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0. Introduction

We establish, using the core model induction, a lower bound for certain failures of
the Unique Branch Hypothesis (UBH), which is the statement that every iteration
tree that acts on V' has at most one cofinal well-founded branch. This paper is a
continuation of [8], but it is self-contained.

For the rest of this paper, all trees considered are nonoverlapping, that is when-
ever E and F are extenders such that E is used before F' along a branch of the
tree, then 1h(E) < crit(F'). Suppose there is a proper class of strong cardinals. We
say r reflects the set of strong cardinals (or k is a strong reflecting strongs) if for
every A there is an embedding j : V' — M witnessing that x is A-strong and for
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any cardinal p € [k, \), V F “p is strong” if and only if M F “u is strong”. Now we
recall the definition of tame trees from [8].

Definition 0.1 (Tame iteration tree). An iteration tree 7 on V is tame if for
all @ < § < Ih(7) such that o = pred, (6 + 1), MZ E “Ix < A < cp(E}) such
that A is a strong cardinal and & is strong reflecting strongs”.

As in [8], the tameness assumption is mostly for technical convenience. Most of
the methods developed in [8] and in this paper can be applied in more generality
but some arguments seem to be more particular to this situation.

UBH was first introduced by Martin and Steel in [2]. Towards showing UBH,
Neeman, in [4], showed that a certain weakening of UBH called cUBH holds pro-
vided there are no nonbland mice.* However, in [16], Woodin showed that in the
presence of supercompact cardinals UBH can fail for tame trees. Woodin constructs
alternating chains whose branches are well-founded. Extenders of such trees can
be demanded to reflect the set of strong cardinals which reflect strong cardinals.
Hence critical points of the branch embeddings can be demanded to be above the
first strong cardinal which reflects strong cardinals. It is still an important open
problem whether UBH holds for trees that use extenders that are 28°-closed in the
models that they are chosen from.” A positive resolution of this problem will lead
to the resolution of the inner model problem for superstrong cardinals and beyond.€
It is worth remarking that the aforementioned form of UBH for tame trees will also
lead to the resolution of the inner model problem for superstrong cardinals and
beyond. Our work can be viewed as an attempt to prove UBH for tame trees by
showing that its failure is strong consistency-wise.?

We recall some material presented in [6, 8]. Recall © is the supremum of ordinals
« such that there is a surjection from R onto ar. Working under AD + DCg, we say
that (0, : o < Q) is the Solovay sequence if: (a) 6y is the supremum of ordinals «
such that there is an OD surjection from R onto «, (b) for a < © (and 0, < ©), 0441
is the supremum of ordinals a such that for some A C R of Wadge rank 6,,, there
is an OD 4 surjection from R onto «, (c) for 3 < Q limit, 05 = sup,, 304, and (d)
0o = ©. For aset A C R, we let §4 be the supremum of « such that there is an OD 4
surjection from R onto a.. We may also define the Solovay sequence (6% : o < ) of a
pointclass I" with sufficient closure.® We list some important determinacy theories in
increasing consistency strength: (1) AD™, (2) ADT+6© > 6y, (3) ADg, (4) ADp+DC,
(5) ADr + O is regular.

2We will not use this terminology.

bThe first extender that used in the trees Woodin constructs is not 2%0-closed.

¢The inner model problem, one of the main problems in inner model theory, seeks to construct
canonical inner models of large cardinals (e.g., measurable cardinals, Woodin cardinals, super-
strong cardinals) from appropriate large cardinal or strong combinatorial (e.g., PFA plus perhaps
large cardinals) assumptions.

d0f course, UBH for tame trees fails in the presence of supercompact cardinals by Woodin’s result.
Our main theorem, Theorem 0.2, shows that it is very hard to construct such counter-examples.
¢In particular, we demand that for o < Q, letting v = 6L, o~ (R) is constructibly closed.
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Con((5)) implies, among others, the consistency of MM(c), a significant fragment
of Martin’s Mazimum (MM) and was conjectured by Woodin to be equiconsistent
with a supercompact cardinal. The first author, in [5], shows that (5) is consistent
relative to the existence of a Woodin cardinal which is a limit of Woodin cardinals,
which is significantly weaker than a supercompact cardinal.

The following is the main theorem of the paper, which improves significantly
the lower bounds obtained from [8, 11]. The paper [11] obtains (1) as a lower bound
and the main result of [8] obtains (2) as a lower bound for failures of UBH for tame
trees; Theorem 0.2 obtains (5) as a lower bound under the same hypothesis.

Theorem 0.2 (Main Theorem). Suppose there is a proper class of strong cardi-
nals and UBH fails for tame trees. Then in a set generic extension of V, there is a
transitive inner model M such that Ord UR C M and M F “ADg + © is regular”.

We remark that there are papers in the literature that obtain “ADg + O is reg-
ular” as a lower bound for certain theories. For instance, in [14], the second author
constructed an inner model of “ADr+ 0 is regular” from the Proper Forcing Axiom,
and in [7], the first author constructed an inner model of “ADg + O is regular” from
certain failures of covering. However, the methods developed in this paper are dif-
ferent from those methods developed in the two aforementioned papers in a rather
significant way. In the aforementioned papers, the authors work under hypothesis
that implies the failure of lower part covering. More precisely, in the aforemen-
tioned papers, equivalents of Theorem 3.4 are proved while having the luxury of
knowing that [P*| < wy in M[m] (see the beginning of Sec. 3 for definitions). Here
we do not know that |PT| < wsy, yet our large cardinal assumption still allows
us to get an (w1, ws)-iteration strategy with the desired properties. We anticipate
that the construction of such a strategy will be useful in other similar contexts as
well.

1. Preliminaries
1.1. Stacking mice

We recall the notions used in [8]. Fix some uncountable cardinal A and assume
ZF. Notice that any function f : Hy — H) can be naturally coded by a subset of
©(Uper 2(r)). We then let Code} : H - ©(U,cr (k) be one such coding. If
A = w; then we just write Code™. Because for o < A, any (a, \)-iteration strategy®
for a hybrid premouse® of size < A is in H f *, we have that any such strategy is in
the domain of Code}.

fThis is an iteration strategy for stacks of less than a normal trees, each of which has length less
than A. Typically these are fine-structural n-maximal iteration trees (as defined in [3]), where n is
the degree of soundness of the premouse we iterate. We will suppress this parameter throughout
our paper as fine-structural iteration trees we deal with are n-maximal for an appropriate n, which
will be clear in the context.

gFor more on hybrid mice, see [5] or [10].
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Suppose A € dom(Code} ) is a strategy with hull condensation and p < . Recall
that we say F' is (u, A)-mouse operator if for some X € Hy and formula ¢ in the
language of A-mice, whenever Y is such that X € Y, F'(Y) is the minimal p-iterable
A-mouse satisfying ¢[Y].

We then let Codey be Code} restricted to F' € dom(Codey ) that are defined by
the following recursion:

(1) for some a < A, F'is an («, \)-iteration strategy with hull condensation for an
extender mouse or a hod mouse,” or

(2) for some o < A and for some (o, A)-iteration strategy A € dom(Codey) with
hull condensation (A can be @), F is a (A, A)-mouse operator, or

(3) for some v < A, for some (o, A)-iteration strategy A € dom(Codey) with hull
condensation, for some (A, A)-mouse operator G € dom(Codey) and for some

8 < A, Fis a (8, A)-iteration strategy with hull condensation for some G-mouse
M € Hy.

Code, is the set of codes of “useful” operators' and includes all operators that we
will construct during the course of the core model induction (for an appropriate \).
When A = w; then we just write Code instead of Code,,,. Given an F' € dom(Codey)
we let Mp be, in the case F' is an iteration strategy, the structure that F' iterates
and, in the case F' is a mouse operator, the base of the cone on which F is defined.
Let P € Hy be a hybrid premouse and for some a < A, let ¥ be (a, A)-iteration
strategy with hull condensation for P. Suppose now that I' C p(U,.., ¢()) is such
that Codey(X) € I'. Given a X-premouse M, we say M is I'-iterable if | M| < X and
M has a Miteration strategy (or («, A)-iteration strategy for some o < \) A such
that Codey(A) € T3 We let Mice' ™™ be the set of S-premice that are -iterable.

Definition 1.1. Given a Y-premouse M € H), we say M is countably a-iterable
if whenever 7 : N/ — M is a countable submodel of M, A, as a X"-mouse, is
a-iterable. When o = w1 + 1 then we just say that M is countably iterable.

Suppose I' € p(U,.., p(x)) for some X\. We say M is countably I'-iterable if
whenever 7 and A are as above, N is I'-iterable, that is, A/ has a A-iteration
strategy in I'.X

Suppose M is a X-premouse. We then let o(M) = Ord N M. We also let M]|[E
be M cutoff at &, i.e., we keep the predicate indexed at £&. We let M€ be M]|¢
without the last predicate. We say £ is a cutpoint of M if there is no extender E
on M such that £ € (cp(E),1h(E)]. We say & is a strong cutpoint if there is no E

hIn this case as well as in cases a > 1; if @ = 1, F is a strategy on normal trees of length < .
See Sec. 1.3 for more on hod mice.

iHere we regard an iteration strategy as an operator.

JRecall that iteration strategy for a Y-mouse must respect 3. In particular, all A-iterates of M
are Y-premice.

KIn the case T' C ©(HC), then N is wi-iterable with a strategy A in I'. We typically have in
practice that A is the restriction of some A-strategy for A > wq.
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on M such that £ € [cp(E),lh(E)]. We say n < o(M) is overlapped in M if n is
not a cutpoint of M. Given 1 < o(M) we let

O,’?M = U{./\/<1 M : p(N) < n and 7 is not overlapped in N'}.

Given a self-well-ordered! a € Hy we define the stacks over a as follows. In the
definition below, we fix a I' as above and a strategy X such that My € a.

Definition 1.2.

(1) Lp¥(a) = U{N : N is a countably iterable sound ¥-mouse over a such that
p(N) = a},

(2) KME(a) = U{N : N is a countably T-iterable sound Y-mouse over a such
that p(N) = a},

(3) WAPE(a) = U{N : N is a T-iterable sound Y-mouse over a such that
p(N) =a}.

Remark 1.3. In the definition above, when we say “¥-mouse”, we really mean “g-
organized 3-mouse” in the sense of [10]. We will suppress the term “g-organized”
in this paper as all X-mice considered here will be g-organized Y-mice. The reason
for considering “g-organized Y-mice” is because one can perform S-constructions
on g-organized X-mice, but not on X-mice as defined in [9].

When I' = p(UJ,..» 9(x)) then we omit it from our notation. We can define the
sequences (LpZ(a) : & <), (ng"F’E(a) : € < vy, and (Wé\’r’z(a) 1 & < p) as usual.
For Lp-operator the definition is as follows:

(1) Lpg(a) = Lp*(a),

(2) for & <, if Lp?(a) € H) then Lp?+1 = LpE(Lp?(a))f“
(3) for limit £ < n, LpgZ = Un<e LpZ(a),

(4) n is least such that for all £ < n, LpgZ (a) is defined.

The other stacks are defined similarly.

1.2. (T, X)-Suitable premice

Again fix an uncountable cardinal A and assume ZF. We also fix ¥ € dom(Codey )
such that ¥ is a (a, A)-iteration strategy with hull condensation and I' C
©(U,er 9(r)) such that Codey(X) € I'. We now import some material from [6,
Subsec. 1.3]. The most important notion we need from that subsection is that of
(T, ¥)-suitable premouse which is defined as follows.

IThat is self-well-ordered, a set a is called self-well-ordered if trc(aU {a}) is well-ordered in L1 (a).
mLpE(Lp? (a)) is the stack of sound, countably iterable 3-mice N projecting to < o(Lp? (a))
and extends Lp? (a), having o(Lp? (a)) as a strong cutpoint. Similar definitions can be made for
W3 (V\/gE (a)) and K¥ (ICgE (a)).

1650007-5



G. Sargsyan & N. Trang

Definition 1.4 ((T', X)-suitable premouse). A Y-premouse P is (I, X)-suitable
if there is a unique cardinal § such that

1) P E “J is the unique Woodin cardinal”,

(
(2) o(P) = sup, ., (6%")”

(3) for every n # 4, if 5 is a strong cutpoint of P, then W)‘ E(Pln) = Pl((n)*F)P
(4)

4) for any n < o(P), if n # §, then W)‘ T2 (M) E “n is not Woodin”.

T = p(Uqyey 9()) then we use A instead of I'. In particular, we use A-suitable
to mean I'-suitable. We will do the same with all the other notions, such as fullness
preservation and short tree iterability, defined in this section. Also, if I" is fixed
throughout or is clear from the context, then we simply say P is X-suitable. We let
P~ be the structure that X iterates.

Suppose P is (', ¥)-suitable. Then we let §7 be the § of Definition 1.4. We then
proceed as in [6, Sec. 1.3] to define (1) nice iteration tree, (2) (I', X)-short tree, (3)
(I, ¥)-maximal tree, (4) (I', ¥)-correctly guided finite stack and (5) the last model
of a (', ¥)-correctly guided finite stack by using W*T+¥ operator instead of W'
operator.

1.3. A brief introduction to HOD mice

In this paper, a hod premouse P is one defined as in [5].* The reader is advised to
consult [5] for basic results and notations concerning hod premice and mice. Let us
mention some basic first-order properties of a hod premouse P. There are ordinal
AP and sequences ((P(a), X% )| a < A7) and (6% | < A7) such that

(1) (6F |a < A7) is increasing and continuous and if « is a successor ordinal then
P E 5P is Woodin;

(2) P(0) = Lpu(P|60)7; for a < AP, Pla+1) = (Lpoe (P[6.))7: for limit a < AP,
Pla) = (Lpl" <™ (PI5))

(3) PE XY isa (w,0(P),o(P))°-strategy for P(a) with hull condensation;

(4) if @ < B < A" then EE extends X7 .

We will write 67 for 675 and X7 = @,_,» £} Note that P(0) is a pure exten-
der model. Suppose P and Q are two hod premice. Then P <joq Q if there is
a < A9 such that P = Q(a). We say then that P is a hod initial segment of Q.
(P,Y) is a hod pair if P is a hod premouse and X is a strategy for P (acting on
countable stacks of countable normal trees) such that X% C ¥ and this fact is pre-
served under X-iterations. Typically, we will construct hod pairs (P, X) such that ¥
has hull condensation, branch condensation, and is I'-fullness preserving for some
pointclass T.

"By a similar remark, by “hod premice” we mean “reorganized hod premice” in the sense of [5] or
“g-organized hod premice” in the sense of [10]. Again, the reason has to do with S-constructions.
°This just means X% acts on all stacks of w-maximal, normal trees in P.
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Suppose (Q,Y) is a hod pair. P is a (Q, X)-hod premouse if there are ordinal
AP and sequences ((P(a),X%)|a < A7) and (67 | a < AF) such that

(1) (6¥ | < AP is increasing and continuous and if « is a successor ordinal then
P E 87 is Woodin;
(2) P(0) = Lp>(P|60)7 (so P(0) is a X-premouse built over Q); for a < A\, P(a+
1) = (LpZ® (P[6,))P; for limit a < AP, P(a) = (LpS* <" (P|5,))P:
pw [e3 bl or limi « —_ b « pw « b
(3) PEXY is a (w,0(P), o(P))strategy for P(a) with hull condensation;
(4) if a < B < A7 then EE extends X7

Inside P, the strategies ¥7 act on stacks above Q and every XF iterate is a
S-premouse. Again, we write 67 for 05, and £7 = Dsrr EE. (P,A)is a (Q,%)-
hod pair if P is a (Q, ¥)-hod premouse and A is a strategy for P such that 7 C A
and this fact is preserved under A-iterations. The reader should consult [5] for the
definition of B(Q,¥), and 1(Q, ¥). In a core model induction, we do not quite have
at the moment (Q,Y) is constructed an AD"-model M such that (Q,¥) € M but
we do know that every (R,A) € B(Q,X) belongs to such a model. We then can
show (using our hypothesis) that (Q,¥) belongs to an AD"-model.

The paper [5] constructs under ADT (under Strong Mouse Capturing (SMC))
hod pairs that are fullness preserving, positional, commuting, and have branch
condensation. Such hod pairs are particularly important for our computation as
they are points in the direct limit system giving rise to HOD of AD™ models. For
hod pairs (My, 3), if 3 is a strategy with branch condensation and T is a stack on
My, with last model N, & NT is independent of T. Therefore, later on we will omit

the subscript 7 from X ~ .7 Whenever ¥ is a strategy with branch condensation and
My is a hod mouse.

1.4. HOD under ADT

Using techniques above and the theory of hod mice developed in [5], the papers
[5, 15] compute HOD (up to ©) in AD™ models of V = L(p(R))+SMCP + 0 = 0,11
for some « below “ADg + © is regular”.

These papers show the existence of an M, such that:

(1) My € HOD.

(2) My is a hod premouse.

(3) Moo|© = (VHOD fM|® Mo c) where SM=I€ is the predicate for strate-
gies of hod initial segments of M|©.

We call M, the hod limit.
The paper [5] also computes HOD (up to ©) in models of V = L(p(R)) +
SMC + ADg below “ADgr + O is regular” by exhibiting a hod premouse M,

PSMC stands for the Strong Mouse Capturing, which says that for any hod pair (P, X) such that
3 has branch condensation and is fullness preserving, then MC(X) holds.
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satisfying (1)-(3) as above. Here Moo = [J(g 5) Moc(Q, A), where (Q, A) is a hod
pair with branch condensation and is fullness preserving and Mo, (Q,A) is the
direct limit of all (nondropping) A-iterates of Q.

What is important for us are the notions discussed in those papers to compute
HOD in the successor cases. Let (P, %) be as above and suppose also that the
direct limit M (P, ) agrees with HOD up to 6. Let

B(P~,%) ={BCpR) xR xR|Bis OD, for any (Q,A) iterate of (P, %),
and for any (z,y) € B(g,a), codes Q}.

In the above definition, we identify A with the set of reals Code(A), and the
notation B(g a) refers to the section consisting of the second and third coordinates
of B. We also write “P is 3-suitable” for “(P,X) is a suitable pair”. For such a
P, we let 67 be the Woodin cardinal of P (above P~). If (P~,%) = (0, (), then
each B € B((,0) can be canonically identified with an OD set of reals and hence
B(,?) can be canonically identified with the collection of OD sets of reals. Suppose

B eB(P~,%) and k < o(P). Let 7f . be the canonical term in P that captures B
at s i.e., for any g C Col(w, k) generic over P

Bip- 5 NPlgl = (75 ,)g-
Let 6 = 6F. For each m < w, let
’YE,’EAL = sup(Hull] (P~ U {75 (5+myp }) N D),

ngi = Hullf(wg,’i U {Tg,(ﬁm)?’})»

PE _ P2
B = Supm<w’yB,m7

and
PY P2
HE® = | Hpm
m<w

o o . b b b b .
Similar definitions can be given for 'yg’ H g’ WE’ H g’ for any finite sequence
,m ,m

B € B(P~,%). One just needs to include relevant terms for each element of B
in each relevant hull. The usual notions of B-iterability, strong B-iterability, and
the corresponding weak iteration games WG (P, %), WG(P, X, B) are defined in
[5, Sec. 3.1]. The papers [5, 15] show that if (P~,X) is a hod pair such that

(i) X is fullness preserving, commuting, positional, and has branch condensation,
(i) 6M=(P7%) = g, for some a,
(iil) Moo(P~,%)|0o = HOD|b,,

then we can compute HOD|f,41 as follows.
Let

F={(P,%,B)| B eB(P™,%)<“, (P,%) satisfies (i)-(iii), P is L-suitable
and (P, ) is strongly B-iterable}.
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The ordering on F is defined as follows:

(P,%,B) 5 (Q,A,C) < B CC,3r(ris arun of WG(P, X, B) with the last model
P* such that (P*)” = Q7 ,S(p«y- = A, P* = Q|(n™)°
where Q En > 0(Q7) is Woodin).

Suppose (P,E,é) < (Q,A,é) then there is a unique map w%p’z)’(Q’A) : Hg,z —

Hg’A given by strong B-iterability. (F, <) is then directed. Let

Moo = direct limit of (F, <) under maps ﬂ_ga,z),(g,/\).

Then My« € HOD and Mo o]0a+1 = HOD|O,41. Also for each (P, E,E) e F,
let

P.x2), P.E
71'% )OO:HE — Moo

be the natural map, and let for each such B

co,a __ (P,X),00 P,5
Hy~ = U w7,
(P,s,B)eF
and
Moo, a P.X), 001 P,%
T = U W% ) ['Vg ]
(P,s,B)eF

Now suppose f : © — O (f could be taken from a parent ZFC universe) is such
that, for each a such that 0, < ©, f [ (6o +1) € HOD and rg(f | (6o +1) C 0ay1.
We call such an f appropriate. Fix an appropriate f and an o and let 7, M o
be as above for a. Let (P,X, B) € F be such that f[ (0o +1)U{f (0 +1)} C
rng(7rj(5,73’2)’oc [Hg’z). In particular, ”yg/tw > f(0a). We call such a triple (P, X, B)
f-suitable. We then say that a X-suitable P is (strongly) (f,X)-iterable if letting
By be the OD-least B in B(P~, %) such that (P, X, By) is f-suitable, then (P, X)
is (strongly) B-iterable. Whenever (P, X, By) € F is f-suitable, we also write 'y})’z

for 'yg}g or simply 77 if 3 is clear from the context.

2. The Maximal Model and a Framework for the Core
Model Induction

The core model induction is a method for constructing models of determinacy while
working under various hypotheses. During the induction one climbs up through
the Solovay hierarchy. This is a hierarchy of axioms that extend AD™ and roughly
describes how complicated the Solovay sequence is. One first defines, under a certain
smallness assumption, for instance “there are no models M such that RUOrd C M

AThe notions of f-iterability and f-suitability here are related to those used in [13] but as far as
the authors can see, they are not the same.
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such that M E ADg + © is regular”, a so-called mazimal model of ADT, 9. We
show M E ADT. We also show that 9 cannot satisfy “© = f,,,” for some «
and “ADg + O is singular” as in each case, we can construct a hod pair (P, X) that
generates p(R) NI, but by maximality of M, (P, X) € M, which is a contradiction.
This shows that there must indeed be such models M satisfying “ADr + © is
regular”.

Throughout the paper we work under the smallness assumption, which is
assumed in V' as well as in all set-generic extensions of V'

(1): “there are no models M such that R U Ord C M such that M F ADg + O is

regular”.”

In this section we first recall the notion of the maximal model and some correctness
results from [8]; the second part of the section sets up the framework for our core
model induction.

We start by introducing universally Baire iteration strategies and mouse opera-
tors. We assume ZFC. Throughout this paper we fix a canonical method for coding
sets in HC by reals. Given a real x which is a code of a set in HC, we let M, be
the structure coded by x and let 7, : M, — N, be the transitive collapse of M,.
We let W F be the set of reals which code sets in HC.

Definition 2.1 (uB operators). Suppose A € dom(Code) and A > wy is a cardi-
nal. We say A is A-uB if there are < A\-complementing trees® (T, .S) witnessing that
Code(A) is < A-uB in the following stronger sense: for all x € WF and n,m € z,

(x,n,m) € p[T| < (M) € A(mz(n)).

If g is a < A-generic then we let A9 be the canonical interpretation of A onto Vg],

i.e., given a,b € HCVI9 A9(a) = b if and only if whenever z € W FY19 is such that

a € N, and n € z is such that 7,(n) = a then b = 7, [{m : (x,n,m) € (p[T])VI9}].
If A is A-uB for all \ then we say A is uB.

In the core model induction of this paper, all operators constructed are A\-uB
operators (for some appropriate A to be defined later). The definition of uB opera-
tors ensures that the “decoding” of A from Code(A) is generically absolute.

Suppose now \ is an uncountable cardinal, g is a < A-generic, a € (H,)" [g] and
¥ € dom(Code) is A-uB. Then we define Lp*9(a), W9 (a) and KM*9(a) in V[g]
according to Definition 1.2. The following connects the three stacks defined above.

Proposition 2.2. Suppose \ is an uncountable cardinal and ¥ € dom(Code) is
A-uB. For every a € HY, WM (a) < KM (a) < Lp®(a). Moreover, for any
n < A and V-generic g C Coll(w,n) or g C Coll(w, < 1), Wh%9(a) < WHE(a),
KA®9(a) < KME(a) and Lp™9(a) < Lp™(a).

"Another way of stating our smallness assumption is the statement: “there are no hod mice P
such that 67 is an inaccessible limit of Woodin cardinals in P”.
SIt means that the trees project to complement in all < A-generic extensions.
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Definition 2.3 (Hod pair below \). Suppose that A is an uncountable cardinal
and (P,Y) is a hod pair such that ¥ € dom(Code) is A*-uB. We say (P,X) is
a hod pair below A if ¥ has branch condensation and whenever g C Coll(w, A) is
V-generic, in V[g], 29 is wi-fullness preserving.

Note that if K < XA and (P, ) is a hod pair below A then (P,X) is a hod pair
below . We are now in a position to introduce the maximal model of AD™.

Definition 2.4 (Maximal model of ADT 4+ ® = 6x). Suppose y < \ are
cardinals and g C Coll(w, < )" is V-generic. Suppose in V[g], (P, %) is a hod pair
below A. Then we let Sl’):gz L(KM>9(RV D). We also let

/\Em
(U Sy p(R ) and Qz,g: U Sﬁfﬂp(RL

(P,X (P)
where the union is over all such hod pairs (P, ¥).

Thus far strategy mice have been discussed only in situations when the under-
lying set was self-well-ordered. However, S ;}:QE is a X-mouse over the set of reals.v
Such hybrid mice were defined in [5, Sec. 2.10] and a more detailed treatment is
given in [10]. We say that Sﬁ‘;gE is the A\-X-mazimal model of AD" at pu, Emf;,g is the
\-mazimal model of AD" at ji, and Qf;g is the A\-mazimal point class of ADT at pu.
Our goal is to show that (under (})) sm;,g is a model of “ADg + O is regular”.

The next lemma connects various degrees of iterability. Below, if £ € Ord and
N is a transitive model of ZFC then we let N¢ = VEN.

Lemma 2.5. Suppose p < X are such that p is a strong cardinal and \ is
inaccessible. Let 7 : V. — M be an embedding witnessing that j is AT -strong
and let g C Coll(w,< pu) and h C Coll(w, < j(u)) be two generics such that
= h N Collw,< ). Let j+* : Vig] — M]Ih| be the lift of j. Let W = V]g|.
Suppose (P,X) is a hod pair below p and a € Vy[g] is self-well-ordered. Then

WA (q) = WASHOCOI) () — NP0 (a) = 0 a) = (W0 ) 1A,

The proof of the previous lemma is from [8, Lemma 2.5]. The following is an
easy corollary of Lemma 2.5.

Corollary 2.6. Suppose i < k < X and j : V — M are such that p and k are
strong cardinals, A is inaccessible, j witness that p is A-strong and M F “k is strong
cardinal” . Let (P,X) be a hod pair below p which is A-uB. Let g C Coll(w, < k)

*Recall this means 39 is p(p(w1))-fullness preserving.
“In this paper, u is typically an inaccessible cardinal.

VActually, we need that Sﬁ"’gz is a ©-g-organized Y-mouse over RV as defined in [10]; this is a
slight modification from the hierarchy of g-organized X-mice. This modification is needed (only
for 3-mice over R) so that the scales analysis works out.
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and h C Coll(w,< j(u)) be generic such that g = h N Coll(w, < k). Let j* :
V]g N Coll(w, < )] — M[h] be the lift of j. Then whenever a € Vi[g],

W/\,E,g(a) _ ’CH,E,g(a) _ W)\,Z,hﬂColl(w,</\)(a) _ (Wj(/\),j(E),h(a))M[h].

The proof of the above is given in [8, Sec. 2], so we omit it here. Now we develop
some basic notions in order to state Theorem 2.9 which we will use as a black box.
Our core model induction is a typical one: we have two uncountable cardinals K < A,
the core model induction operators (cmi operators) defined on bounded subsets of
k can be extended to act on bounded subsets of A, and for any such cmi operator
F acting on bounded subsets of A, the minimal F-closed mouse with one Woodin
cardinal exists and is A-iterable.

The mouse operators that are constructed during core model induction have
two additional properties: they transfer and relativize well. More precisely, fix X €
dom(Code) which is A-uB. Given a X-mouse operator F' € dom(Codey ), we say

(1) (Relativizes well) F' relativizes well if there is a formula ¢(u, v, w) such that
whenever X,Y € dom(F') and N are such that X € Ly(Y') and N is a transitive
rudimentarily closed set such that Y, F(Y) € N then F(X) € N and F(X) is
the unique U such that N F ¢[U, X, F(Y)].

(2) (Transfers well) F transfers well if whenever XY € dom(F) are such
that X is generic over Li(Y) then F(L;(Y)[X]) is obtained from F(Y)
via S-constructions (see [5, Sec. 2.11]) and in particular, F(L,(Y))[X] =
F(LL(Y)[X)).

We are now in a position to introduce the core model induction operators that
we will construct in this paper.

Definition 2.7 (Core model induction operator). Suppose |R| = &, (P,X) is
a hod pair below £T. We say F' € dom(Code) is a 3 core model induction operator
or just X-cmi operator if for some o € Ord, letting M = Sj+’2|\a7 I' = XM suppose
M E ADT + MC(X) and one of the following holds:

(1) F is a Y-mouse operator which transfers and relativizes well.

(2) For some self-well-ordered b € HC' and some Y-premouse @ € HCV over b,
F is an (wq,wn)-iteration strategy (above o(P)) for a (X,I')-suitable Q which
is I'-fullness preserving, has branch condensation and is guided by some A =
(A; 1 i < w) such that A € OD{)\?Z’I for some = € b. Moreover, a ends either a
weak or a strong gap in the sense of [10].

(3) For some H € dom(Code), H satisfies a or b above and for some n < w, F' is
x — M7H (x) operator or for some b € HC, F is the wi-iteration strategy of

MFH ()W

WThis definition is taken from [8, Definition 3.1], though we omit clause (2) there as it is not
necessary.

1650007-12



Failures of the UBH for tame trees

When ¥ = () then we omit it from our notation. Often times, when doing core
model induction, we have two uncountable cardinals kK < A and we need to show
that cmi operators in VCOI(«:<%) can be extended to act on VEU@ <N This is a
weaker notion than being A\-uB. We also need to know that for any cmi operator
F ¢ yCelllw,<r) M#’F—exists. We make these statements more precise.

Definition 2.8 (Lifting cmi operators). Suppose k£ < A are two cardinals such
that x is an inaccessible cardinal and suppose (P, X) is a hod pair below k.

(1) Lift(k, A,X) is the statement that for every generic g C Coll(w, < k), in V]g],
for every ¥9-cmi operator F' there is an operator F* € dom(Codey) such that
F = F*| HC. In this case we say F is A\-extendable. Such an F'* is necessarily
unique as can be easily shown by a Skolem hull argument.™ If Lift(x, A, X) holds,
g C Coll(w, < k) is generic, and F is a ¥9-cmi operator then we let F* be its
extended version.

(2) We let Proj(k,\, %)Y be the conjunction of the following statements:
Lift(x, A, X) and for every generic g C Coll(w, < k), in V]g],

(a) for every 39-cmi operator F, M#’F exists and is A-iterable,
(b) for every a € H,,,, K“v>9(a) = WH9(a).

The following is the core model induction theorem that we will use.

Theorem 2.9. Suppose k < X are two uncountable cardinals and suppose (P,X)
is a hod pair below k such that Proj(k,\,X) holds. Then for every generic g C
Coll(w, < k), S,i‘;gz EADT +05 =07

We will not prove the theorem here as the proof of the theorem is very much like
the proof of the core model induction theorems in [6] (see Theorems. 2.4 and 2.6),
[9] (see Chapter 7) and [12]. To prove the theorem we have to use the scales anal-
ysis for S:;,gz (see [10]). For a relevant discussion on how Theorem 2.9 is proved,
see [8].

We end this section with the following useful fact on lifting strategies. Among
other things it can be used to show clause (b) of Proj(k, A, X). The following lemma
is Lemma 3.5 of [8].

Lemma 2.10 (Lifting cmi operators through strongness embeddings).
Suppose k < A are such that k is a A-strong cardinal. Then whenever (P,X) is a
hod pair below k, Lift(k, \,X) and clause (b) of Proj(k, A, X) hold.

*Suppose Ho, H1 € dom(CodeK[‘g]) are two extensions of F'. Working in V[g], let 7 : N — H,+[g]
be elementary such that N is countable and Ho, H1 € rng(w). Let (Ho, H1) = 7~ (Ho, H1). Then
it follows from the definition of being a ¥-cmi operator that Hg = Hg [N and H; = H | N.
However, since Hy | N = F | N = Hy | N, we get that N E Hy = Hy, contradiction!

YProj stands for projective determinacy. The meaning is taken from clause (a).

“Technically speaking, the proof shows that some maximal, constructibly closed initial segment
M of S,i‘jgz EADT + 65, = ©. In fact, M is the union of S such that for any countable transitive
S* such that there is an elementary map from S* into S, S* has an iteration strategy projective

in §. We will, for the rest of the paper, confuse this M with S,i‘”gz; this does not change anything.
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3. A Core Model Induction

Recall that we say p reflects the set of strong cardinals (or p is strong reflecting
strongs) if p is a strong cardinal and for every A > p, there is an embedding
j:V — M witnessing that p is A-strong and such that for any cardinal & € [u, \),
V E “k is strong” if and only if M F “k is strong”. We fix u < k < A such that A is
an inaccessible cardinal, ;1 and k are strong such that pu is strong reflecting strongs
and k is strong.®?

Suppose n C Coll(w, < j(u)) is V-generic. Let m = n N Coll(w, < k) and g =
m N Coll(w, < u). We also let j* : V]g] — M]n] be the lift of j. Suppose also
Proj(k, A, ¥) holds for all hod pairs (R, ¥) below k. We first prove (under the
assumption (1)) the following.

Theorem 3.1. Let p, k, A etc. be as above. 9)?2,9 + Sﬁ‘:;’ for any hod pair (S, V)
below k, where S € V,[g], ¥ NV]g] € V[g].

We first restate the main theorem (Theorem 4.1) of [8] in our context. The proof
of this theorem is an easy generalization of that of Theorem 4.1 of [8] combined
with Theorem 2.9, so we omit it.

Theorem 3.2. Let p, K, A etc. be as above. Suppose (R, W) is a hod pair below k
such that Proj(k, A, ¥) holds. Suppose (R, V) € V,[g]. Let P = (MOC)SIA;P Then
in M[m], P has an (wi,w1)-iteration strategy ¥ such that ¥ is extendable to a
(j (1), 5(1))-strategy that is j(u)-fullness preserving. Moreover, there is a stack T e
HCVI™ on P according to > with last model Q such that w7 exists and in V]m],
(Q, X4 7) is a hod pair below wy (so in particular, ¥4 7 has branch condensation).

Finally, in V[m] (or equivalently in M[m]), S,?:ig‘f EADT +6y < O.

Proof of Theorem 3.1. This basically follows from Theorem 3.2. We outline the

argument. Suppose not; then 9, - = S+ for some hod pair (R, ¥) € V[g] below

k, where R € V,[g] and ¥ NV]g] € V]g]. Fix such a (R, ¥). Applying Theorem 3.2
to (R, W) and using elementarity of j+ and the fact that x is strong in M, we
get that there is a hod pair (Q,X) below a strong cardinal k* < p such that
(9,%) € Vi<[g N Coll(w, < x*)] and (Q,X) is also a hod pair below p such that
¥ ¢ M), and S5 = ADT.PP This contradicts the definition of 9} . 0

22Tt should be noted that the main assumption in the definition of “tame trees” is a bit of an
overkill. It would have been enough to assume that all extenders of the tree are above cardinals
u < Kk, where p is a strong reflecting strongs and k is strong.

Pb Ty see that ¥ is fullness preserving with respect to mice in S[),’;I/, using the fact that k™ is strong,
we get that ¥ is A-fullness preserving in V[g N Coll(w, < £*)]. Suppose M is a A-iterable sound
(g-organized) W-mouse over a € HCVI9 and p,(M) = a, then by S-construction, M is (fine
structurally) equivalent to a (g-organized), sound ¥-mouse M* over some a* € V,[g N Coll(w, <
k*)] and p,(M*) = a*. This observation guarantees ¥ is S,j\j;/—fullness preserving.
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Remark 3.3. The proof of Theorem 3.1 is one main place the hypothesis that u
reflects the set of strong cardinals is used. There are other places in this section
where this assumption on p seems to be used essentially.

The above theorem shows that the Solovay sequence of Q”) o has limit length. In

the following theorem, the definition of (MOO)Q;Q is self-explanatory. As explained
in the next section, the assumption Proj(x, A, ¥) in the hypothesis holds when the
hypothesis of Theorem 0.2 is assumed; this follows from [8, Lemma 5.2].

Theorem 3.4. Suppose whenever (R, W) is a hod pair below x then Proj(k, A, ¥)
holds; so the Solovay sequence of Q;\L,g has limit length. Let P = (Mm)gﬁq and
Pt = Wy 9(P), where S~ is the join of the strategies Yp(q) of P(a) for all
a < AP Let © be the height of the Wadge hierarchy of Qﬁ’g (so © = o(P)). If
Pt E © is regular, then Qﬁ’g is constructibly closed and L(Q;),g) F “ADgr + © s
reqular”. If PT & © is singular, then there is an initial segment I of Qﬁ’g such that
“L(I") = ADg + © is regular”.

Proving Theorem 3.4 is the main task of our paper. For the first conclusion,
suppose P E © is regular. Note that L[PT] N p(0©) = P N p(0). By standard
Vopenka arguments (cf. [1]), letting Q@ = Q7 ., LIPT](Q) N p(R) = Q and L(Q)
“ADg + O is regular”.

The rest of the section is devoted to the second conclusion. So we assume P* F ©
is singular. We follow arguments in [7]. Many of the main ideas of our proof come
from [7]; however, in this situation, we do not know a priori that [PV < pt
(unlike in the situation of [7]) and this affects many of the key arguments given
there. We now outline the proof of the theorem, making use of results from [7] as
much as possible.

Lemma 3.5. Suppose P I M <P+, Then p,(M) > O.

Proof sketch. Fix such an M. Note that [M|V = u since the assumption that
PT E O is singular that © < p™. The methods of 7], in particular Lemma 11.8,
applied to M show that in fact p,(M) > ©. O

We assume throughout this section that [P+|V > u* (so equality holds). Other-
wise, [7] applies and gives Theorem 3.4. By replacing j by the ultrapower embedding
via the (u, j(u))-extender derived from j, we may assume j[P ] is cofinal in j(P™T).

Lemma 3.6. PT F cof(\”) is measurable.

Proof. Suppose not. Recall we set X~ = @ _\p+ Lp(a). Let Q@ = Q) . We have

¥~ acts on P*+. More precisely, whenever 7 (based on P) is according to ¥~ and s

“°Yp(a) is simply the tail of a hod pair (Q,A) € Q) , where Moo (Q,A) = P(a). Using j*, we
can extend A to a unique strategy, called A also, acting on stacks in j*(Qﬁ}g); so (P(a), Xp(qa))
is indeed a hod pair in j+(Q)) ).
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exists, then letting @ = Ult(PT, E), where E is the (crt(nT), supn? [P])-extender
derived from 77, then we can define o : @ — j(P™) as follows: for any f € P+,
any a € (Q[02)<«,

o(i5(£)(@) = j(F)(rgse . (@).

Using the fact that 77 is continuous at 67" and j [P = T3 o0 We get that o is

elementary, coip = j[PT, and o [§2 = ngf [ 6€. In particular, this implies
that Q is well-founded.

It follows from Theorem 3.1 that (P, X7) € 57(Q2). But then letting M, be
the direct limit of all iterates of (P*,%7) in j7(Q2) (equivalently in M|n]), there is
an embedding 7 : My, — j(P7T) with critical point 6> this is because the maps
j and w77~ agree up to 67 but not at 67. This implies that M. is a hod initial
segment of j(P+) and My, F “6™== is an inaccessible limit of Woodin cardinals”.
This contradicts our smallness assumption (f) and the first clause. O

Definition 3.7 (Nice strategies). Suppose np+ ¢ : PT = R,0: R — j(PT)are
Y1-elementary. Suppose j [ PT = comp+ ». Let v < A, We say that an iteration
strategy ¥, for R(a) is nice if and only if

(i) ¥y is a j+(Q;},g)—fullness preserving strategy for R(«) with branch
condensation;
(i) wg‘fa),oc = o' | R(a) for some ¥; elementary map o’ : R — j(P*) such that
j 1Pt =0"omp+ g (so X, acts on all of R);
(iii) if 7p+ g € M, then So [ M € M.

Now, we construct a partial strategy 3 of PT in V[n] with the following prop-
erties (using the terminology of [7]):

(i) X extends X~.
(ii) Whenever 7 € M;(,) U M[m] is a stack on P+, we say that 7 is according to
¥ if:
(a) for all R a terminal node (see [7, Definition 2.1]) of 7, there is a map
or : R — j(PT) such that
jIPT=0or OWZ‘*’,R'
Furthermore, if Q and R are two terminal nodes and Wgﬁ exist then
g9 = 0RO TI'S’R.
(b) For all terminal nodes R, for all successor a < A%, letting oz be as above,
there is a unique {j(f) : f € P+ A j(f) is appropriate}-guided,?d nice

ddThis means YR (a) Witnesses R(a) is strongly (j(f), Er(g))-iterable for all f € P+ such that
J(f) is appropriate. Furthermore, for any correctly guided, maximal 7 according to X (q), 6(7) =

M7
Supfep+ (Vj(fb) )
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strategy Yg(q) for R(a). Furthermore, letting a = 3 + 1, then Yg ()
extends X (g)-

(¢) Letting R be as in (b), then whenever & on R is according to (the tail
of) ¥ and U is based on R(a) for some a < AR, then U is according
to ZR((X)'

In the above, we define X by inductively defining Yr(,) for each o < AR, where
R is a terminal node on a stack 7 as above. First note that Yp(q) 18 nice for each
a < NPT (with clause (ii) in Definition 3.7 being witnessed by j). Now suppose
7T, R are as above. It is enough to define Y (,) for @ = 3 + 1, where by induc-
tion, we have that ¥ g) is nice and the supremum of the generators of ,zj'p-%—"]g
is < (5}}.66 We prove a series of lemmas that eventually leads to the construction
of ER(Q) .

Lemma 3.8. Let T,R,0r,a, 3 be as above. Then R(«) is full in j+(Qﬁ7g).

Proof. Suppose not. As before we set {2 = Qf; o and we have already assumed that
() is nice, so in particular, R(f) is j*(Q)-full. Let & < j(u) be M-inaccessible
and (P*,¥) € M be a ¥~ -hod pair in j* () witnessing R(«) is not full and
AP is limit of countable cofinality (in P*). More precisely, there is a cutpoint &
in R(a) above R(3) such that in I'(P*, ¥),T there is a Y (s)-mouse M such that
M < Lp™»® (R()|€)\R(a). The existence of such a pair (P*, ¥) follows from the
fact that j(u) is strong in M and by Boolean comparison. Note that no levels of P*
extending PT projects to or below ©. This is similar to the proof of Lemma 3.5;
basically, this is because if P << M < P* is such that p,(M) < O, by the proof of
[7, Lemma 11.8], we get that M <tP*. We assume that ¥ has branch condensation
and is j7(§)-fullness preserving.

Let 0 = 7p+ g and ot : P* — R* be the ultrapower map of P* by the
(crt(o), 0)-extender derived from o. Let o, : R* — j(P*) be defined as: for
gEP* ac (§R)<v,

o (0" (9)(a)) = j(9)(or (a)).

We have then that afz is elementary and j [ P* = 0;5 oot.

InV,let 7,R, R*,S,%, 6,0+, 0r,04 € V be canonical Coll(w, < k) names for
T,R, R, R(a), ¥,0,0",0r, 04 respectively. Let v be a sufficiently large regular
cardinal in V[g] such that V,[g] contains all relevant objects and let g+ 1 C X <
V,g] be of size 1 and contain all relevant objects. Let 7 : N — X be the uncollapse

If o < AT is limit and cof”®(a) is not measurable in R then we set Y (q4) to be Dsca Zr )
If cof* () = k is measurable in R, then we let S = Ult(R, E) where F is the total extender on &
with the least index in R and we define £ () by inductively defining ¥5(g) for 8 < AS.

fThis is the set of A C R such that A <, As(q) for some iterate (S,A) of (P*,¥) and a <
AS. The existence of (P*, W) follows from the fact that Q’s Solovay sequence is of limit order
type.
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map. Let m € V[g] be Coll(w, 7~ !(k))-generic over N. For any a € X, let a =
7 1(a).

Let M = M%Y and let IT be M’s j(u)-strategy in M[n] (the M before is behind
us now). We assume also that (M, I V[g]) € X. Let N be an iterate (below the
first Woodin cardinal of M) such that H =ger H, EM is generically genericg® over A/
for the extender algebra BY, where § is the first Woodin cardinal of A”. Then in
N[H][m], the following conditions holds:

DWNI[H][m]) E  “in L(T'(P*,¥),R), R(«) is not full”,

where D(N[H][m]) is the derived model of N[H][m]. A similar fact holds of A/
inside N[m]. In fact, letting M = N[H], then inside M, letting A be the sup of
M’s Woodin cardinals:

@ “_Col(w,<k)”_Col(w,<)\) in the derived model, L(F(’Ij*, \i’))

witnesses that S is not full. (3.1)
Note that
J=U"|N and I=I"N, (3.2)
and
w17 (G(P7)) e (0p)m =aet T € Mg, (3:3)
and

T = j(TY° = j(0)7°@n  is Wadge reducible to A =qer 5(¥)7.  (3.4)
Combining (3.1), (3.2), and (3.4), letting W = R*m and S = 37 we get (in Qﬁm)7
in L(IF'OW, A),R), S is not full. (3.5)

This means that if we perform an RY["-genericity iteration via A, then letting W*
be the iterate, inside D(W?*), we have

S is not full. (3.6)
This contradicts results in [5] on internal fullness of hod mice. O
Definition 3.9. For f C 6" and f € PT. We say an M <P+ is f-nice if p, (M) =
O, f € M, M E © is the largest cardinal, and j [ M is cofinal in j(M).

Fix an appropriate f € PT. Let M <P be f-nice; note that the set of f-
nice M’s is unbounded in PT. We construct a strategy X; witnessing R(«) is
strongly (j(f), Xr(g))-iterable. First, we construct a realizable strategy for R(a).
Let 7o = j | M. Note that 74 € M and by f-niceness of M, mp+ ¢ [ M is cofinal
in mp+ g(M). By absoluteness, Yg(g € M|n], and the fact that mp+ (M) is
countable in M |n], there is in M[n] an elementary ox : mp+ (M) — j(M)

g8See [5, Sec. 2.10] for the definition.

1650007-18



Failures of the UBH for tame trees

such that

o opOoTpr g [ M =T

>
® oM TR(ﬁ) = 77727(25()6,)00'

Let ¥/ = j(P);’zf‘(z) be the ¥ p(-pullback of R(«). By constructions in [7, Sec. 11],
whenever S is a nondropping Y'-iterate of R(«), then there is an embedding og :
S — om(R(«)) such that os 07"7%/((!),8 =om [ R(a).

Remark 3.10. The above construction, though stated as a definition for a strategy
of R(c) in V[m] as part of defining a partial strategy ¥ for PT, indeed gives an
inductive definition of a strategy Ay € M(n] for M for stacks in M;(,)[n]; the
reason is because Tpq € M. Furthermore by construction, given any As-iterate S
of M, there is some o : § — j(M) such that comays = j [ M.

Lemma 3.11. All nondropping ¥/ -iterates of R(«) are j+(Qﬁ’g)—full. Furthermore,
' has branch condensation and is positional and commuting.

Proof sketch. The proof is almost the same as that of Lemma 3.8. We only outline
the main changes. Let S be a nondropping X'-iterate of R(«) and suppose S is not
full. Let (P*,¥) be as in the proof of Lemma 3.8 witnessing this. Let E be the
(crt(mp+ R ), 0™ )-extender derived from mp+ . Let Q = Ult(P*, E), N/ = ig(M),
and N = Ult(M, E).

Claim 3.12. N/ =N = 7ps g(M) and iZ M =il = 1p+ g | M.

Proof. We just prove N' = 7p+ z(M) and i%! = mp+ z [ M. By definition of F
and the choice of M, there is a factor map [ : N' — mp+ » (M) such that crt(l) > %
and [ is cofinal in 7p+ r (M). Note that both N and 7p+ (M) satisfy 67 is the
largest cardinal. It means that [ is the identity. Similarly, N7 = mp+ g (M) and
Z% =7mp+ g | M. O

Now as in the proof of Lemma 3.8, m =ger mp+ & lifts to rt :P* - Q and
there is a map og : @ — j(P*) extending o (this uses the claim) such that
ogomt =j|P*

Now, T =def ”722/(&),5 can be extended to 77 : @ — ST (77 is simply the
ultrapower map by the (crt(r),§%)-extender derived from 7) and there is a map
os+ : ST — j(P*) such that g = g+ o7". The rest of the proof is just like that
of Lemma 3.8.

That ¥’ has branch condensation, is positional and commuting follows from
[5, Lemma 3.26] and the fact that cof(6”) is measurable in P* since ¥’ can be
taken to be the pullback of some hod pair (R, A) in j*(Qﬁ’g) such that A® is limit
and A has branch condensation and is fullness preserving. O

Let f C 67 and f € P*; let M be f-nice, and 7oq = j [ M. Again, note that
Tm € M. We now define the notion of (f, M)-condensation. Suppose in M(n], S is

1650007-19



G. Sargsyan & N. Trang

a hod premouse such that S is Taq-realizable, that is, there are maps 7 : M — S
and 75 : § — j(M) in M|[n] such that 7oy = 7som. Letting 3, = j(P)™S, we
define the set Af aq,7¢ as follows: for any ;1 formula ¢, for any s € (S[05)<%,

(6,5) € Ap s & G(M) F dlmses) () ()],
where 7 is such that s € S(y). We also let
Trm = {(¢,5)| ¢ is a £y formula, s € (P)<*, and M F ¢[s, f]}.
In the following definition, we reuse the notions just defined.

Definition 3.13. Let M be f-nice and 7oy = j [ M. Suppose 7 : M — S and
7s : 8§ — j(M) are such that 7oq = 75 om. We say 75 has (f, M)-condensation (in
M n]) if whenever W is 7s-realizable as witnessed by (7%, 7)), then 7" (7 (T, 1)) =
Af,M,TW .

The following theorem and its proof is from [7], but here we apply it to M.

Theorem 3.14 ((f, M)-condensation lemma). Let M be f-nice and o =
Jj I M. Then Taq has (f, M)-condensation.

Proof. Working in M|[n], let n < v < j(u) be such that v is M-inaccessible. Let R,
be the direct limit of all hod pairs (W, ) such that W € M[nN Coll(w, < v)], ¥ is
j+(Qﬁ, g)—fullness preserving, positional, commuting, and has branch condensation.

Let YV, = Uyenrs DRy [R,(a)]. Let X C j(M) be countable in M|[n].b! Let

TRy (@),00
R, be the transitive collapse of Hf(M) (X UY,) and 0, be the uncollapse map. We
say that v is X -good if o, | 6%+ = Uacrry 77227:(;;,)00' The proof of [7, Lemma 11.9]
shows that there are cofinally many v < j(u) that are X-good for any such X.
When X = 7p[M], and v is X-good, we say v is a good point.
For a good point v, we can define an iteration strategy A, (for stacks in M;(,,[n])
for R} the same way A was defined in Remark 3.10, but using o, instead of j.

A, has the following properties:

e Whenever S is a nondropping A,-iterate of R}, S|0% is j* (2} ,)-full’ Further-
more, for each a < \S, (Ay)s(a) has branch condensation.
e Letting S be as above, there is a map 0 : § — j(M) such that comr: s = 0.

Let M, be the direct limit of all A,-iterates in j7(Q} ) and m, be the o,-
realization map given by the construction of A,,.
As in the proof of [7, Lemma 11.15], it suffices to show:

there is a Tp[M]-good v such that o, has (f, M)-condensation. (3.7)

hhr[M] is an example of such an X.
1S is not full at the top, so we cannot demand more than this.
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The proof of this now is just that of [7, Lemma 11.15] using remarks in Lemma 3.11
and the fact that 7o € M (this replaces the hypothesis |P*|V < ut used in
[7, Lemma 11.9]). We outline the proof here for the reader’s convenience.

Suppose 3.7 fails. We can then find a sequence (Q;, 7, 74, ki, Vi, Vi 1 1 < w) €
M{n] such that

(1) vo =p, Ro =M, and (v; : i < w) is an increasing sequence of good points,

(2) for i <w, Q; is 0y,-realizable as witness by (m;,7;) and k; : Q; — R}, | =def
Ri+1 is given by k; = U;il o T,

(3) fori <w, 0,,[Ri] Crng(oy,,,), i = 0,,} 00, and for i < m, letting i, =
o, Yoo, and fi = voi(f), m:(Th ®,) # Af,0,7 (i-e., (Qi, i, 7) witnesses that

oy, does not have (f;, R;)-condensation).

Let now v be a good point such that sup,_,v; < v < j(u) and letting X =
Uicw (i[Qi] Uow, [Ru,]), X C rng(oy,). Let (8*,®%) € j7(92 ,) be a hod pair below
§(u) such that M, 14 Mo(S*,®*)¥ and A\° is limit with cofinality w in S*. Let
B = m,'(5(f)). Let now o; = m, ' oo, and 77 = m,!o7;. Notice now that we
can define the notion of (f;, R;)-condensation also for the embeddings o;. We leave
it to the reader to fill in the definition. Now notice that we have that

(4) for i < w, Q; is o;-realizable as witness by (m;, 7,
by k; = 0;1 oTl,
(5) (Q;,mi, 7;") witnesses that o; does not have (f;, R;)-condensation.

)and k; 1 Q; — R;41 is given

The importance of this move is that the badness of (Q;, Ri, i, 75, ki, i, 04 1 1 < w)
can now be witnessed in the derived model of §* as computed by ®*. More precisely,
letting X; = @, \», Ay, (@) and ¥; = (7;-pullback of j(¥;)"),

(1): in M[n], letting N = D(S*,®*) = L(I'(S*,®*),R), in N, there is a
formula 6(u,v) and a finite set of ordinals ¢ such that for every i, (¢, s) €
Ty, =, if and only if G[W%i(a)m(s)j] where « is the least such that s €
[67%]<“. However, in N, for each i, there is a pair (¢, s;) € Tg, (s, such
that _‘a[ﬂgi(a),m(si)’ t] where « is the least such that s € [§2/]<%.

Suppose K is a transitive model of ADT and b = (M, £;), Ni, 74, 1i, &, C i <
w) € K is such that (M;,Ni,v:,1;,&,C i < w) € HCK. Suppose (u,v) is a
formula and ¢ is a finite sequence of ordinals. We write K E “(b, 0(u,v),t) is bad”
if in K, letting K* = L({D CR: w(D) < ¢(0)}) then b € K* and in K*

(6) for every i < w, M; is a hod premouse such that A is limit and ¥; is an
wi-iteration strategy for M;|6 with the property that for every a < MM,
(i) M, (o) has branch condensation and is fullness preserving,

(7) for every i, & : M; — My,

(8) for every i, NV; is a &;-realizable as witnessed by (vi,[;),

iThe direct limit is taken inside 57 (3 ).
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or every o < i, letting ¥, = (l;-pullback of 2;), i)\ (o) has branc
9) f MVi | letti v l llback of X v Ni(a) has b h
condensation and is fullness preserving,
€ MoNeg i) and letting Cp = C an i+1 = &(C;), for every 1,
10) C € M, oM d letting C C and C, &(Cy), f )

(¢,5) € Toyaa,  if and only if O[wy; ) (5), 1],

where « is least such that s € [021]<% but for every i, there is (¢;,s;) €
T, ()., such that ﬁﬁ[ﬂj\{’/j(a)m(s), t] where a is least such that s; € [6)7]<«.

In M([n], let (W*,1I*) be a (P*, %7 )-hod pair such that W* € M,[g] for some
M-cardinal v < j(p) but greater than v, II* is a (j§(\),j(A))-strategy that is
J () ,)-fullness preserving, IT* N j+ (2} ) € (Q), ), and D(W*,IT*) = T'(S*, &)
in jH(Q) ). Let b= (R, Ss), Qi i, ki, ¥4, fi + i < w). We can then rewrite (1) in
terms of (W*,IT*) and get that

(2): in M[h], letting N = DOW*,II*) = L('(W*,1I*),R), in N, there is a
formula 0(u,v) and a finite set of ordinals ¢ such that (b,0(u,v),t) is bad.

Let then N* = ". Let N be an iterate of N* via the canonical
iteration strategy of N* such that Hf/w is generically generic over the extender alge-
bra of N at its bottom Woodin cardinal. We can now witness (3) inside N'H}][h,]
as follows:

#1150, ., =
w

(3): DINTH}[h,]) E “letting N = D(W*,1I*) = L(I'(W*,1I*),R), in N,
there is a formula 0(u, v) and a finite set of ordinals ¢ such that (b, 0(u,v),t)
is bad”.

We will get a contradiction using (3). Notice that the sequence a = (R;,¥;, %,
fi 11 <w) € M. However, the sequence (Q;,m;, k; : ¢ < w) may not be in M. Let
then d € MCMw<7) be a name for (Q;, mi, k; : i < w). Let ¢ = (j(u)T)M, and let
7 : Plg] — (Héw)[g] be such that P € V, ep(r) > p, |[P|" = u, and all relevant
objects are contained in rng(r). Let M = 77 1(N), e = 7 !(a) and ¢ = 7 1(d).
Let for i < w, e(i) = (Ki, &, Si,9i 11 < w) and (W, 1I) = 7~} (W*, 1I*). Also we let
4 = 7~ 1(y). By elementarity, (3) gives that

(4): whenever m C Coll(w, < 7= 1(j(n))) is P[g]-generic then in P[g][m],
letting k¥ = m N Coll(w, < 7) d = dgupy for i < w, d(i) = (Si,7i,1i) and
9 = ((Ki,0), Siyvis lis iy g0 0 i < w), DIM[HZ g % k]) = “letting N =
DOW,II) = L(T'(W,II),R), in N, there is a formula 6(u,v) and a finite set
of ordinals ¢ such that (g, 0(u,v),t) is bad”.

Using genericity iterations we can completely internalize (5) to M* = /\/l[HZY3 ]
and get that
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(5): in M*, there is a name d* € (M*)CM@<7) guch that whenever
k C Coll(w, < 7) is M*-generic then letting d = dy, for i < w, d(i) =
(SZ,W“ L) and g = ((Ki, %:),Si, v, liy &0y 90 1 < w), D(M*[K]) E “letting
N = D(OW,1II) = L(I'(W,II),R), in N, there is a formula 6(u,v) and a
finite set of ordinals ¢ such that (g, 0(u,v),t) is bad”.

Work now in M |[n]. Notice that for every i, %; = ((m-pullback of ¥;)) [ P and I =
((m-pullback of IT*)) | P. In what follows, we abuse our notation and let for every
i, ¥; = (m-pullback of ¥;) and II = (m-pullback of IT*) in all M[n]. It then follows
that in M[n], M is a Il & (€D, ;)-mouse. Let now C' = D(W,II). It is easy to
see that (5) gives (S, i, li : ¢ < w) such that if g = ((KC;, %), Si, Vi, biy Eiv g 1 < w)

(6): in C, there exist a formula 6(u,v) and a finite set of ordinals ¢ such
that (g,0(u,v),t) is bad.

Fix then 6(u,v) and t as in (6). Let E; be the (6%, §%i+1)-extender derived from
& and F; be (0% §5)-extender derived from ;. Let Kj = W, S = Ult(K;, F;)
and K, = Ult(ICf, E;). Let p; = 0,, o (7 [ K;). Then we have that p;, 74, & and [;
extend to pi : K — jOWV), " K — S, & K — Ky and IF 2 S — Kf
such that pf = p  0& and & =1 o

By a standard argument (e.g., see [15, Lemma 4.3]), we can simultaneously
iterate (K, S;" : i < w) using strategies II; = (p; -pullback of 7(II)) and Q; =
(I op;-pullback of 7(II)) to make RM" generic. Such genericity iterations have
been used by many authors. The details of such genericity iterations are spelled
out in [6, Definition 1.35]. The outcome of this iteration is a sequence of models
(Kiw;Siw 1 < w) and embeddings (& o, Viw,liw @ ¢ < w) with the property
that &',w : Ki,w — Ki—o—l,w, Yiw - ’Ci,u — Si,w, li,u : S@w — ’Ci+1,w and for every
1 < w, &w = liwo&w. Moreover, the iterations IC;r—to—ICW and S;-to-S; ., are
above respectively 6% and §5:. Let then C; = D(K;.,) and D; = D(S;). One
important remark is that for every ¢ < w, KC;,, is a ¥;-hod premouse and Siw is
a W;-premouse where ¥, = ([;-pullback of f}i). Another important remark is that
C; € D; C Ci+1. The most important remark, however, is that the construction of
the sequences (K; o, Siw 1@ < w) and (& w, Viw, liw : ¢ < w) guarantees that the
direct limit of K;, under &, is well-founded. Let then n be such that for every
m > n, &me(t) = t. It then follows from (6) and the fact that for every i < w,
C C (C; and C C D; that

(7): for every i < w, in Cj, for every (¢, s) such that ¢ is a formula and
s € [%]<v| K; E ¢[s, B;] if and only if H[WEZ(Q)’OO(S)j] where a < M s
least such that s € [§Xi]<w.

(8): for every 4, in D;, there is a formula ¢ and s € [§5]<% such that
Si E ¢[s,vi(B;)] and ﬁe[ws (@), OC(s),t] where a < A5 is least such that
s € [65]<w.
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It follows from elementarity of v; .,, (7) and the fact that if ¢ > n then ; ., (t) =t
that

(9): for every i > n, in D;, for every (¢, s) such that ¢ is a formula and s €
[65]<“ and S; F @[s,~;(B;)] if and only if 0[7r§'j<a> (), 1] where a < XS
is least such that s € [057]<%.

Clearly (8) and (9) contradict one another. This completes the proof of the
theorem. 0O

Lemma 3.11 and Theorem 3.14 immediately give us the following corollary.

Lemma 3.15. Let f,M,on, R, %" be defined prior to Remark 3.10. Let o'y, :

wp+ R (M) = §(M) be defined by: oy (mp+ =(9)(@)) = Ta(9) (TR () 00 (@) for all
g€ M and a € R(a)<¥. Then o'y, € M[n] is ¥;-elementary, and

Th(a) .00 | Hf ) = ol TH{. (38)

Furthermore, X' is commuting, positional, witnesses R(a) is strongly (Xr (s, 7(f))-
iterable and has branch condensation.

Proof. First, ¥;-elementarity of oy, follows from Theorem 3.14 and the fact that
M is g-suitable for every g C 6% and g € M.

By changing M if necessary, we can assume that p;(M) = 67 and there
is some h € M such that mg(h | P) C 6% and f, Tgf(i),’y}z(a) are ¥; com-
putable in mp+ g(M) from mp+ z(h) for all k € {((6%)™)®|n < w}. Then
applying Theorem 3.14 to (h, M), we get (3.8). The second clause follows from
Lemma 3.11. O

Working in V[n], we fix an enumeration (gi |k < w) and (fr = j(gx) |k < w)
of {f|f € P Aj(f) is appropriate} and {j(f)|f € P* A j(f) is appropriate}
respectively, so that whenever H}i(a) - H}?(O‘) then k < [. Note that for any k,
there is some [ > k such that H}i(o‘) - H}?(o‘).

For each [ and f;-suitable M, fix strategy A; € M[n] for R(a) extending ¥ (g,

map TJ’\M satisfying Lemma 3.15 for f;. We also demand for [ < k such that H}?(a) C
HR(a)
fr ’
R(c R(c
a P H = g R, (3.9)

Again, let Q = Qﬁ7g. We plan to construct strategy g (o) by taking “limit”
of the A;’s as follows. For simplicity, suppose 7 € M;(,)[n] is a normal, correctly
guided, maximal tree on R(a)*k using extenders above R(3). Let M(7)* be the

KKIf 7" is short, then there is a unique branch b given by the Q-structure.
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end model of the tree 7; more precisely, M T (7) is defined to be Lp¥=® (M (T)).!
For each n, let b, = A, (7). We let ¥z (q)(7) = b, where
Eebe IRVI> k(€ ely). (3.10)
Let ‘H be the transitive collapse of J,, HM(T)
We want to show that

and 7 be the uncollapse map.

(i) bis cofinal in T;
(ii) H = M(T)* and 7 is the identity. This gives that X q) is fullness preserving;
(iii) Y (q) acts on all of R and is o’;-realizable for some ¥; elementary embedding
0% : R — j(PT) such that oy omp+ g =5 | PT;
(iv) Y¥gr(a) has branch condensation and is guided by {j(f)|f € PT A
j(f) is appropriate}.

Lemma 3.16. H = M(T)" and 7 is the identity.

HM(T)+ and k = mor. Note that

7TM (T)+,00 [ H,
U H.

This is because every € R(«) has the form mp+ » (g [(5;} + 1))(a) for some
| < w and some a € (R[6F)<¥ and R(B) U {mp+ r(gr [ + 1)} C H}i(a) for
all k™™ It means that there is a ¥; map i : R(a) — H. Furthermore, letting
E be the (crt(i),d’)-extender derived from i, then E gives the ultrapower map
TR — HT =get Ult(R, E) extending i. Letting k* (i (g)(a)) = or(g)(k(a)), we
have that: kT oit = 0.

Now we can use the proof of Lemma 3.8 to conclude that H is full. If 7 is not
the identity, then letting v = crt(7), we have: v is Woodin in H, 7(y) = §(7) is
Woodin in M(7)*, and H<<M(T)". Since H is full, v is Woodin in M(7)*. This
contradicts the fact that there are no Woodin cardinals in M(7)T between 6}}
and (7). O

Proof. Let 7 = |,

Lemma 3.16 proves (ii); furthermore, it implies that supr(T) = 0(7). This
means that b is cofinal in 7, hence proves (i) (see [9, Theorem 5.4.14] for an argu-
ment). We also get that ¥z, is guided by {f, |n < w} (and is the unique such
strategy). At this point, we do not know that ¥,y € M[n] and has branch con-
densation. The following is the main technical lemma.

IRecall that maximal trees always have the last model; regardless of whether there is a cofinal
branch.

mmfrp+,R(gk [52} +1) C H;i(a) holds by elementarity of mp4  and the fact that the corre-

sponding containment holds in P¥.
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Lemma 3.17 (Notations as above). The following conditions hold:

(1) ¥r(a) acts on all of R and whenever i : R — S is according to Y (), there
are embeddings o : R — j(PT) such that j | PT = o omp+ g and 7 : S —
§(P*) such that o = Toi and 7] S(i(a)) = TG0y,
Of ER(Q) .

(2) XR(a) has branch condensation.

(3) If mp+ » € M, then Yp(q) is in jT(0 ).

where ® is the i-tail

,007

Proof. For (1), the map o% is defined as follows: for any z € R, letting z =
mp+ =(gi)(a) for some | < w and a € (6%)<, then letting k > I be such that
ae HX®
T
o (@) = (g)(r: (@) = filmht o (@),
The map is well-defined by line (3.9). Using Theorem 3.14, we can show that o7 is

31 elementary as follows. Suppose ¢ is ¥1 and z, g;, a are as above (we may increase
[ and assume = = 7r73+’R(gl)( ) and a € HR(O‘)). Suppose

JPYE Gl (@)] & RE plal.
Since ¢ is ¥ and j[PT] is cofinal in j(PT), we can find some M <1 P+ such that
the above is equivalent to
FM) E @Lfi(mR 0 00 (@)] € Tps (M) E pla].

This contradicts Theorem 3.14 applied to M, f;. Theorem 3.14 also gives that
Jj I Pt =0cjkonp+r and

ok rR<a) = T e (3.11)
By Lemma 3.16, S(i(o)) = U, H . Now define 7 : & — j(P™") as follows. Let

U be the stack giving rise to i and A = (Bs(ip)))yg- For v € S, say x = i(g)(a) for
some g € R and a € S(i(a))<*, and say g = mp+ r(g:)(b) for some b € R(B)<¥
we let

7(2) = filmS(3(5)) 00 () (TS (i(a)),00 (@))-
Using line (3.11), we get that 7 is ¥y elementary and 7o0¢ = o%. This proves (1).
The following claim proves (2).

Claim 3.18. X (4) has branch condensation.

Proof. Suppose not. Then there are a (nondropping) stack W with last model
S € M|n] and a normal tree 7 of limit length based on a window (55*75(‘3 ) such
that

(1) pg* = Trw(ﬂ), oF = TI'W(OZ) =0*+ 1
(2) W and 7T are according to X (q)-
(3) Generators of W are below 55*.
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4) s(p)w has branch condensation.
(5) Let b =X ,;(7). There are a cofinal branch ¢ # b, an iteration map i : R — Y

according to Sr(a), and a o : MZ — Y such that con? o™V =1.

We proceed to obtain a contradiction. Let 7 : Y — j(PT) come from the con-
struction of ¥g,) and os : § — j(PT) be the realization map. By arguments
above and the fact that M7 realizes into j(P*) via 704 and 7oi factors into
os, there is a strategy A such that W/Q/l;,(a*),oc = [ MZ (a*) for some v such that

j I PY=vwon? or” and A witnesses that M7 (a*) is strongly (S(3*), fi)-iterable
for all k < w. This means A7 (o) = EM;;(Q*)’WAT%.

Let U = EMET(Q*)’WATAI). Let ¢ : M7 — j(P7) be the realization map. Note
that
T T, A
ST MG () = % T MZ(07) =TT () 00 = TadZ ()00
Now we aim to show b = ¢, which contradicts our assumption.
By assumptions on W, we have

6S. =sup(A), where
A={y<d5.[3gePtIbe (65)“Iac (65-)<% v =" (mp+ =(9)())(a)}.

For each v = 7" (mp+ = (g)(b))(a) € A,

vorl (7) = jlg)w T (w7 (), a), (3.12)
and

. v * N

pomy () = j(g)(m ~T 0 (x" (b),a)). (3.13)

Since ¢ | MZ (a*) = | MZ (a*), we get that
2 (v) =m (7). (3.14)

Equations (3.12), (3.13), and (3.14) imply rng(77 ) Nrng(7? ) is cofinal in §(7). So
b = ¢, which is a contradiction. O

Now we show that ¥ )N M € M in the case mp+ g € M. In this case, R € M.
Note also that the construction of Yx(,) does not depend on the enumeration
of the set {j(f)|f € P} in V[n]; it only depends on the set itself. So in fact,
YR(a) [V € V. The following claim is another place the fact that x is strong in M
is used.

Claim 3.19. Sy [ M € M.

Proof. Suppose first R € M. As noted before, ¥ ) N M, € M (since M, 1 =
Viet1). Using the fact that x is strong in M, we can lift X4y N M, to a strat-
egy A in Mj(,) acting on trees in Mj(,), and A has branch condensation and is
j*(Q,’)ﬁg)—fullness preserving. We claim that Yz ,) N M = A € M. Suppose not.
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Then by a standard fact, cof” (6%) = w.m™ Let (z, |n < w) be cofinal in 6% and
say, Tn, = p+ g (hn)(an) for some h, € P and a, € R(f).

From our assumption, ((573)+)73+ = p. Hence, there is some N < P* such
that p,(N) = 07, {hn|n < w} C N and in P+, cof(o(N)) = w. Let A be the
least that contains some such h,’s and let p be the standard parameter of A/ so
for each n, h,, is definable in A/ from p and some a € P. Note that we can assume
mp+ »[67] C R(B). This means sup(A) = §%, where

A={g(x)|g € mp+ r(N) Az €R(B)}.
By the choice of N and the fact that A can be computed in R, §¥ is singular in
R, which is a contradiction.

Now assume R € M;(,)\M,. Note that whenever W € Vi.[m] = M,[m] is such
that there is an embedding 7 : W — R with n(7y) = « and there is an embedding
7 : Pt — W such that mp+ g = mox*, then W(v) has a nice strategy as witnessed
by some realization map i : W — j(PT) such that the strategy restricted to M, [m)]
has branch condensation. Let h : M — N witness x be j(u)"-strong in M and we
may assume h = i¥ for some extender F’; h can be extended to a map, which we
also call h, from M[m] to Np] for some V-generic p C Col(w, < h(k)) such that
p | Col(w, < j(u)) = n. Then by absoluteness, in N[n|, there is an embedding =
from R into h(R) such that h(mp+ g) = Tomp+ g. And hence there is a strategy
A € M([n] of R with branch condensation acting on stacks in M;(,)[n] = Nj¢um
based on R(«) such that A [M € M.°° By the same argument as above, we get
that A [ M =Yg [ M. O

We now prove (3). Let A be as in the proof of Claim 3.19; so A € M[n], A
has branch condensation and is j+(Qﬁ, o)-fullness preserving. It is enough to prove
A = ¥R(qa) so that g o) € M[n]; (3) then follows from Proj(j(x), j(A), ¥r(a))- The
equality follows from an argument similar to the proof of Claim 3.18 and the fact
that for any k£ : R — M in M[n] according to A and ¥g (), thereisani: R — S
according to A [ M = Y (,) [ M such that there is some map o : M — S such that
o € M[n] and ook = ¢.PP This completes the proof of the lemma. O

We have finished the construction of a partial strategy ¥ acting on trees
in Mj(,) U My[m]. During the course of the construction, we also showed that

"M There is a tree U € M of limit length with X (4)(7) = b # ¢ = A(T). Hence cofV (§(U)) = w.
Since 6% is mapped cofinally into §(U/) by either branch embedding, cofV (§%) = w.

°°From the point of view of Ult(V, F)[n], the strategy A is {i¥%.(j(f))|f € P*}-guided, acts on
trees in i% (M)[n] and does not depend on any generic enumeration of the set {i% (j(f))|f € P*},
so if in addition W € My, then A’s restriction to Nj(,) = Mj(,) = i%(M)j(u) is in M even though
we first collapsed R to w in N to find an embedding from R into w(R).

PPSuppose WAT is according to both strategies, W is on R(B) and 7 on MW s such that
b= A7 (T) # c= (XR(a)) M7 (7). Then there is some iteration i : R — S according A | M =
YR(a) ['M such that there are iteration maps og : MbT — S according to the tail of A and
o1t MZ — § according to the tail of 3 (). We can then run the proof of Claim 3.18 to get that
b=c.
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nondropping iterates R of ¥ are j7(Q),  )-full and there is a ¥ elementary embed-
ding og : R — j(PT) such that ogomp+ g = j [P+, and for each a < A%,
or [ R|6F is the iteration map according to the og-nice strategy ¥, constructed
above. Next we show branch condensation of X.

Lemma 3.20. X has branch condensation.

Proof. Suppose not. Then as in [5], we can find a “minimal place” where branch
condensation fails. More precisely, there are a (nondropping) stack W with last
model R and a normal tree 7 of limit length based on a window (6%, 6%, ) such
that we have the following.

(1) W and T are according to X.

(2) Generators of W are below 0%,

3) X R(a), W has branch condensation.

(4) Let b =Xy \3(T). There are a cofinal branch ¢ # b, an iteration map i : Pt —

S according to ¥, and a 0 : MZ — S such that con? oV =1i.

The rest of the proof is just as in the proof of Claim 3.18. |

Let A =X | Mi[m] € M[m]. Using the fact that s is strong in M, we extend A
to a strategy AT € M|[n] such that AT acts on all stacks in Mj(,[n], has branch
condensation, and is j (Q,’) ,)-fullness preserving. Furthermore, since ¥ N M, € M,
we also get that AT [M € M.

Lemma 3.21. X | M CAT | M € M.

Proof. Suppose ¥ | M ¢ At | M. Then there are in M a (nondropping) stack w
with last model R and a normal tree 7 of limit length based on a window (677, 6%, )
such that we have the following:

(1) W and 7 are according to both strategies.
(2) Generators of W are below 6%,
(3) Let b=2%r 3(7) and ¢ = A;W(T). Then b # c.

This means in V as well as in M, cof(6%, ;) = w. The rest of the proof is just as in
the proof of Claim 3.19. |

Let ¥ = AT M = Y| M. By generic comparison using the fact that A™
has branch condensation and is j+(Qf;,g)—fullness preserving (see [5]), we get the
following:

For any At-iterate R of P+, letting i : PT — R be the iteration map, there
is a W-iterate S of P such that, letting h : PT — S be the iteration map,
there is a map o : R — S such that h = o oi. In fact, o is a AT-iteration
map.
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Using the above paragraph and the properties of %, letting Moo (PT,A™") be
the direct limit of (all countable) AT-iterates of P in M|[n], then there is a ¥
elementary map 7 : Moo (PT,A") — P* such that 7 ow%i,oc =4 Pt and crt(r) =
§Moo(PHAT)

The map 7 is defined as follows: for any € Mo (PT,A"), let R € M be a
U-iterate of P such that there is some y € R such that W%Rm(y) = z. Now by
construction of W, there is a map 7 : R — j(PT) such that j | PT = ¢ O7r7‘1,’+,R
573

and 7r [ 0™ agrees with the iteration map by . We then let 7(z) = 7= (y).

Lemma 3.22. (P*,%) is a hod pair below k in V|m] and (PT,% [ HCM) ¢
QA
7T (2g)-

Proof. The second clause follows from the first clause and Proj(j(k),7(A), %) in
M. Tt suffices to prove the first clause. Let | = m N Coll(w,v) where p < v < K
and P+ is countable in VCUw) and let a = {f|f € PT A f is appropriate} and
b= {j(f)|f € Pt A fis appropriate}. Let ¢(P*,a,b,T) be the formula stating
“T is a stack on P+ according to ¥”. Fix a regular £ much larger than j(u) and let
X =< Vg[l] be countable in V[I] and X contains all relevant objects and o(P") C X.
Let 7 : N — X be the uncollapse map and (b,&) = 7~ (b, k). Let m € V][] be
N-generic for a poset in HY. Let 7 € M[m]. Then we claim that

M[m] E ¢[Pt,a,b,T] < V[ E ¢[P*,a,b,T]. (3.15)

Suppose 7 = (T, Mq | < 1) and suppose 7, is based on M,,(y + 1) for some ~.
Suppose by induction, (3.15) holds for 7 |« for all a < 1. We now show (3.15) holds
for 7,. But (3.15) holds for 7, because 7[b] = b and so 7,, is b-guided in M [m] if
and only if 7, is b-guided in V[I]. |

The above definition of 7 and Lemma 3.22 imply that the direct limit
Moo (PT,AT) is in j7(Q) ) and Moo(PT,AT) E §M=(PTAT) s regular. By
elementarity, P+ §7 is regular. This contradicts our assumption.

The argument above shows that if P* F 67 is singular, then there must be a
model of “ADg + O is regular”.™

4. The Strength of Failure of UBH for Tame Trees

In this section, we prove Theorem 0.2. Here, we fix a tame tree U on V. We let
1 < K < A be as in the previous section; the assumption that U is tame allows us
to choose p, k, A below the critical point of all extenders used in U. The proof of
[8, Lemma 5.2] shows that whenever (R, ¥) is a hod pair below &, then Proj(x, A, ¥);
as mentioned in the previous section, this is where we use the arrangement on

99This means that there is some « such that Moo (P*,AT) € L(j"'(Qf‘L,g I ). Recall that there

are cofinally many « such that j*(Q;}yg I @) is constructibly closed.
""Here we use (f) to invoke the analysis in [5].
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1, K, A, though technically, we just need the strength of p, s to be a bit past §(U).
The hypothesis of Theorems 3.2 and 3.4 is satisfied. These theorems in turn imply
the conclusion of Theorem 0.2.
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