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0. Introduction

We establish, using the core model induction, a lower bound for certain failures of

the Unique Branch Hypothesis (UBH), which is the statement that every iteration

tree that acts on V has at most one cofinal well-founded branch. This paper is a

continuation of [8], but it is self-contained.

For the rest of this paper, all trees considered are nonoverlapping, that is when-

ever E and F are extenders such that E is used before F along a branch of the

tree, then lh(E) ≤ crit(F ). Suppose there is a proper class of strong cardinals. We

say κ reflects the set of strong cardinals (or κ is a strong reflecting strongs) if for

every λ there is an embedding j : V → M witnessing that κ is λ-strong and for
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any cardinal µ ∈ [κ, λ), V � “µ is strong” if and only if M � “µ is strong”. Now we

recall the definition of tame trees from [8].

Definition 0.1 (Tame iteration tree). An iteration tree T on V is tame if for

all α < β < lh(T ) such that α = predT (β + 1), MT
α � “∃κ < λ < cp(ET

β ) such

that λ is a strong cardinal and κ is strong reflecting strongs”.

As in [8], the tameness assumption is mostly for technical convenience. Most of

the methods developed in [8] and in this paper can be applied in more generality

but some arguments seem to be more particular to this situation.

UBH was first introduced by Martin and Steel in [2]. Towards showing UBH,

Neeman, in [4], showed that a certain weakening of UBH called cUBH holds pro-

vided there are no nonbland mice.a However, in [16], Woodin showed that in the

presence of supercompact cardinals UBH can fail for tame trees. Woodin constructs

alternating chains whose branches are well-founded. Extenders of such trees can

be demanded to reflect the set of strong cardinals which reflect strong cardinals.

Hence critical points of the branch embeddings can be demanded to be above the

first strong cardinal which reflects strong cardinals. It is still an important open

problem whether UBH holds for trees that use extenders that are 2ℵ0-closed in the

models that they are chosen from.b A positive resolution of this problem will lead

to the resolution of the inner model problem for superstrong cardinals and beyond.c

It is worth remarking that the aforementioned form of UBH for tame trees will also

lead to the resolution of the inner model problem for superstrong cardinals and

beyond. Our work can be viewed as an attempt to prove UBH for tame trees by

showing that its failure is strong consistency-wise.d

We recall some material presented in [6, 8]. Recall Θ is the supremum of ordinals

α such that there is a surjection from R onto α. Working under AD + DCR, we say

that (θα : α ≤ Ω) is the Solovay sequence if: (a) θ0 is the supremum of ordinals α

such that there is an OD surjection from R onto α, (b) for α < Ω (and θα < Θ), θα+1

is the supremum of ordinals α such that for some A ⊆ R of Wadge rank θα, there

is an ODA surjection from R onto α, (c) for β ≤ Ω limit, θβ = supα<βθα, and (d)

θΩ = Θ. For a set A ⊆ R, we let θA be the supremum of α such that there is an ODA

surjection from R onto α. We may also define the Solovay sequence (θΓ
α : α ≤ Ω) of a

pointclass Γ with sufficient closure.e We list some important determinacy theories in

increasing consistency strength: (1) AD
+, (2) AD

++Θ > θ0, (3) ADR, (4) ADR+DC,

(5) ADR + Θ is regular.

aWe will not use this terminology.
bThe first extender that used in the trees Woodin constructs is not 2ℵ0 -closed.
cThe inner model problem, one of the main problems in inner model theory, seeks to construct
canonical inner models of large cardinals (e.g., measurable cardinals, Woodin cardinals, super-
strong cardinals) from appropriate large cardinal or strong combinatorial (e.g., PFA plus perhaps
large cardinals) assumptions.
dOf course, UBH for tame trees fails in the presence of supercompact cardinals by Woodin’s result.
Our main theorem, Theorem 0.2, shows that it is very hard to construct such counter-examples.
eIn particular, we demand that for α ≤ Ω, letting γ = θΓ

α, ℘γ(R) is constructibly closed.
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Con((5)) implies, among others, the consistency of MM(c), a significant fragment

of Martin’s Maximum (MM) and was conjectured by Woodin to be equiconsistent

with a supercompact cardinal. The first author, in [5], shows that (5) is consistent

relative to the existence of a Woodin cardinal which is a limit of Woodin cardinals,

which is significantly weaker than a supercompact cardinal.

The following is the main theorem of the paper, which improves significantly

the lower bounds obtained from [8, 11]. The paper [11] obtains (1) as a lower bound

and the main result of [8] obtains (2) as a lower bound for failures of UBH for tame

trees; Theorem 0.2 obtains (5) as a lower bound under the same hypothesis.

Theorem 0.2 (Main Theorem). Suppose there is a proper class of strong cardi-

nals and UBH fails for tame trees. Then in a set generic extension of V, there is a

transitive inner model M such that Ord ∪ R ⊆ M and M � “ADR + Θ is regular”.

We remark that there are papers in the literature that obtain “ADR + Θ is reg-

ular” as a lower bound for certain theories. For instance, in [14], the second author

constructed an inner model of “ADR+Θ is regular” from the Proper Forcing Axiom,

and in [7], the first author constructed an inner model of “ADR +Θ is regular” from

certain failures of covering. However, the methods developed in this paper are dif-

ferent from those methods developed in the two aforementioned papers in a rather

significant way. In the aforementioned papers, the authors work under hypothesis

that implies the failure of lower part covering. More precisely, in the aforemen-

tioned papers, equivalents of Theorem 3.4 are proved while having the luxury of

knowing that |P+| < ω2 in M [m] (see the beginning of Sec. 3 for definitions). Here

we do not know that |P+| < ω2, yet our large cardinal assumption still allows

us to get an (ω1, ω1)-iteration strategy with the desired properties. We anticipate

that the construction of such a strategy will be useful in other similar contexts as

well.

1. Preliminaries

1.1. Stacking mice

We recall the notions used in [8]. Fix some uncountable cardinal λ and assume

ZF. Notice that any function f : Hλ → Hλ can be naturally coded by a subset of

℘(
⋃

κ<λ ℘(κ)). We then let Code∗λ : HHλ

λ → ℘(
⋃

κ<λ ℘(κ)) be one such coding. If

λ = ω1 then we just write Code∗. Because for α ≤ λ, any (α, λ)-iteration strategyf

for a hybrid premouseg of size < λ is in HHλ

λ , we have that any such strategy is in

the domain of Code∗λ.

fThis is an iteration strategy for stacks of less than α normal trees, each of which has length less
than λ. Typically these are fine-structural n-maximal iteration trees (as defined in [3]), where n is
the degree of soundness of the premouse we iterate. We will suppress this parameter throughout
our paper as fine-structural iteration trees we deal with are n-maximal for an appropriate n, which
will be clear in the context.
gFor more on hybrid mice, see [5] or [10].
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Suppose Λ ∈ dom(Code∗λ) is a strategy with hull condensation and µ ≤ λ. Recall

that we say F is (µ, Λ)-mouse operator if for some X ∈ Hλ and formula φ in the

language of Λ-mice, whenever Y is such that X ∈ Y , F (Y ) is the minimal µ-iterable

Λ-mouse satisfying φ[Y ].

We then let Codeλ be Code∗λ restricted to F ∈ dom(Code∗λ) that are defined by

the following recursion:

(1) for some α ≤ λ, F is an (α, λ)-iteration strategy with hull condensation for an

extender mouse or a hod mouse,h or

(2) for some α ≤ λ and for some (α, λ)-iteration strategy Λ ∈ dom(Codeλ) with

hull condensation (Λ can be ∅), F is a (λ, Λ)-mouse operator, or

(3) for some α ≤ λ, for some (α, λ)-iteration strategy Λ ∈ dom(Codeλ) with hull

condensation, for some (λ, Λ)-mouse operator G ∈ dom(Codeλ) and for some

β ≤ λ, F is a (β, Λ)-iteration strategy with hull condensation for some G-mouse

M ∈ Hλ.

Codeλ is the set of codes of “useful” operatorsi and includes all operators that we

will construct during the course of the core model induction (for an appropriate λ).

When λ = ω1 then we just write Code instead of Codeω1 . Given an F ∈ dom(Codeλ)

we let MF be, in the case F is an iteration strategy, the structure that F iterates

and, in the case F is a mouse operator, the base of the cone on which F is defined.

Let P ∈ Hλ be a hybrid premouse and for some α ≤ λ, let Σ be (α, λ)-iteration

strategy with hull condensation for P . Suppose now that Γ ⊆ ℘(
⋃

κ<λ ℘(κ)) is such

that Codeλ(Σ) ∈ Γ. Given a Σ-premouse M, we say M is Γ-iterable if |M| < λ and

M has a λ-iteration strategy (or (α, λ)-iteration strategy for some α ≤ λ) Λ such

that Codeλ(Λ) ∈ Γ.j We let MiceΓ,Σ be the set of Σ-premice that are Γ-iterable.

Definition 1.1. Given a Σ-premouse M ∈ Hλ, we say M is countably α-iterable

if whenever π : N → M is a countable submodel of M, N , as a Σπ-mouse, is

α-iterable. When α = ω1 + 1 then we just say that M is countably iterable.

Suppose Γ ⊆ ℘(
⋃

κ<λ ℘(κ)) for some λ. We say M is countably Γ-iterable if

whenever π and N are as above, N is Γ-iterable, that is, N has a λ-iteration

strategy in Γ.k

Suppose M is a Σ-premouse. We then let o(M) = Ord ∩M. We also let M||ξ

be M cutoff at ξ, i.e., we keep the predicate indexed at ξ. We let M|ξ be M||ξ

without the last predicate. We say ξ is a cutpoint of M if there is no extender E

on M such that ξ ∈ (cp(E), lh(E)]. We say ξ is a strong cutpoint if there is no E

hIn this case as well as in cases α ≥ 1; if α = 1, F is a strategy on normal trees of length < λ.
See Sec. 1.3 for more on hod mice.
iHere we regard an iteration strategy as an operator.
jRecall that iteration strategy for a Σ-mouse must respect Σ. In particular, all Λ-iterates of M
are Σ-premice.
kIn the case Γ ⊆ ℘(HC), then N is ω1-iterable with a strategy Λ in Γ. We typically have in
practice that Λ is the restriction of some λ-strategy for λ > ω1.
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on M such that ξ ∈ [cp(E), lh(E)]. We say η < o(M) is overlapped in M if η is

not a cutpoint of M. Given η < o(M) we let

OM
η =

⋃

{N � M : ρ(N ) ≤ η and η is not overlapped in N}.

Given a self-well-orderedl a ∈ Hλ we define the stacks over a as follows. In the

definition below, we fix a Γ as above and a strategy Σ such that MΣ ∈ a.

Definition 1.2.

(1) LpΣ(a) =
⋃

{N : N is a countably iterable sound Σ-mouse over a such that

ρ(N ) = a},

(2) Kλ,Γ,Σ(a) =
⋃

{N : N is a countably Γ-iterable sound Σ-mouse over a such

that ρ(N ) = a},

(3) Wλ,Γ,Σ(a) =
⋃

{N : N is a Γ-iterable sound Σ-mouse over a such that

ρ(N ) = a}.

Remark 1.3. In the definition above, when we say “Σ-mouse”, we really mean “g-

organized Σ-mouse” in the sense of [10]. We will suppress the term “g-organized”

in this paper as all Σ-mice considered here will be g-organized Σ-mice. The reason

for considering “g-organized Σ-mice” is because one can perform S-constructions

on g-organized Σ-mice, but not on Σ-mice as defined in [9].

When Γ = ℘(
⋃

κ<λ ℘(κ)) then we omit it from our notation. We can define the

sequences 〈LpΣ
ξ (a) : ξ < η〉, 〈Kλ,Γ,Σ

ξ (a) : ξ < ν〉, and 〈Wλ,Γ,Σ
ξ (a) : ξ < µ〉 as usual.

For Lp-operator the definition is as follows:

(1) LpΣ
0 (a) = LpΣ(a),

(2) for ξ < η, if LpΣ
ξ (a) ∈ Hλ then LpΣ

ξ+1 = LpΣ
+(LpΣ

ξ (a)),m

(3) for limit ξ < η, LpΣ
ξ =

⋃

α<ξ LpΣ
α(a),

(4) η is least such that for all ξ < η, LpΣ
ξ (a) is defined.

The other stacks are defined similarly.

1.2. (Γ, Σ)-Suitable premice

Again fix an uncountable cardinal λ and assume ZF. We also fix Σ ∈ dom(Codeλ)

such that Σ is a (α, λ)-iteration strategy with hull condensation and Γ ⊆

℘(
⋃

κ<λ ℘(κ)) such that Codeλ(Σ) ∈ Γ. We now import some material from [6,

Subsec. 1.3]. The most important notion we need from that subsection is that of

(Γ, Σ)-suitable premouse which is defined as follows.

lThat is self-well-ordered, a set a is called self-well-ordered if trc(a∪{a}) is well-ordered in L1(a).
mLpΣ

+(LpΣ
ξ (a)) is the stack of sound, countably iterable Σ-mice N projecting to ≤ o(LpΣ

ξ (a))

and extends LpΣ
ξ (a), having o(LpΣ

ξ (a)) as a strong cutpoint. Similar definitions can be made for

WΣ
+(WΣ

ξ (a)) and KΣ
+(KΣ

ξ (a)).
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Definition 1.4 ((Γ, Σ)-suitable premouse). A Σ-premouse P is (Γ, Σ)-suitable

if there is a unique cardinal δ such that

(1) P � “δ is the unique Woodin cardinal”,

(2) o(P) = supn<ω(δ+n)P ,

(3) for every η �= δ, if η is a strong cutpoint of P , then Wλ,Γ,Σ
+ (P|η) = P|((η)+)P ,

(4) for any η < o(P), if η �= δ, then Wλ,Γ,Σ
+ (N|η) � “η is not Woodin”.

If Γ = ℘(
⋃

α<λ ℘(α)) then we use λ instead of Γ. In particular, we use λ-suitable

to mean Γ-suitable. We will do the same with all the other notions, such as fullness

preservation and short tree iterability, defined in this section. Also, if Γ is fixed

throughout or is clear from the context, then we simply say P is Σ-suitable. We let

P− be the structure that Σ iterates.

Suppose P is (Γ, Σ)-suitable. Then we let δP be the δ of Definition 1.4. We then

proceed as in [6, Sec. 1.3] to define (1) nice iteration tree, (2) (Γ, Σ)-short tree, (3)

(Γ, Σ)-maximal tree, (4) (Γ, Σ)-correctly guided finite stack and (5) the last model

of a (Γ, Σ)-correctly guided finite stack by using Wλ,Γ,Σ operator instead of WΓ

operator.

1.3. A brief introduction to HOD mice

In this paper, a hod premouse P is one defined as in [5].n The reader is advised to

consult [5] for basic results and notations concerning hod premice and mice. Let us

mention some basic first-order properties of a hod premouse P . There are ordinal

λP and sequences 〈(P(α), ΣP
α ) |α < λP〉 and 〈δPα |α ≤ λP〉 such that

(1) 〈δPα |α ≤ λP〉 is increasing and continuous and if α is a successor ordinal then

P � δPα is Woodin;

(2) P(0) = Lpω(P|δ0)
P ; for α < λP , P(α +1) = (Lp

ΣP
α

ω (P|δα))P ; for limit α ≤ λP ,

P(α) = (Lp
⊕β<αΣP

β
ω (P|δα))P ;

(3) P � ΣP
α is a (ω, o(P), o(P))o-strategy for P(α) with hull condensation;

(4) if α < β < λP then ΣP
β extends ΣP

α .

We will write δP for δP
λP and ΣP =

⊕

β<λP ΣP
β . Note that P(0) is a pure exten-

der model. Suppose P and Q are two hod premice. Then P �hod Q if there is

α ≤ λQ such that P = Q(α). We say then that P is a hod initial segment of Q.

(P , Σ) is a hod pair if P is a hod premouse and Σ is a strategy for P (acting on

countable stacks of countable normal trees) such that ΣP ⊆ Σ and this fact is pre-

served under Σ-iterations. Typically, we will construct hod pairs (P , Σ) such that Σ

has hull condensation, branch condensation, and is Γ-fullness preserving for some

pointclass Γ.

nBy a similar remark, by “hod premice” we mean “reorganized hod premice” in the sense of [5] or
“g-organized hod premice” in the sense of [10]. Again, the reason has to do with S-constructions.
oThis just means ΣP

α acts on all stacks of ω-maximal, normal trees in P.
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Suppose (Q, Σ) is a hod pair. P is a (Q, Σ)-hod premouse if there are ordinal

λP and sequences 〈(P(α), ΣP
α ) |α < λP〉 and 〈δPα |α ≤ λP〉 such that

(1) 〈δPα |α ≤ λP〉 is increasing and continuous and if α is a successor ordinal then

P � δPα is Woodin;

(2) P(0) = LpΣ
ω(P | δ0)

P (so P(0) is a Σ-premouse built over Q); for α < λP , P(α+

1) = (Lp
Σ⊕ΣP

α
ω (P|δα))P ; for limit α ≤ λP , P(α) = (Lp

⊕β<αΣ⊕ΣP
β

ω (P|δα))P ;

(3) P � ΣP
α is a (ω, o(P), o(P))strategy for P(α) with hull condensation;

(4) if α < β < λP then ΣP
β extends ΣP

α .

Inside P , the strategies ΣP
α act on stacks above Q and every ΣP

α iterate is a

Σ-premouse. Again, we write δP for δP
λP and ΣP =

⊕

β<λP ΣP
β . (P , Λ) is a (Q, Σ)-

hod pair if P is a (Q, Σ)-hod premouse and Λ is a strategy for P such that ΣP ⊆ Λ

and this fact is preserved under Λ-iterations. The reader should consult [5] for the

definition of B(Q, Σ), and I(Q, Σ). In a core model induction, we do not quite have

at the moment (Q, Σ) is constructed an AD
+-model M such that (Q, Σ) ∈ M but

we do know that every (R, Λ) ∈ B(Q, Σ) belongs to such a model. We then can

show (using our hypothesis) that (Q, Σ) belongs to an AD
+-model.

The paper [5] constructs under AD
+ (under Strong Mouse Capturing (SMC))

hod pairs that are fullness preserving, positional, commuting, and have branch

condensation. Such hod pairs are particularly important for our computation as

they are points in the direct limit system giving rise to HOD of AD
+ models. For

hod pairs (MΣ, Σ), if Σ is a strategy with branch condensation and �T is a stack on

MΣ with last model N , ΣN ,	T is independent of �T . Therefore, later on we will omit

the subscript �T from Σ
N,	T whenever Σ is a strategy with branch condensation and

MΣ is a hod mouse.

1.4. HOD under AD
+

Using techniques above and the theory of hod mice developed in [5], the papers

[5, 15] compute HOD (up to Θ) in AD
+ models of V = L(℘(R))+SMCp + Θ = θα+1

for some α below “ADR + Θ is regular”.

These papers show the existence of an M∞ such that:

(1) M∞ ∈ HOD.

(2) M∞ is a hod premouse.

(3) M∞|Θ = (V HOD
Θ , �EM∞|Θ, SM∞ ,∈), where SM∞|Θ is the predicate for strate-

gies of hod initial segments of M∞|Θ.

We call M∞ the hod limit.

The paper [5] also computes HOD (up to Θ) in models of V = L(℘(R)) +

SMC + ADR below “ADR + Θ is regular” by exhibiting a hod premouse M∞

pSMC stands for the Strong Mouse Capturing, which says that for any hod pair (P,Σ) such that
Σ has branch condensation and is fullness preserving, then MC(Σ) holds.
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satisfying (1)–(3) as above. Here M∞ =
⋃

(Q,Λ) M∞(Q, Λ), where (Q, Λ) is a hod

pair with branch condensation and is fullness preserving and M∞(Q, Λ) is the

direct limit of all (nondropping) Λ-iterates of Q.

What is important for us are the notions discussed in those papers to compute

HOD in the successor cases. Let (P−, Σ) be as above and suppose also that the

direct limit M∞(P−, Σ) agrees with HOD up to θα. Let

B(P−, Σ) = {B ⊆ ℘(R) × R × R |B is OD, for any (Q, Λ) iterate of (P−, Σ),

and for any (x, y) ∈ B(Q,Λ), x codes Q}.

In the above definition, we identify Λ with the set of reals Code(Λ), and the

notation B(Q,Λ) refers to the section consisting of the second and third coordinates

of B. We also write “P is Σ-suitable” for “(P , Σ) is a suitable pair”. For such a

P , we let δP be the Woodin cardinal of P (above P−). If (P−, Σ) = (∅, ∅), then

each B ∈ B(∅, ∅) can be canonically identified with an OD set of reals and hence

B(∅, ∅) can be canonically identified with the collection of OD sets of reals. Suppose

B ∈ B(P−, Σ) and κ < o(P). Let τP
B,κ be the canonical term in P that captures B

at κ i.e., for any g ⊆ Col(ω, κ) generic over P

B(P−,Σ) ∩ P [g] = (τP
B,κ)g.

Let δ = δP . For each m < ω, let

γP,Σ
B,m = sup(HullP1 (P− ∪ {τP

B,(δ+m)P}) ∩ δ),

HP,Σ
B,m = HullP1 (γP,Σ

B,m ∪ {τP
B,(δ+m)P}),

γP,Σ
B = supm<ωγP,Σ

B,m,

and

HP,Σ
B =

⋃

m<ω

HP,Σ
B,m.

Similar definitions can be given for γP,Σ
	B,m

, HP,Σ
	B,m

, γP,Σ
	B

, HP,Σ
	B

for any finite sequence

�B ∈ B(P−, Σ). One just needs to include relevant terms for each element of �B

in each relevant hull. The usual notions of B-iterability, strong B-iterability, and

the corresponding weak iteration games WG(P , Σ), WG(P , Σ, B) are defined in

[5, Sec. 3.1]. The papers [5, 15] show that if (P−, Σ) is a hod pair such that

(i) Σ is fullness preserving, commuting, positional, and has branch condensation,

(ii) δM∞(P−,Σ) = θα for some α,

(iii) M∞(P−, Σ)|θα = HOD|θα,

then we can compute HOD|θα+1 as follows.

Let

F = {(P , Σ, �B) | �B ∈ B(P−, Σ)<ω, (P−, Σ) satisfies (i)–(iii), P is Σ-suitable

and (P , Σ) is strongly �B-iterable}.
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The ordering on F is defined as follows:

(P , Σ, �B) � (Q, Λ, �C) ⇔ �B ⊆ �C, ∃ r (r is a run of WG(P , Σ, �B) with the last model

P∗ such that (P∗)− = Q−, Σ(P∗)− = Λ,P∗ = Q|(η+ω)Q

where Q � η > o(Q−) is Woodin).

Suppose (P, Σ, �B) � (Q, Λ, �C) then there is a unique map π
(P,Σ),(Q,Λ)
	B

: HP,Σ
	B

→

HQ,Λ
	B

given by strong �B-iterability. (F , �) is then directed. Let

M∞,α = direct limit of (F , �) under maps π
(P,Σ),(Q,Λ)
	B

.

Then M∞,α ∈ HOD and M∞,α|θα+1 = HOD|θα+1. Also for each (P , Σ, �B) ∈ F ,

let

π
(P,Σ),∞
	B

: HP,Σ
	B

→ M∞,α

be the natural map, and let for each such �B

H
M∞,α

	B
=

⋃

(P,Σ, 	B)∈F

π
(P,Σ),∞
	B

[HP,Σ
	B

],

and

γ
M∞,α

	B
=

⋃

(P,Σ, 	B)∈F

π
(P,Σ),∞
	B

[γP,Σ
	B

].

Now suppose f : Θ → Θ (f could be taken from a parent ZFC universe) is such

that, for each α such that θα < Θ, f � (θα +1) ∈ HOD and rng(f � (θα +1) ⊂ θα+1.

We call such an f appropriate. Fix an appropriate f and an α and let F ,M∞,α

be as above for α. Let (P , Σ, B) ∈ F be such that f � (θα + 1) ∪ {f � (θα + 1)} ⊂

rng(π
(P,Σ),∞
B �HP,Σ

B ). In particular, γM∞

B > f(θα). We call such a triple (P , Σ, B)

f -suitable. We then say that a Σ-suitable P is (strongly) (f, Σ)-iterable if letting

Bf be the OD-least B in B(P−, Σ) such that (P , Σ, Bf ) is f -suitable, then (P , Σ)

is (strongly) B-iterable. Whenever (P , Σ, Bf ) ∈ F is f -suitable, we also write γP,Σ
f

for γP,Σ
Bf

or simply γP
f if Σ is clear from the context.q

2. The Maximal Model and a Framework for the Core

Model Induction

The core model induction is a method for constructing models of determinacy while

working under various hypotheses. During the induction one climbs up through

the Solovay hierarchy. This is a hierarchy of axioms that extend AD
+ and roughly

describes how complicated the Solovay sequence is. One first defines, under a certain

smallness assumption, for instance “there are no models M such that R∪Ord ⊂ M

qThe notions of f -iterability and f -suitability here are related to those used in [13] but as far as
the authors can see, they are not the same.
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such that M � ADR + Θ is regular”, a so-called maximal model of AD
+, M. We

show M � AD
+. We also show that M cannot satisfy “Θ = θα+1” for some α

and “ADR + Θ is singular” as in each case, we can construct a hod pair (P , Σ) that

generates ℘(R)∩M, but by maximality of M, (P , Σ) ∈ M, which is a contradiction.

This shows that there must indeed be such models M satisfying “ADR + Θ is

regular”.

Throughout the paper we work under the smallness assumption, which is

assumed in V as well as in all set-generic extensions of V

(†): “there are no models M such that R ∪ Ord ⊂ M such that M � ADR + Θ is

regular”.r

In this section we first recall the notion of the maximal model and some correctness

results from [8]; the second part of the section sets up the framework for our core

model induction.

We start by introducing universally Baire iteration strategies and mouse opera-

tors. We assume ZFC. Throughout this paper we fix a canonical method for coding

sets in HC by reals. Given a real x which is a code of a set in HC, we let Mx be

the structure coded by x and let πx : Mx → Nx be the transitive collapse of Mx.

We let WF be the set of reals which code sets in HC.

Definition 2.1 (uB operators). Suppose Λ ∈ dom(Code) and λ ≥ ω1 is a cardi-

nal. We say Λ is λ-uB if there are < λ-complementing treess (T, S) witnessing that

Code(Λ) is < λ-uB in the following stronger sense: for all x ∈ WF and n, m ∈ x,

(x, n, m) ∈ p[T ] ⇐⇒ πx(m) ∈ Λ(πx(n)).

If g is a < λ-generic then we let Λg be the canonical interpretation of Λ onto V [g],

i.e., given a, b ∈ HCV [g], Λg(a) = b if and only if whenever x ∈ WFV [g] is such that

a ∈ Nx and n ∈ x is such that πx(n) = a then b = πx[{m : (x, n, m) ∈ (p[T ])V [g]}].

If Λ is λ-uB for all λ then we say Λ is uB.

In the core model induction of this paper, all operators constructed are λ-uB

operators (for some appropriate λ to be defined later). The definition of uB opera-

tors ensures that the “decoding” of Λ from Code(Λ) is generically absolute.

Suppose now λ is an uncountable cardinal, g is a < λ-generic, a ∈ (Hλ)V [g] and

Σ ∈ dom(Code) is λ-uB. Then we define LpΣ,g(a), Wλ,Σ,g(a) and Kλ,Σ,g(a) in V [g]

according to Definition 1.2. The following connects the three stacks defined above.

Proposition 2.2. Suppose λ is an uncountable cardinal and Σ ∈ dom(Code) is

λ-uB. For every a ∈ HV
λ , Wλ,Σ(a) � Kλ,Σ(a) � LpΣ(a). Moreover, for any

η < λ and V -generic g ⊆ Coll(ω, η) or g ⊆ Coll(ω, < η), Wλ,Σ,g(a) � Wλ,Σ(a),

Kλ,Σ,g(a) � Kλ,Σ(a) and LpΣ,g(a) � LpΣ(a).

rAnother way of stating our smallness assumption is the statement: “there are no hod mice P
such that δP is an inaccessible limit of Woodin cardinals in P”.
sIt means that the trees project to complement in all < λ-generic extensions.
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Definition 2.3 (Hod pair below λ). Suppose that λ is an uncountable cardinal

and (P , Σ) is a hod pair such that Σ ∈ dom(Code) is λ+-uB. We say (P , Σ) is

a hod pair below λ if Σ has branch condensation and whenever g ⊆ Coll(ω, λ) is

V -generic, in V [g], Σg is ω1-fullness preserving.t

Note that if κ ≤ λ and (P , Σ) is a hod pair below λ then (P , Σ) is a hod pair

below κ. We are now in a position to introduce the maximal model of AD
+.

Definition 2.4 (Maximal model of AD
+ + Θ = θΣ). Suppose µ < λ are

cardinals and g ⊆ Coll(ω, < µ)u is V -generic. Suppose in V [g], (P , Σ) is a hod pair

below λ. Then we let Sλ,Σ
µ,g = L(Kλ,Σ,g(RV [g])). We also let

M
λ
µ,g = L

( ⋃

(P,Σ)

Sλ,Σ
µ,g ∩ ℘(R)

)

and Ωλ
µ,g =

⋃

(P,Σ)

Sλ,Σ
µ,g ∩ ℘(R),

where the union is over all such hod pairs (P , Σ).

Thus far strategy mice have been discussed only in situations when the under-

lying set was self-well-ordered. However, Sλ,Σ
µ,g is a Σ-mouse over the set of reals.v

Such hybrid mice were defined in [5, Sec. 2.10] and a more detailed treatment is

given in [10]. We say that Sλ,Σ
µ,g is the λ-Σ-maximal model of AD

+ at µ, M
λ
µ,g is the

λ-maximal model of AD
+ at µ, and Ωλ

µ,g is the λ-maximal point class of AD
+ at µ.

Our goal is to show that (under (†)) M
λ
µ,g is a model of “ADR + Θ is regular”.

The next lemma connects various degrees of iterability. Below, if ξ ∈ Ord and

N is a transitive model of ZFC then we let Nξ = V N
ξ .

Lemma 2.5. Suppose µ < λ are such that µ is a strong cardinal and λ is

inaccessible. Let j : V → M be an embedding witnessing that µ is λ+-strong

and let g ⊆ Coll(ω, < µ) and h ⊆ Coll(ω, < j(µ)) be two generics such that

g = h ∩ Coll(ω, < µ). Let j+ : V [g] → M [h] be the lift of j. Let W = V [g].

Suppose (P , Σ) is a hod pair below µ and a ∈ Vλ[g] is self-well-ordered. Then

Wλ,Σ,g(a) = Wλ,Σ,h∩Coll(ω,<λ)(a) = Kλ,Σ,g(a) = Kµ,Σ,g(a) = (Wj(λ),j(Σ),h(a))M [h].

The proof of the previous lemma is from [8, Lemma 2.5]. The following is an

easy corollary of Lemma 2.5.

Corollary 2.6. Suppose µ < κ < λ and j : V → M are such that µ and κ are

strong cardinals, λ is inaccessible, j witness that µ is λ-strong and M � “κ is strong

cardinal”. Let (P , Σ) be a hod pair below µ which is λ-uB. Let g ⊆ Coll(ω, < κ)

tRecall this means Σg is ℘(℘(ω1))-fullness preserving.
uIn this paper, µ is typically an inaccessible cardinal.
vActually, we need that Sλ,Σ

µ,g is a Θ-g-organized Σ-mouse over R
V [g] as defined in [10]; this is a

slight modification from the hierarchy of g-organized Σ-mice. This modification is needed (only
for Σ-mice over R) so that the scales analysis works out.
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and h ⊆ Coll(ω, < j(µ)) be generic such that g = h ∩ Coll(ω, < κ). Let j+ :

V [g ∩ Coll(ω, < µ)] → M [h] be the lift of j. Then whenever a ∈ Vλ[g],

Wλ,Σ,g(a) = Kκ,Σ,g(a) = Wλ,Σ,h∩Coll(ω,<λ)(a) = (Wj(λ),j(Σ),h(a))M [h].

The proof of the above is given in [8, Sec. 2], so we omit it here. Now we develop

some basic notions in order to state Theorem 2.9 which we will use as a black box.

Our core model induction is a typical one: we have two uncountable cardinals κ < λ,

the core model induction operators (cmi operators) defined on bounded subsets of

κ can be extended to act on bounded subsets of λ, and for any such cmi operator

F acting on bounded subsets of λ, the minimal F -closed mouse with one Woodin

cardinal exists and is λ-iterable.

The mouse operators that are constructed during core model induction have

two additional properties: they transfer and relativize well. More precisely, fix Σ ∈

dom(Code) which is λ-uB. Given a Σ-mouse operator F ∈ dom(Codeλ), we say

(1) (Relativizes well) F relativizes well if there is a formula φ(u, v, w) such that

whenever X, Y ∈ dom(F ) and N are such that X ∈ L1(Y ) and N is a transitive

rudimentarily closed set such that Y, F (Y ) ∈ N then F (X) ∈ N and F (X) is

the unique U such that N � φ[U, X, F (Y )].

(2) (Transfers well) F transfers well if whenever X, Y ∈ dom(F ) are such

that X is generic over L1(Y ) then F (L1(Y )[X ]) is obtained from F (Y )

via S-constructions (see [5, Sec. 2.11]) and in particular, F (L1(Y ))[X ] =

F (L1(Y )[X ]).

We are now in a position to introduce the core model induction operators that

we will construct in this paper.

Definition 2.7 (Core model induction operator). Suppose |R| = κ, (P , Σ) is

a hod pair below κ+. We say F ∈ dom(Code) is a Σ core model induction operator

or just Σ-cmi operator if for some α ∈ Ord, letting M = Sκ+,Σ
ω ||α, Γ = ΣM

1 , suppose

M � AD
+ + MC(Σ) and one of the following holds:

(1) F is a Σ-mouse operator which transfers and relativizes well.

(2) For some self-well-ordered b ∈ HC and some Σ-premouse Q ∈ HCV over b,

F is an (ω1, ω1)-iteration strategy (above o(P)) for a (Σ, Γ)-suitable Q which

is Γ-fullness preserving, has branch condensation and is guided by some �A =

(Ai : i < ω) such that �A ∈ ODM
b,Σ,x for some x ∈ b. Moreover, α ends either a

weak or a strong gap in the sense of [10].

(3) For some H ∈ dom(Code), H satisfies a or b above and for some n < ω, F is

x → M#,H
n (x) operator or for some b ∈ HC, F is the ω1-iteration strategy of

M#,H
n (b).w

wThis definition is taken from [8, Definition 3.1], though we omit clause (2) there as it is not
necessary.
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When Σ = ∅ then we omit it from our notation. Often times, when doing core

model induction, we have two uncountable cardinals κ < λ and we need to show

that cmi operators in V Coll(ω,<κ) can be extended to act on V Coll(ω,<λ). This is a

weaker notion than being λ-uB. We also need to know that for any cmi operator

F ∈ V Coll(ω,<κ), M#,F
1 -exists. We make these statements more precise.

Definition 2.8 (Lifting cmi operators). Suppose κ < λ are two cardinals such

that κ is an inaccessible cardinal and suppose (P , Σ) is a hod pair below κ.

(1) Lift(κ, λ, Σ) is the statement that for every generic g ⊆ Coll(ω, < κ), in V [g],

for every Σg-cmi operator F there is an operator F ∗ ∈ dom(Codeλ) such that

F = F ∗ � HC. In this case we say F is λ-extendable. Such an F ∗ is necessarily

unique as can be easily shown by a Skolem hull argument.x If Lift(κ, λ, Σ) holds,

g ⊆ Coll(ω, < κ) is generic, and F is a Σg-cmi operator then we let Fλ be its

extended version.

(2) We let Proj(κ, λ, Σ)y be the conjunction of the following statements:

Lift(κ, λ, Σ) and for every generic g ⊆ Coll(ω, < κ), in V [g],

(a) for every Σg-cmi operator F , M#,F
1 exists and is λ-iterable,

(b) for every a ∈ Hω1 , K
ω1,Σ,g(a) = Wλ,Σ,g(a).

The following is the core model induction theorem that we will use.

Theorem 2.9. Suppose κ < λ are two uncountable cardinals and suppose (P , Σ)

is a hod pair below κ such that Proj(κ, λ, Σ) holds. Then for every generic g ⊆

Coll(ω, < κ), Sλ,Σ
κ,g � AD

+ + θΣ = Θ.z

We will not prove the theorem here as the proof of the theorem is very much like

the proof of the core model induction theorems in [6] (see Theorems. 2.4 and 2.6),

[9] (see Chapter 7) and [12]. To prove the theorem we have to use the scales anal-

ysis for Sλ,Σ
κ,g (see [10]). For a relevant discussion on how Theorem 2.9 is proved,

see [8].

We end this section with the following useful fact on lifting strategies. Among

other things it can be used to show clause (b) of Proj(κ, λ, Σ). The following lemma

is Lemma 3.5 of [8].

Lemma 2.10 (Lifting cmi operators through strongness embeddings).

Suppose κ < λ are such that κ is a λ-strong cardinal. Then whenever (P , Σ) is a

hod pair below κ, Lift(κ, λ, Σ) and clause (b) of Proj(κ, λ, Σ) hold.

xSuppose H0, H1 ∈ dom(Code
V [g]
λ

) are two extensions of F . Working in V [g], let π : N → Hλ+ [g]
be elementary such that N is countable and H0, H1 ∈ rng(π). Let (H̄0, H̄1) = π−1(H0, H1). Then
it follows from the definition of being a Σ-cmi operator that H̄0 = H0 �N and H̄1 = H �N .
However, since H0 �N = F �N = H1 �N , we get that N � H̄0 = H̄1, contradiction!
yProj stands for projective determinacy. The meaning is taken from clause (a).
zTechnically speaking, the proof shows that some maximal, constructibly closed initial segment

M of Sλ,Σ
κ,g � AD

+ + θΣ = Θ. In fact, M is the union of S such that for any countable transitive
S∗ such that there is an elementary map from S∗ into S, S∗ has an iteration strategy projective
in S. We will, for the rest of the paper, confuse this M with Sλ,Σ

κ,g ; this does not change anything.

1650007-13



G. Sargsyan & N. Trang

3. A Core Model Induction

Recall that we say µ reflects the set of strong cardinals (or µ is strong reflecting

strongs) if µ is a strong cardinal and for every λ > µ, there is an embedding

j : V → M witnessing that µ is λ-strong and such that for any cardinal κ ∈ [µ, λ),

V � “κ is strong” if and only if M � “κ is strong”. We fix µ < κ < λ such that λ is

an inaccessible cardinal, µ and κ are strong such that µ is strong reflecting strongs

and κ is strong.aa

Suppose n ⊆ Coll(ω, < j(µ)) is V -generic. Let m = n ∩ Coll(ω, < κ) and g =

m ∩ Coll(ω, < µ). We also let j+ : V [g] → M [n] be the lift of j. Suppose also

Proj(κ, λ, Ψ) holds for all hod pairs (R, Ψ) below κ. We first prove (under the

assumption (†)) the following.

Theorem 3.1. Let µ, κ, λ etc. be as above. M
λ
µ,g �= Sλ,Ψ

µ,g for any hod pair (S, Ψ)

below κ, where S ∈ Vµ[g], Ψ ∩ V [g] ∈ V [g].

We first restate the main theorem (Theorem 4.1) of [8] in our context. The proof

of this theorem is an easy generalization of that of Theorem 4.1 of [8] combined

with Theorem 2.9, so we omit it.

Theorem 3.2. Let µ, κ, λ etc. be as above. Suppose (R, Ψ) is a hod pair below κ

such that Proj(κ, λ, Ψ) holds. Suppose (R, Ψ) ∈ Vµ[g]. Let P = (M∞)S
λ,Ψ
µ,g . Then

in M [m], P has an (ω1, ω1)-iteration strategy Σ such that Σ is extendable to a

(j(µ), j(µ))-strategy that is j(µ)-fullness preserving. Moreover, there is a stack �T ∈

HCV [m] on P according to Σ with last model Q such that π
	T exists and in V [m],

(Q, ΣQ,	T ) is a hod pair below ω1 (so in particular, ΣQ,	T has branch condensation).

Finally, in V [m] (or equivalently in M [m]), S
λ,Σ

Q,�T
κ,m � AD

+ +θΨ < Θ.

Proof of Theorem 3.1. This basically follows from Theorem 3.2. We outline the

argument. Suppose not; then M
λ
µ,g = Sλ,Ψ

µ,g for some hod pair (R, Ψ) ∈ V [g] below

κ, where R ∈ Vµ[g] and Ψ∩ V [g] ∈ V [g]. Fix such a (R, Ψ). Applying Theorem 3.2

to (R, Ψ) and using elementarity of j+ and the fact that κ is strong in M , we

get that there is a hod pair (Q, Σ) below a strong cardinal κ∗ < µ such that

(Q, Σ) ∈ Vκ∗ [g ∩ Coll(ω, < κ∗)] and (Q, Σ) is also a hod pair below µ such that

Σ /∈ M
λ
µ,g and Sλ,Σ

µ,g � AD
+.bb This contradicts the definition of M

λ
µ,g.

aaIt should be noted that the main assumption in the definition of “tame trees” is a bit of an
overkill. It would have been enough to assume that all extenders of the tree are above cardinals
µ < κ, where µ is a strong reflecting strongs and κ is strong.
bbTo see that Σ is fullness preserving with respect to mice in Sλ,Ψ

µ,g , using the fact that κ∗ is strong,
we get that Σ is λ-fullness preserving in V [g ∩ Coll(ω, < κ∗)]. Suppose M is a λ-iterable sound
(g-organized) Ψ-mouse over a ∈ HCV [g] and ρω(M) = a, then by S-construction, M is (fine
structurally) equivalent to a (g-organized), sound Ψ-mouse M∗ over some a∗ ∈ Vµ[g ∩ Coll(ω, <

κ∗)] and ρω(M∗) = a∗. This observation guarantees Σ is Sλ,Ψ
µ,g -fullness preserving.
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Remark 3.3. The proof of Theorem 3.1 is one main place the hypothesis that µ

reflects the set of strong cardinals is used. There are other places in this section

where this assumption on µ seems to be used essentially.

The above theorem shows that the Solovay sequence of Ωλ
µ,g has limit length. In

the following theorem, the definition of (M∞)Ω
λ
µ,g is self-explanatory. As explained

in the next section, the assumption Proj(κ, λ, Ψ) in the hypothesis holds when the

hypothesis of Theorem 0.2 is assumed; this follows from [8, Lemma 5.2].

Theorem 3.4. Suppose whenever (R, Ψ) is a hod pair below κ then Proj(κ, λ, Ψ)

holds; so the Solovay sequence of Ωλ
µ,g has limit length. Let P = (M∞)Ω

λ
µ,g and

P+ = Wλ,Σ−,g
ω (P), where Σ− is the join of the strategies ΣP(α) of P(α) for all

α < λP .cc Let Θ be the height of the Wadge hierarchy of Ωλ
µ,g (so Θ = o(P)). If

P+ � Θ is regular, then Ωλ
µ,g is constructibly closed and L(Ωλ

µ,g) � “ADR + Θ is

regular”. If P+ � Θ is singular, then there is an initial segment Γ of Ωλ
µ,g such that

“L(Γ) � ADR + Θ is regular”.

Proving Theorem 3.4 is the main task of our paper. For the first conclusion,

suppose P+ � Θ is regular. Note that L[P+] ∩ ℘(Θ) = P+ ∩ ℘(Θ). By standard

Vopenka arguments (cf. [1]), letting Ω = Ωλ
µ,g, L[P+](Ω) ∩ ℘(R) = Ω and L(Ω) �

“ADR + Θ is regular”.

The rest of the section is devoted to the second conclusion. So we assume P+ � Θ

is singular. We follow arguments in [7]. Many of the main ideas of our proof come

from [7]; however, in this situation, we do not know a priori that |P+|V < µ+

(unlike in the situation of [7]) and this affects many of the key arguments given

there. We now outline the proof of the theorem, making use of results from [7] as

much as possible.

Lemma 3.5. Suppose P � M � P+. Then ρω(M) ≥ Θ.

Proof sketch. Fix such an M. Note that |M|V = µ since the assumption that

P+ � Θ is singular that Θ < µ+. The methods of [7], in particular Lemma 11.8,

applied to M show that in fact ρω(M) ≥ Θ.

We assume throughout this section that |P+|V ≥ µ+ (so equality holds). Other-

wise, [7] applies and gives Theorem 3.4. By replacing j by the ultrapower embedding

via the (µ, j(µ))-extender derived from j, we may assume j[P+] is cofinal in j(P+).

Lemma 3.6. P+ � cof(λP ) is measurable.

Proof. Suppose not. Recall we set Σ− =
⊕

α<λP+ ΣP(α). Let Ω = Ωλ
µ,g. We have

Σ− acts on P+. More precisely, whenever �T (based on P) is according to Σ− and π
	T

ccΣP(α) is simply the tail of a hod pair (Q, Λ) ∈ Ωλ
µ,g where M∞(Q,Λ) = P(α). Using j+, we

can extend Λ to a unique strategy, called Λ also, acting on stacks in j+(Ωλ
µ,g); so (P(α), ΣP(α))

is indeed a hod pair in j+(Ωλ
µ,g).
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exists, then letting Q = Ult(P+, E), where E is the (crt(π
	T ), supπ

	T [P ])-extender

derived from π
	T , then we can define σ : Q → j(P+) as follows: for any f ∈ P+,

any a ∈ (Q|δQ)<ω,

σ(iE(f)(a)) = j(f)(π
Σ−

�T ,Q

Q|δQ,∞(a)).

Using the fact that π
	T is continuous at δP

+

and j �P = πΣ−

P,∞, we get that σ is

elementary, σ ◦ iE = j �P+, and σ � δQ = π
Σ−

�T ,Q

Q,∞ � δQ. In particular, this implies

that Q is well-founded.

It follows from Theorem 3.1 that (P+, Σ−) ∈ j+(Ω). But then letting M∞ be

the direct limit of all iterates of (P+, Σ−) in j+(Ω) (equivalently in M [n]), there is

an embedding τ : M∞ → j(P+) with critical point δM∞ ; this is because the maps

j and πΣ−

P,∞ agree up to δP but not at δP . This implies that M∞ is a hod initial

segment of j(P+) and M∞ � “δM∞ is an inaccessible limit of Woodin cardinals”.

This contradicts our smallness assumption (†) and the first clause.

Definition 3.7 (Nice strategies). Suppose πP+,R : P+ → R, σ : R → j(P+) are

Σ1-elementary. Suppose j �P+ = σ ◦πP+,R. Let α < λR. We say that an iteration

strategy Σα for R(α) is nice if and only if

(i) Σα is a j+(Ωλ
µ,g)-fullness preserving strategy for R(α) with branch

condensation;

(ii) πΣα

R(α),∞ = σ′ �R(α) for some Σ1 elementary map σ′ : R → j(P+) such that

j � P+ = σ′ ◦πP+,R (so Σα acts on all of R);

(iii) if πP+,R ∈ M , then Σα � M ∈ M .

Now, we construct a partial strategy Σ of P+ in V [n] with the following prop-

erties (using the terminology of [7]):

(i) Σ extends Σ−.

(ii) Whenever �T ∈ Mj(µ) ∪Mκ[m] is a stack on P+, we say that �T is according to

Σ if:

(a) for all R a terminal node (see [7, Definition 2.1]) of �T , there is a map

σR : R → j(P+) such that

j �P+ = σR ◦π
	T
P+,R.

Furthermore, if Q and R are two terminal nodes and π
	T
Q,R exist then

σQ = σR ◦π
	T
Q,R.

(b) For all terminal nodes R, for all successor α < λR, letting σR be as above,

there is a unique {j(f) : f ∈ P+ ∧ j(f) is appropriate}-guided,dd nice

ddThis means ΣR(α) witnesses R(α) is strongly (j(f), ΣR(β))-iterable for all f ∈ P+ such that
j(f) is appropriate. Furthermore, for any correctly guided, maximal T according to ΣR(α), δ(T ) =

supf∈P+(γ
M

T
b

j(f)
).
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strategy ΣR(α) for R(α). Furthermore, letting α = β + 1, then ΣR(α)

extends ΣR(β).

(c) Letting R be as in (b), then whenever �U on R is according to (the tail

of) Σ and �U is based on R(α) for some α < λR, then �U is according

to ΣR(α).

In the above, we define Σ by inductively defining ΣR(α) for each α < λR, where

R is a terminal node on a stack �T as above. First note that ΣP(α) is nice for each

α < λP+

(with clause (ii) in Definition 3.7 being witnessed by j). Now suppose
�T ,R are as above. It is enough to define ΣR(α) for α = β + 1, where by induc-

tion, we have that ΣR(β) is nice and the supremum of the generators of �TP+,R

is ≤ δRβ .ee We prove a series of lemmas that eventually leads to the construction

of ΣR(α).

Lemma 3.8. Let �T ,R, σR, α, β be as above. Then R(α) is full in j+(Ωλ
µ,g).

Proof. Suppose not. As before we set Ω = Ωλ
µ,g and we have already assumed that

ΣR(β) is nice, so in particular, R(β) is j+(Ω)-full. Let ξ < j(µ) be M -inaccessible

and (P∗, Ψ) ∈ Mξ be a Σ−-hod pair in j+(Ω) witnessing R(α) is not full and

λP∗

is limit of countable cofinality (in P∗). More precisely, there is a cutpoint ξ

in R(α) above R(β) such that in Γ(P∗, Ψ),ff there is a ΣR(β)-mouse M such that

M� LpΣR(β)(R(α)|ξ)\R(α). The existence of such a pair (P∗, Ψ) follows from the

fact that j(µ) is strong in M and by Boolean comparison. Note that no levels of P∗

extending P+ projects to or below Θ. This is similar to the proof of Lemma 3.5;

basically, this is because if P � M � P∗ is such that ρω(M) ≤ Θ, by the proof of

[7, Lemma 11.8], we get that M�P+. We assume that Ψ has branch condensation

and is j+(Ω)-fullness preserving.

Let σ = πP+,R and σ+ : P∗ → R∗ be the ultrapower map of P∗ by the

(crt(σ), δR)-extender derived from σ. Let σ+
R : R∗ → j(P∗) be defined as: for

g ∈ P∗, a ∈ (δR)<ω ,

σ+
R(σ+(g)(a)) = j(g)(σR(a)).

We have then that σ+
R is elementary and j �P∗ = σ+

R ◦ σ+.

In V , let Ṫ , Ṙ, Ṙ∗, Ṡ, Σ̇, σ̇, ˙σ+, ˙σR, ˙σ+
R ∈ V be canonical Coll(ω, < κ) names for

�T ,R,R∗,R(α), Σβ, σ, σ+, σR, σ+
R respectively. Let γ be a sufficiently large regular

cardinal in V [g] such that Vγ [g] contains all relevant objects and let µ + 1 ⊂ X ≺

Vγ [g] be of size µ and contain all relevant objects. Let π : N → X be the uncollapse

eeIf α < λR is limit and cofR(α) is not measurable in R then we set ΣR(α) to be
L

β<α ΣR(β).

If cofR(α) = κ is measurable in R, then we let S = Ult(R, E) where E is the total extender on κ

with the least index in R and we define ΣR(α) by inductively defining ΣS(β) for β < λS .
ffThis is the set of A ⊆ R such that A <w ΛS(α) for some iterate (S,Λ) of (P∗,Ψ) and α <

λS . The existence of (P∗,Ψ) follows from the fact that Ω’s Solovay sequence is of limit order
type.
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map. Let m̄ ∈ V [g] be Coll(ω, π−1(κ))-generic over N . For any a ∈ X , let ā =

π−1(a).

Let M = M�,Ψ
ω and let Π be M’s j(µ)-strategy in M [n] (the M before is behind

us now). We assume also that (M, Π � V [g]) ∈ X . Let N be an iterate (below the

first Woodin cardinal of M) such that H =def HM
ξ is generically genericgg over N

for the extender algebra BN
δ , where δ is the first Woodin cardinal of N . Then in

N [H ][m], the following conditions holds:

D(N [H ][m]) � “in L(Γ(P∗, Ψ), R),R(α) is not full”,

where D(N [H ][m]) is the derived model of N [H ][m]. A similar fact holds of N̄

inside N [m̄]. In fact, letting M = N̄ [H̄ ], then inside M, letting λ be the sup of

M’s Woodin cardinals:

∅ �Col(ω,<κ̄)�Col(ω,<λ) in the derived model, L(Γ(P̄∗, Ψ̄))

witnesses that Ṡ is not full. (3.1)

Note that

Ψ̄ = Ψπ �N and Π̄ = Ππ �N, (3.2)

and

π �π−1(j(P∗)) ◦ (
¯̇

σ+
R)m̄ =def τ ∈ M [g], (3.3)

and

Ψπ = j(Ψ)j ◦π = j(Ψ)τ ◦ (
¯̇

σ+)m̄ is Wadge reducible to Λ =def j(Ψ)τ . (3.4)

Combining (3.1), (3.2), and (3.4), letting W = ¯̇R∗
m̄ and S = ¯̇S, we get (in Ωλ

κ,m),

in L(Γ(W , Λ), R), S is not full. (3.5)

This means that if we perform an RV [m]-genericity iteration via Λ, then letting W∗

be the iterate, inside D(W∗), we have

S is not full. (3.6)

This contradicts results in [5] on internal fullness of hod mice.

Definition 3.9. For f ⊆ δP and f ∈ P+. We say an M�P+ is f-nice if ρω(M) =

Θ, f ∈ M, M � Θ is the largest cardinal, and j �M is cofinal in j(M).

Fix an appropriate f ∈ P+. Let M � P+ be f -nice; note that the set of f -

nice M’s is unbounded in P+. We construct a strategy Σf witnessing R(α) is

strongly (j(f), ΣR(β))-iterable. First, we construct a realizable strategy for R(α).

Let τM = j �M. Note that τM ∈ M and by f -niceness of M, πP+,R �M is cofinal

in πP+,R(M). By absoluteness, ΣR(β) ∈ M [n], and the fact that πP+,R(M) is

countable in M [n], there is in M [n] an elementary σM : πP+,R(M) → j(M)

ggSee [5, Sec. 2.10] for the definition.
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such that

• σM ◦πP+,R �M = τM.

• σM �R(β) = π
ΣR(β)

R(β),∞.

Let Σ′ = j(P)σM

R(α) be the ΣM-pullback of R(α). By constructions in [7, Sec. 11],

whenever S is a nondropping Σ′-iterate of R(α), then there is an embedding σS :

S → σM(R(α)) such that σS ◦ πΣ′

R(α),S = σM �R(α).

Remark 3.10. The above construction, though stated as a definition for a strategy

of R(α) in V [m] as part of defining a partial strategy Σ for P+, indeed gives an

inductive definition of a strategy ΛM ∈ M [n] for M for stacks in Mj(µ)[n]; the

reason is because τM ∈ M . Furthermore by construction, given any ΛM-iterate S

of M, there is some σ : S → j(M) such that σ ◦ πM,S = j �M.

Lemma 3.11. All nondropping Σ′-iterates of R(α) are j+(Ωλ
µ,g)-full. Furthermore,

Σ′ has branch condensation and is positional and commuting.

Proof sketch. The proof is almost the same as that of Lemma 3.8. We only outline

the main changes. Let S be a nondropping Σ′-iterate of R(α) and suppose S is not

full. Let (P∗, Ψ) be as in the proof of Lemma 3.8 witnessing this. Let E be the

(crt(πP+,R), δR)-extender derived from πP+,R. Let Q = Ult(P∗, E), N ′ = iQE (M),

and N = Ult(M, E).

Claim 3.12. N ′ = N = πP+,R(M) and iQE �M = iME = πP+,R �M.

Proof. We just prove N = πP+,R(M) and iME = πP+,R �M. By definition of E

and the choice of M, there is a factor map l : N → πP+,R(M) such that crt(l) ≥ δR

and l is cofinal in πP+,R(M). Note that both N and πP+,R(M) satisfy δR is the

largest cardinal. It means that l is the identity. Similarly, N ′ = πP+,R(M) and

iQE = πP+,R � M.

Now as in the proof of Lemma 3.8, π =def πP+,R lifts to π+ : P∗ → Q and

there is a map σQ : Q → j(P∗) extending σM (this uses the claim) such that

σQ ◦π+ = j �P∗.

Now, τ =def πΣ′

R(α),S can be extended to τ+ : Q → S+ (τ+ is simply the

ultrapower map by the (crt(τ), δS )-extender derived from τ) and there is a map

σS+ : S+ → j(P∗) such that σQ = σS+ ◦ τ+. The rest of the proof is just like that

of Lemma 3.8.

That Σ′ has branch condensation, is positional and commuting follows from

[5, Lemma 3.26] and the fact that cof(δP) is measurable in P+ since Σ′ can be

taken to be the pullback of some hod pair (R, Λ) in j+(Ωλ
µ,g) such that λR is limit

and Λ has branch condensation and is fullness preserving. �

Let f ⊆ δP and f ∈ P+; let M be f -nice, and τM = j �M. Again, note that

τM ∈ M . We now define the notion of (f,M)-condensation. Suppose in M [n], S is
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a hod premouse such that S is τM-realizable, that is, there are maps π : M → S

and τS : S → j(M) in M [n] such that τM = τS ◦π. Letting ΣτS
= j(P)τS , we

define the set Af,M,τS
as follows: for any Σ1 formula φ, for any s ∈ (S|δS)<ω,

(φ, s) ∈ Af,M,τS
⇔ j(M) � φ[π

ΣτS

S(γ),∞(s), τM(f)],

where γ is such that s ∈ S(γ). We also let

Tf,M = {(φ, s) |φ is a Σ1 formula, s ∈ (P)<ω, and M � φ[s, f ]}.

In the following definition, we reuse the notions just defined.

Definition 3.13. Let M be f -nice and τM = j �M. Suppose π : M → S and

τS : S → j(M) are such that τM = τS ◦π. We say τS has (f,M)-condensation (in

M [n]) if whenever W is τS-realizable as witnessed by (π∗, τW), then π∗(π(Tf,M)) =

Af,M,τW
.

The following theorem and its proof is from [7], but here we apply it to M.

Theorem 3.14 ((f, M)-condensation lemma). Let M be f -nice and τM =

j �M. Then τM has (f,M)-condensation.

Proof. Working in M [n], let µ ≤ ν < j(µ) be such that ν is M -inaccessible. Let Rν

be the direct limit of all hod pairs (W , Σ) such that W ∈ M [n∩Coll(ω, < ν)], Σ is

j+(Ωλ
µ,g)-fullness preserving, positional, commuting, and has branch condensation.

Let Yν =
⋃

α<λRν π
ΣRν (α)

Rν(α),∞[Rν(α)]. Let X ⊂ j(M) be countable in M [n].hh Let

R∗
ν be the transitive collapse of H

j(M)
1 (X ∪ Yν) and σν be the uncollapse map. We

say that ν is X-good if σν � δR
∗
ν =

⋃

α<λRν π
ΣRν (α)

Rν(α),∞. The proof of [7, Lemma 11.9]

shows that there are cofinally many ν < j(µ) that are X-good for any such X .

When X = τM[M], and ν is X-good, we say ν is a good point.

For a good point ν, we can define an iteration strategy Λν (for stacks in Mj(µ)[n])

for R∗
ν the same way ΛM was defined in Remark 3.10, but using σν instead of j.

Λν has the following properties:

• Whenever S is a nondropping Λν-iterate of R∗
ν , S|δS is j+(Ωλ

µ,g)-full.ii Further-

more, for each α < λS , (Λν)S(α) has branch condensation.

• Letting S be as above, there is a map σ : S → j(M) such that σ ◦ πR∗
ν ,S = σν .

Let Mν be the direct limit of all Λν-iterates in j+(Ωλ
µ,g) and mν be the σν-

realization map given by the construction of Λν .

As in the proof of [7, Lemma 11.15], it suffices to show:

there is a τM[M]-good ν such that σν has (f,M)-condensation. (3.7)

hhτM[M] is an example of such an X.
iiS is not full at the top, so we cannot demand more than this.
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The proof of this now is just that of [7, Lemma 11.15] using remarks in Lemma 3.11

and the fact that τM ∈ M (this replaces the hypothesis |P+|V < µ+ used in

[7, Lemma 11.9]). We outline the proof here for the reader’s convenience.

Suppose 3.7 fails. We can then find a sequence (Qi, πi, τi, ki, ψi, νi : i < ω) ∈

M [n] such that

(1) ν0 = µ, R0 = M, and (νi : i < ω) is an increasing sequence of good points,

(2) for i < ω, Qi is σνi
-realizable as witness by (πi, τi) and ki : Qi → R∗

νi+1
=def

Ri+1 is given by ki = σ−1
νi

◦ τi,

(3) for i < ω, σνi
[Ri] ⊆ rng(σνi+1), ψi = σ−1

νi+1
◦σνi

and for i < m, letting ψi,m =

σ−1
νm

◦ σνi
and fi = ψ0,i(f), πi(Tfi,Ri

) �= Afi,Qi,τi
(i.e., (Qi, πi, τi) witnesses that

σνi
does not have (fi,Ri)-condensation).

Let now ν be a good point such that supi<ω νi < ν < j(µ) and letting X =
⋃

i<ω(τi[Qi]∪σνi
[Rνi

]), X ⊆ rng(σν ). Let (S∗, Φ∗) ∈ j+(Ωλ
µ,g) be a hod pair below

j(µ) such that Mν � M∞(S∗, Φ∗)jj and λS is limit with cofinality ω in S∗. Let

B = m−1
ν (j(f)). Let now σi = m−1

ν ◦σνi
and τ∗

i = m−1
ν ◦ τi. Notice now that we

can define the notion of (fi,Ri)-condensation also for the embeddings σi. We leave

it to the reader to fill in the definition. Now notice that we have that

(4) for i < ω, Qi is σi-realizable as witness by (πi, τ
∗
i ) and ki : Qi → Ri+1 is given

by ki = σ−1
i ◦ τ∗

i ,

(5) (Qi, πi, τ
∗
i ) witnesses that σi does not have (fi,Ri)-condensation.

The importance of this move is that the badness of (Qi,Ri, πi, τ
∗
i , ki, ψi, σi : i < ω)

can now be witnessed in the derived model of S∗ as computed by Φ∗. More precisely,

letting Σi =
⊕

α<λRi Λνi
(α) and Ψi = (τi-pullback of j(Σi)

h),

(1): in M [n], letting N = D(S∗, Φ∗) = L(Γ(S∗, Φ∗), R), in N , there is a

formula θ(u, v) and a finite set of ordinals t such that for every i, (φ, s) ∈

Tfi,Ri
if and only if θ[πΣi

Ri(α),∞(s), t] where α is the least such that s ∈

[δRi
α ]<ω. However, in N , for each i, there is a pair (φi, si) ∈ TQi,πi(fi) such

that ¬θ[πΨi

Qi(α),∞(si), t] where α is the least such that s ∈ [δQi
α ]<ω.

Suppose K is a transitive model of AD
+ and b = ((Mi, Σi),Ni, γi, li, ξi, C : i <

ω) ∈ K is such that (Mi,Ni, γi, li, ξi, C : i < ω) ∈ HCK . Suppose θ(u, v) is a

formula and t is a finite sequence of ordinals. We write K � “(b, θ(u, v), t) is bad”

if in K, letting K∗ = L({D ⊆ R : w(D) ≤ t(0)}) then b ∈ K∗ and in K∗

(6) for every i < ω, Mi is a hod premouse such that λMi is limit and Σi is an

ω1-iteration strategy for Mi|δMi with the property that for every α < λMi ,

(Σi)Mi(α) has branch condensation and is fullness preserving,

(7) for every i, ξi : Mi → Mi+1,

(8) for every i, Ni is a ξi-realizable as witnessed by (γi, li),

jjThe direct limit is taken inside j+(Ωλ
µ,g).
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(9) for every α < λNi , letting Ψi = (li-pullback of Σi), (Ψi)Ni(α) has branch

condensation and is fullness preserving,

(10) C ∈ M0 ∩ ℘(δMi) and letting C0 = C and Ci+1 = ξi(Ci), for every i,

(φ, s) ∈ TCi,Mi
if and only if θ[πΣi

Mi(α),∞(s), t],

where α is least such that s ∈ [δMi
α ]<ω but for every i, there is (φi, si) ∈

Tγi(Ci),Ni
such that ¬θ[πΨi

Ni(α),∞(s), t] where α is least such that si ∈ [δNi
α ]<ω.

In M [n], let (W∗, Π∗) be a (P+, Σ−)-hod pair such that W∗ ∈ Mγ [g] for some

M -cardinal γ < j(µ) but greater than ν, Π∗ is a (j(λ), j(λ))-strategy that is

j+(Ωλ
µ,g)-fullness preserving, Π∗ ∩ j+(Ωλ

µ,g) ∈ (Ωλ
µ,g), and Γ(W∗, Π∗) = Γ(S∗, Φ∗)

in j+(Ωλ
µ,g). Let b = ((Ri, Σi),Qi, πi, ki, ψi, fi : i < ω). We can then rewrite (1) in

terms of (W∗, Π∗) and get that

(2): in M [h], letting N = D(W∗, Π∗) = L(Γ(W∗, Π∗), R), in N , there is a

formula θ(u, v) and a finite set of ordinals t such that (b, θ(u, v), t) is bad.

Let then N ∗ = M
#,Π∗,

L

i<ω Σi

ω . Let N be an iterate of N ∗ via the canonical

iteration strategy of N ∗ such that HM
γ is generically generic over the extender alge-

bra of N at its bottom Woodin cardinal. We can now witness (3) inside N [HM
γ ][hγ ]

as follows:

(3): D(N [HM
γ ][hγ ]) � “letting N = D(W∗, Π∗) = L(Γ(W∗, Π∗), R), in N ,

there is a formula θ(u, v) and a finite set of ordinals t such that (b, θ(u, v), t)

is bad”.

We will get a contradiction using (3). Notice that the sequence a = (Ri, ψi, Σi,

fi : i < ω) ∈ M . However, the sequence (Qi, πi, ki : i < ω) may not be in M . Let

then d ∈ MColl(ω,<γ) be a name for (Qi, πi, ki : i < ω). Let ζ = (j(µ)+)M , and let

π : P [g] → (HM
ζ )[g] be such that P ∈ V , cp(π) > µ, |P |V = µ, and all relevant

objects are contained in rng(π). Let M = π−1(N ), e = π−1(a) and c = π−1(d).

Let for i < ω, e(i) = (Ki, ξi, Σ̄i, gi : i < ω) and (W , Π) = π−1(W∗, Π∗). Also we let

γ̄ = π−1(γ). By elementarity, (3) gives that

(4): whenever m̄ ⊆ Coll(ω, < π−1(j(µ))) is P [g]-generic then in P [g][m̄],

letting k̄ = m̄ ∩ Coll(ω, < γ̄) d = dg∗k̄, for i < ω, d(i) = (Si, γi, li) and

g = ((Ki, Σ̄i),Si, γi, li, ξi, gi : i < ω), D(M[HP
γ̄ ][g ∗ k̄]) � “letting N =

D(W , Π) = L(Γ(W , Π), R), in N , there is a formula θ(u, v) and a finite set

of ordinals t such that (g, θ(u, v), t) is bad”.

Using genericity iterations we can completely internalize (5) to M∗ = M[HP
γ̄ ]

and get that
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(5): in M∗, there is a name d∗ ∈ (M∗)Coll(ω,<γ̄) such that whenever

k̄ ⊆ Coll(ω, < γ̄) is M∗-generic then letting d = d∗
k̄
, for i < ω, d(i) =

(Si, γi, li) and g = ((Ki, Σ̄i),Si, γi, li, ξi, gi : i < ω), D(M∗[k̄]) � “letting

N = D(W , Π) = L(Γ(W , Π), R), in N , there is a formula θ(u, v) and a

finite set of ordinals t such that (g, θ(u, v), t) is bad”.

Work now in M [n]. Notice that for every i, Σ̄i = ((π-pullback of Σi)) � P and Π =

((π-pullback of Π∗)) � P . In what follows, we abuse our notation and let for every

i, Σ̄i = (π-pullback of Σi) and Π = (π-pullback of Π∗) in all M [n]. It then follows

that in M [n], M is a Π ⊕
(
⊕

i<ω Σ̄i

)

-mouse. Let now C = D(W , Π). It is easy to

see that (5) gives (Si, γi, li : i < ω) such that if g = ((Ki, Σ̄i),Si, γi, li, ξi, gi : i < ω)

(6): in C, there exist a formula θ(u, v) and a finite set of ordinals t such

that (g, θ(u, v), t) is bad.

Fix then θ(u, v) and t as in (6). Let Ei be the (δKi , δKi+1)-extender derived from

ξi and Fi be (δKi , δSi)-extender derived from γi. Let K+
0 = W , S+

i = Ult(Ki, Fi)

and K+
i+1 = Ult(K+

i , Ei). Let pi = σνi
◦ (π �Ki). Then we have that pi, γi, ξi and li

extend to p+
i : K+

i → j(W), γ+
i : K+

i → S+
i , ξ+

i : K+
i → K+

i+1 and l+i : S+
i → K+

i+1

such that p+
i = p+

i+1 ◦ ξ+
i and ξ+

i = l+i ◦ γ+
i .

By a standard argument (e.g., see [15, Lemma 4.3]), we can simultaneously

iterate (K+
i ,S+

i : i < ω) using strategies Πi = (p+
i -pullback of π(Π)) and Ωi =

(l+i ◦ p+
i -pullback of π(Π)) to make RM [n] generic. Such genericity iterations have

been used by many authors. The details of such genericity iterations are spelled

out in [6, Definition 1.35]. The outcome of this iteration is a sequence of models

(Ki,ω ,Si,ω : i < ω) and embeddings (ξi,ω , γi,ω, li,ω : i < ω) with the property

that ξi,ω : Ki,ω → Ki+1,ω, γi,ω : Ki,ω → Si,ω, li,ω : Si,ω → Ki+1,ω and for every

i < ω, ξi,ω = li,ω ◦ ξi,ω . Moreover, the iterations K+
i -to-Ki,ω and Si-to-Si,ω are

above respectively δKi and δSi . Let then Ci = D(Ki,ω) and Di = D(Si,ω). One

important remark is that for every i < ω, Ki,ω is a Σ̄i-hod premouse and Si,ω is

a Ψi-premouse where Ψi = (li-pullback of Σ̄i). Another important remark is that

Ci ⊆ Di ⊆ Ci+1. The most important remark, however, is that the construction of

the sequences (Ki,ω ,Si,ω : i < ω) and (ξi,ω , γi,ω, li,ω : i < ω) guarantees that the

direct limit of Ki,ω under ξi,ω is well-founded. Let then n be such that for every

m ≥ n, ξm,ω(t) = t. It then follows from (6) and the fact that for every i < ω,

C ⊆ Ci and C ⊆ Di that

(7): for every i < ω, in Ci, for every (φ, s) such that φ is a formula and

s ∈ [δKi ]<ω, Ki � φ[s, Bi] if and only if θ[πΣ̄i

Ki(α),∞(s), t] where α < λKi is

least such that s ∈ [δKi
α ]<ω.

(8): for every i, in Di, there is a formula φ and s ∈ [δSi ]<ω such that

Si � φ[s, γi(Bi)] and ¬θ[πΨi

Si(α),∞(s), t] where α < λSi is least such that

s ∈ [δSi
α ]<ω.
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It follows from elementarity of γi,ω , (7) and the fact that if i ≥ n then γi,ω(t) = t

that

(9): for every i ≥ n, in Di, for every (φ, s) such that φ is a formula and s ∈

[δSi ]<ω and Si � φ[s, γi(Bi)] if and only if θ[πΨi

Si(α),∞(s), t] where α < λSi

is least such that s ∈ [δSi
α ]<ω.

Clearly (8) and (9) contradict one another. This completes the proof of the

theorem.

Lemma 3.11 and Theorem 3.14 immediately give us the following corollary.

Lemma 3.15. Let f,M, σM,R, Σ′ be defined prior to Remark 3.10. Let σ′
M :

πP+,R(M) → j(M) be defined by: σ′
M(πP+,R(g)(a)) = τM(g)(πΣ′

R(α),∞(a)) for all

g ∈ M and a ∈ R(α)<ω. Then σ′
M ∈ M [n] is Σ1-elementary, and

πΣ′

R(α),∞ � H
R(α)
f = σ′

M �H
R(α)
f . (3.8)

Furthermore, Σ′ is commuting, positional, witnesses R(α) is strongly (ΣR(β), j(f))-

iterable and has branch condensation.

Proof. First, Σ1-elementarity of σ′
M follows from Theorem 3.14 and the fact that

M is g-suitable for every g ⊆ δP and g ∈ M.

By changing M if necessary, we can assume that ρ1(M) = δP and there

is some h ∈ M such that rng(h � P) ⊆ δP and f , τ
R(α)
Bf ,κ , γ

R(α)
f are Σ1 com-

putable in πP+,R(M) from πP+,R(h) for all κ ∈ {((δRα )+n)R |n < ω}. Then

applying Theorem 3.14 to (h,M), we get (3.8). The second clause follows from

Lemma 3.11.

Working in V [n], we fix an enumeration 〈gk | k < ω〉 and 〈fk = j(gk) | k < ω〉

of {f | f ∈ P+ ∧ j(f) is appropriate} and {j(f) | f ∈ P+ ∧ j(f) is appropriate}

respectively, so that whenever H
R(α)
fk

⊆ H
R(α)
fl

then k ≤ l. Note that for any k,

there is some l ≥ k such that H
R(α)
fk

⊆ H
R(α)
fl

.

For each l and fl-suitable M, fix strategy Λl ∈ M [n] for R(α) extending ΣR(β),

map τ ′
M,l satisfying Lemma 3.15 for fl. We also demand for l ≤ k such that H

R(α)
fl

⊆

H
R(α)
fk

,

πΛk � H
R(α)
fl

= πΛl � H
R(α)
fl

. (3.9)

Again, let Ω = Ωλ
µ,g. We plan to construct strategy ΣR(α) by taking “limit”

of the Λl’s as follows. For simplicity, suppose T ∈ Mj(µ)[n] is a normal, correctly

guided, maximal tree on R(α)kk using extenders above R(β). Let M(T )+ be the

kkIf T is short, then there is a unique branch b given by the Q-structure.
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end model of the tree T ; more precisely, M+(T ) is defined to be LpΣR(β),Ω(M(T )).ll

For each n, let bn = Λn(T ). We let ΣR(α)(T ) = b, where

ξ ∈ b ⇔ ∃ k∀ l ≥ k(ξ ∈ bl). (3.10)

Let H be the transitive collapse of
⋃

n H
M(T )+

fn
and τ be the uncollapse map.

We want to show that

(i) b is cofinal in T ;

(ii) H = M(T )+ and τ is the identity. This gives that ΣR(α) is fullness preserving;

(iii) ΣR(α) acts on all of R and is σ′
R-realizable for some Σ1 elementary embedding

σ′
R : R → j(P+) such that σ′

R ◦πP+,R = j � P+;

(iv) ΣR(α) has branch condensation and is guided by {j(f) | f ∈ P+ ∧

j(f) is appropriate}.

Lemma 3.16. H = M(T )+ and τ is the identity.

Proof. Let π =
⋃

l π
Λl

M(T )+,∞ � H
M(T )+

fl
and k = π ◦ τ . Note that

R(α) =
⋃

l

H
R(α)
fl

.

This is because every x ∈ R(α) has the form πP+,R(gl � (δRβ + 1))(a) for some

l < ω and some a ∈ (R|δRβ )<ω and R(β) ∪ {πP+,R(gk � δRβ + 1)} ⊂ H
R(α)
fk

for

all k.mm It means that there is a Σ1 map i : R(α) → H. Furthermore, letting

E be the (crt(i), δH)-extender derived from i, then E gives the ultrapower map

i+ : R → H+ =def Ult(R, E) extending i. Letting k+(i+(g)(a)) = σR(g)(k(a)), we

have that: k+ ◦ i+ = σR.

Now we can use the proof of Lemma 3.8 to conclude that H is full. If τ is not

the identity, then letting γ = crt(τ), we have: γ is Woodin in H, τ(γ) = δ(T ) is

Woodin in M(T )+, and H�M(T )+. Since H is full, γ is Woodin in M(T )+. This

contradicts the fact that there are no Woodin cardinals in M(T )+ between δRβ
and δ(T ).

Lemma 3.16 proves (ii); furthermore, it implies that supγ
M(T )+

fn
= δ(T ). This

means that b is cofinal in T , hence proves (i) (see [9, Theorem 5.4.14] for an argu-

ment). We also get that ΣR(α) is guided by {fn |n < ω} (and is the unique such

strategy). At this point, we do not know that ΣR(α) ∈ M [n] and has branch con-

densation. The following is the main technical lemma.

llRecall that maximal trees always have the last model; regardless of whether there is a cofinal
branch.
mmπP+,R(gk �δRβ + 1) ⊂ H

R(α)
fk

holds by elementarity of πP+,R and the fact that the corre-

sponding containment holds in P+.
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Lemma 3.17 (Notations as above). The following conditions hold:

(1) ΣR(α) acts on all of R and whenever i : R → S is according to ΣR(α), there

are embeddings σ′
R : R → j(P+) such that j � P+ = σ′

R ◦πP+,R and τ : S →

j(P+) such that σ′
R = τ ◦ i and τ �S(i(α)) = πΦ

S(i(α)),∞, where Φ is the i-tail

of ΣR(α).

(2) ΣR(α) has branch condensation.

(3) If πP+,R ∈ M, then ΣR(α) is in j+(Ωλ
µ,g).

Proof. For (1), the map σ′
R is defined as follows: for any x ∈ R, letting x =

πP+,R(gl)(a) for some l < ω and a ∈ (δRα )<ω, then letting k ≥ l be such that

a ∈ H
R(α)
fk

σ′
R(x) = j(gl)(π

Λk

R(α),∞(a)) = fl(π
Λk

R(α),∞(a)).

The map is well-defined by line (3.9). Using Theorem 3.14, we can show that σ′
R is

Σ1 elementary as follows. Suppose ϕ is Σ1 and x, gl, a are as above (we may increase

l and assume x = πP+,R(gl)(a) and a ∈ H
R(α)
fl

). Suppose

j(P+) � ϕ[fl(π
Λl

R(α),∞(a))] ⇔ R � ϕ[x].

Since ϕ is Σ1 and j[P+] is cofinal in j(P+), we can find some M � P+ such that

the above is equivalent to

j(M) � ϕ[fl(π
Λl

R(α),∞(a))] ⇔ πP+,R(M) � ϕ[x].

This contradicts Theorem 3.14 applied to M, fl. Theorem 3.14 also gives that

j � P+ = σ′
R ◦πP+,R and

σ′
R �R(α) = π

ΣR(α)

R(α),∞. (3.11)

By Lemma 3.16, S(i(α)) =
⋃

l H
S(i(α))
fl

. Now define τ : S → j(P+) as follows. Let

�U be the stack giving rise to i and Λ = (ΣS(i(β)))	U . For x ∈ S, say x = i(g)(a) for

some g ∈ R and a ∈ S(i(α))<ω , and say g = πP+,R(gl)(b) for some b ∈ R(β)<ω ,

we let

τ(x) = fl(π
Λ
S(i(β)),∞(i(b)))(πΦ

S(i(α)),∞(a)).

Using line (3.11), we get that τ is Σ1 elementary and τ ◦ i = σ′
R. This proves (1).

The following claim proves (2).

Claim 3.18. ΣR(α) has branch condensation.

Proof. Suppose not. Then there are a (nondropping) stack �W with last model

S ∈ M [n] and a normal tree T of limit length based on a window (δSβ∗ , δSα∗) such

that

(1) β∗ = π
	W(β), α∗ = π

	W(α) = β∗ + 1.

(2) �W and T are according to ΣR(α).

(3) Generators of �W are below δSβ∗ .
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(4) ΣS(β∗), 	W has branch condensation.

(5) Let b = ΣS, 	W(T ). There are a cofinal branch c �= b, an iteration map i : R → Y

according to ΣR(α), and a σ : MT
c → Y such that σ ◦ πT

c ◦π
	W = i.

We proceed to obtain a contradiction. Let τ : Y → j(P+) come from the con-

struction of ΣR(α) and σS : S → j(P+) be the realization map. By arguments

above and the fact that MT
c realizes into j(P+) via τ ◦ i and τ ◦ i factors into

σS , there is a strategy Λ such that πΛ
MT

c (α∗),∞ = ψ �MT
c (α∗) for some ψ such that

j � P+ = ψ ◦πT
c ◦π

	W and Λ witnesses that MT
c (α∗) is strongly (S(β∗), fk)-iterable

for all k < ω. This means ΛMT
c (α∗) = ΣMT

b
(α∗), 	W�T �b

.

Let Ψ = ΣMT
b

(α∗), 	W�T �b. Let φ : MT
b → j(P+) be the realization map. Note

that

φ �MT
b (α∗) = ψ �MT

c (α∗) = πΛ
MT

c (α∗),∞ = πΨ
MT

b
(α∗),∞.

Now we aim to show b = c, which contradicts our assumption.

By assumptions on W , we have

δSα∗ = sup(A), where

A = {γ < δSα∗ | ∃ g ∈ P+∃ b ∈ (δRβ )<ω∃ a ∈ (δSβ∗)<ω γ = πW(πP+,R(g)(b))(a)}.

For each γ = πW(πP+,R(g)(b))(a) ∈ A,

ψ ◦πT
c (γ) = j(g)(π

Ψ
MT

b
(α∗)(π

	W(b), a)), (3.12)

and

φ ◦πT
b (γ) = j(g)(π

Ψ
MT

b
(α∗)(π

	W (b), a)). (3.13)

Since φ �MT
b (α∗) = ψ �MT

c (α∗), we get that

πT
c (γ) = πT

b (γ). (3.14)

Equations (3.12), (3.13), and (3.14) imply rng(πT
b )∩ rng(πT

c ) is cofinal in δ(T ). So

b = c, which is a contradiction.

Now we show that ΣR(α)∩M ∈ M in the case πP+,R ∈ M . In this case, R ∈ M .

Note also that the construction of ΣR(α) does not depend on the enumeration

of the set {j(f) | f ∈ P+} in V [n]; it only depends on the set itself. So in fact,

ΣR(α) � V ∈ V . The following claim is another place the fact that κ is strong in M

is used.

Claim 3.19. ΣR(α) �M ∈ M.

Proof. Suppose first R ∈ Mκ. As noted before, ΣR(α) ∩ Mκ ∈ M (since Mκ+1 =

Vκ+1). Using the fact that κ is strong in M , we can lift ΣR(α) ∩ Mκ to a strat-

egy Λ in Mj(µ) acting on trees in Mj(µ), and Λ has branch condensation and is

j+(Ωλ
µ,g)-fullness preserving. We claim that ΣR(α) ∩ M = Λ ∈ M . Suppose not.
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Then by a standard fact, cofV (δRα ) = ω.nn Let 〈xn |n < ω〉 be cofinal in δRα and

say, xn = πP+,R(hn)(an) for some hn ∈ P+ and an ∈ R(β).

From our assumption, ((δP )+)P
+

= µ+. Hence, there is some N � P+ such

that ρω(N ) = δP , {hn |n < ω} ⊆ N and in P+, cof(o(N )) = ω. Let N be the

least that contains some such hn’s and let p be the standard parameter of N so

for each n, hn is definable in N from p and some a ∈ P . Note that we can assume

πP+,R[δP ] ⊆ R(β). This means sup(A) = δRα , where

A = {g(x) | g ∈ πP+,R(N ) ∧ x ∈ R(β)}.

By the choice of N and the fact that A can be computed in R, δRα is singular in

R, which is a contradiction.

Now assume R ∈ Mj(µ)\Mκ. Note that whenever W ∈ Vκ[m] = Mκ[m] is such

that there is an embedding π : W → R with π(γ) = α and there is an embedding

π∗ : P+ → W such that πP+,R = π ◦π∗, then W(γ) has a nice strategy as witnessed

by some realization map i : W → j(P+) such that the strategy restricted to Mκ[m]

has branch condensation. Let h : M → N witness κ be j(µ)+-strong in M and we

may assume h = iMF for some extender F ; h can be extended to a map, which we

also call h, from M [m] to N [p] for some V -generic p ⊆ Col(ω, < h(κ)) such that

p �Col(ω, < j(µ)) = n. Then by absoluteness, in N [n], there is an embedding π

from R into h(R) such that h(πP+,R) = π ◦πP+,R. And hence there is a strategy

Λ ∈ M [n] of R with branch condensation acting on stacks in Mj(µ)[n] = Nj(µ)[n]

based on R(α) such that Λ �M ∈ M .oo By the same argument as above, we get

that Λ �M = ΣR(α) � M .

We now prove (3). Let Λ be as in the proof of Claim 3.19; so Λ ∈ M [n], Λ

has branch condensation and is j+(Ωλ
µ,g)-fullness preserving. It is enough to prove

Λ = ΣR(α) so that ΣR(α) ∈ M [n]; (3) then follows from Proj(j(κ), j(λ), ΣR(α)). The

equality follows from an argument similar to the proof of Claim 3.18 and the fact

that for any k : R → M in M [n] according to Λ and ΣR(α), there is an i : R → S

according to Λ �M = ΣR(α) � M such that there is some map σ : M → S such that

σ ∈ M [n] and σ ◦ k = i.pp This completes the proof of the lemma. �

We have finished the construction of a partial strategy Σ acting on trees

in Mj(µ) ∪ Mκ[m]. During the course of the construction, we also showed that

nnThere is a tree U ∈ M of limit length with ΣR(α)(T ) = b 
= c = Λ(T ). Hence cofV (δ(U)) = ω.

Since δRα is mapped cofinally into δ(U) by either branch embedding, cofV (δRα ) = ω.
ooFrom the point of view of Ult(V, F )[n], the strategy Λ is {iVF (j(f)) | f ∈ P+}-guided, acts on
trees in iVF (M)[n] and does not depend on any generic enumeration of the set {iVF (j(f)) | f ∈ P+},
so if in addition W ∈ Mκ, then Λ’s restriction to Nj(µ) = Mj(µ) = iVF (M)j(µ) is in M even though
we first collapsed R to ω in N to find an embedding from R into π(R).
ppSuppose 
W�T is according to both strategies, 
W is on R(β) and T on M

�W is such that
b = ΛMT (T ) 
= c = (ΣR(α))MT (T ). Then there is some iteration i : R → S according Λ �M =

ΣR(α) �M such that there are iteration maps σ0 : MT
b

→ S according to the tail of Λ and

σ1 : MT
c → S according to the tail of ΣR(α). We can then run the proof of Claim 3.18 to get that

b = c.
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nondropping iterates R of Σ are j+(Ωλ
µ,g)-full and there is a Σ1 elementary embed-

ding σR : R → j(P+) such that σR ◦ πP+,R = j �P+, and for each α < λR,

σR �R|δRα is the iteration map according to the σR-nice strategy Σα constructed

above. Next we show branch condensation of Σ.

Lemma 3.20. Σ has branch condensation.

Proof. Suppose not. Then as in [5], we can find a “minimal place” where branch

condensation fails. More precisely, there are a (nondropping) stack �W with last

model R and a normal tree T of limit length based on a window (δRα , δRα+1) such

that we have the following.

(1) �W and T are according to Σ.

(2) Generators of �W are below δRα .

(3) ΣR(α), 	W has branch condensation.

(4) Let b = ΣR, 	W(T ). There are a cofinal branch c �= b, an iteration map i : P+ →

S according to Σ, and a σ : MT
c → S such that σ ◦πT

c ◦π
	W = i.

The rest of the proof is just as in the proof of Claim 3.18.

Let Λ = Σ �Mκ[m] ∈ M [m]. Using the fact that κ is strong in M , we extend Λ

to a strategy Λ+ ∈ M [n] such that Λ+ acts on all stacks in Mj(µ)[n], has branch

condensation, and is j(Ωλ
µ,g)-fullness preserving. Furthermore, since Σ ∩ Mκ ∈ M ,

we also get that Λ+ �M ∈ M .

Lemma 3.21. Σ � M ⊆ Λ+ � M ∈ M .

Proof. Suppose Σ � M � Λ+ � M . Then there are in M a (nondropping) stack �W

with last model R and a normal tree T of limit length based on a window (δRα , δRα+1)

such that we have the following:

(1) �W and T are according to both strategies.

(2) Generators of �W are below δRα .

(3) Let b = ΣR, 	W(T ) and c = Λ+

R, 	W
(T ). Then b �= c.

This means in V as well as in M , cof(δRα+1) = ω. The rest of the proof is just as in

the proof of Claim 3.19.

Let Ψ = Λ+ � M = Σ �M . By generic comparison using the fact that Λ+

has branch condensation and is j+(Ωλ
µ,g)-fullness preserving (see [5]), we get the

following:

For any Λ+-iterate R of P+, letting i : P+ → R be the iteration map, there

is a Ψ-iterate S of P+ such that, letting h : P+ → S be the iteration map,

there is a map σ : R → S such that h = σ ◦ i. In fact, σ is a Λ+-iteration

map.
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Using the above paragraph and the properties of Σ, letting M∞(P+, Λ+) be

the direct limit of (all countable) Λ+-iterates of P+ in M [n], then there is a Σ1

elementary map τ : M∞(P+, Λ+) → P+ such that τ ◦πΛ+

P+,∞ = j �P+ and crt(τ) =

δM∞(P+,Λ+).

The map τ is defined as follows: for any x ∈ M∞(P+, Λ+), let R ∈ M be a

Ψ-iterate of P+ such that there is some y ∈ R such that πΨR

R,∞(y) = x. Now by

construction of Ψ, there is a map τR : R → j(P+) such that j �P+ = τR ◦πΨ
P+,R

and τR � δR agrees with the iteration map by Ψ. We then let τ(x) = τR(y).

Lemma 3.22. (P+, Σ) is a hod pair below κ in V [m] and (P+, Σ �HCM [n]) ∈

j+(Ωλ
µ,g).

Proof. The second clause follows from the first clause and Proj(j(κ), j(λ), Σ) in

M . It suffices to prove the first clause. Let l = m ∩ Coll(ω, ν) where µ < ν < κ

and P+ is countable in V Coll(ω,ν) and let a = {f | f ∈ P+ ∧ f is appropriate} and

b = {j(f) | f ∈ P+ ∧ f is appropriate}. Let φ(P+, a, b, �T ) be the formula stating

“�T is a stack on P+ according to Σ”. Fix a regular ξ much larger than j(µ) and let

X ≺ Vξ[l] be countable in V [l] and X contains all relevant objects and o(P+) ⊂ X .

Let π : N → X be the uncollapse map and (b̄, κ̄) = π−1(b, κ). Let m̄ ∈ V [l] be

N -generic for a poset in HN
κ̄ . Let �T ∈ M [m̄]. Then we claim that

M [m̄] � φ[P+, a, b̄, �T ] ⇔ V [l] � φ[P+, a, b, �T ]. (3.15)

Suppose �T = 〈Tα,Mα |α ≤ η〉 and suppose Tη is based on Mη(γ + 1) for some γ.

Suppose by induction, (3.15) holds for �T |α for all α < η. We now show (3.15) holds

for Tη. But (3.15) holds for Tη because π[b̄] = b and so Tη is b̄-guided in M [m̄] if

and only if Tη is b-guided in V [l].

The above definition of τ and Lemma 3.22 imply that the direct limit

M∞(P+, Λ+) is in j+(Ωλ
µ,g))

qq and M∞(P+, Λ+) � δM∞(P+,Λ+) is regular. By

elementarity, P+ � δP is regular. This contradicts our assumption.

The argument above shows that if P+ � δP is singular, then there must be a

model of “ADR + Θ is regular”.rr

4. The Strength of Failure of UBH for Tame Trees

In this section, we prove Theorem 0.2. Here, we fix a tame tree U on V . We let

µ < κ < λ be as in the previous section; the assumption that U is tame allows us

to choose µ, κ, λ below the critical point of all extenders used in U . The proof of

[8, Lemma 5.2] shows that whenever (R, Ψ) is a hod pair below κ, then Proj(κ, λ, Ψ);

as mentioned in the previous section, this is where we use the arrangement on

qqThis means that there is some α such that M∞(P+, Λ+) ∈ L(j+(Ωλ
µ,g � α). Recall that there

are cofinally many α such that j+(Ωλ
µ,g � α) is constructibly closed.

rrHere we use (†) to invoke the analysis in [5].
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µ, κ, λ, though technically, we just need the strength of µ, κ to be a bit past δ(U).

The hypothesis of Theorems 3.2 and 3.4 is satisfied. These theorems in turn imply

the conclusion of Theorem 0.2.
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