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ABSTRACT

This paper explores the consistency strength of The Proper Forcing Ax-
iom (PFA) and the theory (T) which involves a variation of the Viale-
Wei guessing hull principle. We show that (T) is consistent relative to
a supercompact cardinal. The main result of the paper is Theorem 0.2,
which implies that the theory “ADg + © is regular” is consistent relative
to (T) and to PFA. This improves significantly the previous known best
lower-bound for consistency strength for (T) and PFA, which is roughly
“ADgr + DC”.

0. Introduction

Suppose k < v are uncountable cardinals and X < H., is such that x < |X].
Let pu(X) = {a € p(X) | |a|] < k}. We say that X is k-guessing if for all
a € X and for all b C a such that cNb € X for all ¢ € X N p,(X) then b
is X-guessed, i.e., there is some ¢ € X such that cN X = bN X. Such a b
satisfying the hypothesis of the previous sentence is called k-approximated
by X. So a hull X is x-guessing if whenever a € X and whenever b C a is
k-approximated by X, then b is X-guessed.
In this paper, we study the strength of the following theories:

e The Proper Forcing Axiom (PFA);
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e (T): there is a cardinal A > 2% such that the set
{X < (Hy++,€) | | X] =N, X¥ C X,wy C X, and X is wo-guessing}

is stationary.

Guessing models in [26] are wi-guessing in the above notations. It’s not clear
that the theory (T) is consistent with PFA (in contrast to Viale-Weif} principle
ISP(ws), which asserts the existence of stationary many wi-guessing models of
size Ny of H) for all sufficiently large A). However, it’s possible that (T) is a
consequence of or at least consistent with a higher analog of PFA.

The outline of the paper is as follows. In Section 1, we review some AD™ facts
that we’ll be using in this paper. In Section 2, using a Mitchell-style forcing,

we prove
THEOREM 0.1: Con(ZFC + there is a supercompact cardinal) = Con(T).

Of course, it is well-known that PFA is consistent relative to the existence of
a supercompact cardinal. Theorem 0.4 suggests that it’s reasonable to expect
PFA and (T) are equiconsistent.

Recall, for an infinite cardinal A, the principle [y asserts the existence of a
sequence (C,, | @ < AT) such that for each v < AT,

e (y is club in «a;
o for each limit point 5 of C,, Cg = Cy N G;
e the order type of C,, is at most A.
The principle () asserts the existence of a sequence (C,, | & < A) such that

(1) for each a < A,
e cach C, is club in «;
e for each limit point 3 of Cy, Cg = C, N f; and
(2) there is no thread through the sequence, i.e., there is no club E C A such
that C, = E' N« for each limit point « of F.

Note that O, implies O(AT) (equivalently, =CJ(A") implies =[Jy). The main
technical theorem of the paper, proved in Section 3, is the following;:

THEOREM 0.2: Supppose k is a cardinal such that k* = k. Suppose for each
cardinal a € [k, (27)"], =0O(«). Then letting G C Col(w, k) be V-generic, in
V[G], there is a transitive M containing OR U R such that M = “ADg + O is
regular”.
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Remark 0.3: We remark that the proof of Theorem 0.2 actually shows that
we can get in V a model M containing OR U R that satisfies “ADgr + © is
regular”, see Remark 3.86. This is because we actually construct a hod pair
(P,X) that generates a model of “ADg + © is regular” with the property that
(P, V)eV.

Hence, as a corollary, we establish the following theorem, which improves
upon the conclusion of Corollary 0.2 of [1].

THEOREM 0.4: Suppose S is one of the following theories:
(1) PFA,
(2) (T),
(3) there is a strongly compact cardinal.

If S holds, then there is a transitive model M containing R U OR such that
M E “ADg + © is regular”.!

Proof. We apply Theorem 0.2 and Remark 0.3. We just need to verify that
S implies the hypothesis of Theorem 0.2. If S is either PFA or (T), we take
k = No. It’s well-known that the hypothesis in Theorem 0.2 regarding thread-
ability follows from S.? Otherwise, take s to be a singular, strong limit cardinal
of uncountable cofinality above a strongly compact cardinal. By [15], the hy-
pothesis of Theorem 0.2 holds at . |

In Subsection 3.1, we lay out the framework for the core model induction
which allows us to construct models of “ADg + O is regular” from the hypoth-
esis of Theorem 0.2. The actual construction of such models is carried out in
Subsections 3.2-3.5.

We note that the previous best known lower-bound for (T) as well as for PFA
is the sharp for a proper class model with a proper class of strong cardinals
and a proper class of Woodin cardinals (see [1, Corollary 0.2]), which is just a
bit stronger than “ADg + DC” but is weaker than “ADg + O is regular”. The
method used in this paper is the core model induction method, which can be
used to further improve the lower-bounds for (T) and for PFA, as opposed to the
method in [1], which seems hard to generalize. In fact, it’s possible to improve

L To the best of the author’s knowledge, the result in this paper gives the best lower-bound
obtained from any combinatorial principle not augmented by large cardinal assumptions.
2 In the case S is (T), see [26] and [27].
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the lowerbound consistency strength for (T) and for PFA in Theorem 0.4 to
“ADgr + © is measurable” and beyond. These results involve a combination
of the core model induction and techniques for constructing hod mice beyond
those developed in [7] and hence will appear in a future publication.

Let LSA denote the theory “ADT + © = 6,1 + 0, is the largest Suslin
cardinal”. LSA was first isolated by Woodin in [29] and is very recently shown
to be consistent by G. Sargsyan. It is one of the strongest determinacy theories
known to be consistent. We conjecture that

CONJECTURE 0.5: Con(T) = Con(LSA) and Con(PFA) = Con(LSA).

We are hopeful that methods used in this paper and their extensions can be
used to settle the conjecture.

1. Basic facts about ADT

We start with the definition of Woodin’s theory of ADT. In this paper, we
identify R with w*. We use © to denote the sup of ordinals « such that there
is a surjection m : R — «a. Under AC, © is just the successor cardinal of the
continuum. In the context of AD, © is shown to be the supremum of w(A) 3
for A C R. The definition of © relativizes to any determined pointclass (with
sufficient closure properties). We denote O for the sup of o such that there is
a surjection from R onto a coded by a set of reals in I'.

Definition 1.1: ADT is the theory ZF + AD+DCg and

(1) for every set of reals A, there are a set of ordinals S and a formula ¢
such that x € A < L[S, z] F ¢[S,z]. (S,¢) is called an co-Borel code
for A;

(2) for every A < O, for every continuous 7 : \¥ — w®, for every A C R,
the set 7 ![A] is determined.

AD™ is equivalent to “AD + the set of Suslin cardinals is closed”. Another,
perhaps more useful, characterization of ADT is “AD+X; statements reflect
into Suslin co-Suslin sets” (see [21] for the precise statement).

Let A C R; we let 64 be the supremum of all « such that there is an OD(A)
surjection from R onto «. If I' is a determined pointclass, and A € I", we write

3 w(A) is the Wadge rank of A.
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I' | A for the set of B € I" which is Wadge reducible to A. If o < O, we write
I' | a for the set of A € I with Wadge rank strictly less than «.

Definition 1.2 (ADT): The Solovay sequence is the sequence (0, | a < \)
where

(1) 6 is the supremum of ordinals 8 such that there is an OD surjection
from R onto f3;

(2) if a > 0 is limit, then 6, = sup{fs | § < a};

(3) ifa=p+1and b <O (ie., f < ), fixing a set A C R of Wadge rank
03, 04 is the sup of ordinals v such that there is an OD(A) surjection
from R onto 7, i.e., 8, = 64.

Note that the definition of 8, for « = 8+ 1 in Definition 1.2 does not depend
on the choice of A. For a pointclass T' that satisfies ADT and is sufficiently
closed, we can also define the Solovay sequence (AL | a < A) of T like above.
For a < A\, we say I' | 6% is a Solovay initial segment of T".

Roughly speaking, the longer the Solovay sequence is, the stronger the asso-
ciated ADT-theory is. For instance, the theory ADg + DC is strictly stronger
than ADg since by [14], DC implies cof(©) > w while the minimal model * of
ADg satisfies © = 6,,. ADg + O is regular is much stronger still as it implies the
existence of many models of ADgr + DC. We end this section with a theorem of
Woodin, which produces models with Woodin cardinals in AD™. The theorem
is important in the HOD analysis of such models.

THEOREM 1.3 (Woodin, see [4]): Assume ADT. Let (0, | « < Q) be the Solovay
sequence. Suppose a = 0 or a = 8+ 1 for some f < . Then HOD F 6, is
Woodin.

2. Upper-bound consistency strength of (T)

In this section, we prove Theorem 0.1. We follow closely the construction of
Section 3 in [5].> We use Even and Odd to denote the classes of even ordinals

4 From here on, whenever we talk about “models of ADT” | we always mean those M that
contain OR U R and satisfy ADY.

5 For the reader’s convenience, our wi will play the role of p in Section 3 of [5], our wo will
play the role of k there, and finally our « plays the same role as the « in [5].
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and odd ordinals respectively. We assume the ground model V satisfies
wy = wy + w5 = wa + a is supercompact.
Consider the following forcing iteration,
(]P’i,Qj |i<a,j<a),

with two partial orderings < and <*, where < is the standard partial ordering
on posets and <* is defined by letting pxr <* gxsif px7 < g= s and p = q.
Inductively, we ensure that the following hold:

(1) If i < o is even then P; forces Q; = ADD(w;), where ADD(w;) is
the standard forcing for adding a Cohen subset of w; with countable
conditions.

(2) If j<aisodd, P;_; forces (Q;_1 * Qj, <*)=(ADD(w;) % Col(wy, 5), <*),
where Col(ws, 7) is the standard forcing that collapses j to ws using con-
ditions of size at most N;. So for all i < «a, P; forces QZ is wi-closed
and furthermore, if ¢ is odd, then P;_; forces <QZ—,1 * Qi,§*> is wa-
strategically closed.

(3) If i < « is a limit ordinal, then P; consists of all partial functions
p:i— V such that p [ j € P; for j < 4, |dom(p) N Even| < wy, and
|dom(p) N Odd]| < ws.

(4) For i < a and p,q € P;, ¢ < p in P; iff for all 7 in the domain of p, v is
in the domain of ¢ and ¢ [ v IF ¢(v) < p(7).

(5) For i < o and p,q € P;, ¢ <* p in P; iff ¢ < p, dom(p) N Even =
dom(q) N Even, and for every v in dom(p) N Even, ¢ | v IF ¢(y) = p(v).

By results in Section 3 of [5], we get the following:

(a) (Pg, <) is wi-closed for all 8 < «. In particular, ADD(w;) is the same in
the ground model and in any intermediate extension.

the ws-approximation property, that is, whenever G * H is V-generic for
P, * Q, then if for all # € V[G][H], = C V[G], it holds that if Nz € V[G]
for all z € p,,(V[G])VIE] then 2 € V]G].
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LEMMA 2.1: In V[G], for any regular cardinal A > ws, the set
{X < (Hx,€) | |X]| =ws2,w2 C X, X* C X, and X is wo-guessing}

is stationary. In particular, (T) holds in V[G].

Proof. Since P, is wi-closed, w§ = wo in V, and wy = wg[G],
@)V = ()" = w} = wy.

It’s also clear from (a), (c), and the fact that « is an inaccessible limit of
inaccessibles that w§ = we and 2¥2 = w3 in V[G].
Working in V[G], fix a regular cardinal A\ > wy. Let

T={X<H\||X|=w2Awa C X ANX* C X A X is wa-guessing}.

We show T is stationary. In V, let j : V — M witness that « is Hjy-
supercompact. Let G x H be Pj)-generic over V; j canonically lifts to
jt : VIG] — MIG % HJ, where j*(1¢) = j(T)g«m. Let F be the normal
filter defined from j*, that is for all A € g, (H,)"V¢)

A € F & Pjq) forces over V[G] that j+[H;/[G}] € j(A).

It’s easy to check that F is a normal filter in V[G]. We now check that whenever
Gx* H is V-generic, then H)‘\/[G] € j7(T). Fix such G, H and let X = j*[H)‘\/[G]].
To simplify the notation, we also use j to denote j+. Note that X < HJJ\({\[)G] (H],

We first show in M[G][H], X* C X. Let a € X*“ and note that j~[a] € V[G].
This is because j~![a] € V[G] and is a countable sequence in V[G][H] and hence
is in V[G] since by construction, in V[G], IFp, “Q is w;-closed”, where Pja) =
P, * Q. This easily implies that j~'[a] € H)‘\/[G]. Hence j(j7'[a]) = a € X.

Now suppose b C z € X is such that b C X and whenever d € X N p,,,(X),
dNbe X. We want to show there is a ¢ € X such that bN X =cnN X. To
this end, note that j~1[b] € V[G]. This uses (e) and the assumption on b. Let
c=j(jL[b]). Since j7I[b] C j71(2) € H/‘\/[G}, o) € H)‘\/[G]; this gives c € X.
It’s easy then to check that cnN X = bN X (c need not equal b though). This
completes the proof of the lemma. |

Proof of Theorem 0.1. Immediate from Lemma 2.1. [ |

Remark 2.2: We note that the ws-approximation property in (e) is crucial in
the proof of Lemma 2.1. It’s used to show that the hull X is ws-guessing.
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3. Lower-bound consistency strength of (T)

In this section, we prove Theorem 0.2 and hence Theorem 0.4. The next several
subsections are dedicated to setting up the core model induction, constructing
hod pairs with nice properties that generate ADT models. Fix a V-generic
G C Col(w, k). Let A = 2". For X < H)++ such that | X| = &, k C X, let
mx : Mx — Hy++ be the uncollapse map; mx naturally extends to a map,
which we also call 7x from Mx[G] to Hy++[G]. The core model induction will
occur in V[G]. Our smallness assumption throughout this paper is:

(1) : in V]G], there is no model M containing
all reals and ordinals such that M £ “ADgr + O is
regular”.

Among other things, () implies:

e There are no ADT models M, N such that R UOR C M,N and
p(R) N M N N is strictly contained in p(R) N M and in p(R) NN (see
[7]). This implies that all AD" models constructed in the core model
induction will end-extend one another.

e If M is an AD' model, then Strong Mouse Capturing (SMC) (see
Footnote 26 for definition of SMC) and Generation of Mouse Full
Pointclasses (see [7, Section 6.1]) hold in M . This fact allows us to

use the hod analysis in [7] to construct hod mice.

Using the first consequence of (t), we define
Definition 3.1 (Maximal pointclass of ADT): In V]G], let
Q= J{p®R)NM |RUORC M AMFEAD*'}.
The rest of the paper is dedicated to analyzing 2. In particular, we show
that in V]G],

o QA0
e Letting (6 | @ < 7) be the Solovay sequence of 2, then + is a limit
ordinal.
We will then deduce that there is indeed a model M of “ADgr + © is regular”.
This contradicts (f).

3.1. FRAMEWORK FOR THE CORE MODEL INDUCTION. This section, consisting
of several subsections, develops some terminology and framework for the core
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model induction. The first subsection gives a brief summary of the theory of
hod mice developed in [7]. In the next three subsections, we briefly introduce
the notions of F-premice, strategy premice, and (©)-g-organized F-premice
developed in [13]. For a full development of these concepts as well as proofs
of lemmas stated below, the reader should consult [13]. These subsections
summarize the theory and results in [13] to make the paper self-contained. The
reader who wishes to see the main argument can skip them on the first read,
and go back when needed. The next subsection discusses the S-constructions,
which allow us to translate hybrid mice over a set a to hybrid mice over a set
b where a and b are closely related. The last subsection defines core model
induction operators, which are operators that we construct during the course
of the core model induction in this paper.

3.1.1. A brief introduction to hod mice. In this paper, a hod premouse P is
one defined as in [7]. The reader is advised to consult [7] for basic results
and notations concerning hod premice and mice. Let us mention some basic
first-order properties of a hod premouse P. There are an ordinal A” and
sequences ((P(a),X%) | a < AP) and (6F | « < A”) such that

(1) (6P | o < AP) is increasing and continuous and if « is a successor ordinal
then P F 67 is Woodin;

(2) P(0) = Lpo(P|6o)”; for a < AP, Pa+ 1) = (LpZ* (P|64))P; for limit
@ < NP, Pla) = (Lol (PI5.)P

(3) PEXP isa (w,0(P),o(P)) S-strategy for P(a) with hull condensation;

(4) if a < B < AP then 2753 extends X7

We will write 67 for 67» and X7 = Dsrr ¥%. Note that P(0) is a pure
extender model. Suppose P and Q are two hod premice. Then P <p,q Q if
there is o < 12 such that P = Q(a). We say then that P is a hod initial
segment of Q; (P, X) is a hod pair if P is a hod premouse and ¥ is a strategy
for P (acting on countable stacks of countable normal trees) such that ¥7 C 2
and this fact is preserved under X-iterations. Typically, we will construct hod
pairs (P, %) such that ¥ has hull condensation, branch condensation, and is
I'-fullness preserving for some pointclass I'.

6 This just means ¥ acts on all stacks of w-maximal, normal trees in P.



616 NAM TRANG Isr. J. Math.

Suppose (Q,X) is a hod pair such that 3 has hull condensation. Then P is a
(Q, ¥)-hod premouse if there are ordinal A\” and sequences ((P(a), %) | a < A7)
and (6% | a < AP) such that

(1) (6% | @ < AP) is increasing and continuous, and if « is a successor
ordinal then P F §% is Woodin;

(2) P(0) = Lp=(P|do)* (so P(0) is a Z-premouse built over Q); for
a < AP, Pla+1) = (Lp=2%% (P|6,))P; for limit a < AP, Pla) =
(L2 (P13

(3) PEXNPisa (w,o(P),o(P))-strategy for Q with hull condensation;

(4) PEXT is a (w,0(P), o(P))-strategy for P(a) with hull condensation;

(5) if @ < B < A” then ¥} extends ¥7.

Inside P, the strategies X% act on stacks above Q and every X iterate is
a Y-premouse. Again, we write 67 for 67, and X7 = Dsrr %5 (P,A) is
a (Q,%)-hod pair if P is a (Q,X)-hod premouse and A is a strategy for P
such that ©¥ C A and this fact is preserved under A-iterations. The reader
should consult [7] for the definition of B(Q, ) and I(Q, ). Roughly speaking,
B(Q,Y) is the collection of all hod pairs which are strict hod initial segments of
a Y-iterate of Q@ and I(Q,Y) is the collection of all X-iterates of ¥. In the case
A9 is limit, I'(Q, ¥) is the collection of A C R such that A is Wadge reducible
to some ¥ for which there is some R such that (R,¥) € B(Q,X). See [7] for
the definition of T'(Q, ) in the case A< is a successor ordinal.

[7] constructs under AD' and the hypothesis that there are no models of
“ADgr + © is regular” hod pairs that are fullness preserving, positional, com-
muting, and have branch condensation (see [7] for a full discussion of these
notions). Such hod pairs are particularly important for our computation as
they are points in the direct limit system giving rise to HOD of AD" models.
Under ADT, for hod pairs (My, ¥), if ¥ is a strategy with branch condensation
and 7T is a stack on My, with last model A/ , 2 NT is independent of 7. There-
fore, later on we will omit the subscript 7 from ¥ NT whenever ¥ is a strategy
with branch condensation and My is a hod mouse. In a core model induction,
we don’t quite have, at the moment (My,¥) is constructed, an AD"-model
M such that (Mg,X) € M but we do know that every (R,A) € B(Myx,X)
belongs to such a model. We then can show (using our hypothesis) that (Myx, X)
belongs to an AD"-model.
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Definition 3.2 (Hod pair below x): (P,X) is a hod pair below x if P € V,
|P|V <k, ¥is a (w1,wr) in V]G] "-strategy with branch condensation, and is
commuting, positional, and Q-fullness preserving, and for all (Q,A) € B(Q,Y),
A HC € Q. Furthermore, ¥ [V € V.

3.1.2. F-premice.

Definition 3.3: Let Ly be the language of set theory expanded by unary predi-
cate symbols E, B, S, and constant symbols a, 3. Let Ly = 50\{E, B}

Let a be transitive. Let ¢ : a — rank(a) be the rank function. We write
a = trancl({(a, 0)}). Let P € J1(a).

A J-structure over a (with parameter ) (for Ly) is a structure M
for Lo such that a™ = a, (PM = P), and there is A € [1,0rd) such that
M| = JASM (a). ategy with Here we also let (M) denote ), the length of M,
and let a™ denote a.

For a € [1,A] let M, = jo*?M (a). We say that M is acceptable iff for each
a < Aand 7 < o(M,), if

P(r<Y x a=¥) N My # P(T% x a<Y) N Moy,

then there is a surjection 7<% x 4<% — M, in My11.
A J-structure (for L) is a J-structure over a, for some a.

As all J-structures we consider will be for £y, we will omit the phrase “for
Lo”. We also often omit the phrase “with parameter ”. Note that if M is a
J-structure over a then |M]| is transtive and rud-closed, @ € M and oN M =
rank(M). This last point is because we construct from a instead of a.

F-premice will be J-structures of the following form.

Definition 3.4: A J-model over a (with parameter ) is an acceptable
J-structure over a (with parameter 3), of the form
M= (M;E,B,S,a,B)

where EM = E, etc., and letting A\ = [(M), the following hold:

(1) M is amenable.
(2) S ={(Se|&€l,N) is a sequence of J-models over a (with parameter

B).

7 Technically, this should be a (k,w1,w1)-strategy, where k is the degree of soundness of

P. But we suppress this parameter throughout our paper.
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(3) For each & € [1,)), §5 = S | € and Mg = |S¢|.

(4) Suppose E # (). Then B = () and there is an extender F' over M which
is @ x y-complete for all v < crit(F) and such that the premouse axioms
[28, Definition 2.2.1] hold for (M, F), and E codes F U {G} where: (i)
F C M is the amenable code for F' (as in [23]); and (ii) if F is not
type 2 then G = ), and otherwise G is the “longest” non-type Z proper
segment of F in M.8

Our notion of a “J-model over a” is a bit different from the notion of
“model with parameter ¢” in [11] or [28, Definition 2.1.1] in that we build
into our notion some fine structure and we do not have the predicate [ used in
[28, Definition 2.1.1]. Note that with notation as above, if A is a successor
ordinal then M = J(S{!,), and otherwise, M = {J,,_, |Sa|. The predicate B
will be used to code extra information (like a (partial) branch of a tree in M).

Definition 3.5: Let M be a J-model over a (with parameter B). Let E* denote
EM etc. Let A = (M), SM = a, S = M, and M|¢ = S’é‘/‘ for all £ < X\. An
(initial) segment of M is just a structure of the form M|¢ for some £ € [1, A].
We write P < M iff P is a segment of M, and P<M iff P I M and P # M.
Let M||€ be the structure having the same universe and predicates as M|,
except that FMII€ = (). We say that M is F-active iff EM # (), and B-active
iff BM £ (). Active means either E-active or B-active; E-passive means not
E-active; B-passive means not B-active; and passive means not active.

Given a J-model M1 over b and a J-model My over My, we write My | b
for the J-model M over b, such that M is “M; ™ My”. That is, |IM| = |[Ma],
aM =b EM = EM2 BM = BM2 and P a M iff P < M, or there is Q < M,
such that P = Q | b, when such an M exists. Existence depends on whether
the J-structure M is acceptable.

In the following, the variable 7 should be interpreted as follows. When ¢ = 0,
we ignore history, and so P is treated as a coarse object when determining
F(0,P). When i =1 we respect the history (given it exists).

8 We use G explicitly, instead of the code fyM used for G in [6, Section 2], because G does
not depend on which (if there is any) wellorder of M we use. This ensures that certain
pure mouse operators are forgetful.
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Definition 3.6: An operator F with domain D is a function with domain D,
such that for some cone C' = Cx, possibly self-wellordered (sword),” D is the
set of pairs (4, X) such that either:

e i=0and X € C, or
e ;=1 and X is a J-model over X; € C,

and for each (i,X) € D, F(i,X) is a J-model over X such that for each
P 4 F(i, X), P is fully sound. (Note that P is a J-model over X, so soundness
is in this sense.)

Let F, D be as above. We say F is forgetful iff (0, X) = F(1, X) whenever
(0,X),(1,X) € D, and whenever X is a J-model over X7, and X; is a J-
model over Xy € C, we have F(1,X) = F(1,X | X3). Otherwise we say F
is historical. Even when F is historical, we often just write F(X) instead of
F(i,X) when the nature of F is clear from the context. We say F is basic iff
for all (i, X) € D and P < F(i, X), we have E¥ = (). We say F is projecting
iff for all (i, X) € D, we have p, ") = X.

Here are some illustrations. Strategy operators (to be explained in more detail
later) are basic, and as usually defined, projecting and historical. Suppose we
have an iteration strategy > and we want to build a J-model N (over some a)
that codes a fragment of ¥ via its predicate B. We feed ¥ into A by always
providing b = X(7), for the <-N-least tree 7 for which this information is
required. So given a reasonably closed level P <t A/, the choice of which tree
T should be processed next will usually depend on the information regarding
¥ already encoded in P (its history). Using an operator F to build N, then
F(i,P) will be a structure extending P and over which b = X(7) is encoded.
The variable ¢ should be interpreted as follows. When ¢ = 1, we respect the
history of P when selecting 7. When ¢ = 0 we ignore history when selecting
T . The operator F(X) = X# is forgetful and projecting, and not basic; here
F(X)=F(0,X).

Definition 3.7: For any P and any ordinal o > 1, the operator J( - ; P) is
defined as follows.!0 For X such that P € J;(X), let 7™(X; P) be the J-model

9 C' is a cone if there are a cardinal x and a transitive set a € H, such that C is the set of
b € Hy such that a € L1(b); a is called the base of the cone. A set a is self-wellordered
if there is a well-ordering of a in Li(a). A set C is a self-wellordered cone if C is the
restriction of a cone C’ to its own self-wellordered elements

10 The “m” is for “model”.
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M over X, with parameter P, such that |M| = J,(X) and for each 8 € [1,al,
M| is passive. Clearly JX( - ; P) is basic and forgetful. If P = {§ or we wish
to supress P, we just write J2( - ).

Definition 3.8 (Potential F-premouse, Cx): Let F be an operator with domain
D of self-wellordered sets. Let b € Cr, so there is a well-ordering of b in L;[b].
A potential F-premouse over b is an acceptable J-model M over b such
that there is an ordinal ¢ > 0 and an increasing, closed sequence ((o)a<, Of
ordinals such that for each o < ¢, we have:

(1) 0=2¢o < ¢a < ¢ =1UM) (so M| = b and M|, = M).
(2) If 1 < ¢ then M|¢; = F(0,b).
(3) If 1 =+ then M < F(0,b).
(4) If 1 < a+1 <t then M|(ot1 = F(1, M|(a) | 0.
(5) fl<a+1=1¢then M < F(1, M|() | b.
(6) Suppose « is a limit. Then M|(, is B-passive, and if E-active, then
crit( EMIC) > rank(b).
We say that M is (F-)whole iff ¢+ is a limit or else, ¢ = o+ 1 and M =
F(MIG) 4.

A (potential) F-premouse is a (potential) F-premouse over b, for some b.

Definition 3.9: Let F be an operator and b € Cx. Let N be a whole F-premouse
over b. A potential continuing F-premouse over N is a J-model M over
N such that M | b is a potential F-premouse over b. (Therefore N is a whole
strong cutpoint of M.)

We say that M (as above) is whole iff M | b is whole.

A (potential) continuing F-premouse is a (potential) continuing F-

premouse over b, for some b.

Definition 3.10: Lp” (a) denotes the stack of all countably F-iterable F-premice
M over a such that M is fully sound and projects to a.'!

Let A be a whole F-premouse over b, for b € Cx. Then Lp7 (A) denotes the
stack of all countably F-iterable (above o(N')) continuing F-premice M over
N such that M | b is fully sound and projects to V.

We say that F is uniformly ¥, iff there are ¥; formulas ¢; and @2 in L
such that whenever M is a (continuing) F-premouse, then the set of whole

11 Countable substructures of M are (w,w1 + 1)-F-iterable, i.e. all iterates are F-premice.
See [13, Section 2] for more details on F-iterability.
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proper segments of M is defined over M by ¢1 (p2). For such an operator F,
let 7, denote the least such ¢;.

Definition 3.11 (Mouse operator): Let Y be a projecting, uniformly ¥; opera-
tor. A Y-mouse operator F with domain D is an operator with domain
D such for each (0,X) € D, F(0,X) < Lp* (X), and for each (1,X) € D,
F(1,X)<aLp} (X).!? (So any Y-mouse operator is an operator.) A Y-mouse
operator F is called first order if there are formulas 1 and 5 in the language
of Y-premice such that F(0,X) (F(1,X)) is the first M < Lp” (X) (Lp) (X))
satisfying ¢1 (¢2).
A mouse operator is a J™-mouse operator.

We can then define F-solidity, the L7 [E]-construction etc. as usual (see [13]
for more details). We now define the kind of condensation that mouse operators
need to satisfy to ensure the L7 [E] converges.

Definition 3.12: Let My, M5 be k-sound J-models over ai,as and let
T M1 — Ms. Then 7 is (weakly, nearly) k-good iff 7 | a1 = id, 7(a1) = aq,
and 7 is a (weak, near) k-embedding (as in [6]).

Definition 3.13: Given a J-model N over a, and M <N such that M is fully
sound, the M-drop-down sequence of N is the sequence of pairs
((@n,mn)), <) of maximal length such that Qy = M and mo = w and for
eachn+1 < k:

1) M< Qi1 <N and Q,, < Q,41,

2)

3) pm, (Qn) is an a-cardinal of 9,41,

4) 0< My < W,

5) Qn+1 18 (M1 — 1)-sound,

6) Prmnii(Qnr1) < Pmn(Qn) < Py —1(Qnt1)-

every proper segment of Q,, 11 is fully sound,

N N N N /S

Definition 3.14: Let F be an operator and let C be some class of E-active
F-premice. Let b be transitive. A (C-certified) L7 [E,b]-construction is a
sequence (N, ), with the following properties. We omit the phrase “over b”.
We have Ny = b and N7 = F(0,b).
Let o € (0, A]. Then N, is an F-premouse, and if « is a limit then N, is the
lim inf of the N3 for < . Now suppose that av < A. Then either:

12 This restricts the usual notion defined in [11].
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e N, is passive and is a limit of whole proper segments and N, 1 =
(Na, G) for some extender G (with Ny41 € C); or

o N, is w-F-solid. Let M, = C,(N,). Let M be the largest whole
segment of M,. So either M, = M or M, | M < F;(M). Let
N < F1(M) be least such that either N = F; (M) or for some k+1 < w,
(N | bk +1) is on the M-drop-down sequence of N' | b. Then
Na+1 =N \L b. (Note Ma <1Na+1.)

Definition 3.15: Let Y be an operator. We say that Y condenses coarsely iff
for all i € {0,1} and (i, X), (i, X) € dom(Y), and all J-models M* over X, if
m: MT — Y;(X) is fully elementary, fixes the parameters in the definition of
Y, then

(1) if i =0 then Mt <Y,(X); and
(2) ifi =1 and X is a sound whole Y-premouse, then M+ < Y;(X).

Definition 3.16: Let Y be a projecting, uniformly ¥, operator. We say that
Y condenses finely iff Y condenses coarsely and we have the following. Let
k < w. Let M* be a Y-premouse over a, with a largest whole proper segment
M, such that M = M* | M is sound and pg11(M™) = M. Let P*,a, P, P+
be likewise. Let A be a sound whole Y-premouse over a. Let G C Col(w, PUN)
be V-generic. Let N, 7,0 € V[G], with N a sound J-model over N such
that N* = N7 | @ is defined (i.e., acceptable). Suppose 7 : N'* — M?* is such
that 7(N) = M and either:

(1) M* is k-sound and N* = Cj1(M*); or
(2) (M*,k + 1) is in the N-dropdown sequence of N*, and likewise
(P*,k+1),P, and either:
(a) = is k-good, or
(b) = is fully elementary, or
(c) m is a weak k-embedding, o : P* — N* is k-good, o(P) = N and
moo €V is a near k-embedding.

Then NJF S] Yl(N)
We say that ¥ almost condenses finely iff N < Y;(N) whenever the
hypotheses above hold with N t, 7,0 € V.

In fact, the two notions above are equivalent.
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LEMMA 3.17: Let Y be an operator on a cone with base in HC. Suppose that
Y almost condenses finely. Then Y condenses finely.

We end this section with the following lemma (proved in Section 2 of [13]),
which states that the L7 [E]-construction (relative to some class of background
extenders) runs smoothly for a certain class of operators. In the following, if
(N,G) € C, then G is backgrounded as in [6] or as in [16] (we additionally
demand that the structure N in [16, Definition 1.1] is closed under F).

LEMMA 3.18: Let F be a projecting, uniformly Y1 operator which condenses
finely. Suppose F is defined on a cone with bases in HC. Let C = (Ny), <\
be the (C-certified) L7 [E, b]-construction for b € Cr. Then (a) Ny is 0-F-solid
(i.e., is an F-premouse).

Now suppose that N is k-F-solid.

Suppose that for a club of countable elementary © : M — Cr(N.), there is
an F-putative, (k,wy,w; + 1)-iteration strategy % for M, such that every tree
T via ¥ is (m,C)-realizable.'

Then (b) Ny is (k + 1)-F-solid.

LEMMA 3.19: Let Y, F be uniformly Y1 operators defined on a cone over some
H,., with bases in HC.'* Suppose that Y condenses finely. Suppose that F is a
whole continuing Y -mouse operator. Then F condenses finely.

The following lemma gives a stronger condensation property than fine con-
densation in certain circumstances. So if F satisfies the hypothesis of Lemma
3.20 (particularly, if F is one of the operators constructed in our core model
induction) then the L7 [E]-construction converges by Lemma 3.18.

LEMMA 3.20: Let Y, F be uniformly ¥, operators with bases in HC. Sup-
pose that Y condenses finely. Suppose that F is a whole continuing Y -mouse
operator. Then (a) F condenses finely. Moreover, (b) let M be an F-whole
F-premouse. Let 7 : N'— M be fully elementary with a® € Cx. Then N is an
F-whole F-premouse. So regarding F, the conclusion of 3.15 may be modified

»”

by replacing “<” with “=".

13 gee [13, Section 2] for a precise definition of (7, C)-realizability. Roughly speaking this
means that models along the tree 7 are embedded into the Ny ’s.
14 We also say “operator over H, with bases in HC” for short.
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Remark 3.21: In the context of the core model induction of this paper (and
elsewhere), we often construct mouse operators F defined over some H, with
base a ¢ HC. So given an F-premouse N, 7 : N* — N elementary, and N*
countable, N'** may not be an F premouse. We have to make some changes for
the theory above to work for these F. For instance, in Lemma 3.18, with the
notation as there, we can modify the hypothesis of the lemma in one of two
ways:
(1) We can either require that a € M, |M| = |a|, and the (7, C)-realizable
strategy ¥ is (k, |a|T,|a|t + 1)-iterable.
(2) We can still require M is countable but the strategy ¥ is a (k, w1, w1+1)-
FT-strategy, where F7 is the m-pullback operator of F.°

3.1.3. Strategy premice. We now proceed to defining >-premice, for an iteration
strategy . We first define the operator to be used to feed in X.

Definition 3.22 (B(a,T,b), bN): Let a,P be transitive, with P € Ji(a). Let
A>0

T be an iteration tree'® on P, of length wA, with 7 | € a for all 8 < wA.
Let b C wA. We define N' = B(a, T, b) recursively on 1h(7T), as the J-model N
over a, with parameter P,'7 such that:

(1) IV) = A,

(2) for each v € (0,\), Ny =B(a,T | wy,[0,w]7),
(3) BV is the set of ordinals o(a) + y such that v € b,
(4) EN =40,

We also write bV = b.

It is easy to see that every initial segment of N is sound, so N is acceptable
and is indeed a J-model (not just a J-structure).

In the context of a X-premouse M for an iteration strategy X, if T is the
<m-least tree for which M lacks instruction regarding X(7), then M will
already have been instructed regarding (7 | «) for all @ < Ih(7"). Therefore

15 For instance, if F corresponds to a strategy X, then F™ corresponds to X7, the 7-
pullback of . If F is a first order mouse operator defined by (¢, a), then F7™ is defined
by (¢, 71 (a)).

We formally take an iteration tree to include the entire sequence <MI>Q<1},(7-) of models.
So it is 3o (7, PB) to assert that “T is an iteration tree on P”.
17p— M(T is determined by 7.
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if Ih(7) > w then B(M, T,X(T)) codes redundant information (the branches
already in T) before coding (7). This redundancy seems to allow one to prove
slightly stronger condensation properties, given that > has nice condensation
properties (see Lemma 3.29). It also simplifies the definition.

Definition 3.23: Let ¥ be a partial iteration strategy. Let C' be a class of
iteration trees, closed under initial segment. We say that (3, C) is suitably
condensing iff for every 7 € C such that 7 is via ¥ and 1h(7) = A+ 1 for
some limit A, either (i) ¥ has hull condensation with respect to 7, or (ii) b7
does not drop and ¥ has branch condensation with respect to 7, that is, any

hull U~c of T70b is according to 3.

When C' is the class of all iteration trees according to ¥, we simply omit it
from our notation.

Definition 3.24: Let ¢ be an Ly-formula. Let P be transitive. Let M be a
J-model (over some a), with parameter P. Let T € M. We say that ¢ selects
T for M, and write T = 7:0/‘/‘, iff

(a) T is the unique x € M such that M F ¢(x),
(b) T is an iteration tree on P of limit length,
(c) for every N a M, we have N i o(T), and
(d) for every limit A < Ih(7), there is /' < M such that N (T | A).

One instance of ¢(P, T) is, in the case a is self-wellordered, the formula “T is
the least tree on P that doesn’t have a cofinal branch”, where least is computed
with respect to the canonical well-order of the model.

Definition 3.25 (Potential P-strategy-premouse, ¥M): Let ¢ € Lo. Let P,a be
transitive with P € J1(a). A potential P-strategy-premouse (over a, of
type ¢) is a J-model M over a, with parameter P, such that the B operator
is used to feed in an iteration strategy for trees on P, using the sequence of
trees naturally determined by S™ and selection by ¢. We let ™ denote the
partial strategy coded by the predicates BMI", for n < I(M).

In more detail, there is an increasing, closed sequence of ordinals (1)<,
with the following properties. We will also define SMI7 for all 5 € [1, I(M)] and
Ty = ’TUM for all n € [1,1(M)).

(1) 1 =no and M|l = J™(a; P) and M1 = ().
(2) (M) =mn,, so M|n, = M.



626 NAM TRANG Isr. J. Math.

(3) Given n < I(M) such that BMI" = (), we set M7 = Uy <n sMin’,

Let n € [1,I(M)]. Suppose there is v € [1,n] and T € M|y such that
T = EM‘W, and 7 is via ¥MI7 but no proper extension of 7 is via LM,
Taking v minimal such, let 7, = ’7},M|’Y. Otherwise let 7, = 0.

(4) Let a+1 <. Suppose Ty, = 0. Then no11 = 1o + 1 and M|neq1 =
T Mna; P) L a.
(5) Let @+ 1 < ¢ Suppose T =T, # 0. Let wA =1h(7). Then for some
b Cw, and § = B(M|na, T,b), we have:
(@) Mlnas1 2 S.
(b) If a4+ 1 < ¢ then M|ne41 = S.
(c) If S < M then b is a T-cofinal branch.!8
(d) For 7 € [1a, I(M)] such that n < I(S), MM = yMlna,
(e) If S < M then B5 = SMIne U {(T,55)}.
(6) For each limit o < ¢, BMIne = ().

Definition 3.26 (Whole): Let M be a potential P-strategy-premouse of type (.
We say P is p-whole (or just whole if ¢ is fixed) iff for every n < (M), if
Ty # 0 and T, # T,y for all ' < n, then for some b, B(M|n, T;,b) < M.1?

Definition 3.27 (Potential X-premouse): Let ¥ be a (partial) iteration strategy
for a transitive structure P. A potential Y-premouse (over a, of type ¢)
is a potential P-strategy premouse M (over a, of type ¢) such that XM C ».20

Definition 3.28: Let R, M be J-structures for Ly, a = a™ and b = a™. Suppose
that a,b code P, Q respectively. Let 7 : R — M (or

7:0o(R)UPU{P} = o(M)UQU{Q}

respectively). Then 7 is a (P, Q)-weak 0-embedding (resp., (P, Q)-very
weak 0-embedding) iff 7(P) = (Q) and with respect to the language Lo, 7 is
Yo-elementary, and there is an X C R (resp., X C o(R)) such that X is cofinal
in €® and 7 is ¥1-elementary on parameters in X UPU{P}. If also P = Q and

18 We allow MbT to be illfounded, but then 7 ~ b is not an iteration tree, so is not continued
by =M.

19 p-whole depends on ¢ as the definition of 7 does.

20 If M is a model all of whose proper segments are potential X-premice, and the rules for
potential P-strategy premice require that BM code a T-cofinal branch, but 3(T) is not

defined, then M is not a potential 3-premouse, whatever its predicates are.
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m [ PU{P} =1id, then we just say that 7 is a P-weak 0-embedding (resp.,
P-very weak 0-embedding).

Note that, for (P, Q)-weak 0-embeddings, we can in fact take X C o(R). The
following lemma is again proved in [13, Section 3].

LEMMA 3.29: Let M be a P-strategy premouse over a, of type y, where ¢ is
Y. Let R be a J-structure for Lo and o’ = a™, and let P’ be a transitive

structure coded by a'.

(1) Suppose m: R — M is a partial map such that 7(P') = P and either:
(a) wis a (P, P)-weak 0-embedding, or
(b) mis a (P', P)-very weak 0-embedding, and if E® # () then item 4

of 3.4 holds for E®.
Then R is a P’-strategy premouse of type . Moreover, if w [{P’'} UP’'=
id and if M is a ¥-premouse, where (%, dom(XM)) is suitably condens-
ing, then R is also a Y-premouse.

(2) Suppose there is 7 : M — R is such that w(a,P) = (a’,P’) and either
(a) 7 is Xo-elementary; or
(b) 7 is cofinal and ¥ -elementary, and BM = ().

Then R is a P’-strategy premouse of type ¢, and R is whole iff M is
whole.

(3) Suppose BM # (). Let T = ’7;7M where n < (M) is largest such that
M|n is whole. Let b = b™ and wy = |Jb. So M < B(M|n, T,b).
Suppose there is m : M — R such that 7(P) = P’ and 7 is cofinal and
Yi-elementary. Let wy' = sup w“w~.

(a) R is a P’-strategy premouse of type ¢ iff we have either (i) wy' =
Ih(7 (7)), or (i) wy' < Ih(x(T)) and b® = [0,wy']=(1).-

(b) If either ¥ € M or 7 is continuous at 1h(T), then R is a P'-
strategy premouse of type .

Remark 3.30: The preceding lemma left open the possibility that R fails to
be a P-strategy premouse under certain circumstances (because B* should be
coding a branch that has in fact already been coded at some proper segment
of R, but codes some other branch instead). In the main circumstance we are
interested in, this does not arise, for a couple of reasons. Suppose that ¥ is an
iteration strategy for P with hull condensation, M is a X-premouse, and A is
a Y-strategy for M. Suppose 7 : M — R is a degree 0 iteration embedding
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and BM # () and 7 is discontinuous at 1h(7"). Then [13, Section 3] shows that
bM € M. (It’s not relevant whether 7 itself is via A.) It then follows from Ob
of Lemma 3.29 that R is a X-mouse.

The other reason is that, supposing 7 : M — R isvia A (so 7 | PU{P} =id),
then trivially, B® must code branches according to ¥. We can obtain such a
A given that we can realize iterates of M back into a fixed 3-premouse (with
P-weak 0-embeddings as realization maps).

Definition 3.31: Let P be transitive and ¥ a partial iteration strategy for P.
Let p € Lo. Let F = Fx ., be the operator such that:

(1) Fola) = J™(a;P), for all transitive a such that P € J1(a).

(2) Let M be a sound p-whole Y-premouse of type ¢. Let A = (M)
and with notation as in 3.25, let 7 = 7y. If T = 0 then F1(M) =
TP(M;P). IE T # 0 then Fy (M) = B(M, T,b) where b= X(T).

We say that F is a strategy operator.

LEMMA 3.32: Let P be countable and transitive. Let ¢ be a formula of Ly.
Let ¥ be a partial strategy for P. Let D, be the class of iteration trees T on P
such that for some [J-model M, with parameter P, we have T = 7;M. Suppose
that (3, Dy) is suitably condensing. Then Fsx ., is uniformly ¥, projecting,
and condenses finely.

Definition 3.33: Let a be transitive and let F be an operator. We say that
MT#(a) exists iff there is a (0, |a|, |a| T+1)-F-iterable, non-1-small F-premouse
over a. We write le’#(a) for the least such sound structure. For 3,P,a, ¢ as
in 3.31, we write M>?# () for M} =% (a).

Let £ be the language Lo U { <, ¥}, where < is the binary relation defined
by “a is self-wellordered, with ordering <, and < is the canonical wellorder
of the universe extending <4”, and 3 is the partial function defined by “‘i? is a
transitive structure and the universe is a potential ‘B—strategy premouse over @
and X is the associated partial putative iteration strategy for ‘i?”. Let @an(T)
be the Lo-formula “T is the <-least limit length iteration tree & on B such
that U is via 3, but no proper extension of i is via 7. Then for &, P, a as in
3.31, we sometimes write M>%(a) for lez’“"““’#(a).

Let s be a cardinal and suppose that 9t = le’#(a) exists and is (0, s +1)-
iterable. We write Agy for the unique (0, k* + 1)-iteration strategy for 9 (given
that  is fixed).
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Definition 3.34: We say that (F, 3, ¢, D, a, ) is suitable iff a is transitive and
M7T#(a) exists, where either
(1) F is a projecting, uniformly 3; operator, Cx is the (possibly swo’d)
cone above a, D is the set of pairs (i, X) € dom(F) such that either
1 =0 or X is a sound whole F-premouse, and ¥ = ¢ =0, or
(2) P,X,¢,D, are as in 3.32, F = Fx, D, C D, D is a class of limit
length iteration trees on P, via X, X(7) is defined for all T € D, (X, D)
is suitably condensing and P € J1(a).

We write G for the function with domain Cz, such that for all x € Cx,
Gr(x) = X(x) in case (ii), and in case (i), Gr(0,2) = F(0,2) and Gz(1,z) is
the least R < Fi(x) | a® such that either R = F;(X) | a or R is unsound.

LEMMA 3.35: Let F be as in 3.34 and 9N = le’#. Then Agy has branch
condensation and hull condensation.

3.1.4. g-organized F-premice. Now we give an outline of the general treatment
of [13] on F-premice over an arbitrary set; following the terminology of [13],
we will call these g-organized F-premice and ©-g-organized F-premice. For
(©)-g-organized F-premice to be useful, we need to assume that the following
absoluteness property holds for the operator . We then show that if F is the
operator for a nice enough iteration strategy, then it does hold. We write 9t
for Mz and fix a,P, F, P, C as in the previous subsection. In the following, 6™
denotes the Woodin cardinal of 9. Again, the reader should see [13] for proofs

of lemmas stated here.

Definition 3.36: Let (F, X, p, C,a,B) be suitable. We say that ./\/llf’ﬁ(a) gener-
ically interprets F2! iff, writing 9 = M7 #(a), there are formulas ®, ¥ in
Ly such that there is some vy > §” such that 9|y F ® and for any non-dropping
Yop-iterate N of 9M, via a countable iteration tree 7, any N-cardinal §, any
v € Ord such that M|y E ® & “§ is Woodin”, and any g which is set-generic
over Ny (with g € V), then (N]y)[g] is closed under Gr, and Gr | (N]v)[g] is
defined over (N|y)[g] by ¥. We say such a pair (@, ¥) generically determines
(F,%,9,C,a) (or just F).

We say an operator F is nice iff for some X, ¢, C,a,PB, (F, 2, o, C,a,P) is
suitable and Mf"ﬂ generically interprets F.

2l 1y [13], this notion is called F determines itself on generic extensions. In this paper,
“determines itself on generic extensions” will have a different meaning, as defined later.
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Let P € HC, let X be an iteration strategy for P and let C' be the class of all
limit length trees via . Suppose M;"# (P) exists, (£, C) is suitably condensing.
We say that M7"#(P) generically interprets X iff some (®,¥) generically
determines (Fx,p,,,, 2, @ail; C, P). (Note then that the latter is suitable.)

LEMMA 3.37: Let N,d, etc. be as in 3.36, except that we allow T to have
uncountable length, and allow g to be in a set-generic extension of V. Then

(NY)]g] is closed under Gx and letting G' be the interpretation of ¥ over
NIlgl, ¢ 1C =Gz T (N )]gl-

We fix a nice F, M, Aoy = A, (P, V) for the rest of the section. We define
MZ from O in the standard way.

See [13, Section 4] for a proof that if ¥ is a strategy (of a hod mouse, a suitable
mouse) with branch condensation and is fullness preserving with respect to mice
in some sufficiently closed, determined pointclass I' or if 3 is the unique strategy
of a sound (Y')-mouse for some mouse operator Y that is projecting, uniformly
X1, M}/’ﬁ generically interprets Y, and condenses finely, then le 8 generically
interprets F.

Now we are ready to define g-organized F-premice.

Definition 3.38 (Sargsyan, [7]): Let M be a transitive structure. Let G be the
name for the generic G C Col(w, M) and let &. be the canonical name for
the real coding {(n,m) | G(n) € G(m)}, where we identify G with |JG. The
tree Ty, for making M generically generic is the iteration tree 7 on 9% of
maximal length such that:

(1) T is via A and is everywhere non-dropping.

(2) T | o(M)+11is the tree given by linearly iterating the first total measure
of 9t and its images.

(3) Suppose Ih(T) > o(M)+2 and let a+1 € (o(M),1h(T)). Let § = 6Ma
the Woodin cardinal of M7, and let B = B(MJ) be the extender
algebra of M at 6. Then E7 is the extender E with least index in
M such that for some condition p € Col(w, M), p IF“There is a B-

axiom induced by E which fails for 7.

Assuming that 9t is sufficiently iterable, then T); exists and has successor
length.
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Sargsyan noticed that one can feed in F into a structure A/ indirectly, by
feeding in the branches for Ty, for various M < N. The operator 8F, defined
below, and used in building g-organized F-premice, feeds in branches for such
Tam. We will also ensure that being such a structure is first-order — other than
wellfoundedness and the correctness of the branches — by allowing sufficient
spacing between these branches.

In the following, we let N7 denote the last model of the tree 7.

Definition 3.39: Given a formula ®. Given a successor length, nowhere dropping
tree 7 on 9, let P®(T) be the least P < NT such that for some cardinal §’ of
N7, we have §' < o(P) and P F ®4%§' is Woodin”. Let A = A®(7) be least
such that P®(T) < M. Then ¢ is a cardinal of M. Let I® = I®(T) be the
set of limit ordinals < A.

We can now define the operator used for g-organization:

Definition 3.40 (8F): We define the forgetful operator & F, for F such that M7 **
generically interprets F as witnessed by a pair (®,¥). Let b be a transitive
structure with 9% € 7, (b).

We define M = 8F(b), a J-model over b, with parameter 9, as follows.

For each o < (M), EMle = ().

Let ag be the least o such that J,(b) F ZF. Then M|ag = J2 (b; 9N).

Let T = Tijao- We use the notation P = P®(T), A = AX*(T), etc., as in
3.39. The predicates BM7 for oy < v < I(M) will be used to feed in branches
for 7 | A+ 1, and therefore P? itself, into M. Let (£,), ., enumerate I® U{0}.

There is a closed, increasing sequence of ordinals (7,),., and an increasing
sequence of ordinals (y4), ., such that: -

(1) m =7 =m0 = ao.

(2) For each a <, g < Yo < Nat1, and if a > 0 then v, < 1441-

(3) v, =I(M), so M = M|~,.

(4) Let a € (0,¢). Then 7, is the least ordinal of the form 71, + 7 such that
T 1 &a € Tr(M]ne) and if a > ag then §(T [ &) < 7. (We explain
below why such 7 exists.) And M|y, = T2 (M]nq; M) L b.

(5) Let a € (0,¢). Then M|nat1 = BM|va, T [ {a, A(T [ &a)) 4 0.

(6) Let o < ¢ be a limit. Then M|n, is passive.

(7) 7, is the least ordinal of the form 7, + 7 such that 7 | A+ 1 €
Tnetr(Mn,) and 7 > o(MJ); with this 7, M = J™(M|n,; M) | b
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and furthermore, 9F(b) is acceptable and every strict segment of 9F(b)
is sound.

Remark 3.41: Tt’s not hard to see (cf. [13]) M < M = 8F(b), the sequences
(M|na)ge, "M and (M|ya) <, "M and (T | @) ,cyq N M are M in L7,
uniformly in b and M.

Definition 3.42: Let b be transitive with 9t € J; (l;) A potential g-organized
F-premouse over b is a potential & F-premouse over b, with parameter 1.

LEMMA 3.43: There is a formula g in Lo, such that for any transitive b with
M e J1(b), and any J-structure M over b, M is a potential g-organized F-
premouse over b iff M is a potential Agp-premouse over b, of type pq.

LEMMA 3.44: &8F is projecting, uniformly 3.1, basic, and condenses finely.

Definition 3.45: Let M be a g-organized F-premouse over b. We say M is
F-closed iff M is a limit of 8 F-whole proper segments.

F . .
Because Mj U generically interprets F, F-closure ensures closure under Gr:

LEMMA 3.46: Let M be an F-closed g-organized F-premouse over b. Then
M is closed under Gr. In fact, for any set generic extension M|g] of M, with
g €V, Mlg] is closed under Gr and Gy | M|g| is definable over M|g], via a
formula in L, uniformly in M, g.

The analysis of scales in Lp ~ (R) runs into a problem (see [13, Remark 6.8]
for an explanation). Therefore we will analyze scales in a slightly different
hierarchy.

Definition 3.47: Let X C R. We say that X is self-scaled iff there are scales
on X and R\ X which are analytical (i.e., X1 for some n < w) in X.

Definition 3.48: Let b be transitive with 9 € 7, ().

Then ©F(b) denotes the least ' <I 8F(b) such that either ' = &F(b) or
J1(N) E“O does not exist”. (Therefore Ji™(b; M) < CF(b).)

We say that M is a potential ©-g-organized F-premouse over X iff
M € HCM and for some X - HCM, M is a potential Gf—premouse over
(HCM, X)) with parameter 9 and M E¢X is self-scaled”. We write XM = X
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In our application to core model induction, we will be most interested in
the cases that either X = ) or X = F | HCM. Clearly ©-g-organized F-
premousehood is not first order. Certain aspects of the definition, however,
are:

Definition 3.49: Let “I am a ©-g-organized premouse over X” be the Ly formula
¢ such that for all J-structures M and X € M we have M E ¢(X) iff (i)
X CHCM,; (ii) M is a J-model over (HCM, X); (iii) M|1 E“X is self-scaled”;
(iv) every proper segment of M is sound; and (v) for every N' < M:

(1) if N E“O exists” then N | (V]OV) is a PV -strategy premouse of type

Pg>
(2) if N E“© does not exist” then N is passive.

LEMMA 3.50: Let M be a J-structure and X € M. Then the following are
equivalent: (i) M is a ©-g-organized F-premouse over X; (ii) M E“l am a
©-g-organized premouse over X7 and PM = M and M C Agy; (iii) M|l is a
©-g-organized premouse over X and every proper segment of M is sound and
for every N' < M,

(1) if N E“O exists” then N | (N]0") is a g-organized F-premouse;
(2) if N E“© does not exist” then N is passive.

LEMMA 3.51: SF is basic and condenses finely.

Definition 3.52: Suppose F is a nice operator and is an iteration strategy and
X C R is self-scaled. We define LpGF(R,X) as the stack of all ©-g-organized
F-mice N over (H,,,X) (with parameter 9). We also say (©-g-organized)
F-premouse over R to in fact mean over H,,.

Remark 3.53: It’s not hard to see that for any such X as in Definition 3.52,
o(R)NLp 7 (R, X) = p(R) N LpG}-(R, X). Suppose M is an initial segment of
the first hierarchy and M is E-active. Note that M F “O exists” and M|© is
F-closed. By induction below M|0M, M|OM can be rearranged into an initial
segment N of the second hierarchy. Above ©®M, we simply copy the E- and
B-sequence from M over to obtain an A" <1 Lp 7 (R, X) extending .

In core model induction applications, we often have a pair (P, %) where P
is a hod premouse and X is P’s strategy with branch condensation and is full-
ness preserving (relative to mice in some pointclass) or P is a sound (hybrid)
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premouse projecting to some countable set a and ¥ is the unique (normal)
w1 + L-strategy for P. Let F be the operator corresponding to ¥ (using the for-
mula ¢,);) and suppose Mf’ﬂ exists. [13, Lemma 4.8] shows that F condenses
finely and Mf’ﬂ generically interprets F. Also, the core model induction will
give us that F | R is self-scaled.?? Thus, we can define Lpr(R, F | R) as above
(assuming sufficient iterability of leﬁ) A core model induction is then used
to prove that LpGF(R, FIR)E AD™. What’s needed to prove this is the scales
analysis of LpG}-(R, F | R), from the optimal hypothesis (similar to those used
by Steel; see [19] and [20]).2> This is carried out in [13]; we will not go into
details here, though we simply note that for the scales analysis to go through
under optimal hypotheses, we need to work with the ©-g-organized hierarchy,
instead of the g-organized hieararchy.

3.1.5. Brief remarks on S-constructions. Suppose F is a nice operator (with
parameter PB) and suppose M is a G-mouse (over some transitive a), where G
is either 8 F or ©F. Suppose § is a cutpoint of M and suppose N is a transitive
structure such that 6 C N C M|d, P € N. Suppose P € J,[N] is such that
M|§ is P-generic over J,[N] and suppose whenever Q is a G-mouse over N/
such that HgQ = N then M|J is P-generic over Q. Then the S-constructions (or
P-constructions) from [12] give a G-mouse R over N such that R[M|d] = M.
The S-constructions give the sequence (R, : 6 < a < A) of G-premice over N,
where

(i) Rov1 = TS N);

(ii) if o is limit, then let Ry, = Us_,, Rp. If M|a is passive, then let Ry = RS,

So Ry, is passive. If BMI* =£ (§, then let

Ra = (IR0, BM, | ) 572, N, ).

B<a

22 We abuse notation here, and will continue to do so in the future. Technically, we should
write F [HC.

23 Suppose P = Mg and ¥ is P’s unique iteration strategy. Let F be the operator corre-
sponding to 3. Suppose LpG]:(R,F  R) E ADT 4+ MC. Then in fact LpG]:(R) Np(R) =
Lp(R) N p(R). This is because in L(Lp 7 (R, F [ R)), L(p(R)) F AD* + © = @y + MC
and hence by [9], in L(LpG]:(]R,]-' I R)), (R) C Lp(R). Therefore, even though the
hierarchies Lp(R) and LpG]: (R, F | R) are different, as far as sets of reals are concerned,
we don’t lose any information by analyzing the scales pattern in LpG]:(R, F | R) instead
of that in Lp(R).
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Suppose EMI® £ (; let E* = EMle 0 |RY |, then we let

Ro = (IRLE%,0, | ) 72, N, P).
B<a

By the hypothesis, we have R,[M]d] = M|a.
(iii) Suppose we have already constructed R, and (by the hypothesis) maintain

that Rq[M]0] = M]a. Then Rot1 = TP (Ra)-
(iv) A is such that Ry[M]d] = M. We set Ry = R.
We note that the full construction from [12] does not require that § is a cut-
point of M but we don’t need the full power of the S-constructions in our
paper. Also, the fact that M is g-organized (or ©-g-organized) is important for
our constructions above because it allows us to get past levels M|a for which
BMle £ (). Because of this fact, in this paper, hod mice are reorganized into the
g-organized hierarchy, that is if P is a hod mouse then P(a+1) is a g-organized
Yp(a)-premouse for all a < AP. The S-constructions are also important in
many other contexts. One such context is the local HOD analysis of levels of
Lpr(R,f I R), which features in the scales analysis of Lpr(R,]: I R) (cf.
13)).

3.1.6. Core model induction operators. To analyze 2, we adapt the framework
for the core model induction developed above and the scales analysis in [13],
[20], and [19]. We are now in a position to introduce the core model induction
operators that we will need in this paper. These are particular kinds of (hy-
brid) mouse operators that are constructed during the course of the core model
induction. These operators can be shown to satisfy the sort of condensation
described above and determine themselves on generic extensions.

Suppose F is a nice operator and I' is an inductive-like pointclass that is
determined. Let 9t = ./\/llf’ﬁ. Lp’” (z) is defined as in the previous section. We
write Lpg}-’r(x) for the stack of sound, projecting to x9 F-premice M over x
such that every countable, transitive M* embeddable into M has an w;-9F-
iteration strategy in I'.

Definition 3.54: Let t € HC with 9 € Ji(t). Let 1 < k < w. A premouse
N over t is F-I'-k-suitable (or just k-suitable if I" and F are clear from the
context) iff there is a strictly increasing sequence (;);, such that:

(1) V6 € N, N E“6 is Woodin” if and only if 3i < k(6 = d;).

(2) o(N) = sup, ., (d2,)".
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(3) If N is a &F-whole strong cutpoint of N then N|(npt)N =
Lp T (W) 24

(4) Let & < o(N), where N E“¢ is not Woodin”. Then Cr(N|§) E“€ is not
Woodin”.

We write 6 = §;; also let &, = 0 and 6 = o(N).

Definition 3.55 (relativizes well): Let F be a Y-mouse operator for some oper-
ator Y. We say that F relativizes well if there is a formula ¢(z,y, z) such
that for any a,b € dom(F) such that a € L1(b) and have the same cardinal-
ity, whenever IV is a transitive model of ZFC™ such that IV is closed under Y,
F(b) € N, then F(a) € N and is the unique 2 € N such that N E ¢[z, a, F(b)].

Definition 3.56 (determines itself on generic extensions): Suppose F is a Y-
mouse operator for some operator Y. We say that F determines itself on
generic extensions if there is a formula ¢(z, y, z), a parameter a such that for
almost all transitive structures N of ZFC™ such that w; C N, N contains a and
is closed under F, for any generic extension Ng] of N in V, F N N[g] € N|g]
and is definable over N|g] via (¢, a), i.e., for any z € N|[g] Ndom(F), F(a) =b
if and only if b is the unique ¢ € N|g] such that N[g] F ¢[x, c,a].?®

The following definition gives examples of “nice model operators”. This is
not a standard definition and is given here for convenience more than anything.
These are the kind of model operators that the core model induction in this
paper deals with. We by no means claim that these operators are all the useful
model operators that one might consider. Recall we fixed a V-generic G C
Col(w, k).

Definition 3.57 (Core model induction operators): Suppose (P, X) is a hod pair
below r; assume furthermore that ¥ is a (AT, AT)-strategy. Let F = Fx .,
(note that F, 9F are basic, projecting, uniformly ¥;, and condenses finely).
Assume F [ R is self-scaled. We say J is a ¥ core model induction operator or
just a ¥-cmi operator if in V[G], one of the following holds:

24 Literally we should write “N/|(n+)N = Lp" (N|n) | £, but we will be lax about this from
now on.
25 By “almost all”, we mean for all such N with the properties listed above and N satisfies

some additional property. In practice, this additional property is: N is closed under

7,
MTE
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(1) J is a projecting, uniformly 3, first order F-mouse operator (or

VIGl above some a €

g F-mouse operator) defined on a cone of (H,,)
(H,, )¢, Furthermore, J relativizes well.

(2) For some o € OR such that « ends either a weak or a strong gap in
the sense of [19] and [13], letting M = LpGF(R,]: I R)||a and T' =
()M, M E AD* 4+ MC(X).%¢ For some transitive b € HXI[G] and some
g-organized F-premouse Q over b, J = Fj, where A is an (w1, w1)-
iteration strategy for a 1-suitable (or more fully F-I-1-suitable) Q which
is I'-fullness preserving, has branch condensation and is guided by some
self-justifying-system (sjs) A = (4; : i < w) such that A € ODZJ)\?E@ for

some real z and A seals the gap that ends at .?”

Remark 3.58: 1) The X-cmi operators J we construct in this paper also deter-
mine themselves on generic extensions. If J is defined as in (1) and determines
itself on generic extensions, then so does the “next operator” M{’ﬂ. If Jis
defined as in (2), then [13] shows that M;"* generically interprets J; from this,
the proof of Lemma 3.46 (see [13, Lemma 4.21]) shows that J determines itself
on generic extensions.

2) Suppose J is defined on a cone over (H,, )¢l above some transitive a €
H,‘_i/+ and J [ V € V. During the course of construction, we show that knowing
J on V is sufficient to determine J on V[G]. During the course of the core
model induction, we’ll be first constructing these ¥-cmi operators J’s on H":+
(above some a); then we show how to extend J to HCVIG]: we then lift J to
HY,, which then extends J to H;[G].

3) By results in [7], under (}), if (P, X) is a hod pair such that ¥ has branch
condensation, then ¥ has hull condensation. The same is true for (Q,J) in
Definition 3.57. This implies that ¥ (J) is suitably condensing.

3.2. GETTING Mi]"j AND LIFTING. We assume the hypothesis of Theorem 0.2.
We fix a V-generic G C Col(w, k) and recall that we let A = 2%. Suppose
(P*,%) is a hod pair below x such that ¥ is an (k1, kT)-strategy in V|[G] and

26 MC(X) stands for the Mouse Capturing relative to ¥ which says that for z,y € R, z
is OD(X,y) (or equivalently x is OD(F,y)) iff z is in some €F-mouse over y. SMC is
the statement that for every hod pair (P, %) such that ¥ is fullness preserving and has
branch condensation, then MC(X) holds.

27 This implies that A is Wadge cofinal in Env(T'), where I' = £}, Note that Env(T") =
p(R)M if a ends a weak gap and Env(T') = p(]R)Lp}: ®)(a+1) if ¢ ends a strong gap.
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VeV (or (PX) = (0,0)). Suppose J is a Y-cmi-operator. As part of
the induction, we assume J is defined on a cone in H)‘Q[G} above some = € H;Q
and J | V € V.28 We first show M7 (a) exists (and is (xT, T )-iterable) for
a € HY, Ndom(J). We then show that M*(a) is defined on HY. and M s
(AF, AT)-iterable for all @ € HY, . Finally, we get that M is a S-cmi operator
defined on a cone in HﬂG].

Let F = Fx .- Let A code P* and Lp? (A) be the union of all N such
that A is w-sound above A, N is a countably iterable ¥-premouse over A and
pw(N) < sup(A). This means whenever m : N* — N is elementary, N'* is
countable, transitive, then N* is (w,w; + 1) iterable via a unique strategy A
such that whenever M is a A-iterate of A*, then M is a X™-premouse. As a
matter of notations, in V, for A a bounded subset of (A7), we set

Lpy (A) = Lp7 (A).
Suppose Lp>~ (A) has been defined for a < A™,
Lp, 41 (A) = Lp  (Lpy (4)),2
amd for £ < 7 limit,

Lpy i1 (4) = [ LpX(4).
a<§
We define LpgE (A) and Lpf\Z (A) similarly for £ < A%, in the presence of Mlz’ﬁ.
We also write Lp~(A) for LpZ (A) and similarly for Lp**(A) and LpGZ(A). We
work in V for a while.

LEMMA 3.59: Let A be a subset of \ coding P*. Then Lpy: (A) £ At exists.
Similarly, Lp,3 (A), Lpi% (A) E AT exists.

Proof. Suppose not. This easily implies that we can construct over Lp§+ (A) a
Ox-sequence.?® This contradicts -y in V. ]

The following gives the main consequence of the failures of squares assump-
tion. It allows us to run covering arguments later.

28 We note the specific requirement that the cone over which J is defined is above some
x € V. These are the X-cmi-operators that we will propagate in our core model induction.
We will not deal with all ¥-cmi-operators.

29 Lpfﬂ&LpE (A)) is defined similarly to LpJ but here we stack continuing, F-sound
F-premice. One can show by induction on o that Lp§+(Lpg (A)) = Lpf (LpZ (A)).

30 Squares hold in Lprr (A) because X has hull and branch condensation.
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LEMMA 3.60: Let A, be as in 3.59. Let M € {Lp%, (A), Lpy3 (A), Lpi% (A)}
and v = (AT)M. Then cof(y) < k.

Proof. First note that v < AT by Lemma 3.59. Now suppose cof(y) = ¢ for
some regular cardinal £ € [T, \]. Let f : & — v be cofinal and continuous.
Using f and Oy in M, by a standard argument (see [10]) we can construct a
non-threadable sequence of length £.31 This contradicts —=J(&). [ |

Let S be the set of X < Hy++ such that k C X, | X| =k, X¥ C X, and X is
cofinal in the ordinal height of Lp®(B), Lp X(B) and J, (P* U {P*},%) € X.32
So S is stationary. As before, we let mx : Mx — Hy++ be the uncollapsed map
and Ax be the critical point of mx. We first prove some lemmas about “lifting”
operators. In the following, when we write “LpGF ? we implicitly assume le’ﬁ

exists and is (AT, AT)-iterable. We will prove this at the end of the section.

LEMMA 3.61: Suppose A* C \. Suppose X € S such that A* € X and X is cofi-
nal in Lp*(A*) (there are stationary many such X because cof(o(Lp*(A*))) < k
by 3.60). Let x(A) = A*. Then Lp*™(A) C Mx. The same conclusion holds if
we replace Lp™(A) by LpGE(A) or Lp > (A).

Proof. We just prove the first clause. Suppose not. Then let M < Lp™(A) be
the least counterexample. Let E be the (Ax, \)-extender derived from 7x. Let
N =TUlt(M, E). Then any countable transitive N* embeddable into A (via o)
is embeddable into M (via 7) such that ig o 7 = o by countable completeness
of B. So N* is wy 4 1 Y%-iterable because M <1 Lp™(A), o~ 1(P*) = 71 (P*),
and o [ o~ Y(P*) =7 | o~ (P*). So N < Lp”(A*). But since 7x is cofinal in
Lp¥(A*), N ¢ Lp=(A*). Contradiction. n

LEMMA 3.62: 1) If H is defined by (1, a) on Hy,! (as in clause 1 of 3.57) with
ac€V and H |V €V, then H can be extended to an operator H™ defined
by (¢,a) on Hy+. Furthermore, H relativizes well.

2) If (Q,F) and T" are as in clause 2 of Definition 3.57, where F plays the role
of A there with (Q,F | V) € V, then F can be extended to a (AT, \T)-
strategy that has branch condensation. Furthermore, there is a unique such

extension.

31 A thread will allows us to construct a Y-mouse projecting to A and extends M|y but not
in M. This is a contradiction to the definition of M.
32 This means (P*,% [ V) € X and ¥ € X[G] but we will abuse notation here.
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Proof. To prove 1), first let A* be a bounded subset of A™ (in the cone above a)
and let X € S such that A* € X and X is cofinal in Lp®(A*). Let mx(A) = A*.
We assume H is an F-mouse operator. By Lemma 3.61, H(A) € Mx and hence
we can define Ht(A*) = nx (H(A)) (as the first level M <Lp™(A*) that satisfies
[A*,a]). This defines H on all bounded subsets of xT. The same proof works
for H being a 8 F-mouse operator. We can then define H* on all of H,.+ using
the fact that H relativizes well and |H;| = k. It’s easy to see then that H™
also relativizes well.

We first prove the “uniqueness” clause of 2). Suppose F; and F are two
extensions of F' and let T be according to both F; and Fy. Let by = Fi(T)
and by = Fo(T). If by # ba then cof(lh(T)) = w. So letting 7* be a hull of
T such that |7*| < wqe and letting 7 : 7* — T be the hull embedding, then
{b1,b2} € rng(m). Then 7~ 1[by] = F(T*) # n~t[ba] = F(T*). Contradiction.

To show existence, let F,+ = F. Inductively for each k™ < £ < AT such that
¢ is a limit ordinal, we define a strategy F¢ extending F,, for a < § and F¢ acts
on trees of length £. For X <Y < Hy++, let nxy = ﬂ;l omx. Let 7 be a
tree of length £ such that for every limit £* < &, T | £* is according to F¢-. We
want to define F¢ (7).

For X € S such that X is cofinal in Lp,™ (M(T)) (such an X exists by the
proof of 3.60 again),® let (Tx,¢x) = myx (T,€) and bx = F(Tx). Let cx be
the downward closure of Tx[bx] and cx y be the downward closure of mx vy [bx].

CraM: For all v < &, either VX € S3* v €cx or V*X € S v ¢ cy.

Proof. The proof is similar to that of Lemma 2.5 in [17] so we only sketch it
here. Suppose for contradiction that there are stationarily many X € S such
that v € cx and there are stationarily many Y € S such that v ¢ c¢y. Suppose
first cof(€) € w1, k]. Note that crt(mx), crt(my) > k. It’s easy then to see that
mx[bx] is cofinal in £ and 7y [cy] is cofinal in £. Hence cx = c¢y. Contradiction.

Now suppose cof(¢) = w. Fix a surjection f: A - & V*X € S (f,€) € X so
let (fx,éx) = w)_(l(f, €). For each such X let ax be least such that fx[ax]Nbx
is cofinal in £x. By Fodor’s lemma,

Ja3U (U is stationary AVX € U ax = a).

33 Recall Lpia(M(T)) is just Lpii(M(T))
34 This means the set of such X is C'N S for some club C.
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By symmetry and by thinning out U, we may assume
X e U = 73! (y) € bx.

Fix Y € S such that v ¢ ¢y and a@ < Ay. Since U is stationary, there is some
X € U such that Y < X, which implies

my,x[fy[e]] = fx[o]

is cofinal in bx and hence Ty~ W;,lx [bx] is a hull of Tx. Since F' condenses well,
w;}x [bx] = by. This contradicts the fact that 73 (v) € bx but 7y ' (7) ¢ by

Finally, suppose cof(§) > k1. The case Tx is maximal is proved exactly as in
Lemma 1.25 of [17]. Suppose Tx is short and is according to F. Note that 1h(7x)
has uncountable cofinality (in V). We claim that V*X € S bx = F(Tx) € Mx.
Given the claim we get that for any two such X < Y satisfying the claim,
7mx,y(bx) is cofinal in 7Ty and hence mx y(bx) = by. This gives cxy is an
initial segment of by, which is what we want to prove.

Now to see V*X € S, bx = F(Tx) € Mx. We first remind the reader
Q(Tx) is the least QQLpiE’F(M(TX)) that defines the failure of Woodinness of
d(Tx). Since 6(T) has uncountable cofinality (in V and in V[G]), by a standard
interpolation argument, whenever Mgy, M; € LpiE’F(M(TX)) then we have
either My < Mj or My < My. So the “leastness” of Q(Tx) is justified in this
case. By the same proof as that of Lemma 3.61 and the fact that X is cofinal
in Lp;% (M(T)) and Lp}™" (M(Tx)) S Lp.% (M(T)), we get Q(Tx) € Mx.

Now F(Tx) = bx is the unique branch b such that Q(b, Tx) exists and
(Q(b, Tx)*, M(Tx)) 3° is Q(Tx). The uniqueness of bx follows from a stan-
dard comparison argument. By an absoluteness argument and the fact that
O(Tx) € Mx, bx € Mx. We're done. ]

Using the claim, we can just define
YEF(T) & V'XeSyecex.

It’s easy to verify that with this definition, the unique extension of F' to a
(kT, k™) strategy has branch condensation. This completes the proof sketch of
the lemma. |

35 See [18] for more on *-translations. (Q(b, Tx)*, M(Tx)) is fine-structurally equivalent
to Q(b, Tx) but itself is a ©E-premouse over M(Tx).
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LEMMA 3.63: (1) If H is a defined by (¢, a) on HX[G] as in clause 1 of 3.57
with a € H;ﬁ, then H can be extended to a first order mouse operator
HT defined by (1, a) on HﬂG]. Furthermore, HY relativizes well and if H
determines itself on generic extensions then so does Ht.

(2) If (Q,A) and T are as in clause 2 of Definition 3.57, where F plays the
role of J there and (Q,A | V) € V, then A can be extended to a unique
(At, AT)-strategy that has branch condensation in V[G].

Proof. For (1), let b € HL[G] and let 7 € HY, be a nice Col(w, x)-name for

36 Assume

b (Col(w, k) is KT-cc so such a name exists by the choice of A).
H is a Y-mouse operator (the other case is proved similarly). Let X € S be
such that P* U {P*},%,b, 7, H(T) € X[G]; here we use Lemma 3.62 to get that
H(r) is defined. Let (b,7) = my (b,7). Then ny'(H(7)) = H(7) € Mx by
condensation of H. Since H relativizes well, H(b) € Mx|[G]. This means we
can define HT(b) to be mx(H(b)). We need to see that H*(b) is countably
Y-iterable in V[G]. So let 7 : N — H7T(b) with A/ countable transitive in
V|G] and 7(b*) = b. Let X C Y € S be such that ran(w) C ran(my); then
H(my' (b)) € My[G] and there is an embedding from N into H (7' (b)), so N
has an (wq,w; + 1)-X-iteration strategy. The definition doesn’t depend on the
choice of X and it’s easy to see that H™ satisfies the conclusion.

For (2), let M € H}\Q[G] be transitive and 7 € Hy, be a Col(w, k)-term for
M. We define the extension AT of A as follows (it’s easy to see that there is at
most one such extension). In N = LY} [4, 9], where A C X codes tr.cl.(r) and
a well-ordering of tr.cl.(r), A* is the unique (AT, \*)-A-strategy for 9 = M2*
in V; A* exists by Lemma 3.62.

Let Tir.c1.(r) be according to A* and be defined as in Definition 3.38. Note
that (AT)Y < (AT)Y by =0, and the fact that Oy holds in N, so Ty c.(r) € N
and has length less than o(N) = A*. Let R be the last model of T, o) and
note that by the construction of 7. .. (), M is generic over R. Let U € M be
a tree according to AT of limit length, then set AT (U) = b where b is given by
(the proof of) [13, Lemma 4.8] by interpreting A over generic extensions of R.

By a simple reflection argument, it’s easy to see that A" () doesn’t depend

36 1 particular, a nice Col(w, k)-name for a real can be considered a subset of x and hence
a nice Col(w, k)-name for R[S is an element of H}Q.
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on M.37 This completes the construction of AT. It’s easy to see that F'T has
branch condensation. ]

Let J be as above. We now proceed to construct ./\/ll‘]’ﬁ. We denote Mg’n(x)
for the least F-active, sound .J-mouse over .

LEMMA 3.64: For every A bounded in A*, M*(A) exists.

Proof. By Lemma 3.62, it’s enough to show that if A is a bounded subset of
k*, then Mg’ﬁ(A) exists. Fix such an A and let X € S such that sup(4) U
{A,sup(A4),J} C X and X is cofinal in the L”[A]-successor of x*, which has
cofinality at most k. Hence mx(A4) = A. Let

n= {B C Ax | Ax Eﬂx(B)/\B GLJ[A] 38}.
CLAIM 3.65: yu is a countably complete L”[A]-ultrafilter,

Proof. Let Q = L7[A] and P = 7" (Q). Let n = x* and ¢ = 7' ((n")9).
Let ko = Ax. Then & = (k7)?. This is because X is cofinal in (n7)?. So
u is indeed total over L”/[A]. Using the fact that X* C X, we get that u is
countably complete. ]

We need to know that when iterating L/[A] by u and its images, the iterates
are L7[A]. This follows from a well-known argument by Kunen. The point is
that iterates of L7[A] by p and its images can be realized back into L”/[A] and
hence since J condenses well, the ultrapowers are L/[A]. We outline the proof
here for the reader’s convenience (see [22, Theorem 28] for a similar argument).

Let po = p, & =&, and My = (Lg [A], o). By the usual Kunen’s argument,
Mg is an amenable structure. By induction on o < kT, we define:

(1) Mg, the a-th iterate of Mg by pp and its images,
(2) maps Tha : Mp = Mg for § < a,

(3) maps mg,q : L7[A] — L/[A] extending 5 o

(4)

4) maps 7, : LY[A] — L7[A] such that V3 < a, 75 = To © Tg.a-

37 Let M, M* be such that Y € M N M*; let 7,7* be nice Col(w, k)-terms for M, M*
respectively. In V[G], let X[G] contain all relevant objects and X € S. Let a = 7r;(1 (a)
for all a € X[G]. Then letting bo, b1 be the branches of U given by applying [13, Lemma
4.8] in LA [tr.cl.(7), <1, M], LA [tr.cl.(7%), <2,9M] (built inside Mx [G]), where < is a
well-ordering of 7 and <2 is a well-ordering of 7*. Then by = by as both are according
to A, since (9M, A*) generically interprets A in V[G].

38 We only build L7[A] up to AT,
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For oo = 0, let 7§y 1, mo,1 be the po-ultrapower maps and let E be the (ko,wy )-
extender derived from 7x and let

70 : L7[A] — Ult(L7[A], E).

It’s easy to see that:

e 79 has a stationary set of fixed points.

o Ult(L/[A],E) = L[A] (similarly, Ult(L7[A], uo) = L7[A]). Let Y <
H,++ be countable containing all relevant objects and 7 : M — Y be the
uncollapse map and for each a € Y, let a* = 7~ !(a). Using countable
completeness of E, it is easy to check that in M, Ult(L' [A*], E*)
realizes into L”[A] and is in fact L7 [A*].

If « is limit, let M, be the direct limit of the system (Mg,ﬂ'j;ﬂ).y<5<a,
To = limg<q 78, and 7j ,, mg o be natural direct limit maps.

Suppose o = 4+ 1 and Mg = (L‘E’B [A], ug) is an amenable structure, kg =
crt(pp) = mo,(ko0), and pg = mo glpo]. Let 75 ,,Tp.a be pg-ultrapower maps.
For any f € L7[A],

Ta(mg,a(f) (k) = 75 (f)(r5)-

We need to check that 7, is elementary. This is equivalent to checking pg is
derived from 73, i.e.,

(3.1) C € g < kg € 13(0).

To see (3.1), let v < po and W = po N L7 [A], f : ko — p(ko) N L [A]. Let ¢ be
a finite set of fixed points of 79 and such that

VE < ko f(€) = TE [ (€) N ko
So
(3.2) L7[A] B VE < ko (T[c(€) Nko € W < kg € T]c)(€)).

This fact is preserved by mo g and gives (3.1).

One can also show by induction that crt(ry) = x4 for all ¥ < . This is
because k. is the only generator of fi.

So M7* exists (and is (AT, AT)-iterable by Lemma 3.62). B

LEMMA 3.66: Suppose A is a bounded subset of \*. Then M:"*(A) exists and
is (AT, A\T)-iterable.
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Proof. It suffices to show Mi]’ﬁ(a) exists for @ a bounded subset of kT (with a
coding x). Fix such an a and suppose not. Then the Jensen-Steel core model
(cf. [2]) K7(a) exists.?® Let v > k¥ be a successor cardinal in K7(a). Since
At =o(K7(a)) > k* and is a limit of cardinals in K7 (a) (by the proof of 3.59),
we can take v < AT. Weak covering (cf. [2, Theorem 1.1 (5)]) gives us

(3.3) cof(y) > |y[ > w™.

Let C be a O-sequence in K7 (a) witnessing [(y). By a standard argument,
one can construct from C a sequence witnessing C(cof(7y)); but cof(y) > k* by
(3.3) and —O(cof(7)). Contradiction. n

Lemmas 3.62, 3.63, and 3.66 allow us to extend J\/ll‘]’ﬁ to H;\/JG].

LEMMA 3.67: Suppose J is defined on a cone above some a € HY, in HXJG]

as in case 1 of 3.57. Then for every b € H;/JG] coding a, Ml‘]’ﬁ(b) is defined
(and is (AT, A\T)-iterable in V[G]). Otherwise, letting (Q,A),z,T" be as in 2 of
Definition 3.57 and J = Fa,,,,, then ./\/llJ’ﬁ(a) is defined for all a € H)‘Q[G} coding
x, Q. Furthermore, these operators determine themselves on generic extensions

if J does.

3.3. THE CORE MODEL INDUCTION THEOREM. Let (P*,X), F be as in the pre-
vious section. When an 9 F-premouse P is 1-F-I'-suitable, we simply say P is
T'-suitable if F is clear from the context. Recall that under AD, if X is any set
then fx is the least ordinal which isn’t a surjective image of R via an ODx
function.

The following is an outline of the proof of the core model induction theorem.
We will follow the standard convention and use upper-case Greek letters I', Q2
etc. to denote lightface pointclasses, bold upper-case Greek letters I', Q2 etc. to
denote boldface pointclasses. Given a point class ', we let I' denote the dual
pointclass of I' and Ar denote the pointclass T' N I'. For more on the envelope
Env(T), the notion of Cr and other relevant descriptive set theoretic notions,
see [28].

We refer the reader to [13] for the scales analysis in Lp* (R, F | R) that we
use in the proof of Theorem 3.72. We recall some notions which are obvious
generalizations of those in [11] and [28]. The following definitions refer to V[G].

39 By our assumption and the fact that J condenses finely, K¢ (a) (constructed up to AT)
converges and is (AT, AT)-iterable. See Lemma 3.18.
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Definition 3.68: We say that the coarse mouse witness condition W;’EF holds
if, whenever U C R and both U and its complement have scales in chf (R, F |
R)|v, then for all k£ < w and x € R there is a coarse (k, U)-Woodin & F-mouse?’
containing = with an (w; + 1)-iteration & F-strategy whose restriction to H,,, is
in Lp 7 (R, F | R)|y.

Remark 3.69: By the proof of [11, Lemma 3.3.5], W;vg}— implies
Lp®” (R, F | R)|y F AD.

Definition 3.70: An ordinal v is a critical ordinal in LpGF(R, F | R) if there is
some U C R such that U and R\U have scales in Lp"* (R, F | R)|(y + 1) but
not in chf(R, F | R)|y. In other words, ~ is critical in chf(R, F [ R) just in
case W,;fl}— does not follow trivially from WJ 5F,

Definition 3.71: Let stGf(R,]: I R) be the initial segment of Lpr(R,]: ' R)
that is the union of all M < Lpr (R, F | R) such that every countable M*
embeddable into M has an iteration strategy in M.

We will prove in the next theorem that stG}-(R, F | R) EAD™; in fact, this
is the maximal model of AD™ 4+ © = #y, in light of [18, Theorem 17.1]. We note
that

p(R) N L(sLp * (R, F [ R)) = p(R) NsLp 7 (R, F | R)
but don’t know if sLp (R, F | R) = Lp ¥ (R, F | R) in general.

THEOREM 3.72: Assume the hypothesis of Theorem 0.2 and (}). Suppose
(P,X) is a hod pair below x and ¥ is a (AT, \T)-strategy in V|G] with branch
condensation. Let F be the corresponding operator (i.e., F = Fx ., ). Suppose
F | R is self-scaled. Then in V[G], stGF(R,]—' I R) E AD' + s = ©. Hence,
o(R)NsLp 7 (R, F [ R) C Q.

Proof. As shown in subsection 3.2, our hypothesis implies that for every »-cmi
operator H, ./\/l{{’ﬁ exists and can be extended to H ;/ JG]; furthermore, these
operators determine themselves on generic extensions. We will use this fact and
refer the reader to subsection 3.2 for the proof. Working in V[G], let a be the
strict supremum of the ordinals « such that

40 This is the same as the usual notion of a (k, U)-Woodin mouse, except that we demand
the mouse is closed under 8F.
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. .. g
(1) the coarse mouse witness condition W,;‘H}— holds*!;

(2) 7 is a critical ordinal in stGF(R,]—' I R) (i.e., v + 1 begins a gap in
sLp 7 (R, F | R)).

Using the fact that M{M exists for every X-cmi operator H, it’s easily seen that
« is a limit ordinal. By essentially the same proof, with obvious modifications,
as that in [17], we can advance past inadmissible gaps and admissible gaps in
stGF(R,]—' [ R)|a. In each case, say [v,£] is a gap in stGF(R,]: I R)|a and
W,;"gf, the proof in [17, Sections 1.4, 1.5] and the scales analysis in [13]*? allow
us to construct a nice operator F on a cone above some x in HCVI[¢! such that
T € HXS, F [V € V. By the previous subsection, we can extend F' to a nice
operator on H:lG] (also called F') with FF | V € V. Again, by the previous
subsection, we can construct a sequence of nice operators (F), : n < w), where
Fy = F, Foyy = M™% and these operators witness nglf (or ngf if the
gap is strong). .

Hence, the (lightface) pointclass I' = Ein T®F®I i inductive-like and
Ar= p(R)N stGf(]R,f I R)|a. Since T' is inductive-like and Ar is deter-
mined, Env(T) is determined by Theorem 3.2.4 of [28]. Since whenever 7
is a critical ordinal in stGF(R,]: I R) and W;_flf holds then AD holds in
sLp 7 (R, F | R)|(y + 1), we have that AD holds in sLp ” (R, F | R)]a.

Now we claim that Env(I')= p(R) N stG}-(R,}“ I R). This implies
SLpGF(R,]—' I R) F ADT + © = 0y as desired. We first show Env(I')C
p(R) N stGf(R,f I R). Let A € Env(T"), say A € Env(T)(x) for some
z € R. By definition of Env, for each countable 0 C R, ANo = A’ No for
some A’ that is Aj-definable over stG]E (R, F | R)|a from 2 and some ordinal
parameter. In V', let 7 be the canonical name for x and let X < Hy++ be
such that |[X|V = k, K € X, X C X, X is cofinal in the ordinal height of

41 This is defined similarly to W;‘H but relativized to the operator &F. Similarly, we can
also define the fine-structural mouse witness condition W,f fl.

42 1f +y is such that M = stG]:(R,]-' I R)|y is inadmissible, then M is passive. Then [13]
gives us that E{M has the scales property assuming M E AD. This is the main reason
why we analyze scales in ©-g-organized premice; if M were g-organized, it could be that
BM # 0 and the argument in [13] does not seem to give us the scales property of E{M
from ADM.
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sLp 7 (R, F | R).% We also assume P U {P,7} C X, XN Mx[G] € Mx|[G],
and A € ran(ry). Let o = RN Mx|[G]. By MC(X) in sLp * (R, F | R)|a,
ANno e stGF(U,]: [ o) (this is because stGF(U,]—' I o) and sLp ” (o, F | o)
have the same p(o), cf. [13, Section 5]; also, in applying MC(X), we need
that definability is done without referencing the extender sequence and we
can do this since we are inside stGF (6, F | o), where the self-iterability
condition helps us define the extender sequence). As shown in Lemma 3.75,
stGF(U,]: [o)= (stGF(U,}' I 0))MxIC], Hence

Mx[G]EANno € stGF(U,]: [ o).

By elementarity, the fact that 7x(P) = P, and 7x (X N Mx[G]) = X, we get
Aeslp (R, F [R).

Now assume toward a contradiction that Env(I')C o(R) N stGF(R,]: I
R). Hence a < GSLPGF(R’ﬂR). Let 8* be the end of the gap starting at « in
stG}-(R,}" I R). Let 8 = 8* if the gap is weak and 8 = * + 1 if the gap is
strong. Note that

a < B,

p(R)LP 7 (RFIRIS — Eny(T)le " (RF1R) C 4 Eny (L) C p(R)NsLp 7 (R, F | R).

Hence 8 < GSLPGF(R) and stGF(R,]: I R)|B projects to R. Furthermore,
Lpr(]R,}' I R)|8 E AD+T-MC(X), where IMC(X) is the statement: for any
countable transitive a, (Lp"” (a))’Ng(a) = Cr(a). Now stGF(R,]: IR)|BET-
MC(Y) is clear; if 8 = 5%, stGf(R,]-" I R)|8 E AD by the fact that [«, 8*] is
a Yi-gap; otherwise, stGF(R,]: I R)|3 E AD by the Kechris—-Woodin trans-
fer theorem (see [3]). Since stG}-(R,}' I R)|S projects to R, every countable
T®FIR) is in SLpG}-(R,}' ' R)|(B+ 1). The scales
analysis of [13], Theorem 4.3.2 and Corollary 4.3.4 of [28] together imply that
there is a self-justifying-system A = {4; | i < w} C EnV(I‘)SLpr(RV}-rR) con-
taining a universal I" set. By a theorem of Woodin and the fact that XNV € V|

sequence from Env(T)stP

43 Let ¢ be the name of RYIG]. Note that the ordinal height of stG}_(R, F | R) is the ordinal
height of stG}_(e,]-' I €) and the latter is in V. This has cofinality at most wa since the
construction in [24] gives a coherent, nonthreadable sequence of length o(stG]:(e7 Fle).

44 we get equality in this case but we don’t need this fact.
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we can get a pair (N, A) such that N € V, [NV < &, N is a I-suitable &F-
premouse, and A is the strategy for N guided by A.*> Arguments in the last
subsection allow us to then lift A to an (AT, A\1)-strategy that condenses well
in V[G].

Using the hypothesis of Theorem 0.2, we can get a sequence of nice operators
(Fy : n < w) where each F,, is in SLpG}—(R, F | R)|(B+1). Namely, let Fy = Fa,
and let Fj, 41 = Mf””ﬁ be the F,,-Woodin X-cmi operator. Each Fj, is first de-

fined on a cone in H U‘J/S ; then using the lemmas in the previous subsection, we

can extend Fj, to HXJG} and furthermore, each F, is nice (i.e., condenses and
relativizes well and determines itself on generic extensions). These operators
are all projective in A and are cofinal in the projective-like hierarchy containing
A, or equivalently in the Levy hierarchy of sets of reals definable from param-
eters over stGf(]R, F | R)|B. Together these model operators can be used to
establish the coarse mouse witness condition ngf . Therefore f < a by the

definition of «, which is a contradiction. |

3.4. BEYOND “ADT + 0 = Oy”. Let (P*,¥),F be as in Section 3.2. In this

section, we prove

THEOREM 3.73: Let G C Col(w, k) be V-generic. Then in V[G], there is a
model M such that ORUR C M and M E “ADT+0 > 60x”.

The rest of this subsection is devoted to proving Theorem 3.73. We assume
(P*, %) = (0,0) (the proof of the general case just involves more notations; in
particular, for the general case, we work in the hierarchy Lpr (R, F | R) instead
of in Lp(R)). Suppose the conclusion of the theorem fails. By the results of
Subsection 3.2 and Theorem 3.72, in V[G]

sLp(R) F AD" + © = 6. 46
Working in V[G], let Qo = p(R) NsLp(R), § = O and I = (£, )5=P®),

45 We get first a pair (M*, A*) € V[G] with N'* being I'-suitable, A* is an (w1, w1 )-strategy
in V[G] guided by A. By boolean comparisons, we can obtain such a pair (M, A). The
details are given in [17] and [11].

46 We could have also worked with the hierarchy SLpG}_(]R,]-' I R) where F is associated
with the canonical strategy of Mg As mentioned before, these hierarchies construct the
same sets of reals.
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In V, let 7 € Hy+ be a canonical name for RVIE). Let S be as in Section 3.2.
For X € S such that X is cofinal in o(Lp(R)) and o(sLp(R)),*" let Rx = 73 (R),
Qx = 15 (Q), Ix = 7' (T), and Ox = 7wy (0); we note that § = O =
o(sLp(R)VI€]) is the supremum of the Wadge ranks of sets in €q. Also, let
n = (63)*"*®) and nx = w5 (n); so n is the largest Suslin cardinal of sLp(R).
Let T be the tree of scales for a universal I'-set and Tx = 7y (T). As usual, T
is a tree on w x 1. For s € w<¥, we let Ty, = {t | (s,t) € T'}.

Following [28], we define

Definition 3.74: Let I',T,n be as above.

(1) % (n) is the o-algebra consisting of subsets Y C 7 such that Y € L[T, z]
for some real z.

(2) meas® (n) is the set of countably complete measures on @b (7).

(3) Using the canonical bijection 7— 1<%, we can define p' ("), meas® (™),

of (1<), meas® (n<*) in a similar fashion.
LEMMA 3.75: Suppose X € S. Then in V[G],
Lp(Rx)% C Lp(Rx)Mx[ = Lp(Rx).

This implies

measTx (1) C (meas™ () 319,
Proof. We first prove in V[G],
Lp(Rx)"~*1% = Lp(Rx).

If M <1 Lp(Rx)MxI[G is a sound mouse that projects to Ry, then M is em-
beddable into a level of Lp(R)VI¢l. So M <1 Lp(Rx). To see the converse, let
M < Lp(Rx), then letting M* < Lp(7x) be the S-translation of M, then by
Lemma 3.61, M* € Mx; so M € Mx|[G]. Now in Mx[G], let 7 : N' — M be
an elementary embedding and A is countable, transitive; then in V[G], N is
iterable via a unique iteration strategy; so in Mx|G], N is iterable via a unique
iteration strategy. This means M < Lp(Rx )Mx[CI,

To see the first inclusion, note that Lp(Rx )% can easily be computed from

Lp(rx) (using G- and the S-constructions) and Lp(7x) € Mx by Lemma 3.61.

47 One can construct a coherent sequence of length € in sLp(RV[C]) as in [24]. Our hypoth-
esis and the properties of the sequence then imply that cof(o(sLp(R)) < k. Similarly, one
can show cof(o(Lp(R)) < k.
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This gives Lp° (Rx) C Lp(Rx )™x[¢] because given any M<Lp(Rx ), letting
M* be a premouse over 7x which results from the S-constructions of M, M*
has a unique strategy A in Lp(R)VI) because M does. So A | V € V by
homogeneity. By the proof of Lemma 3.62, A can be uniquely extended in V' to
an (A1, A")-strategy (also called A).*® The previous subsection also shows that
M exists and is (1, 5T )-iterable in V. By Lemma 3.63, A can be extended
to a (AT, A\T) strategy in V[G], but this means M <1 Lp(Rx) in VI[G].

We just prove meas™ (nx) C (meas™ (nx))Mx15] as the proof of the general
case is an easy generalization of the proof of the special case. We need to
define “code sets” for measures in meas'>(nx). Fix a map from Rx onto
o(nx)T*: x> Y, in Mx|[G] such that the relation {(z, @) | a € Y, } € £52PEX).
We then define the code set C,, for each pu € meast™ (nx) asx € C, & Y, € p.
For each such u, C), is easily seen to be OD%(Rx) (as each such measure is
principal, being a countably complete measure on a countable set in V[G]), and
so C,, € Lp(Rx)MxIGl by MC in Qg and by the first part. So p € Mx[G] and
is countably complete there. This proves the second inclusion. |

For X as in the lemma, we can choose a set C'x € Mx of canonical names
for measures in [meast™ (n5*)]Mx[¢. Since MY C Mx, Mx contains all w-
sequences of its terms for code sets of measures in [meast™ (n3*)]Mx G,

Now let 0 = mx[[meast™ (n5*)|Mx¢)] C meast (n<¥); o is a countable set
of measures in V[G]. For u € meas™ (n<*) N, let 7 be such that mx (@) = .
Suppose p concentrates on ™ and let (u; | @ < n) be the projections of p (that
isAep o {sen"|s|ie A} € pu). Note that pg is the trivial measure.
Define (; | @ < n) similarly for 7. Let G7" be the game defined in Definition
4.1.2 of [28]. For the reader’s convenience, we give the definition of G, 1
starts by playing mo, ..., My, Sn, hn; Il responds by playing a measure fi,41.
From the second move on, I plays m;, s;, h; and II plays a measure p;41 for all
i>n4
Rules for I:

o my <w forall £ < w.

® Timg,..omn_1) € b= in

® 5 € ju,(Time,....m;_1))> in particular s; € j,, (n)** for all i > n.
L) [id]un-

48 Note that every tree T according to A is short and guided by Q-structures.
49 The game can be defined over V using the forcing relation and Cx.
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® Juiguisi(8i) C sigp1 for all i > n.

e h; € OR for all i > n.

® Juipiss (hi) > hiyy for all i > n.
Rules for II:

e Ji;11 € 0 is a measure on 7! projecting to u; for all i > n.

® /i;41 concentrates on T(mo,.,.,mi) C 77”‘1.
The first player that violates one of these rules loses, and if both players follow
the rules for all w moves, then I wins. The game is closed, so is determined.

LEMMA 3.76: Player II has a winning strategy for G" for all p € o.

Proof. Suppose for contradiction that I has a winning strategy in G7:*, that is
if both players follow all the rules of the game, then I can continue playing for w
moves. Suppose I plays integers mo, ..., m, such that T(,,, .. m,_,) € 4 = pn,
an s, € jpu, ()" such that s, € ju, (Timg,...,m,)) such that [id],, C s, and
some h,, € OR on his first move. II then responds with pn11 = 7x(f,41),
where
AE T, 1 € Sn € ju, (mx (A)).

We have that 7, ., € meas™*(n3*) € Mx[G] (so pin41 is defined). Similarly,
suppose for ¢ > n, I has played (m;, s;, h;) such that

e m; Ew,
S; € jHi (T(mo,....,mi))a
Jugosea (85) G s for j <,
h; €OR,
Jujger () > hjqq for all j <.

II then responds with p;41 = mx (fi;;1), where
AE T < i € Ju; (mx (A)).

Again, p; 41 makes sense since fi;+1 € Mx|[G].

After w many moves, the players play a real x = (mg,m1,...), a tower of
measures (u; | ¢ < w), a sequence of ordinals (h; | n < i < w) witnessing the
tower (u; | n <4 < w) is illfounded, and the sequence (s; | n < i < w). By
closure of Mx and the fact that we can find a canonical name for each f; in
Mx 59 the sequence (ji; | i < w) € Mx[G] (and so (u; | i < w) = mx (fi; | 1 < w)).

50 fact, the definition of fi; only depends on s; and not on G. Furthermore, (the codeset
of) fi; is also OD in Mx|[G] from Tx = 7r;(1 (T') (so the fi;’s have symmetric names in
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In Mx|G], the tower (fi; | i < w) is illfounded. By Lemma 3.5.9 of [2§],
there is a tree W € L[Tx,z] for some 2 € RVI® on w x nx such that the
fii’s concentrate on W and the function k(i) = [rky ]z, is a pointwise minimal
witness to the illfoundedness of (fi; | i < w). Let h = wx(h) and W = 7x (W);
since fi;’s concentrate on W, s; € j,, (W) for all i.

Let h'(i) = rk;, (w)(si). We have

(1) j#i7#i+1 (h/(l)) :j#i7#i+1 (rkjui (W) (Sl)) > h/(iJrl) for all 7 as j#i7#i+1 (Sl)
Sit+1;
(2) W(n) =1k;, w)(sn) <1k;, (w)([id],,) = h(n) because [id],, S sy

N

So h/ witnesses (p; | ¢ < w) is illfounded and 2'(n) < h(n). Contradiction. |

Lemma 3.76 easily implies that for each y € meas®™ (n<%), there is a countable
set of measures o C meas® (n<*) that stabilizes y (in the sense of [28, Section
4]). By a simple argument using DC and the fact that if o stabilizes y then any
o’ D o stabilizes y, we get a countable 7 C meas’ (7<¢) that stabilizes every
nerT.

Knowing this, [28, Sections 4.1, 4.3] constructs a self-justifying system A for
Env(T) = 0 in V[G]. Using the argument in [11, Section 5.5], we can then
find a pair (N, ¥) such that N' € V, [N|V < k, N is I-suitable, and ¥ is

(wY [G],wY[G])—stra‘uegy for A such that ¥ is I-fullness preserving and has

a
branch condensation (and hence hull condensation by results in [7]); further-
more, U [V € V. In fact ¥ is guided by A and hence ¥ ¢ Qy. By the lemmas
in Section 3.2, we can then extend ¥ to a (A\*, A\T)-strategy in V and further
to an (AT, \T) strategy in V[G] (also called ¥) that has branch condensation.
Furthermore, results of the previous section allow us to construct operators
x> MY¥(z) for all n < w. This means PD(¥) holds and since ¥ is guided by
a self-justifying system, we can conclude by standard methods that the opera-
tor F = Fu ., is self-scaled. This allows us to run a core model induction as

before to show in V[G]
sLp 7 (R, F [ R) F “L(p(R)) £ AD* +© = g7/, 51

Mx); hence we can think of the game GUT’“ as being defined in V' where player 1I plays
finite sequences of ordinals in X[G], which are mx-images of the sequences of ordinals
that define the f1;’s in Mx[G].

51 of course, what we showed in the previous section also shows /\/(‘11”ﬁ exists and is (A1, A1)-
iterable.
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The above construction works in general and allows us to show that
“stGf(R,f  R) E ADT +© = 041" for any hod pair (P*,¥) € Q below
K and X is Q-fullness preserving, and X is projectively equivalent to a set of
Wadge rank 0,, where 7 = Fx ,_,. In other words, we have shown that the
Solovay sequence of (2 is of limit length.

3.5. GETTING ADg+ 0O 1S REGULAR. In the previous subsections, we show that
the core model induction cannot stop at successor stages, i.e., in V[G], L(,R)

—1.52 This means the Solovay

cannot satisfy ADT + 06 = 0441 for some a >
sequence of € is of limit order type. In this subsection, we show that there is
some Solovay initial segment Q* of Q such that L(Q*,R) E “ADg+0© is regular”.
This contradicts (). So we get after all that there is a model of “ADg + O is
regular”.

Let (0 | o < A) be the Solovay sequence of 2. We write 05 for 9[? and
O for ©% and let o = cofV[G](G). Note that A is limit and for each 8 < A,
L(Q ] 05,R)Np(R) =2 | 0. Note also that © < T since otherwise, we’ve
already reached a model of “ADgr + © is regular” by the following lemma.

LEMMA 3.77: Suppose © = ™+, Then in V[G], 2 = p(R) N L(,R). Conse-
quently, L(Q,R) F “ADg + © is regular”.

Proof. Suppose not. Let a be the least such that p,(L,(Q2,R)) = R. Hence
a > © by our assumption. Let f : a x Q — L,(Q,R) be a surjection that is
definable over L, (2, R) (from parameters).

We first define a sequence (H; | ¢ < w) as follows. Let Hy = R. By induction,
suppose H,, is defined and there is a surjection from R — H,,. Suppose (¢, a)
is such that a € Hy, and L (T, R) F Jzyp[x, a]. Let (Ya,p, Ba,p) be the <jep-least
pair such that there is a B € I' with Wadge rank 3, such that

Lo(Q,R) F w[f(Va,wv B),al.

Let then Hy11 = Hy U {f(Va,p, B) | Lo(Q,R) E zp[z,a] Aw(B) = ap Na €
H,}. Tt’s easy to see that there is a surjection from R — H,, ;1. This uses the
fact that © = © is regular, which implies sup{fBa.y | @ € H, A Lo(Q,R) F

52 O can also be characterized as the set of all A C R such that A is Wadge reducible to a
3-cmi-operator J that determines itself on generic extensions, for some hod pair (P, 3)

below wa.
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Jzp[z,al} < ©. Let H = J,, Hy,. By construction, H < L, (2, R). Finally, let
M be the transitive collapse of H.

Say M = Lg(Q*,R). By construction, Q* = Q [ 6, for some v such that
6, < ©. But then p,(Lg(2*,R)) = R. This contradicts that Q* is constructibly
closed. This gives Q = p(R) N L(Q,R) and in fact, L(Q,R) F ADr + O is
regular. |

Now let H be the direct limit of all hod pairs (Q,A) € Q such that A is
Q-fullness preserving and has branch condensation. For each X € S such that
{H} C X, Q € X[G], let (Qx,Hx,Ox,ax) = 75 (Q,H,0,a). For each
B < Ny, where Ny is the order-type of the closure of the set of Woodin cardinals
in Hx, let ¥x g be the canonical strategy for Hx (8), which is the tail of a hod
pair (@, A) below & (in Mx[G]) and Hx(p) is the direct limit of all A-iterates
in Mx[G]. The fact that H (Hx, respectively) is the direct limit of hod mice
in  follows from our smallness assumption (f) and the remarks after it. Then
(Hx(B),¥x,p) is a hod pair below . Let ¥y =4, Yx,p and

Hi = [Lp ™x (Hx)] 22

Finally, let #T be the union of all M such that M is sound, H << M, p, (M) <
o(H), and whenever M € X € S, then 7' (M) < H¥.

LEMMA 3.78: 1) V*X € S H} € Mx and nx(HE) = HT.
2) Let X be as in 1). Then no levels of H} project across ©x.

Proof. To prove 1), note that cof” (o(HT)) < k. To see this, first note that
o(H*) < kT*; this follows from —[J,.+. We can then rule out cof” (o(H1)) = k™
using —J(k™) (since otherwise, the [-sequence constructed in H* of length
o(H™) gives rise to an nonthreadable coherent sequence witnessing O(k™), con-
tradicting =J(k™)). This means, V*X € S, the range of 7x is cofinal in o(H™).
This implies

VX € S,HE Snt(HT) € X.
Otherwise, fix such an X and let Mx < H% be such that My ¢ 7y (H'),

o(Mx) has cofinality w, p1(Mx) = Ox and let M = Ultg(Mx, Ex) where
Ex is the (\x,©)-extender derived from mx. Since mx is cofinal in o(H™),

53 Recall that our convention is: Hx (a +1) is a g-organized ¥y, (o) = Xx,q-mouse for
each @ < Ax. In general, hod mice in this paper are g-organized.



656 NAM TRANG Isr. J. Math.

M ¢ H*. But whenever Y € S is such that M € Y, it’s easy to see that
7y (M) € Hi7.5* So M € HT after all. Contradiction.

Suppose equality fails. By pressing down, there is some M < H™', some sta-
tionary set T C S such that for X € T, M ¢ nx(H%). But V' X 7 (M) <HE
by definition of H*. Contradiction. This completes the proof of 1).

To prove 2), suppose for contradiction that there is a P <t HL such that
pu(P) < ©x. Let P be the least such. By 1), P € Mx. Let 8 < Ny be
least such that p,(P) < 0f and g > cof” (A\P). P can be considered a hod
premouse over (Hx(8),Xx ). Using mx, we can define a strategy A for P
such that A acts on stacks above 55 and extends P, .y, Lx,a (the strategy
is simply @, .y, Lx.o for stacks based on Hx (above 55), but the point is
that it also acts on all of P because of mx). By a core model induction similar
to the previous subsections using the fact that A has branch condensation and
noting that A can be extended to H:JG], we can show LG}-(R) F ADT, where
F = Fa,pu, and hence L(A [ HC,R) F AD*. This implies Code(A | HC) € Q
by definition of 2.

In Q, let F be the direct limit system of X x g hod pairs (Q, ¥) Dodd—Jensen
equivalent to (P, A). F can be characterized as the direct limit system of X x 3
hod pairs (Q, ¥) in Q such that ¥ is I'(P, A)-fullness preserving and has branch
condensation and I'(Q, ¥) = I'(P, A). F only depends on Xx g and the Wadge
rank of I'(P, A) and hence is OD;EE;C) for some C € Q.

Fix such a C' and note that L(R,C) = ADT + SMC. Let A C 67 witness
pw(P) < 5[7;, that is, there is a formula ¢ such that for all o € 55,

a € As PEda,p,

where p is the standard parameter of P. Now A is ODg, , in L(R,C); this
is because letting M, be the direct limit of F under iteration maps, then in
L(R,C), My € HODx, , and A witnesses that p,(Ms) < 65. By SMC in
L(R,C) and the fact that Hx (5 + 1) is Q-full, we get that A € P. This is a
contradiction. |

54 Note that 7'(;1 (M) = Ultg(Mx, Ex,y) where Ex y is derived from 7 x y the same way
Ex is derived from mx. Let Z < Hyg be countable and contain all relevant objects and
7+ M — Z be the uncollapse map. Write a* for 7~1(a) for a € Z. Then it’s easy to see
using countable completeness of Ex y that (W;I(M))* is embeddable into M x, which
in turns gives (W;I(M))* < ((Hy)h)*.
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Now let X be as in Lemma 3.78. Using the embedding mx and the construc-
tion in [8, Section 11], we obtain a strategy Y x for H¥ such that

(1) £x extends X7.

(2) for any y-iterate P of HE via a stack T such that i7 exists, there
is an embedding ¢ : P — H* such that 7x = oo i71. Furthermore,
letting 3p be the T-tail of Yx, for all @ < AP, Yp(a) € © has branch
condensation.

(3) Tx is (M}, Xx)-fullness preserving.

Remark 3.79: the construction in [8] is nontrivial in the case that H} F cof(©x)
is measurable; otherwise, as mentioned in the proof of Lemma 3.78, ¥ x is simply
Y% but, because of 7y, it acts on all of HF.

We claim that X x € . Let (Q, A) be a L x-iterate of H{ such that

a) QeV, |9V <k;
b) AV eV;
c¢) A has branch condensation.

c) follows from results in [7]. a) and b) can be ensured using boolean com-
parisons (see [7]). Using a), b), ¢), and arguments in previous subsections, we
get that in V[G],

L7 (R,F [ R) F AD™,
where F = Fa ., This means A € 2, and hence ¥ € Q.
LEMMA 3.80: V*X € S Yx is Q-fullness preserving .

Proof. Suppose not. Let 7} be according to Y x with end model Qx such
that Qx is not Q-full. This means there is a strong cut point 7 such that
letting o < A2X be the largest such that §2% <+, then in Q, there is a mouse
M« LngQXm)(QXH)E’E’ such that M ¢ Qx. Let k: Qx — H™T be such that
nx =ko iTx. We use 7 to denote iTx from now on.

Let (Px,Xpy) € V be a ¥ -hod pair such that:

o I'(Px,Yp,) F Q is not full as witnessed by M.
o Yp, € is fullness preserving and has branch condensation.
e \Px is limit and cof”X (A7X) is not measurable in Px.

Such a pair (Px, Xp, ) exists by boolean comparisons.

G
55 The case where v = 6, and M < Lp P#<a¥Qx (3 (Qly) is similar.
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By arguments similar to that used in 3.78, for almost all X € S, no levels
of Px project across Hx and in fact, 0(7—[}) is a cardinal of Px. The second
clause follows from the following argument. Suppose not and let N'x < Px be
least such that p,(Nx) = ©x for stationary many X € S. By minimality
of Nx and an argument similar to that in Lemma 3.78, we may assume for
stationary many X € S, Nx € Mx. Fix such an X. Let f : s* — Ox be an
increasing and cofinal map in H, where k* = cofH;(G x). We can construe

Nx as a sequence g = (N, | a < k*), where N, = Nx N 5;{({;). Note that
N, € HE for each o < k*. Now let Rg = Ulto(H%, 1), R1 = Ulty,(Nx, p),
where p € H} is the (extender on the sequence of H} coding a) measure on
x* with Mitchell order 0. Let i : H% — Ro, i1 : Nx — R be the ultrapower
maps. Letting § = 4,,,+ = Ox, it’s easy to see that i [ (6 +1) =1 [ (6 +1)
and p(8)R0 = p(§)®1. This means (i;(N,) | o < &%) € p(§)R°. By fullness
of H in Q56 (i1(N,) | @ < k%) € HE. Using ig, (i1(Na) | @ < k%) € HY,
and the fact that ig | HL|Ox =41 | Nx|Ox € HE, we can get Nx € H as
follows. For any «,8 < Ox, a € N if and only if ig(a) € i1(Np) = io(Np).
Since ’H}"( can compute the right hand side of the equivalence, it can compute
the sequence (N, | o < £*). Contradiction.

In other words, Px thinks Hj{ is full. For here on, let P = Px, Xp = ¥p,,
(Tx,9x) = (T, Q). Let

P — HTT
be the ultrapower map by the (crt(mx), ©)-extender Er, induced by mx. Note
that 7% extends 7mx | H% and H*T is wellfounded since X is closed under
w-sequences. Let
P >R

be the ultrapower map by the (crt(i),d<)-extender induced by i. Note that
Q <R and R is wellfounded since there is a natural map

KR — HT
extending k and 7% = k* o4*. Without loss of generality, we may assume M’s

unique strategy X <, Sp. Also, let (Q, T) be the canonical Col(w, ws)-names
for (Q,T). Let K be the transitive closure of H,, U (Q, 7).

56 Any A C § in Ro is ODSEl (as in the proof of Lemma 3.78, this means OD;QR’C) for
X x
; +
some C' € ) and so by Strong Mouse Capturing (SMC, see [7]), A € H.
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Let W = MZ7-% and A be the unique strategy of W. Let W* be a A-iterate
of W below its first Woodin cardinal that makes K-generically generic. Then
in W*[K], the derived model D(W*[K]) satisfies

L(I(P,%p),R) E Q is not full.>

So the above fact is forced over W*[K] for Q.

Let H < Hy+++ be countable such that all relevant objects are in H. Let
7 : M — H invert the transitive collapse and for all @ € H, let @ = 7~ !(a). By
the countable completeness of E,, there is a map 7 : R — H L such that

T | P=7o0i*.%8

Let Y7 be the m-pullback of ¥p and Yz be the m-pullback of ¥p. Note that
Y% extends 77 (Xp) and Y5 is also the i*-pullback of Y7; so in particular,
Yp <w Eg. We also confuse A with the 7-pullback of A. Hence I'(P,X%)
witnesses that O is not full and this fact is forced over W*[K’ | for the name é
This means if we further iterate W* to ) such that RYIC] can be realized as

the symmetric reals over ), then in the derived model D(}),
(3.4) L(T(P,Xp)) E Q is not full.

In the above, we have used the fact that the interpretation of the UB-code of
the strategy for P in ) to its derived model is ¥ | RVIE); this key fact is
proved in [7, Theorem 3.26].

Now we iterate R to S via ¥5 to realize RVIS! as the symmetric reals for the
collapse Col(w, < &%), where 6% is the sup of S’s Woodin cardinals. By (3.4)
and the fact that ¥p <,, ¥, we get that in the derived model D(S),

Q is not full as witnessed by M.

So ¥ is ODsg in D(S) and hence M € R. This contradicts internal fullness
of Qin R. [ |

We continue with a key definition, due to G. Sargsyan. This definition is first
formulated in [8] and we reformulate it a bit to fit our situation.

Definition 3.81 (Sargsyan): Suppose X € S and A € H N p(Ox). We say
that mx has A-condensation if whenever Q is such that there are elementary
embeddings v : H;} — Q, 7: Q — HT such that Q is countable in V[G] and
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x = Tow, then v(Ty+ 4) = To s A, where
X

Tyt o4 = 1(0:5) | s € [Ox]%“ AHY F 9ls, A},

and

Tora={(d,5)]|s€[02]“ for some a < Ag NHT F (b[iz%;)m(s),ﬂx (A)]},

where Y75 is the T-pullback strategy and Eg_ =@.cre ETQ(Q). We say mx has
condensation if it has A-condensation for every A € H{ N p(Ox).

The following is the key lemma (cf. [8, Section 11]).
LEMMA 3.82: V*X € S wx has condensation.

Proof. Suppose not. Let T be the set of counterexamples. Hence T is sta-
tionary. For each X € T, let Ax be the <x-least such that wx fails to
have Ax-condensation, where <x is the canonical well-ordering of H%. Re-
call that if (P,X) is a hod pair such that 67 has measurable cofinality then
YT =@, crr Xp(a). Wesay that a tuple {(Py, Qi, 7i, &, Ty 04 | 1 < w), Mooy}
is a bad tuple if

(1) Y es;

(2) Py = HY, for all i, where X; € T;

(3) foralli <j, X; < X; <Y,

(4) Mooy is the direct limit of iterates (Q, A) of (H;, Xy ) such that A has
branch condensation;

(5) for all 4, & : Py — Qi, 04+ Qi = Mooy, i : Pix1 — Moy, and
mi 0 Qi = Piga;

(6) foralli, 7; = 008, 05 = Tip10m;, and x, x,,, | Pi =det Gi,i+1 = mi0&:;

(7) ¢z‘,i+1(AXi) = AXiH;

(8) for all i, &(Tp,,ax,) # T0i,0iAx, -

In 8, Tg,,0;,4x, is computed relative to Moy, that is

TQi,Gi,AXi =
oi—

{(¢,5) | s €[02]<% for some o < A% A Moy F ¢[1'Z?("a),oo(s),Ti(AXi)]}.

CLAM: There is a bad tuple.
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Proof. For brevity, we first construct a bad tuple
{(Pi, Qi,mi, &y miyoi | i <w), HT}

with HT playing the role of M y. We then simply choose a sufficiently large
Y € S and let iy : Hyr — Moo,y be the direct limit map, my : Moy — HT be
the natural factor map, i.e., my oty = my. It’s easy to see that for all sufficiently
large Y, the tuple {(P;, Q;, my'or;, my o0&, mytom, mytoo; |i < w), Mooy}
is a bad tuple.

The key point is 6. Let A% = nmx(Ax) for all X € T. By Fodor’s lemma,
there is an A such that 3*X € T A%, = A. So there is an increasing and cofinal
sequence {X, | @ < wz} C T such that for a < 3, 7x, x,;(Ax,) = Ax, =
ﬂ;(; (A). This easily implies the existence of such a tuple

{(Pi, Qi miv &y miyoi | i <w), HT}. n

Fix a bad tuple A = {(P;, Qi, 7, &, 7i, 04 | i <w), Mooy }. Let (Pg,1I) be a
83 p,-hod pair such that

[(PS, 1) E A is a bad tuple.

We may also assume (’Par JL V) eV, AP0 s limit of nonmeasurable cofinality

in Par and there is some a < AP0 such that Yy <u HP+( ) This type of reflec-

tion is possible because we replace H™ by My y. Let W = ./\/l‘j Py ®n<wXxn

and A be the unique strategy of W. If Z is the result of iterating W via A to
make RYIC] generic, then letting h be Z-generic for the Levy collapse of the sup
of 2’s Woodin cardinals to w such that RV is the symmetric reals of Z[h],
then in Z(RVIC]),

(P, 1) F A is a bad tuple.

Now we define by induction {;r : P;r — er, : Q+ — 7)+1, ¢Z i1
Pr — Pl r1 as follows. ‘bd, L Py o= P s the ultrapower map by the
(ert(mx,,x,), Ox, )-extender derived from 7x, x,. Note that ¢d,1 extends ¢, 1.
Let & : P — QF extend & be the ultrapower map by the (crt(&y), §<0)-
extender derived from &. Finally let 75 = (¢§,)"" o & . The maps
&, “H are defined similarly. Let also My = Ult(P{, E), where E is
the (Ax, Oy )-extender derived from 7y y. There are maps ey; : ’P{" — My,
€241 ° Q;r — My for all ¢ such that ey; = €9;41 © §i+ and €2;41 = €942 0 7TZ-+.
When i = 0, € is simply ip. Letting ¥; = X5 and ¥ = X4 | A; = Ax,, there
is a finite sequence of ordinals ¢ and a formula 6(u, v) such that in I'(P;", 1)
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(9) for every i < w, (¢,5) € Tp, a, < 0[i% = where « is least such
that s € [677]<%;

(10) for every i, there is (¢4, 5;) € T, ¢,(a,) such that ﬁG[igi(a)(si),t] where
a is least such that s; € [§2]<“.

oo’ ]’

The pair (6,t) essentially defines a Wadge-initial segment of I'(Py, II) that can
define the pair (M v, A), where 7;(A;) = A for some (any) i

Now let X < Hj,+++ be countable that contains all relevant objects and
7 : M — X invert the transitive collapse. For a € X, let @ = 7 1(a). By
countable completeness of the extender E, there is a map 7* : My — Py such
that m [ My = egon*. Let II; be the 7* o &-pullback of II. Note that in V]G],
By <p o <o I <4 - <o T

Let A € (Hx)™ be the canonical name for A. It’s easy to see (using the
assumption on W) that if W* is a result of iterating VW via A (we confuse A
with the m-pullback of A; they coincide on M) in M below the first Woodin of W
to make H-generically generic, where H is the transitive closure of H, f)\g UA, then
in W*[H], the derived model of W*[H] at the sup of W*’s Woodin cardinals
satisfies

L(Po,R) E A is a bad tuple.

Now we stretch this fact out to V[G] by iterating W* to W** to make RV
generic. In W**(RV[G]), letting 7 : W* — W** be the iteration map, then

(P, ) F i(A)* is a bad tuple.

By a similar argument as in Theorem 3.1.25 of [25], we can use the strategies
EJF’S to simultanously execute a RY[C]-genericity iteration. The last branch
of the iteration tree is wellfounded. The process ylelds a sequence of models
( “),Qj'w|z<w) andmapsf 7)+ —>Q“J, “) ijﬁpﬁlw, and

¢:ri+1 w = 7T+ o7rJr Furthermore each P+ Q:rw embeds into a II™ -iterate of
+ )

7,w’

My and hence the direct limit Poo of (P} T ij | i,j < w) under maps 7 s
and §+ s is wellfounded. We note that 7)+ is a X7 -premouse and Qi,w is a

8 YT _premouse because the genericity iterations are above P; and Q; for all i and

by [7, Theorem 3.26], the interpretation of the strategy of P; (Q;, respectively)

in the derived model of P_Jr (P:rw,
C; be the derived model of ’Pj'w, D; be the derived model of Qi'w (at the sup of
the Woodin cardinals of each model); then RVl = R¢ = RP:. Furthermore,

CiNpR) C D;NpMR) CCip Np(R) for all .

respectively) is 837 (80T, respectively). Let
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9, 10 and the construction above give us that there is a ¢ € [OR]<%, a formula
0(u,v) such that

(11) for each i, in Cj, for every (¢, s) such that s € 67, (¢,5) € T5, a; <

G[ig(a) (8),t] where o is least such that s € [6Pi]<w.
Let n be such that for all i > n, a(t) = t. Such an n exists because the
direct limit P, is wellfounded as we can arrange that P, is embeddable into

a II™ -iterate of My. By elementarity of a and the fact that a IP =&,

(12) for all ¢ > n, in D;, for every (¢,s) such that s € 5@, (p,s) €
To, e:0a) < H[i%(a)m(s), t] where « is least such that s € [§2¢]<%.
However, using 10, we get

(13) for every i, in D, there is a formula ¢; and some s; € [091]<% such that
(¢i,8:) € T2& (A hug —wb[i%(a) (i), t] where « is least such that
s € [021]<w.

Clearly 12 and 13 give us a contradiction. This completes the proof of the

lemma. [ |

Remark 3.83: The main ideas of the proof above originate from [8, Lemma
11.15]. The main difference is in the situation of [8, Lemma 11.15]; there is an
elementary embedding j acting on all of V, so roughly speaking, the iterability
of the P;'’s is justified by embedding them into j(P,"). Here we don’t have
such a j; we use pressing down arguments, countable closure of hulls X € S
and reflection arguments instead.

Fix an X satisfying the conclusion of Lemma 3.82. Suppose
(Q,7) € I(H%,Sx) is such that i HL — Q exists. Let AT be the sup
of the generators of 7. For each z € Q, say z = z%(f)(s) for f € HE and
5 € [62]<¥, where 62 < 7T is least such, then let 7o (z) = wx(f)(zz%&ioo(s)).

Remark 3.84: By Lemma 3.82 and [7, Theorem 3.26], 7o is elementary and

P
1o | 69 = ig%;oo 169 = ig‘égm I 62, where A is the 7o-pullback strategy of

Q52.

LEMMA 3.85: Fix an X satisfying the conclusion of Lemma 3.82. Suppose
(Q,7) € I(HL,Sx) and (R,U) € I(Q,%4 ) are such that i7 i exist and

Yo 7 and Xg ;7 have branch condensation. Then 7g = T © i,
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Proof. Let # € Q. There are some f € Hi and s € [7%]<w such that

z =i (f)(s)-
So .
To(x) = mx (F)(ig%] (5)).

On the other hand,

TR O za(x) =TR O zﬁ(zf(f)(s)) = ﬂx(f)(ziﬁog o 0i¥e7(s))
= mx (i () = mo(2). B

Let Mo (H%,Xx) be the direct limit of all hod pairs (Q,A) € I(H%,Xx)
such that A has branch condensation. The lemma implies that the map
0 Moo(H%,Xx) = H* defined as

o(z) = y iff whenever (R,A) € I(H%,Xx) is such

that A has branch condensation, and z%oo(x*) ==z

for some x*, then y = 7 (z*)
is elementary and crt(c) = § =gef Moo (M3 Zx)  This implies that
Moo(HE,Sx) F “6 is regular”. Let (Q,A) € I(H%,Xx) be such that A has
branch condensation. By a similar argument as those used before, we get A €
and in fact since Q F “§< is regular”, we easily get that N = L(I'(Q,A),R) F “©
is regular” (note that ©V is the image of §< under the direct limit map into
the direct limit of all A-iterates). This contradicts the assumption that there is
no model M satisfying “ADg + O is regular”. Such an M has to exist after all.
This finishes this subsection and the proof of Theorem 0.2.

Remark 3.86: In the above, there are (Q,A) € V that are in I(H%,Xx) (this
is via a standard boolean comparison argument, cf. [7]). By taking a countable
hull, we can find a countable hod pair (Q*, A*) that generates in V' a model of
“ADr+0 is regular” by an R-genericity iteration argument using the fact that
A* has branch condensation and is k-universally Baire.

4. Question and open problems
We conjecture the following (the proof of which will settle Conjecture 0.5).

CONJECTURE 4.1: Suppose k is a cardinal such that k* = k. Let A = 2",
Suppose for every cardinal a € [k, 1], =0(c). Then in VCU“5) | there are
models M containing R U OR such that M F LSA.



Vol. 215, 2016 PFA AND GUESSING MODELS 665

We're hopeful that the conjecture has a positive answer. This is because we
believe it’s possible to construct hod mice generating models of LSA from the
hypothesis of Conjecture 4.1.

We end the paper with the following technical questions, whose solutions
seem to require new core model induction techniques for working with hulls
that are not closed under countable sequences. Note that in the most interesting
cases (e.g., under PFA) wi-guessing models of size NX; cannot be closed under
w-sequences.

Question 4.2: Let x = 2%2. Can one construct a model of “ADg + © is regular”
from the existence of stationary many w;-guessing models X < H, ++ such that
| X | =87

Question 4.3: Let x = 2%2. Can one construct a model of “ADg + © is regular”
from —0() for all a € [wa, kT]?
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