or P is a sound (hybrid)
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premouse projecting to some countable set a and Σ is the unique (normal)

ω1+1-strategy for P . Let F be the operator corresponding to Σ (using the for-

mula ϕall) and suppose MF ,�
1 exists. [13, Lemma 4.8] shows that F condenses

finely and MF ,�
1 generically interprets F . Also, the core model induction will

give us that F � R is self-scaled.22 Thus, we can define Lp
GF (R,F � R) as above

(assuming sufficient iterability of MF ,�
1 ). A core model induction is then used

to prove that Lp
GF(R,F � R) � AD+. What’s needed to prove this is the scales

analysis of Lp
GF(R,F � R), from the optimal hypothesis (similar to those used

by Steel; see [19] and [20]).23 This is carried out in [13]; we will not go into

details here, though we simply note that for the scales analysis to go through

under optimal hypotheses, we need to work with the Θ-g-organized hierarchy,

instead of the g-organized hieararchy.

3.1.5. Brief remarks on S-constructions. Suppose F is a nice operator (with

parameter P) and suppose M is a G-mouse (over some transitive a), where G

is either gF or GF . Suppose δ is a cutpoint of M and suppose N is a transitive

structure such that δ ⊆ N ⊆ M|δ, P ∈ N . Suppose P ∈ Jω[N ] is such that

M|δ is P-generic over Jω [N ] and suppose whenever Q is a G-mouse over N

such that HQ
δ = N then M|δ is P-generic over Q. Then the S-constructions (or

P -constructions) from [12] give a G-mouse R over N such that R[M|δ] = M.

The S-constructions give the sequence (Rα : δ < α ≤ λ) of G-premice over N ,

where

(i) Rδ+1 = Jm
ω (N );

(ii) if α is limit, then letR∗
α =

⋃
β<αRβ . IfM|α is passive, then letRα = R∗

α.

So Rα is passive. If BM|α �= ∅, then let

Rα = (|R∗
α|; ∅, B

M|α,
⋃

β<α

SRβ ,N ,P).

22 We abuse notation here, and will continue to do so in the future. Technically, we should

write F �HC.
23 Suppose P = M�

1 and Σ is P’s unique iteration strategy. Let F be the operator corre-

sponding to Σ. Suppose Lp
GF (R,F � R) � AD

+ +MC. Then in fact Lp
GF (R) ∩ ℘(R) =

Lp(R) ∩ ℘(R). This is because in L(Lp
GF (R,F � R)), L(℘(R)) � AD

+ + Θ = θ0 + MC

and hence by [9], in L(Lp
GF (R,F � R)), ℘(R) ⊆ Lp(R). Therefore, even though the

hierarchies Lp(R) and Lp
GF (R,F � R) are different, as far as sets of reals are concerned,

we don’t lose any information by analyzing the scales pattern in Lp
GF (R,F � R) instead

of that in Lp(R).
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Suppose EM|α �= ∅; let E∗ = EM|α ∩ |R∗
α|, then we let

Rα = (|R∗
α|;E

∗, ∅,
⋃

β<α

SRβ ,N ,P).

By the hypothesis, we have Rα[M|δ] = M|α.

(iii) Suppose we have already constructedRα and (by the hypothesis) maintain

that Rα[M|δ] = M|α. Then Rα+1 = Jm
ω (Rα).

(iv) λ is such that Rλ[M|δ] = M. We set Rλ = R.

We note that the full construction from [12] does not require that δ is a cut-

point of M but we don’t need the full power of the S-constructions in our

paper. Also, the fact that M is g-organized (or Θ-g-organized) is important for

our constructions above because it allows us to get past levels M|α for which

BM|α �= ∅. Because of this fact, in this paper, hod mice are reorganized into the

g-organized hierarchy, that is if P is a hod mouse then P(α+1) is a g-organized

ΣP(α)-premouse for all α < λP . The S-constructions are also important in

many other contexts. One such context is the local HOD analysis of levels of

Lp
GF(R,F � R), which features in the scales analysis of Lp

GF (R,F � R) (cf.

[13]).

3.1.6. Core model induction operators. To analyze Ω, we adapt the framework

for the core model induction developed above and the scales analysis in [13],

[20], and [19]. We are now in a position to introduce the core model induction

operators that we will need in this paper. These are particular kinds of (hy-

brid) mouse operators that are constructed during the course of the core model

induction. These operators can be shown to satisfy the sort of condensation

described above and determine themselves on generic extensions.

Suppose F is a nice operator and Γ is an inductive-like pointclass that is

determined. Let M = MF ,�
1 . Lp

gF (x) is defined as in the previous section. We

write Lp
gF ,Γ(x) for the stack of sound, projecting to xgF -premice M over x

such that every countable, transitive M∗ embeddable into M has an ω1-
gF -

iteration strategy in Γ.

Definition 3.54: Let t ∈ HC with M ∈ J1(t). Let 1 ≤ k < ω. A premouse

N over t is F-Γ-k-suitable (or just k-suitable if Γ and F are clear from the

context) iff there is a strictly increasing sequence 〈δi〉i<k such that:

(1) ∀δ ∈ N , N �“δ is Woodin” if and only if ∃i < k(δ = δi).

(2) o(N ) = supi<ω(δ
+i
k−1)

N .
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(3) If N|η is a gF -whole strong cutpoint of N then N|(η+)N =

Lp
gF ,Γ(N|η).24

(4) Let ξ < o(N ), where N �“ξ is not Woodin”. Then CΓ(N|ξ) �“ξ is not

Woodin”.

We write δNi = δi; also let δN−1 = 0 and δNk = o(N ).

Definition 3.55 (relativizes well): Let F be a Y -mouse operator for some oper-

ator Y . We say that F relativizes well if there is a formula φ(x, y, z) such

that for any a, b ∈ dom(F) such that a ∈ L1(b) and have the same cardinal-

ity, whenever N is a transitive model of ZFC− such that N is closed under Y ,

F(b) ∈ N , then F(a) ∈ N and is the unique x ∈ N such that N � φ[x, a,F(b)].

Definition 3.56 (determines itself on generic extensions): Suppose F is a Y -

mouse operator for some operator Y . We say that F determines itself on

generic extensions if there is a formula φ(x, y, z), a parameter a such that for

almost all transitive structures N of ZFC− such that ω1 ⊂ N , N contains a and

is closed under F , for any generic extension N [g] of N in V , F ∩ N [g] ∈ N [g]

and is definable over N [g] via (φ, a), i.e., for any x ∈ N [g] ∩ dom(F), F(a) = b

if and only if b is the unique c ∈ N [g] such that N [g] � φ[x, c, a].25

The following definition gives examples of “nice model operators”. This is

not a standard definition and is given here for convenience more than anything.

These are the kind of model operators that the core model induction in this

paper deals with. We by no means claim that these operators are all the useful

model operators that one might consider. Recall we fixed a V -generic G ⊆

Col(ω, κ).

Definition 3.57 (Core model induction operators): Suppose (P ,Σ) is a hod pair

below κ; assume furthermore that Σ is a (λ+, λ+)-strategy. Let F = FΣ,ϕall

(note that F , gF are basic, projecting, uniformly Σ1, and condenses finely).

Assume F � R is self-scaled. We say J is a Σ core model induction operator or

just a Σ-cmi operator if in V [G], one of the following holds:

24 Literally we should write “N|(η+)N = LpΓ(N|η) ↓ t”, but we will be lax about this from

now on.
25 By “almost all”, we mean for all such N with the properties listed above and N satisfies

some additional property. In practice, this additional property is: N is closed under

MF,�
1 .
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(1) J is a projecting, uniformly Σ1, first order F -mouse operator (or
gF -mouse operator) defined on a cone of (Hω1)

V [G] above some a ∈

(Hω1)
V [G]. Furthermore, J relativizes well.

(2) For some α ∈ OR such that α ends either a weak or a strong gap in

the sense of [19] and [13], letting M = Lp
GF(R,F � R)||α and Γ =

(Σ1)
M , M � AD+ +MC(Σ).26 For some transitive b ∈ H

V [G]
ω1 and some

g-organized F -premouse Q over b, J = FΛ, where Λ is an (ω1, ω1)-

iteration strategy for a 1-suitable (or more fully F -Γ-1-suitable)Q which

is Γ-fullness preserving, has branch condensation and is guided by some

self-justifying-system (sjs) �A = (Ai : i < ω) such that �A ∈ ODM
b,Σ,x for

some real x and �A seals the gap that ends at α.27

Remark 3.58: 1) The Σ-cmi operators J we construct in this paper also deter-

mine themselves on generic extensions. If J is defined as in (1) and determines

itself on generic extensions, then so does the “next operator” MJ,�
1 . If J is

defined as in (2), then [13] shows that MJ,�
1 generically interprets J ; from this,

the proof of Lemma 3.46 (see [13, Lemma 4.21]) shows that J determines itself

on generic extensions.

2) Suppose J is defined on a cone over (Hω1)
V [G] above some transitive a ∈

HV
κ+ and J � V ∈ V . During the course of construction, we show that knowing

J on V is sufficient to determine J on V [G]. During the course of the core

model induction, we’ll be first constructing these Σ-cmi operators J ’s on HV
κ+

(above some a); then we show how to extend J to HCV [G]; we then lift J to

HV
λ+ , which then extends J to H

V [G]
λ+ .

3) By results in [7], under (†), if (P ,Σ) is a hod pair such that Σ has branch

condensation, then Σ has hull condensation. The same is true for (Q, J) in

Definition 3.57. This implies that Σ (J) is suitably condensing.

3.2. Getting MJ,�
1 and lifting. We assume the hypothesis of Theorem 0.2.

We fix a V -generic G ⊆ Col(ω, κ) and recall that we let λ = 2κ. Suppose

(P∗,Σ) is a hod pair below κ such that Σ is an (κ+, κ+)-strategy in V [G] and

26 MC(Σ) stands for the Mouse Capturing relative to Σ which says that for x, y ∈ R, x

is OD(Σ, y) (or equivalently x is OD(F , y)) iff x is in some gF-mouse over y. SMC is

the statement that for every hod pair (P,Σ) such that Σ is fullness preserving and has

branch condensation, then MC(Σ) holds.
27 This implies that �A is Wadge cofinal in Env(Γ), where Γ = ΣM

1 . Note that Env(Γ) =

℘(R)M if α ends a weak gap and Env(Γ) = ℘(R)LpΣ(R)|(α+1) if α ends a strong gap.
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Σ � V ∈ V (or (P∗,Σ) = (∅, ∅)). Suppose J is a Σ-cmi-operator. As part of

the induction, we assume J is defined on a cone in H
V [G]
λ+ above some x ∈ HV

κ+

and J � V ∈ V .28 We first show MJ,�
1 (a) exists (and is (κ+, κ+)-iterable) for

a ∈ HV
κ+ ∩ dom(J). We then show that MJ,�

1 (a) is defined on HV
λ+ and MJ,�

1 is

(λ+, λ+)-iterable for all a ∈ HV
λ+ . Finally, we get that M

J,�
1 is a Σ-cmi operator

defined on a cone in H
V [G]
λ+ .

Let F = FΣ,ϕall
. Let A code P∗ and LpF∗ (A) be the union of all N such

that N is ω-sound above A, N is a countably iterable Σ-premouse over A and

ρω(N ) ≤ sup(A). This means whenever π : N ∗ → N is elementary, N ∗ is

countable, transitive, then N ∗ is (ω, ω1 + 1) iterable via a unique strategy Λ

such that whenever M is a Λ-iterate of N ∗, then M is a Σπ-premouse. As a

matter of notations, in V , for A a bounded subset of (λ+)V , we set

LpΣ1 (A) = LpF∗ (A).

Suppose LpΣα(A) has been defined for α < λ+,

LpΣα+1(A) = LpF∗,+(Lp
Σ
α(A)),

29

amd for ξ < κ+ limit,

LpΣα+1(A) =
⋃

α<ξ

LpΣα(A).

We define LpΣξ (A) and Lp
GΣ
λ (A) similarly for ξ ≤ λ+, in the presence of MΣ,�

1 .

We also write LpΣ(A) for LpF∗ (A) and similarly for Lp
gΣ(A) and Lp

GΣ(A). We

work in V for a while.

Lemma 3.59: Let A be a subset of λ coding P∗. Then LpΣλ+(A) � λ+ exists.

Similarly, Lp
gΣ
λ+(A), Lp

GΣ
λ+(A) � λ+ exists.

Proof. Suppose not. This easily implies that we can construct over LpΣλ+(A) a

�λ-sequence.
30 This contradicts ¬�λ in V .

The following gives the main consequence of the failures of squares assump-

tion. It allows us to run covering arguments later.

28 We note the specific requirement that the cone over which J is defined is above some

x ∈ V . These are the Σ-cmi-operators that we will propagate in our core model induction.

We will not deal with all Σ-cmi-operators.
29 LpF

∗,+(LpΣ
α(A)) is defined similarly to LpF∗ but here we stack continuing, F-sound

F-premice. One can show by induction on α that LpF∗,+(Lpσα(A)) = LpF∗ (LpΣα(A)).
30 Squares hold in LpΣ

κ+ (A) because Σ has hull and branch condensation.
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Lemma 3.60: Let A,Σ be as in 3.59. Let M ∈ {LpΣλ+(A),Lp
gΣ
λ+(A), Lp

GΣ
λ+(A)}

and γ = (λ+)M . Then cof(γ) ≤ κ.

Proof. First note that γ < λ+ by Lemma 3.59. Now suppose cof(γ) = ξ for

some regular cardinal ξ ∈ [κ+, λ]. Let f : ξ → γ be cofinal and continuous.

Using f and �λ in M , by a standard argument (see [10]) we can construct a

non-threadable sequence of length ξ.31 This contradicts ¬�(ξ).

Let S be the set of X ≺ Hλ++ such that κ ⊆ X , |X | = κ, Xω ⊆ X , and X is

cofinal in the ordinal height of LpΣ(B), Lp
GΣ(B) and J, (P∗ ∪ {P∗},Σ) ∈ X .32

So S is stationary. As before, we let πX : MX → Hλ++ be the uncollapsed map

and λX be the critical point of πX . We first prove some lemmas about “lifting”

operators. In the following, when we write “Lp
GF”, we implicitly assume MF ,�

1

exists and is (λ+, λ+)-iterable. We will prove this at the end of the section.

Lemma 3.61: Suppose A∗ ⊆ λ. SupposeX ∈ S such thatA∗ ∈ X andX is cofi-

nal in LpΣ(A∗) (there are stationary many such X because cof(o(LpΣ(A∗))) ≤ κ

by 3.60). Let πX(A) = A∗. Then LpΣ(A) ⊆ MX . The same conclusion holds if

we replace LpΣ(A) by Lp
GΣ(A) or Lp

gΣ(A).

Proof. We just prove the first clause. Suppose not. Then let M � LpΣ(A) be

the least counterexample. Let E be the (λX , λ)-extender derived from πX . Let

N = Ult(M, E). Then any countable transitive N ∗ embeddable into N (via σ)

is embeddable into M (via τ) such that iE ◦ τ = σ by countable completeness

of E. So N ∗ is ω1 + 1 Σσ-iterable because M � LpΣ(A), σ−1(P∗) = τ−1(P∗),

and σ � σ−1(P∗) = τ � σ−1(P∗). So N � LpΣ(A∗). But since πX is cofinal in

LpΣ(A∗), N /∈ LpΣ(A∗). Contradiction.

Lemma 3.62: 1) If H is defined by (ψ, a) on H
V [G]
ω1 (as in clause 1 of 3.57) with

a ∈ V and H � V ∈ V , then H can be extended to an operator H+ defined

by (ψ, a) on Hλ+ . Furthermore, H+ relativizes well.

2) If (Q, F ) and Γ are as in clause 2 of Definition 3.57, where F plays the role

of Λ there with (Q, F � V ) ∈ V , then F can be extended to a (λ+, λ+)-

strategy that has branch condensation. Furthermore, there is a unique such

extension.

31 A thread will allows us to construct a Σ-mouse projecting to A and extends M |γ but not

in M . This is a contradiction to the definition of M .
32 This means (P∗,Σ � V ) ∈ X and Σ ∈ X[G] but we will abuse notation here.
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Proof. To prove 1), first let A∗ be a bounded subset of λ+ (in the cone above a)

and let X ∈ S such that A∗ ∈ X and X is cofinal in LpΣ(A∗). Let πX(A) = A∗.

We assume H is an F -mouse operator. By Lemma 3.61, H(A) ∈ MX and hence

we can defineH+(A∗) = πX(H(A)) (as the first levelM�LpΣ(A∗) that satisfies

ψ[A∗, a]). This defines H+ on all bounded subsets of κ+. The same proof works

for H being a gF -mouse operator. We can then define H+ on all of Hκ+ using

the fact that H relativizes well and |Hκ| = κ. It’s easy to see then that H+

also relativizes well.

We first prove the “uniqueness” clause of 2). Suppose F1 and F2 are two

extensions of F and let T be according to both F1 and F2. Let b1 = F1(T )

and b2 = F2(T ). If b1 �= b2 then cof(lh(T )) = ω. So letting T ∗ be a hull of

T such that |T ∗| ≤ ω2 and letting π : T ∗ → T be the hull embedding, then

{b1, b2} ∈ rng(π). Then π−1[b1] = F (T ∗) �= π−1[b2] = F (T ∗). Contradiction.

To show existence, let Fκ+ = F . Inductively for each κ+ ≤ ξ < λ+ such that

ξ is a limit ordinal, we define a strategy Fξ extending Fα for α < ξ and Fξ acts

on trees of length ξ. For X ≺ Y ≺ Hλ++ , let πX,Y = π−1
Y ◦ πX . Let T be a

tree of length ξ such that for every limit ξ∗ < ξ, T � ξ∗ is according to Fξ∗ . We

want to define Fξ(T ).

For X ∈ S such that X is cofinal in Lp
gΣ
∗,+(M(T )) (such an X exists by the

proof of 3.60 again),33 let (TX , ξX) = π−1
X (T , ξ) and bX = F (TX). Let cX be

the downward closure of πX [bX ] and cX,Y be the downward closure of πX,Y [bX ].

Claim: For all γ < ξ, either ∀∗X ∈ S 34 γ ∈ cX or ∀∗X ∈ S γ /∈ cX .

Proof. The proof is similar to that of Lemma 2.5 in [17] so we only sketch it

here. Suppose for contradiction that there are stationarily many X ∈ S such

that γ ∈ cX and there are stationarily many Y ∈ S such that γ /∈ cY . Suppose

first cof(ξ) ∈ [ω1, κ]. Note that crt(πX), crt(πY ) > κ. It’s easy then to see that

πX [bX ] is cofinal in ξ and πY [cY ] is cofinal in ξ. Hence cX = cY . Contradiction.

Now suppose cof(ξ) = ω. Fix a surjection f : λ � ξ. ∀∗X ∈ S (f, ξ) ∈ X so

let (fX , ξX) = π−1
X (f, ξ). For each suchX , let αX be least such that fX [αX ]∩bX

is cofinal in ξX . By Fodor’s lemma,

∃α∃U (U is stationary∧ ∀X ∈ U αX = α).

33 Recall Lp
gΣ
∗,+(M(T )) is just Lp

gF
∗,+(M(T )).

34 This means the set of such X is C ∩ S for some club C.
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By symmetry and by thinning out U , we may assume

X ∈ U ⇒ π−1
X (γ) ∈ bX .

Fix Y ∈ S such that γ /∈ cY and α < λY . Since U is stationary, there is some

X ∈ U such that Y ≺ X , which implies

πY,X [fY [α]] = fX [α]

is cofinal in bX and hence T �
Y π−1

Y,X [bX ] is a hull of TX . Since F condenses well,

π−1
Y,X [bX ] = bY . This contradicts the fact that π−1

X (γ) ∈ bX but π−1
Y (γ) /∈ bY .

Finally, suppose cof(ξ) ≥ κ+. The case TX is maximal is proved exactly as in

Lemma 1.25 of [17]. Suppose TX is short and is according to F . Note that lh(TX)

has uncountable cofinality (in V ). We claim that ∀∗X ∈ S bX = F (TX) ∈ MX .

Given the claim we get that for any two such X ≺ Y satisfying the claim,

πX,Y (bX) is cofinal in TY and hence πX,Y (bX) = bY . This gives cX,Y is an

initial segment of bY , which is what we want to prove.

Now to see ∀∗X ∈ S, bX = F (TX) ∈ MX . We first remind the reader

Q(TX) is the least Q�Lp
gΣ,Γ
+ (M(TX)) that defines the failure of Woodinness of

δ(TX). Since δ(T ) has uncountable cofinality (in V and in V [G]), by a standard

interpolation argument, whenever M0,M1 ∈ Lp
gΣ,Γ
+ (M(TX)) then we have

either M0 �M1 or M1 �M0. So the “leastness” of Q(TX) is justified in this

case. By the same proof as that of Lemma 3.61 and the fact that X is cofinal

in Lp
gΣ
∗,+(M(T )) and Lp

gΣ,Γ
+ (M(TX))� Lp

gΣ
∗,+(M(T )), we get Q(TX) ∈ MX .

Now F (TX) = bX is the unique branch b such that Q(b, TX) exists and

(Q(b, TX)∗,M(TX)) 35 is Q(TX). The uniqueness of bX follows from a stan-

dard comparison argument. By an absoluteness argument and the fact that

Q(TX) ∈ MX , bX ∈ MX . We’re done.

Using the claim, we can just define

γ ∈ Fξ(T ) ⇔ ∀∗X ∈ S γ ∈ cX .

It’s easy to verify that with this definition, the unique extension of F to a

(κ+, κ+) strategy has branch condensation. This completes the proof sketch of

the lemma.

35 See [18] for more on ∗-translations. (Q(b, TX)∗,M(TX)) is fine-structurally equivalent

to Q(b,TX) but itself is a GΣ-premouse over M(TX ).
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Lemma 3.63: (1) If H is a defined by (ψ, a) on H
V [G]
ω1 as in clause 1 of 3.57

with a ∈ HV
κ+ , then H can be extended to a first order mouse operator

H+ defined by (ψ, a) on H
V [G]
λ+ . Furthermore, H+ relativizes well and if H

determines itself on generic extensions then so does H+.

(2) If (Q,Λ) and Γ are as in clause 2 of Definition 3.57, where F plays the

role of J there and (Q,Λ � V ) ∈ V , then Λ can be extended to a unique

(λ+, λ+)-strategy that has branch condensation in V [G].

Proof. For (1), let b ∈ H
V [G]
λ+ and let τ ∈ HV

λ+ be a nice Col(ω, κ)-name for

b (Col(ω, κ) is κ+-cc so such a name exists by the choice of λ).36 Assume

H is a Σ-mouse operator (the other case is proved similarly). Let X ∈ S be

such that P∗ ∪ {P∗},Σ, b, τ,H(τ) ∈ X [G]; here we use Lemma 3.62 to get that

H(τ) is defined. Let (b̄, τ̄) = π−1
X (b, τ). Then π−1

X (H(τ)) = H(τ̄) ∈ MX by

condensation of H . Since H relativizes well, H(b̄) ∈ MX [G]. This means we

can define H+(b) to be πX(H(b̄)). We need to see that H+(b) is countably

Σ-iterable in V [G]. So let π : N → H+(b) with N countable transitive in

V [G] and π(b∗) = b. Let X ⊂ Y ∈ S be such that ran(π) ⊆ ran(πY ); then

H(π−1
Y (b)) ∈ MY [G] and there is an embedding from N into H(π−1

Y (b)), so N

has an (ω1, ω1 + 1)-Σ-iteration strategy. The definition doesn’t depend on the

choice of X and it’s easy to see that H+ satisfies the conclusion.

For (2), let M ∈ H
V [G]
λ+ be transitive and τ ∈ HV

λ+ be a Col(ω, κ)-term for

M . We define the extension Λ+ of Λ as follows (it’s easy to see that there is at

most one such extension). In N = LΛ∗

λ+ [A,M], where A ⊆ λ codes tr.cl.(τ) and

a well-ordering of tr.cl.(τ), Λ∗ is the unique (λ+, λ+)-Λ-strategy for M = MΛ,�
1

in V ; Λ∗ exists by Lemma 3.62.

Let Ttr.cl.(τ) be according to Λ∗ and be defined as in Definition 3.38. Note

that (λ+)N < (λ+)V by ¬�λ and the fact that �λ holds in N , so Ttr.cl.(τ) ∈ N

and has length less than o(N) = λ+. Let R be the last model of Ttr.cl(τ) and

note that by the construction of Ttr.cl.(τ), M is generic over R. Let U ∈ M be

a tree according to Λ+ of limit length, then set Λ+(U) = b where b is given by

(the proof of) [13, Lemma 4.8] by interpreting Λ over generic extensions of R.

By a simple reflection argument, it’s easy to see that Λ+(U) doesn’t depend

36 In particular, a nice Col(ω, κ)-name for a real can be considered a subset of κ and hence

a nice Col(ω, κ)-name for RV [G] is an element of HV
λ+ .
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on M .37 This completes the construction of Λ+. It’s easy to see that F+ has

branch condensation.

Let J be as above. We now proceed to construct MJ,�
1 . We denote MJ,�

0 (x)

for the least E-active, sound J-mouse over x.

Lemma 3.64: For every A bounded in λ+, MJ,�
0 (A) exists.

Proof. By Lemma 3.62, it’s enough to show that if A is a bounded subset of

κ+, then MJ,�
0 (A) exists. Fix such an A and let X ∈ S such that sup(A) ∪

{A, sup(A), J} ⊆ X and X is cofinal in the LJ [A]-successor of κ+, which has

cofinality at most κ. Hence πX(A) = A. Let

μ = {B ⊆ λX | λX ∈ πX(B) ∧B ∈ LJ [A] 38}.

Claim 3.65: μ is a countably complete LJ [A]-ultrafilter,

Proof. Let Q = LJ [A] and P = π−1
X (Q). Let η = κ+ and ξ = π−1

X ((η+)Q).

Let κ0 = λX . Then ξ = (κ+
0 )

Q. This is because X is cofinal in (η+)Q. So

μ is indeed total over LJ [A]. Using the fact that Xω ⊂ X , we get that μ is

countably complete.

We need to know that when iterating LJ [A] by μ and its images, the iterates

are LJ [A]. This follows from a well-known argument by Kunen. The point is

that iterates of LJ [A] by μ and its images can be realized back into LJ [A] and

hence since J condenses well, the ultrapowers are LJ [A]. We outline the proof

here for the reader’s convenience (see [22, Theorem 28] for a similar argument).

Let μ0 = μ, ξ0 = ξ, and M0 = (LJ
ξ [A], μ0). By the usual Kunen’s argument,

M0 is an amenable structure. By induction on α < κ+, we define:

(1) Mα, the α-th iterate of M0 by μ0 and its images,

(2) maps π∗
β,α : Mβ → Mα for β < α,

(3) maps πβ,α : LJ [A] → LJ [A] extending π∗
β,α,

(4) maps τα : LJ [A] → LJ [A] such that ∀β < α, τβ = τα ◦ πβ,α.

37 Let M,M∗ be such that U ∈ M ∩ M∗; let τ, τ∗ be nice Col(ω, κ)-terms for M,M∗

respectively. In V [G], let X[G] contain all relevant objects and X ∈ S. Let ā = π−1
X

(a)

for all a ∈ X[G]. Then letting b0, b1 be the branches of Ū given by applying [13, Lemma

4.8] in LΛ∗

[tr.cl.(τ̄),<1,M], LΛ∗

[tr.cl.(τ̄∗), <2,M] (built inside MX [G]), where <1 is a

well-ordering of τ̄ and <2 is a well-ordering of τ̄∗. Then b0 = b1 as both are according

to Λ, since (M,Λ∗) generically interprets Λ in V [G].
38 We only build LJ [A] up to λ+.
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For α = 0, let π∗
0,1, π0,1 be the μ0-ultrapower maps and let E be the (κ0, ω

V
3 )-

extender derived from πX and let

τ0 : LJ [A] → Ult(LJ [A], E).

It’s easy to see that:

• τ0 has a stationary set of fixed points.

• Ult(LJ [A], E) = LJ [A] (similarly, Ult(LJ [A], μ0) = LJ [A]). Let Y ≺

Hλ++ be countable containing all relevant objects and π : M → Y be the

uncollapse map and for each a ∈ Y , let a∗ = π−1(a). Using countable

completeness of E, it is easy to check that in M , Ult(LJ∗

[A∗], E∗)

realizes into LJ [A] and is in fact LJ∗

[A∗].

If α is limit, let Mα be the direct limit of the system (Mβ , π
∗
γ,β)γ<β<α,

τα = limβ<α τβ , and π∗
β,α, πβ,α be natural direct limit maps.

Suppose α = β + 1 and Mβ = (LJ
ξβ
[A], μβ) is an amenable structure, κβ =

crt(μβ) = π0,β(κ0), and μβ = π0,β [μ0]. Let π∗
β,α, πβ,α be μβ-ultrapower maps.

For any f ∈ LJ [A],

τα(πβ,α(f)(κβ)) = τβ(f)(κβ).

We need to check that τα is elementary. This is equivalent to checking μβ is

derived from τβ , i.e.,

(3.1) C ∈ μβ ⇔ κβ ∈ τβ(C).

To see (3.1), let ν < μ0 and W = μ0 ∩ LJ [A], f : κ0 → ℘(κ0) ∩LJ
ν [A]. Let c be

a finite set of fixed points of τ0 and such that

∀ξ < κ0 f(ξ) = τL
J [A][c](ξ) ∩ κ0.

So

(3.2) LJ [A] � ∀ξ < κ0 (τ [c](ξ) ∩ κ0 ∈ W ⇔ κ0 ∈ τ [c](ξ)).

This fact is preserved by π0,β and gives (3.1).

One can also show by induction that crt(τγ) = κγ for all γ ≤ β. This is

because κγ is the only generator of μγ .

So MJ,�
0 exists (and is (λ+, λ+)-iterable by Lemma 3.62).

Lemma 3.66: Suppose A is a bounded subset of λ+. Then MJ,�
1 (A) exists and

is (λ+, λ+)-iterable.
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Proof. It suffices to show MJ,�
1 (a) exists for a a bounded subset of κ+ (with a

coding x). Fix such an a and suppose not. Then the Jensen-Steel core model

(cf. [2]) KJ(a) exists.39 Let γ ≥ κ+ be a successor cardinal in KJ(a). Since

λ+ = o(KJ(a)) > κ+ and is a limit of cardinals in KJ(a) (by the proof of 3.59),

we can take γ < λ+. Weak covering (cf. [2, Theorem 1.1 (5)]) gives us

(3.3) cof(γ) ≥ |γ| ≥ κ+.

Let �C be a �-sequence in KJ(a) witnessing �(γ). By a standard argument,

one can construct from �C a sequence witnessing �(cof(γ)); but cof(γ) ≥ κ+ by

(3.3) and ¬�(cof(γ)). Contradiction.

Lemmas 3.62, 3.63, and 3.66 allow us to extend MJ,�
1 to H

V [G]
λ+ .

Lemma 3.67: Suppose J is defined on a cone above some a ∈ HV
κ+ in H

V [G]
ω1

as in case 1 of 3.57. Then for every b ∈ H
V [G]
λ+ coding a, MJ,�

1 (b) is defined

(and is (λ+, λ+)-iterable in V [G]). Otherwise, letting (Q,Λ), x,Γ be as in 2 of

Definition 3.57 and J = FΛ,ϕall
, then MJ,�

1 (a) is defined for all a ∈ H
V [G]
λ+ coding

x,Q. Furthermore, these operators determine themselves on generic extensions

if J does.

3.3. The core model induction theorem. Let (P∗,Σ),F be as in the pre-

vious section. When an gF -premouse P is 1-F -Γ-suitable, we simply say P is

Γ-suitable if F is clear from the context. Recall that under AD, if X is any set

then θX is the least ordinal which isn’t a surjective image of R via an ODX

function.

The following is an outline of the proof of the core model induction theorem.

We will follow the standard convention and use upper-case Greek letters Γ,Ω

etc. to denote lightface pointclasses, bold upper-case Greek letters Γ,Ω etc. to

denote boldface pointclasses. Given a point class Γ, we let Γ̂ denote the dual

pointclass of Γ and ∆Γ denote the pointclass Γ ∩ Γ̂. For more on the envelope

Env(Γ), the notion of CΓ and other relevant descriptive set theoretic notions,

see [28].

We refer the reader to [13] for the scales analysis in Lp
GF (R,F � R) that we

use in the proof of Theorem 3.72. We recall some notions which are obvious

generalizations of those in [11] and [28]. The following definitions refer to V [G].

39 By our assumption and the fact that J condenses finely, Kc,J(a) (constructed up to λ+)

converges and is (λ+, λ+)-iterable. See Lemma 3.18.
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Definition 3.68: We say that the coarse mouse witness condition W ∗,gF
γ holds

if, whenever U ⊆ R and both U and its complement have scales in Lp
GF (R,F �

R)|γ, then for all k < ω and x ∈ R there is a coarse (k, U)-Woodin gF -mouse40

containing x with an (ω1 + 1)-iteration gF -strategy whose restriction to Hω1 is

in Lp
GF(R,F � R)|γ.

Remark 3.69: By the proof of [11, Lemma 3.3.5], W ∗,gF
γ implies

LpGF (R,F � R)|γ � AD.

Definition 3.70: An ordinal γ is a critical ordinal in Lp
GF (R,F � R) if there is

some U ⊆ R such that U and R\U have scales in Lp
GF (R,F � R)|(γ + 1) but

not in Lp
GF (R,F � R)|γ. In other words, γ is critical in Lp

GF (R,F � R) just in

case W ∗,gF
γ+1 does not follow trivially from W ∗,gF

γ .

Definition 3.71: Let sLp
GF (R,F � R) be the initial segment of Lp

GF (R,F � R)

that is the union of all M � Lp
GF (R,F � R) such that every countable M∗

embeddable into M has an iteration strategy in M.

We will prove in the next theorem that sLp
GF(R,F � R) � AD+; in fact, this

is the maximal model of AD+ +Θ = θΣ in light of [18, Theorem 17.1]. We note

that

℘(R) ∩ L(sLp
GF(R,F � R)) = ℘(R) ∩ sLp

GF (R,F � R)

but don’t know if sLp
GF(R,F � R) = Lp

GF (R,F � R) in general.

Theorem 3.72: Assume the hypothesis of Theorem 0.2 and (†). Suppose

(P ,Σ) is a hod pair below κ and Σ is a (λ+, λ+)-strategy in V [G] with branch

condensation. Let F be the corresponding operator (i.e., F = FΣ,ϕall
). Suppose

F � R is self-scaled. Then in V [G], sLp
GF(R,F � R) � AD+ + θΣ = Θ. Hence,

℘(R) ∩ sLp
GF (R,F � R) ⊆ Ω.

Proof. As shown in subsection 3.2, our hypothesis implies that for every Σ-cmi

operator H , MH,�
1 exists and can be extended to H

V [G]
λ+ ; furthermore, these

operators determine themselves on generic extensions. We will use this fact and

refer the reader to subsection 3.2 for the proof. Working in V [G], let α be the

strict supremum of the ordinals γ such that

40 This is the same as the usual notion of a (k, U)-Woodin mouse, except that we demand

the mouse is closed under gF .
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(1) the coarse mouse witness condition W ∗,gF
γ+1 holds41;

(2) γ is a critical ordinal in sLp
GF (R,F � R) (i.e., γ + 1 begins a gap in

sLp
GF (R,F � R)).

Using the fact that MH,�
1 exists for every Σ-cmi operatorH , it’s easily seen that

α is a limit ordinal. By essentially the same proof, with obvious modifications,

as that in [17], we can advance past inadmissible gaps and admissible gaps in

sLp
GF(R,F � R)|α. In each case, say [γ, ξ] is a gap in sLp

GF(R,F � R)|α and

W ∗,gF
γ , the proof in [17, Sections 1.4, 1.5] and the scales analysis in [13]42 allow

us to construct a nice operator F on a cone above some x in HCV [G] such that

x ∈ HV
ω3
, F � V ∈ V . By the previous subsection, we can extend F to a nice

operator on H
V [G]
κ+ (also called F ) with F � V ∈ V . Again, by the previous

subsection, we can construct a sequence of nice operators (Fn : n < ω), where

F0 = F , Fn+1 = MFn,�
1 , and these operators witness W ∗,gF

ξ+1 (or W ∗,gF
ξ+2 if the

gap is strong).

Hence, the (lightface) pointclass Γ = Σ
sLp

GF (R,F�R)|α
1 is inductive-like and

∆Γ= ℘(R) ∩ sLp
GF(R,F � R)|α. Since Γ is inductive-like and ∆Γ is deter-

mined, Env(Γ) is determined by Theorem 3.2.4 of [28]. Since whenever γ

is a critical ordinal in sLp
GF(R,F � R) and W ∗,gF

γ+1 holds then AD holds in

sLp
GF(R,F � R)|(γ + 1), we have that AD holds in sLp

GF (R,F � R)|α.

Now we claim that Env(Γ)= ℘(R) ∩ sLp
GF (R,F � R). This implies

sLp
GF(R,F � R) � AD+ + Θ = θΣ as desired. We first show Env(Γ)⊆

℘(R) ∩ sLp
GF(R,F � R). Let A ∈ Env(Γ), say A ∈ Env(Γ)(x) for some

x ∈ R. By definition of Env, for each countable σ ⊆ R, A ∩ σ = A′ ∩ σ for

some A′ that is ∆1-definable over sLp
GF (R,F � R)|α from x and some ordinal

parameter. In V , let τ be the canonical name for x and let X ≺ Hλ++ be

such that |X |V = κ, κ ⊆ X , Xω ⊆ X , X is cofinal in the ordinal height of

41 This is defined similarly to W ∗
γ+1 but relativized to the operator gF . Similarly, we can

also define the fine-structural mouse witness condition W
gF
γ+1.

42 If γ is such that M = sLp
GF (R,F � R)|γ is inadmissible, then M is passive. Then [13]

gives us that Σ
M
1 has the scales property assuming M � AD. This is the main reason

why we analyze scales in Θ-g-organized premice; if M were g-organized, it could be that

ḂM �= ∅ and the argument in [13] does not seem to give us the scales property of ΣM
1

from AD
M.
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sLp
GF(R,F � R).43 We also assume P ∪ {P , τ} ⊆ X , Σ ∩ MX [G] ∈ MX [G],

and A ∈ ran(πX). Let σ = R ∩ MX [G]. By MC(Σ) in sLp
GF (R,F � R)|α,

A ∩ σ ∈ sLp
GF(σ,F � σ) (this is because sLp

GF (σ,F � σ) and sLp
gF (σ,F � σ)

have the same ℘(σ), cf. [13, Section 5]; also, in applying MC(Σ), we need

that definability is done without referencing the extender sequence and we

can do this since we are inside sLp
GF (σ,F � σ), where the self-iterability

condition helps us define the extender sequence). As shown in Lemma 3.75,

sLp
GF(σ,F � σ) = (sLp

GF(σ,F � σ))MX [G]. Hence

MX [G] � A ∩ σ ∈ sLp
GF (σ,F � σ).

By elementarity, the fact that πX(P) = P , and πX(Σ ∩ MX [G]) = Σ, we get

A ∈ sLp
GF (R,F � R).

Now assume toward a contradiction that Env(Γ)� ℘(R) ∩ sLp
GF (R,F �

R). Hence α < ΘsLp
GF (R,F�R). Let β∗ be the end of the gap starting at α in

sLp
GF(R,F � R). Let β = β∗ if the gap is weak and β = β∗ + 1 if the gap is

strong. Note that

α ≤ β,

℘(R)sLp
GF (R,F�R)|β=Env(Γ)sLp

GF (R,F�R)⊆ 44Env(Γ)�℘(R)∩ sLp
GF(R,F � R).

Hence β < ΘsLp
GF (R) and sLp

GF(R,F � R)|β projects to R. Furthermore,

Lp
GF(R,F � R)|β � AD+Γ-MC(Σ), where Γ-MC(Σ) is the statement: for any

countable transitive a, (Lp
gF (a))Γ∩℘(a) = CΓ(a). Now sLp

GF(R,F � R)|β � Γ-

MC(Σ) is clear; if β = β∗, sLp
GF (R,F � R)|β � AD by the fact that [α, β∗] is

a Σ1-gap; otherwise, sLp
GF (R,F � R)|β � AD by the Kechris–Woodin trans-

fer theorem (see [3]). Since sLp
GF(R,F � R)|β projects to R, every countable

sequence from Env(Γ)sLp
GF (R,F�R) is in sLp

GF (R,F � R)|(β + 1). The scales

analysis of [13], Theorem 4.3.2 and Corollary 4.3.4 of [28] together imply that

there is a self-justifying-system A = {Ai | i < ω} ⊆ Env(Γ)sLp
GF (R,F�R) con-

taining a universal Γ set. By a theorem of Woodin and the fact that Σ∩V ∈ V ,

43 Let ε be the name of RV [G]. Note that the ordinal height of sLp
GF (R,F � R) is the ordinal

height of sLp
GF (ε,F � ε) and the latter is in V . This has cofinality at most ω2 since the

construction in [24] gives a coherent, nonthreadable sequence of length o(sLp
GF (ε,F � ε)).

44 We get equality in this case but we don’t need this fact.
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we can get a pair (N ,Λ) such that N ∈ V , |N |V ≤ κ, N is a Γ-suitable gF -

premouse, and Λ is the strategy for N guided by A.45 Arguments in the last

subsection allow us to then lift Λ to an (λ+, λ+)-strategy that condenses well

in V [G].

Using the hypothesis of Theorem 0.2, we can get a sequence of nice operators

(Fn : n < ω) where each Fn is in sLp
GF (R,F � R)|(β+1). Namely, let F0 = FΛ,

and let Fn+1 = MFn,�
1 be the Fn-Woodin Σ-cmi operator. Each Fn is first de-

fined on a cone in HV
ω3
; then using the lemmas in the previous subsection, we

can extend Fn to H
V [G]
κ+ and furthermore, each Fn is nice (i.e., condenses and

relativizes well and determines itself on generic extensions). These operators

are all projective in A and are cofinal in the projective-like hierarchy containing

A, or equivalently in the Levy hierarchy of sets of reals definable from param-

eters over sLp
GF(R,F � R)|β. Together these model operators can be used to

establish the coarse mouse witness condition W ∗,gF
β+1 . Therefore β < α by the

definition of α, which is a contradiction.

3.4. Beyond “AD
+ + Θ = ΘΣ”. Let (P∗,Σ),F be as in Section 3.2. In this

section, we prove

Theorem 3.73: Let G ⊆ Col(ω, κ) be V -generic. Then in V [G], there is a

model M such that OR∪R ⊆ M and M � “AD++Θ > θΣ”.

The rest of this subsection is devoted to proving Theorem 3.73. We assume

(P∗,Σ) = (∅, ∅) (the proof of the general case just involves more notations; in

particular, for the general case, we work in the hierarchy Lp
GF(R,F � R) instead

of in Lp(R)). Suppose the conclusion of the theorem fails. By the results of

Subsection 3.2 and Theorem 3.72, in V [G]

sLp(R) � AD+ +Θ = θ0.
46

Working in V [G], let Ω0 = ℘(R) ∩ sLp(R), θ = ΘΩ0 , and Γ = (Σ1)
sLp(R).

45 We get first a pair (N ∗,Λ∗) ∈ V [G] with N ∗ being Γ-suitable, Λ∗ is an (ω1, ω1)-strategy

in V [G] guided by A. By boolean comparisons, we can obtain such a pair (N ,Λ). The

details are given in [17] and [11].
46 We could have also worked with the hierarchy sLp

GF (R,F � R) where F is associated

with the canonical strategy of M�
1. As mentioned before, these hierarchies construct the

same sets of reals.
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In V , let τ ∈ Hλ+ be a canonical name for RV [G]. Let S be as in Section 3.2.

ForX ∈ S such thatX is cofinal in o(Lp(R)) and o(sLp(R)),47 letRX = π−1
X (R),

ΩX = π−1
X (Ω0), ΓX = π−1

X (Γ), and θX = π−1
X (θ); we note that θ = ΘΩ0 =

o(sLp(R)V[G]) is the supremum of the Wadge ranks of sets in Ω0. Also, let

η = (δ21
˜
)sLp(R) and ηX = π−1

X (η); so η is the largest Suslin cardinal of sLp(R).

Let T be the tree of scales for a universal Γ-set and TX = π−1
X (T ). As usual, T

is a tree on ω × η. For s ∈ ω<ω, we let Ts = {t | (s, t) ∈ T }.

Following [28], we define

Definition 3.74: Let Γ, T, η be as above.

(1) ℘Γ(η) is the σ-algebra consisting of subsets Y ⊆ η such that Y ∈ L[T, z]

for some real z.

(2) measΓ(η) is the set of countably complete measures on ℘Γ(η).

(3) Using the canonical bijection η→η<ω , we can define ℘Γ(ηn), measΓ(ηn),

℘Γ(η<ω), measΓ(η<ω) in a similar fashion.

Lemma 3.75: Suppose X ∈ S. Then in V [G],

Lp(RX)Ω0 ⊆ Lp(RX)MX [G] = Lp(RX).

This implies

measΓX(η<ω
X ) ⊆ (measΓX(η<ω

X ))MX [G].

Proof. We first prove in V [G],

Lp(RX)MX [G] = Lp(RX).

If M � Lp(RX)MX [G] is a sound mouse that projects to RX , then M is em-

beddable into a level of Lp(R)V [G]. So M � Lp(RX). To see the converse, let

M � Lp(RX), then letting M∗ � Lp(τX) be the S-translation of M, then by

Lemma 3.61, M∗ ∈ MX ; so M ∈ MX [G]. Now in MX [G], let π : N → M be

an elementary embedding and N is countable, transitive; then in V [G], N is

iterable via a unique iteration strategy; so in MX [G], N is iterable via a unique

iteration strategy. This means M� Lp(RX)MX [G].

To see the first inclusion, note that Lp(RX)Ω0 can easily be computed from

Lp(τX) (using G- and the S-constructions) and Lp(τX) ∈ MX by Lemma 3.61.

47 One can construct a coherent sequence of length θ in sLp(RV [G]) as in [24]. Our hypoth-

esis and the properties of the sequence then imply that cof(o(sLp(R)) ≤ κ. Similarly, one

can show cof(o(Lp(R)) ≤ κ.
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This gives LpΩ0(RX) ⊆ Lp(RX)MX [G] because given anyM�Lp(RX)Ω0 , letting

M∗ be a premouse over τX which results from the S-constructions of M, M∗

has a unique strategy Λ in Lp(R)V [G] because M does. So Λ � V ∈ V by

homogeneity. By the proof of Lemma 3.62, Λ can be uniquely extended in V to

an (λ+, λ+)-strategy (also called Λ).48 The previous subsection also shows that

MΛ,�
1 exists and is (κ+, κ+)-iterable in V . By Lemma 3.63, Λ can be extended

to a (λ+, λ+) strategy in V [G], but this means M� Lp(RX) in V [G].

We just provemeasΓX(ηX) ⊆ (measΓX(ηX))MX [G] as the proof of the general

case is an easy generalization of the proof of the special case. We need to

define “code sets” for measures in measΓX(ηX). Fix a map from RX onto

℘(ηX)ΓX : x �→ Yx in MX [G] such that the relation {(x, α) | α ∈ Yx} ∈ Σ
sLp(RX)
1 .

We then define the code set Cµ for each μ ∈ measΓX(ηX) as x ∈ Cµ ⇔ Yx ∈ μ.

For each such μ, Cµ is easily seen to be ODΩ0(RX) (as each such measure is

principal, being a countably complete measure on a countable set in V [G]), and

so Cµ ∈ Lp(RX)MX [G] by MC in Ω0 and by the first part. So μ ∈ MX [G] and

is countably complete there. This proves the second inclusion.

For X as in the lemma, we can choose a set CX ∈ MX of canonical names

for measures in [measΓX(η<ω
X )]MX [G]. Since Mω

X ⊂ MX , MX contains all ω-

sequences of its terms for code sets of measures in [measΓX(η<ω
X )]MX [G].

Now let σ = πX [[measΓX(η<ω
X )]MX [G]] ⊆ measΓ(η<ω); σ is a countable set

of measures in V [G]. For μ ∈ measΓ(η<ω) ∩ σ, let μ be such that πX(μ) = μ.

Suppose μ concentrates on ηn and let 〈μi | i ≤ n〉 be the projections of μ (that

is A ∈ μi ⇔ {s ∈ ηn | s � i ∈ A} ∈ μ). Note that μ0 is the trivial measure.

Define 〈μi | i ≤ n〉 similarly for μ. Let Gσ,µ
T be the game defined in Definition

4.1.2 of [28]. For the reader’s convenience, we give the definition of Gσ,µ
T . I

starts by playing m0, . . . ,mn, sn, hn; II responds by playing a measure μn+1.

From the second move on, I plays mi, si, hi and II plays a measure μi+1 for all

i > n.49

Rules for I:

• mk < ω for all k < ω.

• T(m0,...,mn−1) ∈ μ = μn

• si ∈ jµi
(T(m0,...,mi−1)), in particular si ∈ jµi

(η)i+1 for all i ≥ n.

• sn � [id]µn
.

48 Note that every tree T according to Λ is short and guided by Q-structures.
49 The game can be defined over V using the forcing relation and CX .
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• jµi,µi+1(si) � si+1 for all i ≥ n.

• hi ∈ OR for all i ≥ n.

• jµi,µi+1(hi) > hi+1 for all i ≥ n.

Rules for II:

• μi+1 ∈ σ is a measure on ηi+1 projecting to μi for all i ≥ n.

• μi+1 concentrates on T(m0,...,mi) ⊂ ηi+1.

The first player that violates one of these rules loses, and if both players follow

the rules for all ω moves, then I wins. The game is closed, so is determined.

Lemma 3.76: Player II has a winning strategy for Gσ,µ
T for all μ ∈ σ.

Proof. Suppose for contradiction that I has a winning strategy in Gσ,µ
T , that is

if both players follow all the rules of the game, then I can continue playing for ω

moves. Suppose I plays integers m0, . . . ,mn such that T(m0,...,mn−1) ∈ μ = μn,

an sn ∈ jµn
(η)n+1 such that sn ∈ jµn

(T(m0,...,mn)) such that [id]µn
� sn, and

some hn ∈ OR on his first move. II then responds with μn+1 = πX(μn+1),

where

A ∈ μn+1 ⇔ sn ∈ jµn
(πX(A)).

We have that μn+1 ∈ measΓX(η<ω
X ) ∈ MX [G] (so μn+1 is defined). Similarly,

suppose for i > n, I has played (mi, si, hi) such that

• mi ∈ ω,

• si ∈ jµi
(T(m0,...,mi)),

• jµj ,µj+1(sj) � sj+1 for j < i,

• hi ∈OR,

• jµj ,µj+1(hj) > hj+1 for all j < i.

II then responds with μi+1 = πX(μi+1), where

A ∈ μi+1 ⇔ si ∈ jµi
(πX(A)).

Again, μi+1 makes sense since μ̄i+1 ∈ MX [G].

After ω many moves, the players play a real x = (m0,m1, . . . ), a tower of

measures (μi | i < ω), a sequence of ordinals (hi | n ≤ i < ω) witnessing the

tower (μi | n ≤ i < ω) is illfounded, and the sequence (si | n ≤ i < ω). By

closure of MX and the fact that we can find a canonical name for each μ̄i in

MX ,50 the sequence (μ̄i | i < ω) ∈ MX [G] (and so (μi | i < ω) = πX(μ̄i | i < ω)).

50 In fact, the definition of µ̄i only depends on si and not on G. Furthermore, (the codeset

of) µ̄i is also OD in MX [G] from TX = π−1
X (T ) (so the µ̄i’s have symmetric names in
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In MX [G], the tower (μ̄i | i < ω) is illfounded. By Lemma 3.5.9 of [28],

there is a tree W̄ ∈ L[TX , x] for some x ∈ RV [G] on ω × ηX such that the

μ̄i’s concentrate on W̄ and the function h̄(i) = [rkW̄ ]µ̄i
is a pointwise minimal

witness to the illfoundedness of (μ̄i | i < ω). Let h = πX(h̄) and W = πX(W̄ );

since μ̄i’s concentrate on W̄ , si ∈ jµi
(W ) for all i.

Let h′(i) = rkjµi
(W )(si). We have

(1) jµi,µi+1(h
′(i))=jµi,µi+1(rkjµi

(W )(si))>h′(i+1) for all i as jµi,µi+1(si) �

si+1;

(2) h′(n) = rkjµn (W )(sn) < rkjµn (W )([id]µn
) = h(n) because [id]µn

� sn.

So h′ witnesses (μi | i < ω) is illfounded and h′(n) < h(n). Contradiction.

Lemma 3.76 easily implies that for each μ ∈ measΓ(η<ω), there is a countable

set of measures σ ⊂ measΓ(η<ω) that stabilizes μ (in the sense of [28, Section

4]). By a simple argument using DC and the fact that if σ stabilizes μ then any

σ′ ⊇ σ stabilizes μ, we get a countable τ ⊂ measΓ(η<ω) that stabilizes every

μ ∈ τ .

Knowing this, [28, Sections 4.1, 4.3] constructs a self-justifying system A for

Env(Γ) = Ω0 in V [G]. Using the argument in [11, Section 5.5], we can then

find a pair (N ,Ψ) such that N ∈ V , |N |V ≤ κ, N is Γ-suitable, and Ψ is

a (ω
V [G]
1 , ω

V [G]
1 )-strategy for N such that Ψ is Γ-fullness preserving and has

branch condensation (and hence hull condensation by results in [7]); further-

more, Ψ � V ∈ V . In fact Ψ is guided by A and hence Ψ /∈ Ω0. By the lemmas

in Section 3.2, we can then extend Ψ to a (λ+, λ+)-strategy in V and further

to an (λ+, λ+) strategy in V [G] (also called Ψ) that has branch condensation.

Furthermore, results of the previous section allow us to construct operators

x �→ MΨ,�
n (x) for all n < ω. This means PD(Ψ) holds and since Ψ is guided by

a self-justifying system, we can conclude by standard methods that the opera-

tor F = FΨ,ϕall
is self-scaled. This allows us to run a core model induction as

before to show in V [G]

sLp
GF(R,F � R) � “L(℘(R)) � AD+ +Θ = θ′′

1
. 51

MX); hence we can think of the game G
σ,µ
T as being defined in V where player II plays

finite sequences of ordinals in X[G], which are πX -images of the sequences of ordinals

that define the µ̄i’s in MX [G].
51 Of course, what we showed in the previous section also showsMΨ,�

1 exists and is (λ+, λ+)-

iterable.
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The above construction works in general and allows us to show that

“sLp
GF (R,F � R) � AD+ + Θ = θα+1” for any hod pair (P∗,Σ) ∈ Ω below

κ and Σ is Ω-fullness preserving, and Σ is projectively equivalent to a set of

Wadge rank θα, where F = FΣ,ϕall
. In other words, we have shown that the

Solovay sequence of Ω is of limit length.

3.5. Getting ADR+Θ is regular. In the previous subsections, we show that

the core model induction cannot stop at successor stages, i.e., in V [G], L(Ω,R)

cannot satisfy AD+ + Θ = θα+1 for some α ≥ −1.52 This means the Solovay

sequence of Ω is of limit order type. In this subsection, we show that there is

some Solovay initial segment Ω∗ of Ω such that L(Ω∗,R) � “ADR+Θ is regular”.

This contradicts (†). So we get after all that there is a model of “ADR + Θ is

regular”.

Let 〈θΩα | α ≤ λ〉 be the Solovay sequence of Ω. We write θβ for θΩβ and

Θ for ΘΩ and let α = cofV [G](Θ). Note that λ is limit and for each β < λ,

L(Ω � θβ ,R) ∩ ℘(R) = Ω � θβ. Note also that Θ < κ++ since otherwise, we’ve

already reached a model of “ADR +Θ is regular” by the following lemma.

Lemma 3.77: Suppose Θ = κ++. Then in V [G], Ω = ℘(R) ∩ L(Ω,R). Conse-

quently, L(Ω,R) � “ADR +Θ is regular”.

Proof. Suppose not. Let α be the least such that ρω(Lα(Ω,R)) = R. Hence

α ≥ Θ by our assumption. Let f : α × Ω � Lα(Ω,R) be a surjection that is

definable over Lα(Ω,R) (from parameters).

We first define a sequence 〈Hi | i < ω〉 as follows. Let H0 = R. By induction,

suppose Hn is defined and there is a surjection from R � Hn. Suppose (ψ, a)

is such that a ∈ Hn and Lα(Γ,R) � ∃xψ[x, a]. Let (γa,ψ, βa,ψ) be the <lex-least

pair such that there is a B ∈ Γ with Wadge rank βa,ψ such that

Lα(Ω,R) � ψ[f(γa,ψ, B), a].

Let then Hn+1 = Hn ∪ {f(γa,ψ, B) | Lα(Ω,R) � ∃xψ[x, a] ∧ w(B) = βa,ψ ∧ a ∈

Hn}. It’s easy to see that there is a surjection from R � Hn+1. This uses the

fact that ΘΩ = Θ is regular, which implies sup{βa,ψ | a ∈ Hn ∧ Lα(Ω,R) �

52 Ω can also be characterized as the set of all A ⊆ R such that A is Wadge reducible to a

Σ-cmi-operator J that determines itself on generic extensions, for some hod pair (P,Σ)

below ω2.
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∃xψ[x, a]} < Θ. Let H =
⋃

n Hn. By construction, H ≺ Lα(Ω,R). Finally, let

M be the transitive collapse of H .

Say M = Lβ(Ω
∗,R). By construction, Ω∗ = Ω � θγ for some γ such that

θγ < Θ. But then ρω(Lβ(Ω
∗,R)) = R. This contradicts that Ω∗ is constructibly

closed. This gives Ω = ℘(R) ∩ L(Ω,R) and in fact, L(Ω,R) � ADR + Θ is

regular.

Now let H be the direct limit of all hod pairs (Q,Λ) ∈ Ω such that Λ is

Ω-fullness preserving and has branch condensation. For each X ∈ S such that

{H} ⊆ X , Ω ∈ X [G], let (ΩX ,HX ,ΘX , αX) = π−1
X (Ω,H,Θ, α). For each

β < λ′
X , where λ′

X is the order-type of the closure of the set of Woodin cardinals

in HX , let ΣX,β be the canonical strategy for HX(β), which is the tail of a hod

pair (Q,Λ) below κ (in MX [G]) and HX(β) is the direct limit of all Λ-iterates

in MX [G]. The fact that H (HX , respectively) is the direct limit of hod mice

in Ω follows from our smallness assumption (†) and the remarks after it. Then

(HX(β),ΣX,β) is a hod pair below κ. Let Σ−
X =

⊕
β<λX

ΣX,β and

H+
X = [Lp

gΣ−

X (HX)]Ω.53

Finally, let H+ be the union of all M such that M is sound, H�M, ρω(M) ≤

o(H), and whenever M ∈ X ∈ S, then π−1
X (M)�H+

X .

Lemma 3.78: 1) ∀∗X ∈ S H+
X ∈ MX and πX(H+

X) = H+.

2) Let X be as in 1). Then no levels of H+
X project across ΘX .

Proof. To prove 1), note that cofV (o(H+)) ≤ κ. To see this, first note that

o(H+) < κ++; this follows from ¬�κ+ . We can then rule out cofV (o(H+)) = κ+

using ¬�(κ+) (since otherwise, the �-sequence constructed in H+ of length

o(H+) gives rise to an nonthreadable coherent sequence witnessing �(κ+), con-

tradicting ¬�(κ+)). This means, ∀∗X ∈ S, the range of πX is cofinal in o(H+).

This implies

∀∗X ∈ S,H+
X � π−1

X (H+) ∈ X.

Otherwise, fix such an X and let MX � H+
X be such that MX /∈ π−1

X (H+),

o(MX) has cofinality ω, ρ1(MX) = ΘX and let M = Ult0(MX , EX) where

EX is the (λX ,Θ)-extender derived from πX . Since πX is cofinal in o(H+),

53 Recall that our convention is: HX(α + 1) is a g-organized ΣHX(α) = ΣX,α-mouse for

each α < λX . In general, hod mice in this paper are g-organized.
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M /∈ H+. But whenever Y ∈ S is such that M ∈ Y , it’s easy to see that

π−1
Y (M) ∈ H+

Y .
54 So M ∈ H+ after all. Contradiction.

Suppose equality fails. By pressing down, there is some M�H+, some sta-

tionary set T ⊆ S such that forX ∈ T , M /∈ πX(H+
X). But ∀∗X π−1

X (M)�H+
X

by definition of H+. Contradiction. This completes the proof of 1).

To prove 2), suppose for contradiction that there is a P � H+
X such that

ρω(P) < ΘX . Let P be the least such. By 1), P ∈ MX . Let β < λ′
X be

least such that ρω(P) ≤ δPβ and δβ > cofP(λP ). P can be considered a hod

premouse over (HX(β),ΣX,β). Using πX , we can define a strategy Λ for P

such that Λ acts on stacks above δPβ and extends
⊕

α<λX
ΣX,α (the strategy

is simply
⊕

α<λX
ΣX,α for stacks based on HX (above δPβ ), but the point is

that it also acts on all of P because of πX). By a core model induction similar

to the previous subsections using the fact that Λ has branch condensation and

noting that Λ can be extended to H
V [G]
κ+ , we can show L

GF (R) � AD+, where

F = FΛ,ϕall
, and hence L(Λ � HC,R) � AD+. This implies Code(Λ � HC) ∈ Ω

by definition of Ω.

In Ω, let F be the direct limit system of ΣX,β hod pairs (Q,Ψ) Dodd–Jensen

equivalent to (P ,Λ). F can be characterized as the direct limit system of ΣX,β

hod pairs (Q,Ψ) in Ω such that Ψ is Γ(P ,Λ)-fullness preserving and has branch

condensation and Γ(Q,Ψ) = Γ(P ,Λ). F only depends on ΣX,β and the Wadge

rank of Γ(P ,Λ) and hence is OD
L(R,C)
ΣX,β

for some C ∈ Ω.

Fix such a C and note that L(R, C) � AD+ + SMC. Let A ⊆ δPβ witness

ρω(P) ≤ δPβ , that is, there is a formula φ such that for all α ∈ δPβ ,

α ∈ A ⇔ P � φ[α, p],

where p is the standard parameter of P . Now A is ODΣX,β
in L(R, C); this

is because letting M∞ be the direct limit of F under iteration maps, then in

L(R, C), M∞ ∈ HODΣX,β
and A witnesses that ρω(M∞) ≤ δPβ . By SMC in

L(R, C) and the fact that HX(β + 1) is Ω-full, we get that A ∈ P . This is a

contradiction.

54 Note that π−1
Y (M) = Ult0(MX , EX,Y ) where EX,Y is derived from πX,Y the same way

EX is derived from πX . Let Z ≺ Hω6 be countable and contain all relevant objects and

π : M → Z be the uncollapse map. Write a∗ for π−1(a) for a ∈ Z. Then it’s easy to see

using countable completeness of EX,Y that (π−1
Y (M))∗ is embeddable into MX , which

in turns gives (π−1
Y (M))∗ � ((HY )+)∗.
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Now let X be as in Lemma 3.78. Using the embedding πX and the construc-

tion in [8, Section 11], we obtain a strategy ΣX for H+
X such that

(1) ΣX extends Σ−
X .

(2) for any ΣX -iterate P of H+
X via a stack �T such that i

	T exists, there

is an embedding σ : P → H+ such that πX = σ ◦ i
	T . Furthermore,

letting ΣP be the �T -tail of ΣX , for all α < λP , ΣP(α) ∈ Ω has branch

condensation.

(3) ΣX is Γ(H+
X ,ΣX)-fullness preserving.

Remark 3.79: the construction in [8] is nontrivial in the case thatH+
X � cof(ΘX)

is measurable; otherwise, as mentioned in the proof of Lemma 3.78, ΣX is simply

Σ−
X but, because of πX , it acts on all of H+

X .

We claim that ΣX ∈ Ω. Let (Q,Λ) be a ΣX -iterate of H+
X such that

a) Q ∈ V , |Q|V ≤ κ;

b) Λ � V ∈ V ;

c) Λ has branch condensation.

c) follows from results in [7]. a) and b) can be ensured using boolean com-

parisons (see [7]). Using a), b), c), and arguments in previous subsections, we

get that in V [G],

L
GF (R,F � R) � AD+,

where F = FΛ,ϕall
. This means Λ ∈ Ω, and hence Σ ∈ Ω.

Lemma 3.80: ∀∗X ∈ S ΣX is Ω-fullness preserving .

Proof. Suppose not. Let �TX be according to ΣX with end model QX such

that QX is not Ω-full. This means there is a strong cut point γ such that

letting α ≤ λQX be the largest such that δQX
α ≤ γ, then in Ω, there is a mouse

M � Lp
gΣQX (α)(QX |γ)55 such that M /∈ QX . Let k : QX → H+ be such that

πX = k ◦ i
	TX . We use i to denote i

	TX from now on.

Let (PX ,ΣPX
) ∈ V be a Σ−

X -hod pair such that:

• Γ(PX ,ΣPX
) � Q is not full as witnessed by M.

• ΣPX
∈ Ω is fullness preserving and has branch condensation.

• λPX is limit and cofPX (λPX ) is not measurable in PX .

Such a pair (PX ,ΣPX
) exists by boolean comparisons.

55 The case where γ = δα and M� Lp
G⊕β<αΣQX (β) (Q|γ) is similar.
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By arguments similar to that used in 3.78, for almost all X ∈ S, no levels

of PX project across HX and in fact, o(H+
X) is a cardinal of PX . The second

clause follows from the following argument. Suppose not and let NX � PX be

least such that ρω(NX) = ΘX for stationary many X ∈ S. By minimality

of NX and an argument similar to that in Lemma 3.78, we may assume for

stationary many X ∈ S, NX ∈ MX . Fix such an X . Let f : κ∗ → ΘX be an

increasing and cofinal map in H+
X , where κ∗ = cofH

+
X (ΘX). We can construe

NX as a sequence g = 〈Nα | α < κ∗〉, where Nα = NX ∩ δ
H+

X

f(α). Note that

Nα ∈ H+
X for each α < κ∗. Now let R0 = Ult0(H

+
X , μ), R1 = Ultω(NX , μ),

where μ ∈ H+
X is the (extender on the sequence of H+

X coding a) measure on

κ∗ with Mitchell order 0. Let i0 : H+
X → R0, i1 : NX → R1 be the ultrapower

maps. Letting δ = δ
λH

+
σ
= ΘX , it’s easy to see that i0 � (δ + 1) = i1 � (δ + 1)

and ℘(δ)R0 = ℘(δ)R1 . This means 〈i1(Nα) | α < κ∗〉 ∈ ℘(δ)R0 . By fullness

of H+
X in Ω,56 〈i1(Nα) | α < κ∗〉 ∈ H+

X . Using i0, 〈i1(Nα) | α < κ∗〉 ∈ H+
X ,

and the fact that i0 � H+
X |ΘX = i1 � NX |ΘX ∈ H+

X , we can get NX ∈ H+
X as

follows. For any α, β < ΘX , α ∈ Nβ if and only if i0(α) ∈ i1(Nβ) = i0(Nβ).

Since H+
X can compute the right hand side of the equivalence, it can compute

the sequence 〈Nα | α < κ∗〉. Contradiction.

In other words, PX thinks H+
X is full. For here on, let P = PX , ΣP = ΣPX

,

(�TX ,QX) = (�T ,Q). Let

π∗
X : P → H++

be the ultrapower map by the (crt(πX),Θ)-extender EπX
induced by πX . Note

that π∗
X extends πX � H+

X and H++ is wellfounded since X is closed under

ω-sequences. Let

i∗ : P → R

be the ultrapower map by the (crt(i), δQ)-extender induced by i. Note that

Q�R and R is wellfounded since there is a natural map

k∗ : R → H++

extending k and π∗
X = k∗ ◦ i∗. Without loss of generality, we may assume M’s

unique strategy ΣM ≤w ΣP . Also, let (Q̇, �̇T ) be the canonical Col(ω, ω2)-names

for (Q, �T ). Let K be the transitive closure of Hω2 ∪ (Q̇, �̇T ).

56 Any A ⊂ δ in R0 is ODΩ

Σ−

X

(as in the proof of Lemma 3.78, this means OD
L(R,C)

Σ−

X

for

some C ∈ Ω) and so by Strong Mouse Capturing (SMC, see [7]), A ∈ H+
X .
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Let W = MΣP ,�
ω and Λ be the unique strategy of W . Let W∗ be a Λ-iterate

of W below its first Woodin cardinal that makes K-generically generic. Then

in W∗[K], the derived model D(W∗[K]) satisfies

L(Γ(P ,ΣP),R) � Q̇ is not full.57

So the above fact is forced over W∗[K] for Q̇.

Let H ≺ Hλ+++ be countable such that all relevant objects are in H . Let

π : M → H invert the transitive collapse and for all a ∈ H , let a = π−1(a). By

the countable completeness of EπX
there is a map π : R → H++

X such that

π � P = π ◦ i∗.58

Let ΣP be the π-pullback of ΣP and ΣR be the π-pullback of ΣP . Note that

ΣP extends π−1(ΣP) and ΣP is also the i∗-pullback of ΣR; so in particular,

ΣP̄ ≤w ΣR̄. We also confuse Λ̄ with the π-pullback of Λ. Hence Γ(P ,ΣP)

witnesses that Q is not full and this fact is forced over W̄∗[K̄] for the name ¯̇Q.

This means if we further iterate W̄∗ to Y such that RV [G] can be realized as

the symmetric reals over Y, then in the derived model D(Y),

(3.4) L(Γ(P̄ ,ΣP̄)) � Q̄ is not full.

In the above, we have used the fact that the interpretation of the UB-code of

the strategy for P̄ in Y to its derived model is ΣP̄ � RV [G]; this key fact is

proved in [7, Theorem 3.26].

Now we iterate R to S via ΣR̄ to realize RV [G] as the symmetric reals for the

collapse Col(ω,< δS), where δS is the sup of S’s Woodin cardinals. By (3.4)

and the fact that ΣP̄ ≤w ΣR̄, we get that in the derived model D(S),

Q̄ is not full as witnessed by M̄.

So ΣM̄ is ODΣ
Q
in D(S) and hence M ∈ R. This contradicts internal fullness

of Q̄ in R̄.

We continue with a key definition, due to G. Sargsyan. This definition is first

formulated in [8] and we reformulate it a bit to fit our situation.

Definition 3.81 (Sargsyan): Suppose X ∈ S and A ∈ H+
X ∩ ℘(ΘX). We say

that πX has A-condensation if whenever Q is such that there are elementary

embeddings υ : H+
X → Q, τ : Q → H+ such that Q is countable in V [G] and
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πX = τ ◦ υ, then υ(TH+
X
,A) = TQ,τ,A, where

TH+
X ,A = {(φ, s) | s ∈ [ΘX ]<ω ∧H+

X � φ[s, A]},

and

TQ,τ,A = {(φ, s) | s ∈ [δQα ]<ω for some α < λQ ∧H+ � φ[i
Στ,−

Q

Q(α),∞(s), πX(A)]},

where Στ
Q is the τ -pullback strategy and Στ,−

Q =
⊕

α<λQ Στ
Q(α). We say πX has

condensation if it has A-condensation for every A ∈ H+
X ∩ ℘(ΘX).

The following is the key lemma (cf. [8, Section 11]).

Lemma 3.82: ∀∗X ∈ S πX has condensation.

Proof. Suppose not. Let T be the set of counterexamples. Hence T is sta-

tionary. For each X ∈ T , let AX be the �X -least such that πX fails to

have AX -condensation, where �X is the canonical well-ordering of H+
X . Re-

call that if (P ,Σ) is a hod pair such that δP has measurable cofinality then

Σ− =
⊕

α<λP ΣP(α). We say that a tuple {〈Pi,Qi, τi, ξi, πi, σi | i < ω〉,M∞,Y }

is a bad tuple if

(1) Y ∈ S;

(2) Pi = H+
Xi

for all i, where Xi ∈ T ;

(3) for all i < j, Xi ≺ Xj ≺ Y ;

(4) M∞,Y is the direct limit of iterates (Q,Λ) of (H+
Y ,ΣY ) such that Λ has

branch condensation;

(5) for all i, ξi : Pi → Qi, σi : Qi → M∞,Y , τi : Pi+1 → M∞,Y , and

πi : Qi → Pi+1;

(6) for all i, τi = σi◦ξi, σi = τi+1◦πi, and πXi,Xi+1 � Pi =def φi,i+1 = πi◦ξi;

(7) φi,i+1(AXi
) = AXi+1 ;

(8) for all i, ξi(TPi,AXi
) �= TQi,σi,AXi

.

In 8, TQi,σi,AXi
is computed relative to M∞,Y , that is

TQi,σi,AXi
=

{(φ, s) | s ∈ [δQi
α ]<ω for some α < λQi ∧M∞,Y � φ[i

Σ
σi,−

Qi

Qi(α),∞
(s), τi(AXi

)]}.

Claim: There is a bad tuple.
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Proof. For brevity, we first construct a bad tuple

{〈Pi,Qi, τi, ξi, πi, σi | i < ω〉,H+}

with H+ playing the role of M∞,Y . We then simply choose a sufficiently large

Y ∈ S and let iY : H+
Y → M∞,Y be the direct limit map, mY : M∞,Y → H+ be

the natural factor map, i.e., mY ◦iY = πY . It’s easy to see that for all sufficiently

large Y , the tuple {〈Pi,Qi,m
−1
Y ◦τi,m

−1
Y ◦ξi,m

−1
Y ◦πi,m

−1
Y ◦σi | i < ω〉,M∞,Y }

is a bad tuple.

The key point is 6. Let A∗
X = πX(AX) for all X ∈ T . By Fodor’s lemma,

there is an A such that ∃∗X ∈ T A∗
X = A. So there is an increasing and cofinal

sequence {Xα | α < ω3} ⊆ T such that for α < β, πXα,Xβ
(AXα

) = AXβ
=

π−1
Xβ

(A). This easily implies the existence of such a tuple

{〈Pi,Qi, τi, ξi, πi, σi | i < ω〉,H+}.

Fix a bad tuple A = {〈Pi,Qi, τi, ξi, πi, σi | i < ω〉,M∞,Y }. Let (P
+
0 ,Π) be a

gΣ−
P0

-hod pair such that

Γ(P+
0 ,Π) � A is a bad tuple.

We may also assume (P+
0 ,Π � V ) ∈ V , λP+

0 is limit of nonmeasurable cofinality

in P+
0 and there is some α < λP+

0 such that ΣY ≤w ΠP+
0 (α). This type of reflec-

tion is possible because we replace H+ by M∞,Y . Let W = M
�,ΣY ,Π,⊕n<ωΣXn
ω

and Λ be the unique strategy of W . If Z is the result of iterating W via Λ to

make RV [G] generic, then letting h be Z-generic for the Levy collapse of the sup

of Z’s Woodin cardinals to ω such that RV [G] is the symmetric reals of Z[h],

then in Z(RV [G]),

Γ(P+
0 ,Π) � A is a bad tuple.

Now we define by induction ξ+i : P+
i → Q+

i , π+
i : Q+

i → P+
i+1, φ+

i,i+1 :

P+
i → P+

i+1 as follows. φ+
0,1 : P+

0 → P+
1 is the ultrapower map by the

(crt(πX0,X1),ΘX1)-extender derived from πX0,X1 . Note that φ+
0,1 extends φ0,1.

Let ξ+0 : P+
0 → Q+

0 extend ξ0 be the ultrapower map by the (crt(ξ0), δ
Q0)-

extender derived from ξ0. Finally let π+
0 = (φ+

0,1)
−1 ◦ ξ+0 . The maps

ξ+i , π+
i , φ

+
i,i+1 are defined similarly. Let also MY = Ult(P+

0 , E), where E is

the (λX ,ΘY )-extender derived from πX,Y . There are maps ε2i : P+
i → MY ,

ε2i+1 : Q+
i → MY for all i such that ε2i = ε2i+1 ◦ ξ

+
i and ε2i+1 = ε2i+2 ◦ π+

i .

When i = 0, ε0 is simply iE . Letting Σi = Σ−
Pi

and Ψ = Σ−
Qi

, Ai = AXi
, there

is a finite sequence of ordinals t and a formula θ(u, v) such that in Γ(P+
0 ,Π)
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(9) for every i < ω, (φ, s) ∈ TPi,Ai
⇔ θ[iΣi

Pi(α),∞
, t], where α is least such

that s ∈ [δPi
α ]<ω;

(10) for every i, there is (φi, si) ∈ TQi,ξi(Ai) such that ¬θ[iΨi

Qi(α)
(si), t] where

α is least such that si ∈ [δQi
α ]<ω.

The pair (θ, t) essentially defines a Wadge-initial segment of Γ(P+
0 ,Π) that can

define the pair (M∞,Y , A), where τi(Ai) = A for some (any) i.

Now let X ≺ Hλ+++ be countable that contains all relevant objects and

π : M → X invert the transitive collapse. For a ∈ X , let a = π−1(a). By

countable completeness of the extender E, there is a map π∗ : MY → P0 such

that π � MY = ε0 ◦ π
∗. Let Πi be the π∗ ◦ εi-pullback of Π. Note that in V [G],

ΣY ≤w Π0 ≤w Π1 ≤w · · · ≤w Ππ∗

.

Let Ȧ ∈ (Hκ̄)
M be the canonical name for Ā. It’s easy to see (using the

assumption on W) that if W∗ is a result of iterating W̄ via Λ̄ (we confuse Λ̄

with the π-pullback of Λ; they coincide onM) inM below the first Woodin of W̄

to makeH-generically generic, whereH is the transitive closure ofHM
ω2

∪Ȧ, then

in W∗[H ], the derived model of W∗[H ] at the sup of W∗’s Woodin cardinals

satisfies

L(P̄0,R) � Ȧ is a bad tuple.

Now we stretch this fact out to V [G] by iterating W∗ to W∗∗ to make RV [G]-

generic. In W∗∗(RV [G]), letting i : W∗ → W∗∗ be the iteration map, then

Γ(P̄+
0 , Π̄) � i(Ā)59 is a bad tuple.

By a similar argument as in Theorem 3.1.25 of [25], we can use the strategies

Πi
+
’s to simultanously execute a RV [G]-genericity iteration. The last branch

of the iteration tree is wellfounded. The process yields a sequence of models

〈P+
i,ω ,Q

+
i,ω | i < ω〉 and maps ξ+i,ω : P+

i,ω → Q+
i,ω, π

+
i,ω : Q+

i,ω → P+
i+1,ω, and

φ+
i,i+1,ω = π+

i,ω ◦π+
i,ω. Furthermore, each P+

i,ω,Q
+
i,ω embeds into a Ππ∗

-iterate of

MY and hence the direct limit P∞ of (P+
i,ω,Q

+
j,ω | i, j < ω) under maps π+

i,ω’s

and ξ+i,ω’s is wellfounded. We note that P+
i,ω is a gΣπ

i -premouse and Q+
i,ω is a

gΨπ
i -premouse because the genericity iterations are above Pi and Qi for all i and

by [7, Theorem 3.26], the interpretation of the strategy of P̄i (Q̄i, respectively)

in the derived model of ¯P+
i,ω ( ¯P+

i,ω, respectively) is
gΣπ

i (gΨπ
i , respectively). Let

Ci be the derived model of P+
i,ω, Di be the derived model of Q+

i,ω (at the sup of

the Woodin cardinals of each model); then RV [G] = RCi = RDi . Furthermore,

Ci ∩ ℘(R) ⊆ Di ∩ ℘(R) ⊆ Ci+1 ∩ ℘(R) for all i.



Vol. 215, 2016 PFA AND GUESSING MODELS 663

9, 10 and the construction above give us that there is a t ∈ [OR]<ω, a formula

θ(u, v) such that

(11) for each i, in Ci, for every (φ, s) such that s ∈ δPi , (φ, s) ∈ TPi,Ai
⇔

θ[iΣi

Pi(α),∞
(s), t] where α is least such that s ∈ [δPi

α ]<ω.

Let n be such that for all i ≥ n, ξ+i,ω(t) = t. Such an n exists because the

direct limit P∞ is wellfounded as we can arrange that P∞ is embeddable into

a Ππ∗

-iterate of M̄Y . By elementarity of ξ+i,ω and the fact that ξ+i,ω � Pi = ξi,

(12) for all i ≥ n, in Di, for every (φ, s) such that s ∈ δQi , (φ, s) ∈

TQi,ξi(Ai)
⇔ θ[iΨi

Qi(α),∞
(s), t] where α is least such that s ∈ [δQi

α ]<ω.

However, using 10, we get

(13) for every i, in Di, there is a formula φi and some si ∈ [δQi ]<ω such that

(φi, si) ∈ TQi,ξi(Ai) but ¬φ[iΨi

Qi(α),∞
(si), t] where α is least such that

s ∈ [δQi
α ]<ω.

Clearly 12 and 13 give us a contradiction. This completes the proof of the

lemma.

Remark 3.83: The main ideas of the proof above originate from [8, Lemma

11.15]. The main difference is in the situation of [8, Lemma 11.15]; there is an

elementary embedding j acting on all of V , so roughly speaking, the iterability

of the P+
i ’s is justified by embedding them into j(P+

0 ). Here we don’t have

such a j; we use pressing down arguments, countable closure of hulls X ∈ S

and reflection arguments instead.

Fix an X satisfying the conclusion of Lemma 3.82. Suppose

(Q, �T ) ∈ I(H+
X ,ΣX) is such that i

	T : H+
X → Q exists. Let γ

	T be the sup

of the generators of �T . For each x ∈ Q, say x = i
	T (f)(s) for f ∈ H+

X and

s ∈ [δQα ]<ω, where δQα ≤ γ
	T is least such, then let τQ(x) = πX(f)(i

Σ
Q,�T

Q(α),∞(s)).

Remark 3.84: By Lemma 3.82 and [7, Theorem 3.26], τQ is elementary and

τQ � δQ = i
Σ

Q,�T

Q|δQ,∞ � δQ = iΛQ|δQ,∞ � δQ, where Λ is the τQ-pullback strategy of

Q|δQ.

Lemma 3.85: Fix an X satisfying the conclusion of Lemma 3.82. Suppose

(Q, �T ) ∈ I(H+
X ,ΣX) and (R, �U) ∈ I(Q,ΣQ,	T ) are such that i

	T , i
	U exist and

ΣQ,	T and ΣR, 	U have branch condensation. Then τQ = τR ◦ i
	U .
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Proof. Let x ∈ Q. There are some f ∈ H+
X and s ∈ [γ

	T ]<ω such that

x = i
	T (f)(s).

So

τQ(x) = πX(f)(i
Σ

Q,�T

Q,∞ (s)).

On the other hand,

τR ◦ i
	U(x) = τR ◦ i

	U(i
	T (f)(s)) = πX(f)(i

Σ
R,�U

R,∞ ◦ i
	U ◦ iΣQ,�T (s))

= πX(f)(i
Σ

Q,�T

Q,∞ (s)) = τQ(x).

Let M∞(H+
X ,ΣX) be the direct limit of all hod pairs (Q,Λ) ∈ I(H+

X ,ΣX)

such that Λ has branch condensation. The lemma implies that the map

σ : M∞(H+
X ,ΣX) → H+ defined as

σ(x) = y iff whenever (R,Λ) ∈ I(H+
X ,ΣX) is such

that Λ has branch condensation, and iΛR,∞(x∗) = x

for some x∗, then y = τR(x∗)

is elementary and crt(σ) = δ =def δM∞(H+
X
,ΣX ). This implies that

M∞(H+
X ,ΣX) � “δ is regular”. Let (Q,Λ) ∈ I(H+

X ,ΣX) be such that Λ has

branch condensation. By a similar argument as those used before, we get Λ ∈ Ω

and in fact sinceQ � “δQ is regular”, we easily get thatN = L(Γ(Q,Λ),R) � “Θ

is regular” (note that ΘN is the image of δQ under the direct limit map into

the direct limit of all Λ-iterates). This contradicts the assumption that there is

no model M satisfying “ADR +Θ is regular”. Such an M has to exist after all.

This finishes this subsection and the proof of Theorem 0.2.

Remark 3.86: In the above, there are (Q,Λ) ∈ V that are in I(H+
X ,ΣX) (this

is via a standard boolean comparison argument, cf. [7]). By taking a countable

hull, we can find a countable hod pair (Q∗,Λ∗) that generates in V a model of

“ADR+Θ is regular” by an R-genericity iteration argument using the fact that

Λ∗ has branch condensation and is κ-universally Baire.

4. Question and open problems

We conjecture the following (the proof of which will settle Conjecture 0.5).

Conjecture 4.1: Suppose κ is a cardinal such that κω = κ. Let λ = 2κ.

Suppose for every cardinal α ∈ [κ+, λ+], ¬�(α). Then in V Col(ω,κ), there are

models M containing R ∪OR such that M � LSA.
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We’re hopeful that the conjecture has a positive answer. This is because we

believe it’s possible to construct hod mice generating models of LSA from the

hypothesis of Conjecture 4.1.

We end the paper with the following technical questions, whose solutions

seem to require new core model induction techniques for working with hulls

that are not closed under countable sequences. Note that in the most interesting

cases (e.g., under PFA) ω1-guessing models of size ℵ1 cannot be closed under

ω-sequences.

Question 4.2: Let κ = 2ℵ2 . Can one construct a model of “ADR +Θ is regular”

from the existence of stationary many ω1-guessing models X ≺ Hκ++ such that

|X | = ℵ1?

Question 4.3: Let κ = 2ℵ2 . Can one construct a model of “ADR +Θ is regular”

from ¬�(α) for all α ∈ [ω2, κ
+]?
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