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Abstract We investigate the compatibility of /o with various combinatorial principles
at AT, which include the existence of AT-Aronszajn trees, square principles at A,
the existence of good scales at A, stationary reflections for subsets of A, diamond
principles at A and the singular cardinal hypothesis at A. We also discuss whether these
principles can hold in L(V;41).
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1 Introduction

Axiom [p(1) is the assertion that there is an elementary embedding j : L(Vy41) —
L(V;41) such that crit(j) < A. It was first proposed and studied by Woodin in the
early 80’s and by Laver in the 90’s. For the introductory material on this axiom and
its connection with other rank-into-rank axioms, we refer the readers to [14].
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Although it is stronger than the existence of supercompact cardinals in consistency
strength, the statement /p(X) only implies the existence of <A-supercompact cardinals,
and there are a fair number of statements that follow from supercompactness but are
independent of /p(A). The theme of this paper is to present some examples of this sort
in the area of combinatorics at A*. In this context, A is an w-limit of very strong large
cardinals, for instance, limit of <\A-supercompact cardinals.

In this paper, we consider combinatorial principles in the following list.

1. the existences of (special) A T-Aronszajn tree and of AT -Suslin tree; (see Sects. 2.1,
2.2)

the [J, and the DI principles; (see Sects. 2.1, 2.2)

the existence of (good, very good) scales at AT: (see Sect. 2.3)

—SR,+, the negation of Stationary Reflection at A™; (see Sect. 3)

the ¢, + principle; (see Sect. 4)

GCH at A; (see Sect. 4)

S el

We are interested in the compatibility of the /(1) axiom with various ¢’s in the above
list over the base theory I' = ZFC + In(A). We ask three types of questions:

— Is ¢ consistent with I"?
— Is =@ consistent with I"?
— Is g truein L(V;41)?

We categorize the results into three theorems. For the case of I" 4 ¢, we have

Theorem 1 (ZFC) Assume Io()). Then there is a forcing poset P such that in its
generic extension Iy(L) remains true, GCH holds at X (i.e. 2+ = A1), and there is a
O;.-sequence D = (Dy | @ < A1) and a stationary set S C {a < A1 | cf(a) > w}
such that S Nlim(Dy) = @ for all o < AT

As consequences, the following statements are also true in the generic extensions:

(a) special At -Aronszajn trees exist, and equivalently, 0,
(b) A T-Suslin trees exist;

(c) there is a very good scale at A ™ ;

(d) Stationary Reflection fails at \™;

(e) <>)L+.

For the consistency of I" + —¢, we appeal to stronger forms of /o-type axioms.
Let Ig (A, @) denote the following stronger form of Ip-type assertion: There is an
elementary embedding j : La(VfH, Vit1) — La(VfH, V1) with crit(j) < A.
And let Ig (1) denote the statement without the subscript «.

Theorem 2 (ZFC)

1. Assume Ig (A, w). Then there is A < A such that Io(X) holds and the following
statements are true in'V:
(a) there is no )_L+—Aronszajn tree;
(b) there is no scale at X ;
(c) Stationary Reflection holds at 1.
And consequently, 0, and U fails in V.
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Iy and combinatorics at AT 133

2. Assume Ig (M) and GCH holds in V;. Assume that Generic Absoluteness holds for

Vi
V)»ﬁ+l at some o which is Vf+l-good and such that ©;, < a < ©,"*'.! Then GCH
fails first at A, i.e.2 = kT fork < A but 2* = A7,

Regarding the question whether ¢ is true in L(V, 1), we have
Theorem 3 (ZFC) Assume Iy(L). Then in L(Vy 1),

(a) there is no A*-Aronszajn tree;
(b) there is no scale at \*;

(c) both Oy and 0I5 fail;

(d) Stationary Reflection holds at A,
(e) O,+ fails;

(f) GCH fails at A;

(g) there is no A" -sequence of distinct members of Vi 1.

We are unable to answer the question regarding stationary reflection at AT in L(V; 1 1),
due to the lack of choice in this model. We include a scenario (see Theorem 13) where
it could be true in L(V,_1), although it is unknown if that setting is even compatible
with 1.

Our discussion regarding the failure of GCH at A in V (see Theorem 17) assumes a
stronger form of Generic absoluteness. To apply it, we need to show that Gitik’s one-
extender-based Prikry forcing is A-good. For that we extend the idea in [21], introduce
two rank notions and develop in Sect. 5 a systematic analysis on the ranks of (finite
parts of) conditions in Gitik’s forcing.

Notation An Iy())-embedding is an embedding that witnesses Io(1). We write I for
the statement 3A Io(1). For two cardinals x < A, k regular, we write E¥ = {a < A |
cf (o) = «}, and similarly write E;*, Ef'( to denote the obvious sets. If C is a set of
ordinals, we use lim(C) to denote the set of limit ordinals of C.

2 Lt-Aronszajn tree, good scales at A and [,

A k-tree is a tree on k of size k whose every level has size <«. A k-Aronszajn tree is
a k-tree that has no cofinal branch of length «.

2.1 There are no A*-Aronszajn trees and [J; -sequences in L(Vy1)

Under ZFC, there is an wi-Aronszajn tree, however this is not true under the axiom
of determinacy. Being more precise, assuming AD*® there is no w -Aronszajn tree
in L(IR), while it may exist in V, if AC is assumed there. In this section, we show that
a similar situation occurs at A, assuming Io(1).

Theorem 4 (ZFC) Assume Iy(X). There is no A" -Aronszajn tree in L(V;41).

I See p. 142 for relevant definitions.
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134 X. Shi, N. Trang

Proof The reason there is no A+-Ar0nszajn tree in L(V;ﬁ]) is the same as that of the
nonexistence of wi-Aronszajn tree in L(R) under ADL®), First, note that (A 7)Y =
ALV 5o a At-tree in L(Vs41) is also a At -tree in V. We show that such a tree
can not be a A™-Aronszajn tree.

By a theorem of Woodin (see [24, 1.B.5]), Ip(A) implies that

L(Vy41) = AT is a measurable cardinal.

Assume towards a contradiction that there is a A+-Aronszajn tree T in L(V;1).
Letrm : L[T] - M = Ult(L[T], wN L[T]) be the ultrapower embedding induced by
a AT-complete measure 4 on A*. Then 7 (7') is a (A 7)-Aronszajn tree in M. Notice
that as crit(r) = AT and every level of T has size < AT, we have 7 (T)[AT = T.
Any node at the A*th level of 7 (T') is a cofinal branch of 7“T = T. Thus there can
be no A*-Aronszajn tree in L(V;11). O

The same argument gives us a similar result regarding the square principle, which
is due to Jensen [13].

Definition 1 Let A be an uncountable cardinal. A [, -sequence is sequence (Cy, : @ <
AT, @ € lim(A ™)) such that for all « < AT,

1. Cy C «a is closed and unbounded in «,

2. otpCy < A,

3. Forall B € lim(Cy), Cg = Co N B.

We say [J,, holds if there exists a [J) -sequence.

Theorem 5 (ZFC) Assume Iy(A). Then L(V,11) &= —0;.

Proof Assume not, and let C = (Cy : @ < AT, a € lim(A 1)) be a [Jy-sequence in
L(Vy41). Let u be a A+-complete ultrafilter that witnesses the measurability of A
in L(Vy41). Letm : L[C] - M = UIt(L[C], u N L[C]) be the induced elementary
embedding. Then 7(C) is a O+ -sequence in M. Since every Co, @ < AT, has
ordertype < Ain L[C_’], every member of JT(C_' ) has ordertype < w(X) = A,ascrit(wr) =
AT. Let C;+ be the ATth element of 7(C). So otp(C;+) = A by elementarity. But
as a member of [J,(;+)-sequence, C;+ is a closed unbounded subset of AT, hence
otp(Cy+) = A™. This is a contradiction! |

Remark Note that the proof only uses items 1 and 2 in the definition of the square
principle, so the same argument works for weaker versions of square principles such
as O, (k < A), the approachability property at AT (see [5]) etc.

Although [J;, implies the existence of a A*-Aronszajn tree (see Exercise IV.1C and
the proof of Theorem IV.2.4, [8]), this does not enable us to conclude the failure of [,
in L(V541) from Theorem 4, as the construction of a A*-Aronszajn tree uses A+-DC,
which fails in L(Vj1).

2.2 A*-Aronszajn trees and [J, in V

The two theorems above say that Io(A) pushes AT-Aronszajn trees as well as [J; -
sequences, if exist, out of L (V) 1), butit does not necessarily eliminate their existence
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Iy and combinatorics at AT 135

in V. Next we show that given the consistency of Io(A) for some A, it is possible to
produce a model with both Iy (1) and a A*-Suslin tree. A «-Suslin tree is a k-Aronszajn
tree with no antichain of size k. A kT -tree is special if it can be written as a union of
k many antichains.

Theorem 6 (ZFC) Assume Iy(L). Then it is consistent that Iy(\) holds and [, holds.

Proof Let P, denote the standard Jensen forcing for adding a [J,-sequence.” We
claim that Ip(A) is preserved after forcing with P,. The point is that this forcing is
<A -strategically closed, therefore it adds no new subsets of A, preserves cardinals
and cofinalities up to A™. So it does not change V; 11 and L(V; 1), hence any Iy(A)-
embedding in V remains to witness Ip(A) in the generic extension. O

Jensen introduced a weak form of square principle, often denoted L1, ;> and showed
that it is equivalent to the existence of a special uT-Aronszajn tree. So immediately
we have

Corollary 1 (ZFC) Assume Iy(L). Then it is consistent that Iy(L) holds and there is
a special AT -Aronszajn tree.

To produce a special A*-Aronszajn tree, a [J; -sequence seems to be a little bit overkill.
Ben-David and Magidor [1] showed that, assuming ZFC, if there is a cardinal ¥ which
is /<+-supercompact, then it is consistent to have D;w + —ly,,. Assume Ip(1), let «
be the critical point of an I(1)-embedding. Then « is k™
what we can say about [J} + —[J;.

-supercompact. It is unclear

Question (ZFC) Assume Io(1). Is it consistent to have [0 4+ —[J, or the probably
weaker version 3y (D;j +-0,)?

The possibility of [, (together with Ip(A)) gives us an interesting scenario for
Ip(A)-embeddings and ultrafilters on Atiitis relatively consistent with ZFC + (1)
that

inf{crit(j) | j is an Ip(A)-embedding}
> sup{x | Iu (u is an ultrafilter on AT A p is k-complete)}

Corollary 2 (ZFC) Assume Io()) and let j be an Iy(\)-embedding. Then it is con-
sistent that there is no crit(j)-complete ultrafilters on A+,

Proof Silver and Prikry (see [15]) showed that if A is a singular cardinal, A > k and
AT carries a k-complete ultrafilter, then [, fails. Let « = crit(j). Then by Theorem 6,
it is consistent that A™ carries no k-complete ultrafilters. O

Next we prepare a theorem for showing that it is consistent to have both an Ip(A)-
embedding and a A™-Suslin tree.

2 For the detail of Py, one can read Cummings’ handbook article [6, §6.6].

3 Jensen’s U -principle asserts that there exists a sequence (Cy : o0 < w7, o limit) such that each Cg is
a nonempty set of club subsets of «, |Cy| < p, and for all limit & < ut,all C € Cy and all B € lim(C),
otp(C) < pand CN B = Cp.
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136 X. Shi, N. Trang

Theorem 7 (ZF?) Assume Iy(L). Then it is consistent that Iy(L) holds and there is
a O;-sequence D = (Dy | a < AT) and a O,+(S)-sequence, where S C EZP s
stationary and such that S N1im(Dy) = @ for all @ < A+

Proof For the diamond sequence, we need to apply the forcing poset IP; (in the proof
of Theorem 6) over a ground model that satisfies GCH at A, namely 2% = At. This is
not difficult to achieve, as one can first force 2* = A* then force a square sequence,
for example, using Q;, = Coll(A T, 2%) % [P, , where I, is the Coll(A T, 2*)-name of ;.
Note that this Levy collapse is a <A™ -closed forcing, so this two-step iterated forcing
poset does not change Vj 11 and therefore the L(V; 1) of the models before and after
applying Q, are the same, hence the same Ip(A)-embedding in V witnesses Ip(A) in
the generic extension.

With a little extra work, one can show that, in the Q)-generic extension, there
are a [Jy-sequence D = (D, | @ < A*) and a stationary set § C E such that
SNlim(Dy) = @ foralla < At.4 By a result of Shelah ([19], or Theorem 2.2 of [5]),
if 2<* = % and GCH holds at A, then ¢+ (T) holds for every stationary T C EZ®.
So we also have a {3+ (S)-sequence in the Q; -generic extension. O

By an argument of Jensen (see [5, §4.2]), a A1 -Suslin tree can be constructed from a
O,-sequence D and a §;+(S)-sequence as in Theorem 7.

Corollary 3 (ZFC) Assume Io(X). Then it is consistent that Iy(L) holds and there is
a Mt-Suslin tree.

Note that in this model there are both special AT-Aronszajn trees and AT-Suslin
trees. However, the notions of special Aronszajn tree and Suslin tree are mutually
exclusive, it is natural to ask
QUESTION (ZFC + Iy) Is it possible to have a situation in which for some A, Ip(1)
holds and there are special A™-Aronszajn trees but not A™-Suslin trees, or the other
way around?

Next we show that under suitable assumptions, Ip(2) is not compatible with the
existence of AT-Aronszajn trees. For that we need an I theorem.

Theorem (Cramer [41) Assume Ig (A, a_)). Then Iy holds_unboundedly often below A,
i.e.for any B < A, Io(A) holds at some A such that f < A < A.

The theorem we state here is stronger than the original version ([4, Theorem 3.9]),
which states only that Iy holds below A. The key points are the following two basic
facts in [y analysis: (1) For any f < A, there is an Ip(A) embedding k such that
B < crit(k) < A; (2) By Martin’s lemma, every Ip(A) embedding k has square roots
with critical points arbitrarily close to crit(k). Given any 8 < A, one can run Cramer’s
proof (of Theorem 3.3 and 3.9, [4]) with only inverse limits of /p(1) embeddings with
critical points above S, the X ;s for such inverse limits are all above 8, and thus one
can get IO(X) for some X such that B < X< A

By a result of Shelah (see [7, Fact 2.10]), if there is a supercompact « and A is
a cardinal such that cf(A) < x < A, then [J} fails (in fact, the proof just needs «

4 The argument for the existence of such D and S can be found in [5], the paragraph prior to 4.2.
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Iy and combinatorics at AT 137

to be AT-supercompact). Let j be any Iy(1)-embedding and « = crit(j). Then « is

<A-supercompact. Urlder Ig(k, w), ‘?y Cramer’s tl_leorem (the version above), there
is a A such that k < A < A and Io(A). Then « is AT-supercompact, so we have D;

fails and that there is no special AT-Aronszajn tree. The elimination of the adjective
“special” follows from an examination of Cramer’s argument.

Theorem 8 (ZFC) Assume Ig (A, ®). Then there is a . < X such that Iy(X) holds and
there is no At -Aronszajn tree.

Proof In[17],Magidor and Shelah show thatif A is a singular limit of strongly compact
cardinals, then A" carries no Aronszajn trees. For our purpose, it suffices to have A
being a limit of A *-strongly compact cardinals. Let A be as in the original version of
Cramer’s theorem (i.e.the case of § = —1 in the version quoted above). Then TIo(L)
holds. In Cramer’s proof of his Theorem, this 2 is obtained via an inverse limit M)
such that A = Ay. Letj = (j, : n < w), then A = lim,, -, crit(j,). Here each j, is
an Ip(A) embedding, thus each crit(j,) is a <A-strongly compact. Therefore Xis a
limit of A *-strongly compact cardinals. Then by Magidor-Shelah’s theorem, there is
no At -Aronszajn tree. O

We have shown that
Corollary 4 (ZFC) Let ¢(1) be one of the following statements.

1. there is a 0y -sequence.

2. there is a [J}-sequence, or equivalently, there[3.] is a special LT -Aronszajn tree.
4. there is a A" -Suslin tree.

5. there is a AT -Aronszajn tree.

Then

(a) Assume Iy(L). There is a model in which Iy(X) + ¢ (X)) holds.
(b) Assume Ig()», w). Then there is a . < A such that Io(A) + =@ (L) holds.

Contrast Corollary 4 with Solovay’s theorem (see [22,23]) regarding the incompat-
ibility of square principle with supercompact cardinals, more precisely: If k < A and
K is AT -supercompact, then [y, fails.

2.3 Good scales at A

Next we discuss good scales at L. We are going to show that there is no (very) good
scale at A in L(V;41) and to add the assertion of its existence to the list in Corollary
4. In this paper, as X is a singular cardinal of countable cofinality, we consider only
the set [[; _, ki, where ik = (k; : i < w) is a sequence of regular cardinals such that
A = sup,;_, ki, and the ideal / on w that consists of all finite subsets of w. Given
f.g € [l;«i, f <1 gifandonly if w\{i | f(i) < g(i)} € I. A scale of length o in
[I;xi/I is a <j-increasing sequence (f; : i < «) in [[;«; which is cofinal in [];«;
under the relation <;. A scale for ) is a pair (i, f), where f is a scale of length A™ in
[1;xi/1. As A is singular, a basic fact of PCF theory is that, there exists a scale for A.
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138 X. Shi, N. Trang

Definition 2 1. Suppose (i, f) is a scale for A. A point o < AT is good for (i, f)
iff there is an A C « unbounded in « and i < w such that

Vo, B € AVj > i(a < B — fu(j) < fp(i))-

2. Let (g : i < B) be a <-increasing sequence in [[;k; and g € [];«;. g is an
exact upper bound (eub) for (g; : i < B) if gi <; g for every i < B and for any
helliki.h <1 g = h <y g forsomei < .

By Shelah’s PCF theory, the set of good points in a scale for A is a stationary subset
of AT. This set is determined by the sequence Kk modulo the nonstationary ideal on
At

Definition 3 A scale (i, f) for A is good if except a nonstationary subset of A+ every
point of uncountable cofinality is good for f.

Ascale (i, f)for Aisvery good if forevery limitar < A% such that cf (&) > w, there
isaC C a clubin « and an integer m < w such that for all n > m, (fg(n) : B € C)
is strictly increasing.

Theorem 9 (ZFC) Assume Iy(X). There is no (good, very good) scale at ) in L(Vj1).

Proof It suffices to show that there is no scale at A in L(Vy4.1). Suppose otherwise and
let (ic, f) be ascale for Ain L(Vyy1). Let i be a AT -complete ultrafilter that witnesses
the measurability of A in L(V;1). Let

7 Lk, f1— M = Ult(L[k, f], u N L[k, f])

be the induced elementary embedding. Since L[k, fl E Ya < B(fy <1 fp), by
elementarity, f, <; 7(f)(A") in M, for every & < A*. Since <; is absolute, that is
also true in L(Vj1). But then f is not a scale in L(V;4). Contradiction! O

Similar to the situation of [J;, we have

Theorem 10 . Assume Io(A). Then there is a model of ZFC + Iy(), in which there
is a (very) good scale at \.

1. Assume {g (A, ). Then there is a . < A such that Io(X) holds and there is no good
scale at A.

Proof 1 follows from Corollary 4-1 and a theorem of Cummings, Foreman and Magi-
dor (see [7, Theorem 3.1]): If A is singular and ¥ < A, then D;L,,(S implies that there
is a very good scale at A. [, implies [, ., therefore in the model obtained by adding
a [, -sequence, there is a very good scale at A.

For 2, we need a theorem of Shelah (see [20], or [5, Theorem 18.1]): If there is a
« such that cf(A) < ¥ < A and « is A+-supercompact, then there is no good scale
at A. By the discussion in the paragraph following Cramer’s Theorem on p. 136, one
can arrange Io() for some A > x = crit( J), but k is <A-supercompact, in particular
AT -supercompact, therefore, there is no good scale at A. |

5 The definition of Uy« is irrelevant to our proof, we refer the reader to Cummings [5] for details.
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Iy and combinatorics at AT 139

Corollary 5 (ZFC) The assertion that “there is a (very) good scale at ). can be
added to the list in Corollary 4.

3 Stationary reflection at A+

Let x be an uncountable regular cardinal. Let S be a stationary subset of k. S reflects
ata ifo <k, cf(a) > wand S N is stationary in «. Stationary Reflection Principle
for T, where T C k is stationary, says that for every stationary S C T, S reflects at
some o < K.

In this section, we show that I is compatible with either side of the Stationary
Reflection Principle. Let SR, + denote the Stationary Reflection Principle for A™.

Theorem 11 (ZFC) Assume Ig()\, w). Then there is a . < X such that Io(X) holds
and SR3+ is true.

Proof Asbefore (see p. 136, after Cramer’s Theorem), this hypothesis yields «, A such
thatk < A < A and « is A T-supercompact. Then it follows from the standard argument
that the Stationary Reflection Principle for A% is true: Fix a stationary § € AT. Let
7 : V — M be an embedding witnessing the AT -supercompactness of x. We claim
that

Claim 7S is a stationary subset of y = sup 7S = supr“A* in M.

Let C be a closed and unbounded subset of y in M. Since 7“1 is «-closed,
i.e. closed under supremum of < k-sequences, 7“ATNC is a k-closed and unbounded
subset of y. Pull it back, D = 7 mz“%t N C) is a k-closed and unbounded subset
of AT. Then we have S N D # &. And then 7S N C # @. Thus %S is stationary in
y.

Since 7S C 7(S) N y, we have

M =3y <7 (w(S) reflects at y).

By elementarity, V = S reflects at some a < At O

It is well known that [J, implies that the Stationary Reflection Principle fails for
every stationary T C kT (see [7, Theorem 1]). So one can obtain the failure of SRj+
by forcing a square sequence. As discussed in the proof of Theorem 7, that forcing is
<A T-strategically closed, it preserves Io()), therefore we have both Ip(X) and =SR;+
in the generic extension. One can also force directly a non-reflecting stationary subset
of A™. One can find such a forcing in Cummings’ handbook article (see [6, §6.5]).
That forcing is AT -strategically closed, therefore adds no new subsets of A. Thus in
V[G], we also have both /p(%) and —=SR;+.

Theorem 12 (ZFC) Assume Iy(A) is consistent. Then so is In(L) + —=SR;+.

Corollary 6 (ZFC) The assertion SR+ can be added to the list in Corollary 4.

@ Springer



140 X. Shi, N. Trang

The question left is that
— Assuming Ip(A), is it true that L(V;41) = SR;+?

Our first attempt is to try the trick we did in the proofs for the nonexistence of A*-
Aronszajn tree (see Theorem 4) and of [, -sequences (see Theorem 5) in L(V)41).
However, the SR;+ case is subtle. Its negation is the following statement

38 ¢ S+Va € E;*AC,(Cyisclubina ASNaNCy = 9).

Here .#,+ denote the nonstationary ideal on A+ and E ¥ denote the set of ordinals
<A™ with uncountable cofinalities. For each such «, let C, be the collection of clubs
C in o such that SN C N = . We would like to take the ultrapower of the structure
L[{Cy : @ < AT), S] by a measure on A+, The problem is that L.os theorem fails for
the ultrapower. In particular, we are not able to show that, letting i be the ultrapower
map and (Dg : B <i(AT)) =i((Cy : @ < AT)), foreach B < i(A), Dg # @. Also,
since AT-DC fails in L(Vj 1), we are unable to choose, for each o < AT, a C, € Cy
and consider the ZFC model L[(C, : @ < AT), S].

We also considered the function ¢ +— «\S. Since S reflects nowhere, for each
« € E7, o\S contains a closed unbounded subset of a. If E5” € w, then AT\S =
[@ > a\S],. By elementarity, 27\ S contains a closed unbounded subset of AT S is
a stationary subset of AT in V and thus stationary in M = Ult(L[S], © N L[S]), so
S N (AT\S) # @. This would be a contradiction! But unfortunately s concentrates
on EY,, this argument does not work.

We will obtain stationary reflection in L(V, 1) from a slightly stronger principle,
which unfortunately is not yet known to be consistent relative to Ip(A).

Theorem 13 (ZFC) Assume L(Viq1) = AT is Viyi-supercompact.’ Then SR+
holds in L(Vy41).

Proof Work in L(V;41). Fix a measure 4 witnessing that AT is V; i |-supercompact.
For each 0 € Z5+(Vy41), let My = HOD, oy and let M = [], My /p be the
w-ultraproduct of the structures M, ’s.

Claim Los theorem holds for this ultraproduct.

Proof of Claim The proof is by induction on the complexity of formulas. It’s enough
to show the following. Suppose ¢(x, y) is a formula such that the claim holds for
¢ and f is a function such that {o | M, F Jx¢[x, f(o)]} € n. We show that
M E 3xglx, [f1u].

Let g(0) = {x € 0 | @y € OD(x))(Ms F @[y, f(o)])}. Then {o | g(o) is a
non-empty subset of o} € w. By normality of w, there is a fixed x such that {o :
x € g(o)} € u. Hence we can define h(o) to be the least y in OD(x) such that
My F ¢ly, f(0)]. It’s easy to see then that M F ¢[[A],, [ f1u]

6 This means there is a fine, normal, A*—complete measure /4 on {ﬂ)ﬁ (Va41). Fineness and completeness
have standard meanings. In the context where full AC does not hold, normality is defined as follows: suppose
F: 2+ (Vig1) = P+ (Vigr)issuchthat {o : F(0) € o AF(0) # (0} € u, then there is some x such
that {o : x € F(0)} € .
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For each x, let ¢, be the constant function f : P+ (Viyi1) — {x}. By At-
completeness, it is easy to see that for each o < AT, @ = [ca]y. Also for each
set x, there is some a € V;41 such that x is OD(a). In particular, if x is a set of
ordinals, by fineness of u, {o | x € My} € . Alsoif A C V; 41, then A € HOD[r]
for some T € V)41, and by the fineness of , we have {oc | ANo € My} € u; also by
the normality of u, A = [0 +— A No],. By Los theorem, these imply that A € M.
In particular, V, 41 € M.

Now let S € AT be stationary and S* = [cg],. By the previous paragraph, in M,
S* N At = § (note that (A )M = A% because Vj41 € M) and hence $* N At is
stationary in M. By Los,

{0 |3 < AT M, £ S Nais stationary} € u.
By normality of u, there is some @ < A ™ such that
{o | My E S N« is stationary} € (.

Now we claim that § N « is stationary. Let C N « be club in «. By the discussion
above, {0 | C € M} € u. Fix o such that C € M, and M, F “S N« is stationary”.
Now in My, C is clubin o, so C NS N« # . This shows § N « is stationary. |

Remark The proof above works also if we are in a model M of the form L(V)_1)[1t]
and M F p is a normal, fine, k+-complete measure on & +(Vy41). We are optimistic
that such a model can be constructed from /(1) or from its strengthenings.

4 Diamond and GCH at A

First of all, assuming [, no matter whether ¢;+ is true or not in the universe, diamond
sequence can not exist in L(V;t1).

Theorem 14 (ZFC) Assume Io(A). Then in L(Vs41), 2* # AT and O, .+ fails.

Proof 1tis a ZF theorem that {; + yields an injective function from £2(1) into A™. The
inverse of this injective function gives a A T-sequence of distinct subsets of . So we
have L(Vi11) = O+ — (2% = AT). But2* = A% implies that V; 1| is wellorderable
in L(Vj41), this contradicts the fact that L(V; 1) &= —AC. O

This proof utilizes the fact that GCH at A leads to the violation of the fact that
L(Vj41) is not a full choice model. Here we give another proof, which shows that
both ¢,+ and GCH at A violates a weaker statement in L(Vj1). It is the following
analog of the AD-fact that there is no wi-sequence of distinct reals.

Theorem 15 (ZFC) Assume Io(X). Then there is no A+ -sequence of distinct members
of (1) in L(Vy41).

Proof The key point again is that At is measurable in L(Vy41). Suppose X = (xq :
a < A1) is a sequence of distinct subsets of A. Let

7 L[X]— M = UI(L[X], © N L[X])
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be the ultrapower embedding induced by a A*-complete measure 4 on A™. Then in
M, m(X) is a w(AT)-sequence of distinct subsets of A. Every member of m(X) is
represented by a function A* — {x, | @ < AT}in V,in particular, let [ f] be the AT th
element of 7 (X).

Claim f is constant on a measure one subset A C A ™.

Proof of Claim For each f < A, there is a unique ig € {0, 1} such that
Af =la <27 | f@)(B) =i}

is a measure one subset of A*. By AT-completeness, the set A = ﬂ{A;f | B < A}has
measure one. Therefore for every a € A, f(a)(B) = ig.

This means that [ £] equals to x,, for some o < AT, contradicting to the assumption
that members of 7 (X) are all distinct. O

Remark 22()) is the above theorem can be replaced by Vj41 (using a well ordering
of V, of length 1), but not by H(A1) (as AT C H(AT) gives a counter example).

This theorem effectively rules out 2% > At in L(V)41), thus gives a more direct
reason why O+ and GCH at A fail in L(Vj41).

As we have discussed earlier (see the proof of Theorem 7), one can easily obtain
O;+ by forcing 2* = A% (using Levy collapse Coll(A*, 2*)) without adding bounded
subsets of A, therefore preserves 2<* = and Io(%). Thus we have

Theorem 16 (ZFC) Assume Iy is consistent. Then the following are consistent

1. oL + Or),
2. In(Ip(r) + 2+ = 171).

Regarding GCH, Dimonte—Friedman (see [9, Corollary 3.9]) sketches an argument
that it is relatively consistent with Iy that GCH fails, in particular at A. However, there
are flaws in that argument. We will remark on this after proving our next theorem. Here
we show the compatibility of Io(A) with the first failure of GCH at A, and consequently
with =0, +, from a stronger form of Iy-type axiom and a strong generic absoluteness
assumption. A few definitions.

Definition 4 Suppose X C V1.

1. Let @f =def {@ | L(X, Vi41) = there is a surjective w : V, 41 — «a}.
2. An ordinal ¢ < @f is X-good if every element of L, (X, Vy41) is definable in
Ly (X, Vig1) from an element in Vj 41 U {X}.

Definition 5 Assume j : L(X, V,41) — L(X, Vy41) is a proper elementary embed-
ding and crit(j) < A. Let (M,,, jo.») be the w-iterate of (L(X, Vat1), j). Suppose
a < @){( and « is X-good. We say that Generic Absoluteness holds for X at o if the
following proposition holds:
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Suppose P € jo»(V,), G € V is an M, -generic filter for P, and cof (\) = w in
M,,. Then there exist &' < o and X' C V, 41 such that

Lo (X', Mp[G1N Vig1) < Lo (X, Vi)

The details of the definition of “proper” Ip embedding is not important here, the key
pointis thatif an /o embedding is proper then itis iterable (see [25, Lemma 17, p. 136]).
We refer the readers to Woodin’s monograph [25] for relevant terminology and basic
Iy theory. Recent works by S. Cramer [2,3] suggest that the Generic Absoluteness
hypothesis in the following theorem is redundant, but at the moment, we do not see
how to make do without it.

Theorem 17 (ZFC) Assume Ig (M) and GCH holds in V,. Assume that Generic
Absoluteness holds for Vf 1 at some o which is Vf 1 1-80od and such that ©, <

v
a < O, Then GCH fails first at 1, i.e.2 = k" forall k < » but2* = 1. As a
consequence, (;+ fails.

Proof Let M, be the w-iterate of L(V)ii 11> Va+1) by j. Then by elementarity, A =
Jo.o(crit(j)) is <jo.»(A)-strong in M, and GCH holds in jo ,(V3). Pick an n €
(AT, jo.w(r)). Let P = P, , be Gitik’s one-extender-based Prikry forcing (with a
single extender) that changes the cofinality of A to w and adds 1 many cofinal w-
sequence in A (see [11]). The key is to show that P is A-good in M,,, as this implies
that there are M,,-generic filters in V (see [21, Proposition 3.20] or [25, p. 405]). The
next section is devoted to verifying this matter.

Let G € Pbe an M,,-generic filterin V. Then 2* = nholds in M, [G]. As ®), < «,
JILe,(Vit1) € La(VAﬁH, V,\+1).7 By Generic Absoluteness for Vfﬂ at «, there is
ana’ < « and an X’ C V; 1 such that

Lo/ (X', Mo[G] 0 Vis1) < La(VY L. Vas1).

By the definability of sharp, X’ = (M,[G] N Vii1)®. Since j[Lg,(Vit1) is in
Lo(Vf,, Vig1), there is a

J € Ly (Mu[G1N Vii)®, My[G10 Viir)

suchthatdom(j") = Lg'(M,[G]NV;41), where ®' is the @, computedin L(M,[G]N
Vi+1), and such that the L(M,[G] N V,4p)-ultrafilter p; given by X € wjr iff
Jj'1Va € j'(X) induces an elementary embedding of L(M,[G] N V,41) into itself.
This gives us Ip(A) in M,[G].

There is alittle wrinkle: it is not clear that M,,[ G]is a choice model. Notice that as the
w-iterate of L(Vit1), My = L(jo.w(Vat1)) = L((Vi,+1)M), where Ay, = jo.o(1).
By elementarity, M,, satisfies <XI-DC, so M,[G] has a well ordering of its V} , (not
Vio+11). Denote that well ordering as A. Note thatin M,,[G], the Ip(1)-embedding and

7 See [16, Theorem 3(ii)].
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the witness for the first failure of GCH (at A) are both in V;, so in L(V;,,, A)MelC]
Ip(A) and the first failure of GCH (at A) remains, and in addition AC holds. O

A few remarks

1. The GCH assumption in the theorem is not essential. Suppose j : L(V){i 1 Vat1)
— L(V)f1 1> Vat1) is a proper elementary embedding with crit(j) < A. Relativize
Dimonte—Friedman argument (see [9]) for L(V)+1), then there is a poset IP (backward
Easton forcing up to A) such that in its generic extension V[H], j can be lifted to
L(V)f1 +1» Va+1)[H] and GCH holds in Vj. According to Dimonte-Friedman [9], this
poset is above w, so we have

LV}, VasD[H] = L(VIHT .y, VIH]is).
Moreover, this poset is At-c.c. and is definable in
N = Ly((My[G] N Vig1)?, Mu[G10 Vig).

Notice that N and V agree on V) and the elementary embedding witnessing Generic

Absoluteness for Vkﬁ+1 (at &), let us call it 7, has critical point > (k+)N. Thus 7t can

be lifted to a 7 : N[Hol — La(VIHIL, |, VIH]:11). Again
N[Ho] = Lo/ (Mo,[G1[Hol N V[H1341)*, Mu[G1[Hol N VIH]511).

Therefore the generic absoluteness assumption is also preserved by P.

2. We pointed out earlier that there are some issues with the argument Dimonte—
Friedman sketched for the compatibility of Iy with the failure of GCH at A (see [9,
Corollary 3.9]). To be more specific, one is that it is not clear why j [ Ly (V1) falls
in the range of 7, and then it would make no sense to talk about P (JITLa(Vag1)).
The second issue is more serious: the hypothesis of their corollary, that generic abso-
luteness holds for all « < ©®, is not enough to ensure that x1 (JTLe(Vag1)), 0 < O,
can be pieced together to form j*. It is unclear why (the union of) the sequence
(Y La(Vig1)) : @ < O) is in the domain of 7. The anonymous reviewer points
out that even if one tries to repair the first issue by taking an elementary embedding
k such k[ Ly (Vj41) is in the range, using elementarity, the problem of how to piece
together all the k’s remains.

3. However, the current status of generic absolutness is only up to Ls(V3+1), where
8 is least such that Ls(Vj4+1) < L(Vi41), which is due to Cramer [2]. It is not clear at
this point if generic absoluteness assumption in the hypothesis of our theorem follows
from the existence of an elementary embedding j : L(Vf+l, Vig1) — L(Vf+], Vit1)
with crit(j) < A.

4. After we proved the A-goodness of Gitik’s forcing (see Sect. 5), we were pointed
out that one could use Merimovich’s Pg (see §3 of [18]) instead of IP in the above
proof, and the A-goodness of Pr follows easily from Lemma 3.25 of [18]. However,
we stick to our choice here, the purpose is two-folded. One is that we have found no
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written account of the proof of the analog of Lemma 3.25 of [18] for Gitik’s forcing;3
and two we would like to promote the rank analysis for the Prikry-type forcings. Some
simple applications of the rank analysis can be found in §3.4 of [21].

5 The one-extender-based Prikry forcing is A-good
5.1 Preliminaries on A-good forcings

In order to apply the Generic Absoluteness Theorem, we need to ensure that their
generics exist in V. For that, we use a notion of A-goodness for posets due to Woodin
[25].

Definition 6 Let A be an infinite cardinal. We say a partially ordered set P is A-good
(in V) if it adds no bounded subsets of A and for every generic filter G and for
every A C Ord in V[G] and of size < A, there is a non-C-decreasing w-sequence
(Aj :i <w)suchthat A =J;A; andeach A;,i < w,isin V.

Below is a relativized version of Proposition 3.8 of [21], which asserts that generics
for forcings that are A-good in the wth iterate existin V.

Proposition Assume that j : L(X, Viq1) — L(X, Vo41) is a proper elementary
embedding with critical point < M. Let (M, jo.w) be the w-iterate of (L(X, Vy+1), J).
Suppose P € jo »,(Vy) and P is A-good in M. Then there exists G C P in V such that
G is M,-generic.

Here we are only interested in the case that X = Vf 1 A useful sufficient condition
for showing A-goodness is as follows (see [21]): for all

2 < {D C P | D isopen dense in P}

such that |Z| < A, for any p € P, there are p°® <p p and a nondecreasing sequence
(Zp,i 11 < w) of subsets of Z such that the following hold
1. 2=U{%pili <o},
2. foralli < wsuchthat 2, ; # @, N Dp.i is dense below p°,i.e. forany r <p p°,
there exists " <p r such that »" € D forevery D € 9, ;.

5.2 Gitik’s one extender-based Prikry forcing

Now we describe Gitik’s one-extender-based Prikry forcing and show that it is A-good.
The definitions in the next two pages are taken from §3 of Gitik’s handbook article
[11].” However we keep it minimal as far as it is necessary for our later arguments,
for further details regarding this forcing, we refer the readers to Gitik’s article.

8 The anonymous reviewer points out that A-goodness of Gitik’s forcing was recently also studied by
Dimonte-Wu (see [10, Proposition 4.8]). But necessary details are missing in Dimonte—Wu paper, it is
worth to go through here in full details.

9 Some small modifications are made for the sake of the proof of A-goodness.
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Let A, § be two cardinals such that § is a strong limit cardinal above A and X is
<§-strong. We assume that GCH holds up to 8. Let i be a cardinal > A+, Then there
isa (A, n)-extender E and a function f : A — A suchthat j(f)(n) = A, where j is the
elementary embedding corresponded to E. For every a € [A, 1), define a A-complete
ultrafilter U, as follows: for X C A,

X eU, iff ae€ j(X).

Clearly, each Uy, a € [A, n), is normal. A relevant property is that they are P-point
ultrafilters, i.e. for every f : A — A, if f is not constant modulo Uy, then there is a
Y € U, such that forevery v < A, |Y N F~Hwl < A

The binary relation <g defined below is a partial order on [X, n):

a<p B iff « <BAJE(f)(B) =aforsome f: A — A.

([r,m), <g) is a AT -directed and A <g « for every a € [A, n). There is a system
of mappings mg« : A — A, for «, B € [A, n) such that « <g B, with the following
properties:'0

. (Ug,mga : A < a <g B < n)is a <pg-commutative system of A-complete
ultrafilters, i.e.

a<pp iff VX CA(X €Uy < n/;;(X) € Up).

2. There is a set X such that X € U, and Moo [)_( = identity, for every « € [A, 1).

3. Foreverya, B,y € [A,n) suchthaty <pg B <fp a, my,, agrees with my g o g,y
onasetY € U,.

4. Forevery«, B,y € [A,n),ifa, B <p y and @ < B, then

verlm o) <my )} el,.
5. Fora, B e[, n),ifa <g B, then g (v) = 7 5 (mpo(v)) forall v € A.

6. Forevery o, B € [A, 1), g1 (v) = 7 (v) forall v € A.

Forv € X, let v* = 7, (v) for some (or equivalently, for all) « € [A, ). Then the
following weak normality holds for Uy, @ € [A, 1):

7. If X; € Uy, fori < A, then
A;LAXZ' =def (V| Vi <V (v € X))} € Uy.

We say that asequence (v; : i < n), wheren > 0 andeachv; < A, is x-increasing if
vy < Vi <--- < vy, andan ordinal v < A is permitted for (v; : i < k) if v* > v* for
all i < k. A very important fact about members of Uy, @ € [A, n), is that if X € Uy,
then for every vo, v1 € X such that vy < v, [{v € X | v* < v5}| < vf.

10 These properties and an example of such a system can be found in Gitik [11,12].
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Let (&, C) denote the tree of all finite *-increasing sequences of ordinals in A,
ordered by end-extension. Let f be any one of g o, & <g 8. By property 5 and 6 on
p. 15, f preserves the x-value, namely ( f(v))* = v* for v € A. Thus such f induces
a length-preserving homomorphism of Z into itself. Abusing the notation, we use f
for the induced homomorphism as well. Below is a frequently used fact about these
fs:

Fact 51 Let f = mg o for some a <g B. Suppose T, C & is a Uy-tree and Tg C E
is a Ug-tree. Then Ty N f“Tg is a Uy-tree and Tg N (f_l)“Ta is a Ug-tree.

Now we define the extender-based Prikry-like forcing [P, , that changes the cofi-
nality of A to w and at the same time adds n many w-sequences of ordinals that are
cofinal in A.

Definition 7 A condition p € P, , is of the form

{y, p") | y € g\lmax(g)}} U {(max(g), p™™&, T)},

where

1. g C [A, n) has cardinality < A, A € g and g has a <g-maximal element. Denote
g by supp(p), max(g) by me(p), T by T?, and p™>&) by p™e.

2. p¥ € E,forevery y € g.

3. T C E is asubtree with trunk p™°. All splitting nodes of T are required to be in
Unmc(p), i.e. forevery t € T such that t >7 p™¢,

succr (1) =def {v <A |07 v € T} € Une(p)»

and further that 11 >7 tp >7 p™® = succy(t1) C sucer(f).
4. For every y € supp(p) N'mc(p), max(p™) is not permitted for p?.
5. For every v € succr (p™©),

{y € g | v is permitted for p”}| < v*.

6. Tme(p).a(P™) = p*.1

We will only be concerned with subtrees of & such that all its splitting nodes are in
the associated ultrafilter as in item 3 above. So when we say a “tree at o”, we refer to
a subtree of = with the property that all its splitting nodes are in Uy, .

Foratree T and o € T, let Ty =gef {T | 07 € T}. Next we define the binary
relation on P = Py .

Definition 8 For p, g € P, let p <p q iff

1. supp(p) 2 supp(q);
2. For every y € supp(q), p¥ 2 ¢7;

I Here it should be “n,m(l,m“p'“c = p*”. But as we said earlier, from here on, we abuse the notation,
write g s as functions on .
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W

pre@ e T4,
4. For every y € supp(q),

PY\GY = Tme(q),y (P O\Gg™ D) [ (| p™ D\ (iy + 1)),

where i, is the largest i < | p™¢@ | such that p™°4) (i) is not permitted for ¢”;
5. Tme(p).me(q) Projects Tlfmc into T;,Imcw)’ namely ”mC(p),mC(q)“Tﬁnc < Tgmc(q);l2

ey if v is permitted for p?, then

6. For every y € supp(q) and v € succrr(p
ﬂmc(p),y(v) = ”mc(q),y(ﬂmc(p),mc(q)(v))~

A remark about item 5. Consider g o, « < B. Note that g , sends members of Ug
to members of U,. So 7g o projects a subtree at 8 to a subtree at «.

Let p,q € P;, ,, when p <p g and for every y € supp(q), p¥ = gV, we say p is
a direct extension of q and write p <p g. We will omit the subscript I in these two
partial orders when it causes no confusion. Below we summerize the facts about this
forcing in Gitik’s article [11].

Fact Let P =Py ;. Then

(P, <) is a partial order.

(P, <) satisfies A1 -c.c.

(P, <*) is A-closed.

(P, <, <*) satisfies Prikry condition: For every p € P and for every sentence ¢
in the forcing language, there is a g <* p such that q decides @, i.e. either q I- ¢
or q IF —g.

KL~

Below is the main theorem in §3 of Gitik’s handbook article [11],

Theorem Suppose § is a strong limit cardinal, . < § is <8-strong and n is a cardinal
in [T, 8). Let P = IP; ,, as defined above and G C P be a V -generic filter. Then the
following hold in V[G]:

1. cof (L) = w and 1\ > 1.
2. All the cardinals are preserved.
3. No new bounded subsets of A is added.

5.3 Gitik’s forcing is A-good

To show that P is A-good, we follow the idea in §3.5 of [21], define a notion of rank
with respect to this forcing. For the rest of the section, we fix some notations. We
use Up, 7y p and p , for p,q € P such that g < p and y € [A,n) such that
vy <g mc(p), to abbreviate for Umc(p), Tme(g),me(p) and Tme(p),y» respectively. For

12 In Gitik’s article, it is “Tme(p), me(q) Projects Tlf’mc into T:n1c”~ This should be an error.
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p € Pand § € succyr (p™©), let

P~ =det {{v, ") | v € supp(p) N mc(p)},
t? =ger p~ U {{me(p), p™)},
(P)s =det 1V, (P")z,,®) | ¥ € supp(p) N me(p)}
U {(me(p), p™ 78, T Jne )01

where

pY "1y (8), if 8 is permitted for pY';

)/ j—
5) = .
(p )er,,/( ) [py’ otherwise.

So p = p~ U {{mc(p), p™°, T?)}, and using the 7P notation, p can be naturally
identified as the pair (¢7, T;fnc). Foras € &pme, (p), isrecursively defined by po = p
and pgpit1 = (pspi)s) fori < [s]. The (p)s, (p)s notations also make sense when p
is of the form ¢4 for some ¢ € P.

Definition 9 Suppose D C PP is open. Define RaD on {t? | p € P} as follows:

- LetHi)O:HOD =DandR20=Ré)={tp | p € D}.
— Fora > 0,let HZ, = U'B<aHﬂD and R?, = Uﬁ<aR/3D.
— Let HP be the set of p € P such that 1?5 € R2, for every § € succrr (p™).
- Let RO? be the set of t” for p € P such that HaD is (<, <*)-dense below p,
i.e. forevery ¢ < p, thereisar <* g in HP.

The following properties follow immediately from the definition.

Proposition 1 The HP and RP-hierarchies have the following properties:

(i) o < B implies that HaD C H'BD and R(? - Rf?.

(ii) If Hy = Hyy1, then for any B > a, Hg = Hy and Rg = R,.
D D D D
(iit) RZoo = RZp+ and HZ = HZp-
(iv) Ré) is open with respect to (P, <), i.e.ifq < p and t? € R‘? then t? € RaD.

(v) HaD is <*-open, i.e.if p € Ho? and g <* p, then q € HO?.

. D« —» pD - D D
(vi) H “ SRy, ie {t?P | pe H’} C R, .
(vii) IftP € RO’? for some p, then there exists r <* p with t" = t? such that HO[D is
(<, <*)-dense below r.

Proof (1) First, as D is open, HOD - H]D and Ré) - RID. Note that Rga - RaD implies
that HP < HO?H, and HP C HO?H implies that R € RO?H. Therefore (i) follows
by induction.

(ii) This is clear from the definitions of H and RD.

(iii) This follows immediately from (i) and (ii).

(iv) Suppose p € R(? andg < p.If HaD is (<, <*)-dense below p, it is also (<, <*)-
dense below g. So g € Ré).
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(v) The case H(f) is trivial. Suppose p € HP and ¢ <* p.Forevery ¢ € succrq (¢™),
(@) <* (P)r, ,(¢)- Since Rfa is open with respect to (P, <*), @) ¢ Rfa. Therefore
qeHP.
(vi) Suppose p € HP andg < p.Letr = g and ¢ € succrr (r™). Then (), <* (p)s
for some s € T \{@}. As p € HP, tPmin) e R . By (iv), 1" € RZ, and
1" ¢ RD . Therefore, r € HP. So HP is (<, <*)-dense below p, hence t” € RY.
(vii) By the definition of R? there is ar <* p in Hof). r <* p implies that t" = tP.
To see that HOP is (<, <*)-dense below r, take any ¢ < r. Then g < p. Since HpD is
(<, <*)-dense below p, thereis a r’ <* ¢ in H(f). So HaD is (<, <*)-dense below r.
O

Definition 10 For p € P, 6p(¢t?), the D-semi-rank of t?, is the least ordinal « such
that t? € Ré) , if it exists; otherwise Sp(t?) = 00.!3 We often write the relativized
notation J, p(s), in which case is called (p, D)-semi-rank of s, to abbreviate for
6D &P, fors € T[f’mc, although its value only depends on 7.

Here are some quick facts about semi-ranks.

Proposition 2 Suppose D C P is open and p, q € P.

(i) If pp(t?) < oo, then pp(1?) < |P|™.
(ii) If pp(tP) < oo and q < p, then pp(t?) < pp(t?).

Proof (i) This is immediate from Proposition 1-(iii).
(i) If ¢ < p and pp(tP) < oo, then by Proposition 1-(iv),

@ #f{aeO0rd|t’ e RPy C {a e Ord |17 € RD).

Thus pp(t9) < pp(t?). O
Definition 11 Suppose D € Pisopenand p € IP. We say that p is D-good if p € HOP
and for every s € T[fmc and for 8 < «,

(p)s € HﬁD = (P)g~5) € H<D,3, for all § € succyr (s).
pme

Clearly if p is D-good, then so is (p), for every s € T[fmc.

Proposition 3 Suppose D C P is open. Let Ep =4ef {p € P | p is D-good}. Then
Ep is <*-dense below any p with pp(tP) < 0o, or equivalently, for every p such that
pp(tP) < 00, thereisaq <* pin Ep.

Proof Take an N < V), for a sufficiently large u and such that [N| = A ™, N* C N.
Let k < n be an ordinal such that k > ¢ forall { € N N [A, ). We write R(?’N and
HaD N for the corresponding notions defined in N, and write ﬁg (tP) and p;:’ D(s),l4

13 We demand that co > « for all & € Ord.
14 More precisely, should be ﬁgnN(ﬂ’) and pl/y pan 8-
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s € T[fmc, for the corresponding notions computed in N. By the elementarity of N,

these notions are absolute between N and V, more precisely, RPN = RP N N,
HPN = HP NN fora € Ord NN, and g5 (¢7) = gp(tP) for p € IF’ﬂN Proposition
3 follows from the following lemma.

Lemma 1 Suppose p € PN N and T is a Ug-tree with trunk s, and such that
tP U {(k, 8¢, T)} <* p. Suppose py, N(tP) < oo. Then there are a q € Nand a Uy-
subtree T" C T such that r = q U {{(x, s, T")} is a D-good direct extension of

22

Grant Lemma 1. Suppose p € N and 5, N(tP) < co. By Lemma 1, thereisa g € V
that is D-good and directly extends p. Since gp(-) is absolute between N and V, for
every p € PN N with gp(t?) < oo, there is a D-good direct extension of p in V.
By elementarity, for every p € PN N with 57 N(tP) < oo, there is a D-good direct
extension of p in N. Using elementarity again, every p € Pin V with gp(tP) < oo
has a D-good direct extension. Thus the set Ep is <*-dense below p. m]

Now we prove Lemma 1.

Proof of Lemma 1 The proof proceeds by induction on o = 47, N(P)yin N.Fora = 0,
it is trivial. We follow the idea in Gitik’s proof of his Lemma 3.12 in [11, p. 1387].
Assume that for all 8 € @ N N, the claim holds.

Assume p € Pand t? € RD N N. By Proposition 1-(viii), we may replace p with a
p' <* pin N withleasta < pp (tp) in N such thatp € HPNN.As HP is <*-open,
we may in addition assume that 57y N1y = D NPy = « for any ¢ <* pin N. Thus,
by elementarity, for any ¢ <* p, pp(9) = pp(?) = a. Let A = succr(s,). We
shall construct inductively ((pe, T¢) : & € A). To simplify the presentation, we may
assume that p~ = @ and s, = .

Suppose we already have ((ps, T%) : § € AN ¢). Now we construct pc and TS,
Let p, = pU(U{ps |8 € AN¢}) and

rp =1 U (ke 2, UlTi) | § € A\CD)

A little calculation (see the proof of Claim 4.9 in [10]) shows that (ré); <* Py (0)-

AstPrpc© ¢ Ré)'Nfor some 8 € aNN, /5N(t('/)‘) < B, by the inductive hypothesis,
there areaqg € N and a U-subtree T; C Ty such that g U {(«x, (¢), T;)} is a D-good
direct extension of (rg); Let

pe = pp U{(t.q") |t € supp(q)\ supp(r})}.

This completes the inductive construction.
At the end, let g = U§<AP$~ Fori < A, let

A, otherwise.

c [ﬂ{succTs«s)) lEcAnE =i}, ifFEcAE =i);
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Since the set of & € A such that £* = i is bounded, C; € U, for every i < A. Set
A* = AN (A7_,C;). By the weak normality for Uy, A* € Uy. Let T" be the tree
obtained from [ J{T¢ | £ € A*} by intersecting all its levels with A*. Then by Claim
3.12.1 in Gitik’s [11, p. 1388], r = g U {{k, @, T")} is in P and directly extends p.
By our construction, for each ¢ € A*, TW: is a Uy-subtree of T, so (r); is

D-good and directly extends (p)x, (). It suffices to check that « is least such that
(Mo =r e HP. As R is open with respect to (P, <), tPrpr@ ¢ RZ, implies that
te Rga. Sore HaD. By our additional assumption on p, pp(t") = pp(t?) = «.
This means that » ¢ HZ,. So r is D-good.

The Prikry condition for [P (see Lemma 3.12, [11]) can be stated in terms of our
semi-rank notion as follows.

Proposition 4 (Gitik) Suppose D C P is dense and open. Let 1p denote the largest
element of P. Then fp (t'?) < oo; or equivalently, for every p € P, there isa q <* p
in HC,.

Proof Rerun Gitik’s proof but with “p decides o replaced by “p € HZ )" O

Next we define a notion of rank on members of Ep to isolate a set of “D-better”
conditions. For every p € Ep, we define a rank function p, p(-) on Tlf"‘c inductively
as follows:

— if (p)s € D, then pp p(s) = 0;
— if (p)s ¢ D, then p, p(s) is the least « such that there is a Uj,-measure one
A Csuccpr (s)suchthata > pp, p(s™(8)) + 1 forall § € A.
I,mc

By the definition of D-goodness, if p € Ep, then the set {s € T[f:nc | Bp,p(s) > 0} is

a wellfounded subtree of Tlfmc. Thus pp p(s) is defined for all s € T;mc if p e Ep.
Below is a simple observation to be used in our proof of A-goodness for P.

Proposition 5 Suppose D C Pisopenand p € Ep.Ifq < p, thenforeverys € qumc,

me~

o o (P . ~
pp (%) < pp(t " ar ™) and pg,p(s) < pp,p(Tg,p(g"™ "))

Proof Tt suffices to consider only the case ¢ <* p. The proof proceeds by induction
on pg p(s). We leave the details to the readers. |

Lemma 2 Suppose D C P is open and p € Ep. Then pp p(@) < w. More pre-
cisely, there is a Up-subtree S, C T[fmc such that for every s € Sp, pp.p(s) =
max(pp,p(&) — |s|, 0).

Proof Clearly, the range of pp, p(-) is an ordinal. The lemma follows from the fact that
U is countably complete. Assume towards a contradiction that p, p(Z) > w, then
thereisans € Tlfmc such that p,, p(s) = w. But due to the countably completeness of
U), there is a finite number k such that p,, p(s™(d)) < k for a U,-measure one set of
§ e succrfmc (s). Therefore p, p(s) < k < w. Contradiction!

Using ,the idea in §3.4 of [21], by trimming off nodes s in T!f’mc\{g} such that
Pp.p(s) = pp p(s(Js| — 1)) > 0, one obtain a U,-subtree S, C Tlﬁfm such that for
every s € Sy, either pp p(s) =0o0r pp p(s) =sup{pp,p(s"(8)+1]6 € succsp(s)}.
It is easy to see that this S, works as desired. O
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Definition 12 Suppose D C P is open. For a p € Ep, we say p is D-better if T;‘““
satisfies the condition that for every s € Tlfmc, Pp,p(s) = max{p, p(D) — |s], 0}.

Let Bp =gef {p € Ep | p is D-better}. From Lemma 2, we have
Corollary 7 Bp is <*-dense in Ep, therefore <*-dense in IP.
Now we are ready to prove the main result of this section.

Lemma 3 P is A-good.

Proof Fix a p € P and Z, a collection of dense open subsets of P with |Z| < A.
Enumerate Z as {D, | ¢« < |2|}. Start with p, we inductively construct a <*-decreasing
sequence (p, : ¢t < |Z]) and a sequence of integers (k, : ¢ < |Z]) as follows:

First, let pp be a Dy-better direct extension of p and ko = pp,, p(&). Suppose
we have constructed the two sequences up to some ¢ > 0, i.e. (p; : ¢ < () and
(kg : ¢ < 1). Since (P, <*) is A-closed, there is a g, € IP such that g, <* p, for all
¢ <t Let p, be a D-better direct extension of g, and k, = p), p, ().

At the end, pick a p° € P such that p® <* p, forall t < |Z|. For each k < w, let
Dk =D, | k, < k}. We may assume that &, # @ for alli < w. We claim that
2.k is dense below p° forall k < w.

Fix a k < w. Suppose r < p°. We are going to prove that for any sufficiently long
s, (r)s € D for every D € &, . Note that by Proposition 5 for any s € T/ and

any £ < || such that D¢ € D, 1, fp (")) < ﬁD(t(p “"M’s"“’““-‘”) and py, p, (s) <
Ppe.Ds (T, pe (8)) = k — |s]. Pick an s € T}wc such that |s| > k, then p;. p(s) = O for
every D € 9 . Hence, (r)y € D forevery D € 9y k. (r)s < r, so this shows that
2,k is dense below p°. o
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