

Hybrid Perovskites

International Edition: DOI: 10.1002/anie.201609529
German Edition: DOI: 10.1002/ange.201609529

Thin-Film Transformation of NH₄PbI₃ to CH₃NH₃PbI₃ Perovskite: A Methylamine-Induced Conversion–Healing Process

Yingxia Zong, Yuanyuan Zhou,* Minggang Ju, Hector F. Garces, Amanda R. Krause, Fuxiang Ji, Guanglei Cui, Xiao Cheng Zeng, Nitin P. Padture,* and Shuping Pang*

Abstract: Methylamine-induced thin-film transformation at room-temperature is discovered, where a porous, rough, polycrystalline NH_4PbI_3 non-perovskite thin film converts stepwise into a dense, ultrasmooth, textured $CH_3NH_3PbI_3$ perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH_4PbI_3 -to- $CH_3NH_3PbI_3$ transformation process. The chemical origins of this transformation are studied at various length scales.

Hybrid organic–inorganic perovskites (HOIPs) are a class of materials with the general formula ABX₃, where A is an organic cation, X is a halogen anion, and B is typically Pb^{2+,[1]} Their unique hybrid crystal structures have endowed these amazing HOIP materials interesting and unconventional properties, with great promise in a wide range of applications.^[1,2] In particular, there has been a surge of interest in using HOIPs in solar cells.^[2,3] Thus, enormous amount of effort is being devoted towards studying these materials, invoking new concepts in inorganic–organic hybrid chemistry.^[4] Here, we report the discovery of a unique room-temperature thin-film transformation of NH₄PbI₃-to-CH₃NH₃PbI₃ induced by methylamine (CH₃NH₂) gas, and provide insights into its chemical origins.

The structure of ABX₃ is determined empirically by the Goldschmidt tolerance factor, $^{[1]}$ $t = (r_A + r_X)/\{\sqrt{2}(r_B + r_X)\}$, where r_A , r_B , and r_X are the radii of the A, B, and X, respectively. For NH₄PbI₃, t is 0.76. $^{[5]}$ In this context, at ambient temperature, instead of a stable 3D perovskite structure, NH₄PbI₃ usually exhibits a 1D non-perovskite structure (orthorhombic, space group Pnma). $^{[6]}$ This reduced structural dimensionality results in the relaxation of the band gap and, thus, NH₄PbI₃ appears yellow with a large indirect

band gap > 2 eV, as revealed by the Tauc plot (Figure S1 in the Supporting Information (SI)) and the band structure (Figure S2 in the SI) calculated using density functional theory (DFT). Furthermore, the 1D crystal structure of NH₄PbI₃ energetically favors the formation of high aspect ratio structures, instead of dense thin films, from simple "onestep" solution deposition. Such (opto)electronic and morphological characteristics suggest that the solution-grown NH₄PbI₃ is not a very useful material for single-junction solar cells.^[7] Here we have discovered that a rough, porous, and polycrystalline NH₄PbI₃ non-perovskite thin film transforms into an ultrasmooth, dense, and textured CH₃NH₃PbI₃ (MAPbI₃) HOIP thin film by using a methylamine-induced conversion–healing process. As a result, the photovoltaic (PV) properties of the thin film undergo dramatic enhancement.

The transformation of NH₄PbI₃ was first observed in situ in bulk crystals using an optical microscope, as shown in Figure 1. The starting solution-grown NH₄PbI₃ crystal exhibits a rod-like morphology with a light-yellow color (Figure 1 A). Once methylamine (CH₃NH₂) gas is introduced, the crystal immediately turns black, with its rod-like morphology

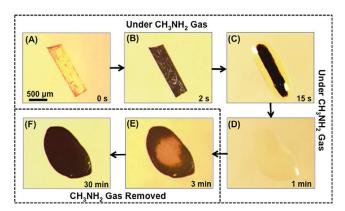


Figure 1. In situ optical microscope observation of the transformation of NH₄PbI₃ to MAPbI₃ induced by methylamine gas.

[*] Y. Zong, F. Ji, Dr. G. Cui, Dr. S. Pang Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 (P.R. China) E-mail: pangsp@qibebt.ac.cn Y. Zong, Dr. Y. Zhou, Dr. H. F. Garces, Dr. A. R. Krause,

Prof. N. P. Padture
School of Engineering, Brown University
Providence, RI 02912 (USA)
E-mail: yuanyuan_zhou@brown.edu
nitin_padture@brown.edu

Dr. M. Ju, Prof. X. C. Zeng Department of Chemistry, University of Nebraska Lincoln, NE 68588 (USA)

Supporting information for this article can be found under: http://dx.doi.org/10.1002/anie.201609529. preserved (Figure 1B). Subsequently, the rod surface begins to "melt", forming a clear, smooth liquid shell (Figure 1C). After 1 min exposure to CH_3NH_2 gas, the solid rod completely transforms to a smooth liquid drop (Figure 1D). When the CH_3NH_2 gas is removed, black specks nucleate within the liquid (Figure 1E). Finally, a smooth black solid particle forms with a shape completely different from the original rod (Figure 1F).

Table 1: Description of the four stages of the thin-film transformation.

Stage	Description	Appearance
I	Starting NH ₄ PbI ₃ thin film	yellow, opaque
H	Under CH₃NH₂ gas after 1 s	brown, opaque
III	Under CH₃NH₂ gas after 2 s	colorless, shiny
IV	2 s after removal of CH3NH2 gas	brown, shiny

In the case of NH_4PbI_3 thin films, such transformation behavior occurs very rapidly (within seconds), as expected, considering the nanoscale morphology of the thin films. Here, a starting NH_4PbI_3 thin film is processed simply by spin-coating a NH_4PbI_3 solution in dimethylformamide (DMF). As soon as the light-yellow color NH_4PbI_3 thin film (Figure 2 A,

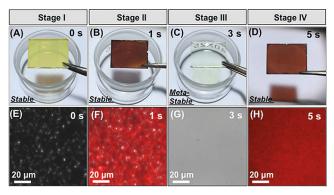


Figure 2. A–D) Photographs and E–H) photoluminescence maps (superimposed on optical microscope images) of the thin film at the four different stages described in Table 1.

Stage I) is exposed to CH₃NH₂ gas, it darkens within one second (Figure 2B, Stage II), and it becomes bleached after another second (Figure 2C, Stage III). The thin film is then removed from the CH₃NH₂ gas to the ambient, and a brown shiny thin film readily appears (Figure 2D Stage IV). Figures 2E-H show in situ photoluminescence (PL) maps superimposed on the optical images of the thin films at Stages I-IV. The starting NH₄PbI₃ thin film appears non-luminescent with microscopic defects (Figure 2E, Stage I). After 1s exposure to CH₃NH₂ gas, spots of PL appear (Figure 2F, Stage II). After 2 s, the PL signal vanishes completely (Figure 2G, Stage III), and the defects, as seen in Stages I and II, disappear as well. Finally, when the CH₃NH₂ gas is removed, PL signal is recovered rapidly (Figure 2H, Stage IV) within 2 s. Compared with Stage II, the PL map at Stage IV is obviously more uniform.

The thin films at all stages were further studied using ex situ UV/vis spectroscopy and X-ray diffraction (XRD). Note that since the colorless film at Stage III is only stable under CH₃NH₂ gas, its UV/vis spectrum and XRD pattern (Figure S3 in the SI) were acquired using special enclosures containing CH₃NH₂ gas. The phase purity of the starting NH₄PbI₃ thin film (Stage I) is confirmed by the absorption edge at 520 nm in Figure 3 A, and the XRD pattern in Figure 3 B. The experimental and simulated XRD patterns of NH₄PbI₃ thin film are fully consistent (Figure S4 in the SI). At

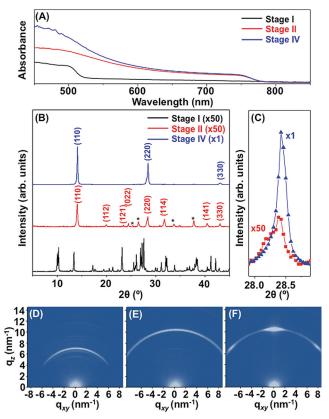


Figure 3. A) UV/vis spectra of Stage I, II and IV thin films, and B) corresponding XRD patterns (Stage II and IV thin film XRD intensities multiplied by 50). C) Comparison of the XRD intensities of the (220) diffraction peaks for Stage II and IV thin films. Corresponding 2D XRD patterns of thin films: D) Stage I, E) Stage II, and F) Stage IV

Stage II, the light absorption increases significantly at all wavelengths, and the absorption edge extends to 776 nm, as seen in Figure 3 A. This is in agreement with the observed darkening in Figures 1B and 2B. XRD pattern in Figure 3B confirms that only pure MAPbI₃ exists at this stage. At Stage III (Figure S3 in the SI), the thin film shows little absorption. and the corresponding XRD pattern is featureless. But at Stage IV, the absorption features of MAPbI3 again evolve with an overall enhancement in the absorbance (Figure 3 A). The corresponding XRD pattern in Figure 3B confirms the pure MAPbI₃ phase.^[8] Interestingly, the XRD intensity of MAPbI₃ at Stage IV is several orders of magnitude higher than that at Stage I (Figure 3C). 2D XRD images of the thin film show typical random polycrystalline nature in Stage I and II films (Figures 3D and E), but strong 110 texture is observed in Stage IV film (Figure 3F).

The morphologies of the films at Stages I, II, and IV are characterized using ex situ scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (Stage III thin film could not be characterized using SEM or TEM as it is only stable under CH₃NH₂ gas.) As seen in Figures 4A and D, the starting NH₄PbI₃ thin film (Stage I) appears porous, with a rough surface. At Stage II, the morphology of MAPbI₃ thin film (Figures 4B and E) essentially mirrors that of the starting NH₄PbI₃ thin film. However, at Stage IV

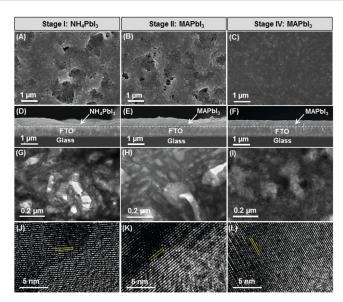


Figure 4. SEM images of thin films: A, D) Stage I, B, E) Stage II, and C, F) Stage IV. Corresponding TEM and HRTEM images: G, J) Stage I, H, K) Stage II, and I, L) Stage IV.

(Figures 4C and F), the MAPbI₃ thin film becomes very smooth with a dense grain structure and uniform thickness. This change in morphology is in good agreement with in situ PL results. The porous structure of the sample at Stages I and II is clearly revealed by the contrast in the TEM images in Figures 4G and H, respectively, whereas the dense structure of the sample at Stage IV is confirmed in Figure 4I. The highresolution TEM (HRTEM) images in Figures 4J-L show lattice fringes with interplanar spacing of 0.34 nm, 0.32 nm, and 0.32 nm, respectively, which can be indexed as (211) planes in NH₄PbI₃, and (220) planes in MAPbI₃. ^[6,8]

Based on the above characterization results of the NH₃PbI₄-to-MAPbI₃ transformation at various length scales, the mechanism of this process is proposed in Figure 5A. When NH₄PbI₃ non-perovskite is placed in the CH₃NH₂ gas atmosphere, a cation displacement reaction (Reaction 1) occurs that converts NH₄PbI₃ to MAPbI₃. Similar to the reaction of MAPbI₃+FA→FAPbI₃+MA in an earlier study, [9a] this NH4PbI3-to-MAPbI3 conversion is morphology-preserving. That is, all the crystallographic characteristics in NH₄PbI₃ can be replicated in the as-converted MAPbI₃ after Reaction (1). In the subsequent step, a reversible reaction (Reaction (2)) occurs with the formation of an intermediate liquid MAPbI₃:x CH₃NH₂, which is the result of the interaction between CH₃NH₂ and MAPbI₃.^[9b] Owing to the liquid state of the intermediate phase, the crystal surfaces are readily smoothened after Reaction (2). In the thin film case, the solution-crystallized starting NH₄PbI₃ thin film is porous, rough, and polycrystalline (Stage I). After Reaction 1, the NH₄PbI₃ is converted to MAPbI₃, but the overall thin-film morphology is retained (Stage II). Upon further exposure to CH₃NH₂ gas, excess CH₃NH₂ is uptaken by MAPbI₃, resulting in the "melting" of the porous, rough perovskite thin film into the dense, smooth MAPbI₃·x CH₃NH₂ liquid film (Stage III). After removal of the film from CH₃NH₂ gas, a dense, smooth

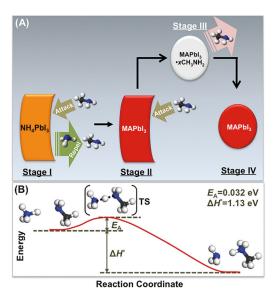
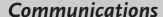


Figure 5. A) Proposed mechanism of the thin-film transformation of NH₄PbI₃ to CH₃NH₃PbI₃ via the methylamine-induced conversionhealing process. B) Plot of E_A and ΔH° , calculated using DFT, as a function of reaction coordinate (not to scale).

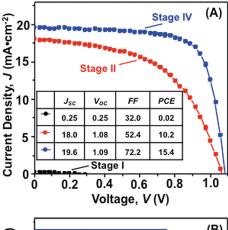

and textured MAPbI₃ thin film (Stage IV) recrystallizes due to a self-degassing process.^[9b]

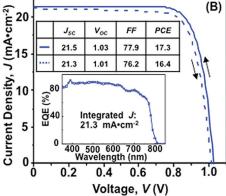
$$NH_4PbI_3 + CH_3NH_2 \rightarrow CH_3NH_3PbI_3 + NH_3$$
 (1)

$$CH_3NH_3PbI_3 + x CH_3NH_2 \rightarrow CH_3NH_3PbI_3 \cdot x CH_3NH_2 \rightarrow CH_3NH_3PbI_3 + x CH_3NH_2$$

$$(2)$$

The NH₄PbI₃-to-MAPbI₃ transformation process is reminiscent of the process involved in the HPbI₃-CH₃NH₂ interaction. [9c] However, there is an obvious difference between the two processes. In the case of HPbI₃, when CH₃NH₂ gas is introduced, the HPbI₃ crystal directly "melts" into the MAPbI₃·x CH₃NH₂ liquid, and morphology-preserving conversion of HPbI₃ to MAPbI₃ is not observed. In the case of NH₄PbI₃, Reaction (1) not only forms MAPbI₃ product, but also generates NH3 gas as a by-product. The release of NH₃ (vapor pressure 857 kPa at RT) from the solid grains resists the instantaneous ingression of CH₃NH₂ (vapor pressure 186.1 kPa at RT) into the as-nucleated MAPbI₃. In contrast, in the case of the reaction HPbI₃+CH₃NH₂→ MAPbI₃, there are no associated by-products, where the excess CH₃NH₂ is uptaken as soon as the perovskite nuclei form. In this situation, external heat is required to resist the excess-CH₃NH₂ ingression in order to enable the morphology-preserving HPbI3-to-MAPbI3 conversion. [9c] This is consistent with the fact that the NH₃ gas by-product has a similar effect. In another related study by Raga et al., [9e] it appears that, in the presence of moisture or polar solvent vapor, a PbI₂ thin film first converts to MAPbI₃ perovskite in CH₃NH₂ atmosphere before the formation of MAPbI₃·x CH₃NH₂. The perovskite formation reaction is described in that study as: $3 PbI_2 + 2 CH_3NH_2 + H_2O \rightarrow 2 CH_3NH_3PbI_3 + PbO$, where the PbO by-product could also resist the CH₃NH₂ ingression. This further supports our proposed mechanism. Note that the





exact mechanisms are expected to be further revealed using higher-resolution in situ characterization techniques, which is the subject of a future study.

The facile nature of Reaction (1) is further confirmed by DFT calculations (see the SI for details). As shown in Figure 5, the activation energy (E_A) is as low as 32 meV for the chemical conversion of $NH_4^+ + CH_3NH_2 \rightarrow NH_3 +$ CH₃NH₃⁺ via a transition state of H₃N··H··CH₂NH₂. The enthalpy change (ΔH°) involved in this chemical conversion is −1.13 eV. This suggests that the proton (H⁺) transfer occurs readily when NH₄⁺ and CH₃NH₂ contact each other, accelerating the cation switch. Considering that this chemical conversion occurs in a crystalline structure, the overall enthalpy change (ΔH) for Reaction (1) is further calculated to be -126 meV. These results confirm that Reaction (1) is highly favorable energetically, which explains the fact that the NH₄PbI₃ phase in the thin films coverts to MAPbI₃ in one second at RT. We investigated further the role of the compositions in the starting material on the transformation behavior, and explored the generality of such behavior to other APbX₃ compounds. As shown in Figure S5 in the SI, very similar behavior is observed with a starting NH₄PbBr₃ thin film, which indicates that the halogen anion does not have a significant impact on the overall chemical transformation process. This is expected considering that the chemical reaction involves A-site cations only. However, when the A site is occupied by an inorganic cation (e.g. Cs⁺), the cation displacement reaction does not occur because of the absence of H⁺ in the structure and the non-volatile nature of Cs (Figure S6 in the SI). As a result, only a less stable intercalation compound CsPbI3:x CH3NH2 forms after the CsPbI₃-CH₃NH₂ interaction, which converts back to CsPbI₃ upon mild heating. Similar interaction behavior between PbI₂ and pure CH₃NH₂ is also reported in the literature.^[10] DFT results show that the bonding between CH₃NH₂ and [PbX₆] is about an order of magnitude weaker than that between protonated CH₃NH₂ (CH₃NH₃⁺) and [PbX₆], which highlights the importance of H⁺ being present in the starting materials for transformation into a stable perovskite structure. In the case of starting thin films with a long-chain alkylammonium lead iodide (e.g. (C₁₆H₃₃NH₃)₂PbI₄, which contains H⁺ but with a much less volatile $C_{16}H_{33}NH_2$ component), transformation of (C₁₆H₃₃NH₃)₂PbI₄ to MAPbI₃ does not occur (Figure S7 in the SI). This can be attributed to the difficulty of complete displacement of the heavy C₁₆H₃₃NH₃⁺ cation by MA⁺, which suggests that the relative volatility of the A component is an important factor for the transformation behavior. In this context, the key to the success of the NH₄PbI₃-to-MAPbI₃ transformation is the fact that both criteria—presence of proton and A-site alkyl group volatility—are met simultaneously.

Finally, Stage I, II, and IV thin films are assembled into PSCs with TiO₂/FTO anodes and spiro-OMeTAD/Ag cathodes and their typical current density-voltage (*J-V*) curves are shown in Figure 6A. The PSC with the starting NH₄PbI₃ shows almost no PV response. After phase conversion to MAPbI₃ (Stage II), a power conversion efficiency (PCE) of 10.2% is reached, which is attributed to the intrinsic merits of MAPbI₃. The PCE is further increased to 15.4% with Stage

Figure 6. A) J-V responses of solar cells using Stage I, II, and IV thin films. B) J-V responses of the solar cell using the Stage IV thin film with optimal thickness, and the corresponding external quantum efficiency (EQE) spectrum (inset). The inset tables are extracted PV performance parameters. The units for J_{SC} , V_{OC} , FF, and PCE are mA cm⁻², V, %, and %, respectively.

IV film, which is in good agreement with the favorable structural characteristics of the final MAPbI₃ thin film (texture, uniformity, compactness) that are developed during the transformation process. The overall PV responses of the thin film during the transformation process are fully consistent with the evolution of the structural/physical properties at various length scales. (See complementary PV performance data in Figure S8 in the SI.) With further optimization in the processing and structure (Figure S9 in the SI), PSCs based on the transformed (Stage IV) thin films can deliver a PCE of 17.3% with suppressed hysteresis (Figure 6B), which demonstrates the promise of such thin film transformation behavior in PV application.

In closing, the thin-film transformation of NH₄PbI₃ to MAPbI₃ has been studied for the first time, where two chemical sub-processes are involved. One is the morphology-preserving conversion of NH₄PbI₃ non-perovskite to MAPbI₃ perovskite via cation displacement. The other is a reversible transformation of solid–liquid–solid, which heals the structural defects in the as-converted MAPbI₃ thin film. Through this process a photo-inactive material (porous, rough, polycrystalline NH₄PbI₃ non-perovskite thin film) is converted stewise to an excellent PV material (dense, ultrasmooth, textured MAPbI₃). The discovery and mechanistic study of

Communications

such unusual chemical phenomenon demonstrate the existence of an unprecedented variety of phenomena and research opportunities in this fascinating class of hybrid materials, with implications for further understanding of the less-explored inorganic–organic hybrid chemistry.

Experimental Section

Materials and films synthesis: NH₄PbI₃ raw crystals were prepared using a room-temperature solvent-evaporation approach, as described in the SI. CH₃NH₂ gas was generated using a commercially purchased CH₃NH₂ (99%) gas tank or from a CH₃NH₂ ethanol solution (27–32 wt%). NH₄PbI₃ thin films were prepared by spincoating a 45 wt% NH₄PbI₃ solution in DMF solution at 3000 rpm for 60 s, followed by thermal annealing at 100°C for 10 min. Stage II, III, and IV films were fabricated by placing the starting (Stage I) NH₄PbI₃ films in CH₃NH₂ gas atmosphere for 1 s, 2 s, and 3 s, respectively.

Materials and films characterization: XRD patterns were obtained using an X-ray diffractometer (D8 Advance, Bruker, Germany) using Cu $\rm K_{\alpha}$ radiation. UV/vis absorption spectra were recorded using a spectrometer (U-4100, Hitachi, Japan). A SEM (S-4800, Hitachi, Japan) and a TEM (2100F, JEOL, Japan) were used to characterize the morphology of the thin films. In situ PL mapping was conducted using a confocal laser scanning microscope (Fluo View FV1000, Olympus, Japan). In situ optical microscopy observations were carried out using a stereomicroscope (SZX16, Olympus, Japan). Further details are included in the SI.

Solar cell fabrication and testing: A 30-nm compact TiO_2 was deposited on the pre-patterned FTO-coated glass, followed by deposition of a 250-nm mesoporous TiO_2 layer. Then, the NH_4PbI_3 and/or $MAPbI_3$ perovskite layer were deposited using the procedures described above. The spiro-OMeTAD/Ag cathode was then deposited to complete the solar cell. J-V characteristics of the as-fabricated solar cells were measured under 1-sun illumination (Oriel Sol3A Class AAA, Newport, USA). Typical active area of the PSCs is $0.09~\rm cm^2$, as defined by a non-reflective metal mask. Further details are included in the SI.

Acknowledgements

Funding for this research from the International S&T Cooperation Program of China (2015DFG62670), Youth Innovation Promotion Association of CAS (2015167), and

the U.S. National Science Foundation (DMR-1305913 and OIA-1538893) is gratefully acknowledged.

Keywords: hybrid perovskites · solar cells · thin films

How to cite: Angew. Chem. Int. Ed. **2016**, 55, 14723–14727 Angew. Chem. **2016**, 128, 14943–14947

- D. B. Mitzi in *Progress in Inorganic Chemistry*, Vol. 48 (Ed.: K. D. Karlin), Wiley, New York, 1999, pp. 1–122.
- [2] a) W. Zhang, G. E. Eperon, H. J. Snaith, Nat. Energy 2016, DOI: 10.1038/nenergy.2016.48; b) M. Grätzel, Nat. Mater. 2014, 13, 838-842; c) Y. Zhou, K. Zhu, ACS Energy Lett. 2016, 1, 64-67.
- [3] a) A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050–6051; b) H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphrey-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2012, 2, 591.
- [4] a) C. C. Stoumpos, M. G. Kanatzidis, Acc. Chem. Res. 2015, 48, 2791–2802; b) Y. Zhou, O. S. Game, S. Pang, N. P. Padture, J. Phys. Chem. Lett. 2015, 6, 4827–4839; c) Y. Zhao, K. Zhu, Chem. Commun. 2014, 50, 1605–1607; d) T. Zhang, N. Guo, G. Li, X. Qian, Y. Zhao, J. Mater. Chem. A 2016, 4, 3245–3248; e) S. R. Raga, L. K. Ono, Y. Qi, J. Mater. Chem. A 2016, 4, 2494–2500.
- [5] G. Kieslich, S. Sun, A. K. Cheetham, Chem. Sci. 2015, 6, 3430–3433.
- [6] L.-Q. Fan, J.-H. Wu, Acta Crystallogr. Sect. E 2007, 63, i189.
- [7] M. Green, Third Generation Photovoltaics, Springer, Berlin, 2003.
- [8] a) Y. Zhou, M. Yang, W. Wu, A. L. Vasiliev, K. Zhu, N. P. Padture, J. Mater. Chem. A 2015, 3, 8178–8184; b) Y. Zhou, A. L. Vasiliev, W. Wu, M. Yang, S. Pang, K. Zhu, N. P. Padture, J. Phys. Chem. Lett. 2015, 6, 2292–2297.
- [9] a) Y. Zhou, M. Yang, S. Pang, K. Zhu, N. P. Padture, J. Am. Chem. Soc. 2016, 138, 5535-5538; b) Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, G. Cui, Angew. Chem. Int. Ed. 2015, 54, 9705-9709; Angew. Chem. 2015, 127, 9841-9845; c) S. Pang, Y. Zhou, Z. Wang, M. Yang, A. Krause, Z. Zhou, K. Zhu, N. P. Padture, G. Cui, J. Am. Chem. Soc. 2016, 138, 750-753.
- [10] R. F. Warren, W. Y. Liang, J. Phys. Condens. Matter 1993, 5, 6407-6418.

Received: September 28, 2016 Published online: October 21, 2016