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Abstract

A classical theorem by Hartshorne states that the dual graph of any arithmetically Cohen—
Macaulay projective scheme is connected. We give a quantitative version of Hartshorne’s result,
in terms of Castelnuovo-Mumford regularity. If X C P" is an arithmetically Gorenstein projective
scheme of regularity r + 1, and if every irreducible component of X has regularity < r’, we show that
the dual graph of X is L%J—connec‘ced. The bound is sharp.

We also provide a strong converse to Hartshorne’s result: Every connected graph is the dual graph
of a suitable arithmetically Cohen—-Macaulay projective curve of regularity < 3, whose components
are all rational normal curves. The regularity bound is smallest possible in general.

Further consequences of our work are:

(1) Any graph is the Hochster—-Huneke graph of a complete equidimensional local ring. (This answers
a question by Sather—Wagstaff and Spiroft.)
(2) The regularity of a curve is not larger than the sum of the regularities of its primary components.

1 Introduction

Intersection patterns of projective curves are a classical topic in algebraic geometry. The dual graph of
a scheme is obtained by taking as many vertices as the irreducible components, and by connecting two
distinct vertices with a single edge whenever the two corresponding components intersect in a subscheme
of dimension one less than the scheme.

In 1962, Hartshorne showed that arithmetically Cohen—Macaulay projective schemes have connected
dual graphs [Ei95, Theorem 18.12]. (The original statement by Hartshorne is slightly more general, cf. Re-
mark 1.1 below). This result, henceforth called HARTSHORNE’S CONNECTEDNESS THEOREM, triggers
two nontrivial questions:

1. (Inverse problem) Do all connected graphs arise this way? If so, how to reconstruct a (nice)
projective scheme from its intersection pattern?

2. (Quantitative problem) Under extra algebraic parameters, can we strengthen the combinatorial
conclusion quantitatively? (e.g. can we bound the graph diameter, connectivity, or expansion?)

It is not difficult to show that any connected graph is indeed dual to some algebraic curve, as elegantly
explained in Kollar [Kol4]. Here we prove the following:
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Theorem (Theorem 3.1) Any connected graph G is dual to an arithmetically Cohen—Macaulay reduced
curve Cg C P”, of regularity < 3, with the additional property that all irreducible components of C¢ are
rational normal curves (in their span). In addition, all of the singular points of Cz have multiplicity 2
and C¢ is locally a complete intersection.

The embedding Cs C P™ we provide is explicit, and optimal in two aspects. First of all, if C' C P™
is a projective curve of regularity 2 whose points have multiplicity < 2, then the dual graph of C' must
be a tree, cf. Remark 3.2. So regularity 3 is the smallest possible in general. Secondly, realizing every
graph with irreducible components of regularity 1 is not possible, since some graphs are not dual to any
line arrangement, cf. Proposition 3.5. Here we realize the components with rational normal curves, which
have regularity < 2.

As for the quantitative problem, some progress was obtained in 2014 by the first and third author,
who proved that if X C P" is an arithmetically Gorenstein (reduced) subspace arrangement of regularity
r + 1, then the dual graph of X is r-connected [BV14, Theorem 3.8].

Can one extend this result from subspace arrangements to arbitrary projective schemes? At first, the
answer seems negative: For example, there are arithmetically Gorenstein curves of high regularity whose
dual graph is a path, so not even 2-connected, cf. [BV14, Examples 3.4 and 5.10].

In the present paper we bypass these difficulties and show that the result does extend; the conclusion
“r-connected” should be replaced with “L’""":7;_1J—connected”7 where 7’ is the maximum regularity of a
primary component of X. Under the additional assumption that X is reduced, the theorem works also if
r’ is the maximum degree of an irreducible component of X:

Main Theorem (Theorem 4.4 & Corollary 4.5) Let X be an arithmetically Gorenstein projective scheme

of regularity r + 1.

(A) If every primary component of X has regularity < r/, the dual graph of X is L#J—connected.

(B) If every irreducible component of X has degree < D, and X is reduced, the dual graph of X is
| “+E=1 |-connected.

One key to this result is a subadditivity lemma: We show that the regularity of a curve is not larger
than the sum of the regularities of its primary components (Lemma 4.2). For line arrangements this
follows by the work of Derksen and Sidman [DS02]. Unlike Derksen—Sidman’s bound, though, our bound
does not extend to higher dimensions: Compare Example 4.3.

Since every complete intersection X C P", defined by equations f1, ..., fe, is arithmetically Gorenstein
of regularity deg f1 + ...+ deg f. — ¢+ 1, our Main Theorem yields a rigidity condition for the possible
configurations of the irreducible components of a complete intersection (cf. e.g. Corollary 4.6).

For subspace arrangements, that is when r’ = 1, the bound of the Main Theorem is sharp by [BV14,
Example 3.13]. With some computational effort, we are able to provide examples of non-linear arrange-
ments (i.e. ' > 1) where the bound is still sharp, cf. Section 4.1.

Remark 1.1. In Hartshorne’s connectedness theorem, the assumption “X C P is arithmetically Cohen-
Macaulay” depends on the embedding, while the conclusion on the connectivity of the dual graph of X
does not. It is worth mentioning that Hartshorne’s original result [Ha62, Theorem 2.2] assumes a more
general condition on X that is intrinsic, namely, “X is a connected projective scheme such that Ox ,
satisfies Serre’s condition Sy for all x € X”. Any arithmetically Cohen-Macaulay projective scheme of
positive dimension is connected (and satisfies Ss locally). For simplicity, we preferred to state Hartshorne’s
result in Eisenbud’s version [Ei95, Theorem 18.12]. Moreover, both in [Ha62, Theorem 2.2] and in [Ei95,
Theorem 18.12], the conclusion is that removing a subset of codimension > 2 will not disconnect X. This
is equivalent to say that the dual graph of X is connected by [Ha62, Proposition 1.1].

2 Glossary

In the present paper, all fields are assumed to be infinite.
The Castelnuovo-Mumford regularity of a projective scheme X C P" over a field K, denoted by reg X,
is the least integer k such that H*(X, #x(k—i)) =0 for all i > 1, where .#x C Opn is the sheaf of ideals

associated to the embedding X C P™. If S « K[zo, ..., z,] and m is the irrelevant ideal of S, we denote



by Ix the unique saturated ideal of S such that X = Proj(S/Ix); in other words,
Ix = ®:e2T'(X, Ix(2)).
The Castelnuovo-Mumford regularity of a finitely generated Z-graded S-module M, is defined by
reg M = max{i + j : H.,(M); # 0} = max{j — i : Tor? (M, K); # 0}.

The two definitions are compatible: If X C P™ is a projective scheme, then Iy is an S-module and one
has reg X = reg Ix. For further details, see e.g. [Ei05].

We say that X C P" is arithmetically Cohen-Macaulay (resp. arithmetically Gorenstein) if S/Ix is a
Cohen-Macaulay (resp. Gorenstein) ring. We say that X C P is locally Cohen-Macaulay (resp. locally
Gorenstein) if the stalk Ox , is a Cohen-Macaulay (resp. Gorenstein) local ring for any x € X. For both
the Cohen—Macaulay and the Gorenstein property, “arithmetically” is much stronger than “locally”.

We say that X = X; U Xe U...U X, is a primary decomposition of X if Ix = Ix, NIx, N...N
Ix_ is a primary decomposition of Ix. The X;’s are called primary components; in this paper, by
wrreducible components we mean the reduced schemes associated to the primary components. Primary
decompositions need not be unique. However, they are unique if X has no embedded components; this
is always the case if X C P" is arithmetically Cohen-Macaulay.

If X;,..., X, are the irreducible components of X, the dual graph G(X) is the graph whose vertices
are {1,...,s} and such that {4, j} is an edge if and only if X; N X, has dimension dim X — 1. All graphs
considered in this paper are simple, i.e. without loops or multiple edges. As the one-point graph is trivial
to handle (it is dual to P!, for example), we will only consider graphs with at least two vertices. The
degree degv of a vertex v of G is the number of edges containing v. A graph G is called k-connected
(with k a positive integer) if G has at least k + 1 vertices, and the deletion of less than k vertices from
G, however chosen, does not disconnect it.

3 From graphs to curves

For this section, K will be algebraically closed. Let G be a graph on s > 1 vertices, labeled by 1,..., s,
and let E(G) be the set of edges of G. We learned the following argument to produce a projective curve
whose dual graph is G from [Ko14]. Pick s distinct lines L1, ..., Ly C P? such that no three of them meet
at a common point, and set P; < L; N L; for all i # j.

Let X be the blow-up of P? along Uyijyep(q) Pis» and let Ce be the strict transform of U, L;. By
construction, Cg is a projective curve whose dual graph is G. We also denote by C; the strict transform
of L; for any i = 1,...,s. By the blow-up closure lemma, C¢ is isomorphic to the blow-up of | JI_; L;
along U{z,j}&E(G) P”

Since [ J;_, L; is reduced and locally a complete intersection, and since we are blowing up only ordinary
double points, the curve Cg is also reduced and locally a complete intersection. The goal of this section
is to describe an embedding of C¢g that is arithmetically Cohen—Macaulay if G is connected. In fact, we
will see that much more is true.

The embedding. Let us write each line L; C P? as ¢; = 0, for a linear form ¢; € S = K[z, y, z]. The
condition that no three of the L; meet at a common point, means that any three of the ¢; are linearly
independent. The defining ideal of U{i EEG) P CP?is:

Id:ef n (€Z7€j) c S.
{.3}¢B(G)

For d € N, let I; be the K-vector space of the degree-d elements of I, R[d] the K-subalgebra of S generated
by I, and

R[d]
(010 L) N R[d]

Finally, for any Z-graded ring T and any positive integer e, we denote by T(¢) = @Dcz Tke the e-th
Veronese of T'.

Ald) =




Theorem 3.1. Let G be a connected graph on s vertices. With the notation above, assume that d > (551).
Then
(i) Proj(Ald]) = Cg; moreover, reg Ald] < |E(G)| — s + 2.
(ii) For eachi=1,...,s, the irreducible component C; of Proj(A[d]) corresponding to the vertex i of G
is a rational normal curve (in its span) of degree degi +d — s+ 1.
(iii) If in addition e > reg A[d], then A[d]®) is Cohen—Macaulay; moreover, the regularity of Proj(A[d](®))
is equal to 2 if G is a tree, and to 3 otherwise; and the irreducible components of Proj(A[d]()) are
rational normal curves of degree e(degi+d —s+1).

Proof. PART (i): Notice that (Sgl) = (5) — s+ 1 is greater than or equal to the degree of U{i,j}ng(G) P;j,
which is (;) — |E(G)|. The latter is certainly bigger than the regularity of I, since I is an ideal of points.

In particular d > (s§1> is bigger than the highest degree of a minimal generator of I. This implies that
R][d] is a coordinate ring of the blow-up X; for a proof of such implication see for example [CH97, Lemma
1.1]. As a consequence, if d > (551), then A[d] is a coordinate ring of Ci. Moreover, the degree of the
strict transform of L;, with respect to the embedding given by A[d], is d — s + 1 + degi. Therefore,

deg A[d] = Z(d— s+1+degi)=s(d—s+1) —|—Zdegi =sd — s* + 5+ 2|E(G)|.
i=1 1=1

Since Proj(A[d]) is a reduced connected projective curve, the Eisenbud-Goto conjecture holds [Gi06], so
reg(A[d]) < deg A[d] — dim Span Proj(A[d]) + 1 = sd — s* + 2|E(G)| + s + 2 — dimg A[d]4. (1)

Yet A[d] is isomorphic to the K-subalgebra B[d] of S/(¢1¢5 - {s) generated by the degree-d part of the
ideal I/(€14s---¥¢s). So:

e it =i = () —ame () —ame(5)

The Hilbert function of complete intersections is well-known: Since d > (551) > s—2=reg(l1ly---Ls)—2,

S s2  3s
dimg [ —2—— ) —sd— 422
mK((%-ws))d I )

Also, since d > (5) — s+ 1 > reg I — 1, the dimension of (S/I)q is the number of points defined by I, so

dim (f) - (3) - 1B@. ()

Putting together Equations (1), (2), (3) and (4), we conclude.

PART (ii): For each 4, notice that the coordinate ring of the strict transform C; C Proj(R[d]) of the

line L; is isomorphic to the K-subalgebra of S/(¢;) generated by the degree-d part of the ideal IJ(rZ(f)i).

Such an ideal is generated by a homogeneous polynomial f; explicitly, f is the (image of) the product
of the ¢; such that {i,j} ¢ E(G). Of course, d > (°;") > deg(f) = s — 1 — degy, so in this embedding
C; C Proj(A[d]) is a rational normal curve of degree d — s + degi + 1 in its span.

PART (iii): It is well known that Proj(A[d](®)) = Proj(A[d]) for any positive integer e. We shall freely
make use of the following graded isomorphism relating the local cohomology of A[d] with that of its e-th
Veronese, cf. [GW78, Theorem 3.1.1]:

w(Ald))) = @ HL(Ald)ke Vi€EN,

kEZ

where by n and n’ we denote the irrelevant ideals of A[d] and A[d](®), respectively.

Since A[d] is reduced, we have HJ(A[d]) = 0. Furthermore, for any positive integer k& we have
H}(A[d))—r = H°(Proj(A[d]), Opojapa) (—k)) = 0, since negative twists of an ample line bundle over Cg
do not have global sections. By definition of regularity, H.(A[d]); = 0 also for k > reg(A[d]). Finally,



since A[d] is reduced and K is algebraically closed, the connectedness of G implies H}(A[d])o = 0 . Thus
after applying an e-th Veronese with e > reg(A[d]), all the undesired nonzero cohomologies disappear;
the Cohen-Macaulay property of A[d](®) follows. Since dim(A[d]) = 2, the regularity of the e-th Veronese,
with e > reg(A[d]) — 1, is at most 2; also, it is at least 1, because A[d](®) is not a polynomial ring (we
are assuming s > 1). So the regularity of the e-th Veronese is equal to 2 if and only if H2(A[d](®))o # 0.
Let us consider the arithmetic genus p,(Cq) = dimg H2(A[d])o. This integer does not depend on the

def

embedding of Cg. It is related to the arithmetic genus of H = |J;_, L; via the following formula:

pa(CG) :pa(H) _ Z (/’LPLJQ(H)>7
{i.j}¢E

where pp,, (H) is the multiplicity of P;j; on H. (See e.g. [Pe08, Theorem 5.9] for a proof of the formula in
the irreducible case; the same proof works also for reducible curves with same number of connected com-
ponents; the two curves C and X of Perrin’s notation are in our case the curves H and Cg, respectively.)

But all such multiplicities are 2, and p,(H) = (sgl), so the above equation can be rewritten as:

nice)= (") = (5) + IE@I=1- s+ B@).

Yet any connected graph has at least s — 1 edges, with equality for trees. So GG is not a tree if and only if
pa(Cq) = dimg H2(A[d](®))o > 0, if and only if reg(A[d](®)) = 2. The last claim follows from the fact that
the e-th Veronese sends rational normal curves to rational normal curves, while the degree gets multiplied
by a factor e. O

Remark 3.2. In the projective curve Cg, every point belongs to at most two irreducible components.
If a connected projective curve C' C P" has this property, and in addition it has Castelnuovo-Mumford
regularity 2, then its dual graph must be a tree. (So if G is not a tree, the “regularity < 3” result of
Theorem 3.1, (iii), is best possible.) To prove this, note that such a C' C P™ would be a small scheme in
the sense of [EGHP06]. By [EGHP06, Theorem 0.4], there exists an ordering C1, .. ., C; of the irreducible
components of C' such that (C; UCy...UC;) N Ciyq is a single point for all i = 1,...,s — 1. But this is
possible if and only if the dual graph is a tree. Note that if G is a tree, the e in the statement of Theorem
3.1 can be chosen to be 1.

Sometimes it is possible to improve on the bounds for d and e given by Theorem 3.1. Here is one
example where one can save 1 both on d and e:

Example 3.3. Let Gy be K4 minus an edge, that is, the graph Go = 13, 14, 23, 24, 34. In K[z, y, 2] let
us pick the four linear forms ¢; = x, ¢o =y, ¢3 =z, and {4 = x + y + 2. Since the missing edge in Gy is
12, we need to blow up P? at the ideal I = (¢1,f2) = (z,y). We seek a d such that A[d] is a coordinate
ring of Cg,. Theorem 3.1 guarantees that any d > 3 would work. In fact, using directly [CH97, Lemma
1.1], we see that d = 2 works already. We have

K[z?, xy, xz,9?, yz] -~ Klyo, - - -, y4]

Al2] = > .
2 (zyz(z +y+2)) (yoys — yi, Yoya — Y1Y2, Y1¥a — Y2y3, Y2(y1 +ys +ya) )

The Macaulay2 software [M2] allows to compute reg(A[2]) = 2, so the proof of Theorem 3.1, part (iii),
guarantees that the second Veronese of A[2] is Cohen-Macaulay. But in fact, A[2] is already Cohen-
Macaulay, so no Veronese is needed. En passant, note that A[Q](e) is not Gorenstein for any e, because
the Veronese of any non-Gorenstein ring is not Gorenstein [GW78, Theorem 3.2.1].

Remark 3.4. The graph Gy of Example 3.3 is also realizable as dual graph of an arrangement of
projective lines. In fact, it is even a line (intersection) graph, i.e. the dual graph of another graph. Yet in
any projective line arrangement that has G as dual graph, it is easy to see that either r1,r3, 74 meet in a
single point, or 79, 73,74 do. So a point of the line arrangement has multiplicity 3. In contrast, Theorem
3.1 constructs always curve arrangements in which every singular point has multiplicity 2.

We remind the reader that many graphs are neither line graphs, nor dual to line arrangements. We
have in fact the following hierarchy:



Proposition 3.5. In any fived dimension d > 1, we have

. dual graphs dual graphs dual graphs dual graphs
line . . . . all
C of simplicial C ¢ of projective p C of affine C ¢ of projective » = .
graphs . . graphs

d — complexes line arr’ts line arr’ts curves

Proof. The FIRST INCLUSION is obvious, and well-known to be strict if d > 2, as shown for example by
the complete bipartite graph Kj 3. (In fact, Ky 441 is the dual graph of some complex C' if and only if
dimC > d.)

SECOND INCLUSION: As explained in [BV14], given any simplicial complex, its Stanley—Reisner variety
is a subspace arrangement with same dual graph. Via generic hyperplane sections, we can reduce ourselves
in turn from the Stanley-Reisner variety to a line arrangement with same dual graph. This proves
the inclusion. The second inclusion is not an equality: the graphs G; and Ga of Figure 1 are easy
counterexamples. (For reasons of clarity, we postpone the proof of this fact, which requires combinatorial
topology but is otherwise elementary, to the Appendix.)

> &

Figure 1: Two graphs G, G2 with 5 vertices that are not dual to any simplicial complex of any dimension.

THIRD INCLUSION: Given a projective line arrangement C' C P" we can always choose a hyperplane
H C P™ that avoids all the intersection points of C; if we set U =P"\ H, then C' =CNU C U 2 A" is
the desired affine line arrangement. As for the strictness: If G3 is Kg minus two non-adjacent edges, it
is easy to produce a set of six affine lines with dual graph G3; but in [BV14, Rem. 4.1] we showed that
('3 cannot be dual to any projective line arrangement.

The FIFTH INCLUSION is well known to be an equality, see e.g. Kollar [Kol4].

The FOURTH INCLUSION is therefore trivial; to prove its strictness, since the fifth inclusion is an
equality, it suffices to find a graph that is not dual to any affine line arrangement. Consider the graph
with the following edges

Gy = {12,34} U {15, 25, 35, 45} U {16, 26, 36, 46} U {17, 27, 37, 47}.

By contradiction, let {r1,...,r7} be an affine arrangement of lines with dual graph G4. Set P =r; Nry
and @ = r3Nry4. Let m be the plane spanned by ry and 5. Since r3 intersects neither 71 nor ro, it cannot
belong to the plane m. The same is true for r4. Symmetrically, if q is the plane spanned by 73 and ry,
neither 71 nor 75 belongs to q. Now, how can a new line r meet all four lines 1,79, 73,747 There are two
options:

— either r is the unique line passing through P and @, or

— 7 is the (unique) line of intersection of the two planes 7 and q.

But from the definition of G4, we are supposed to find three new lines (5, r¢ and 77) each of which meets
all four of r1,79,73,74. By the pidgeonhole principle, two of these three lines r5,rg, 77 must coincide; a
contradiction. O

Remark 3.6. Any graph containing G4 as induced subgraph cannot be dual to any affine arrangement.

Hochster—Huneke graphs and Lyubeznik complexes.

Let A be a d-dimensional standard graded K-algebra. Let {pi,...,ps} be its minimal primes. We define
the graph G(A) as the graph whose vertices are {1,..., s} and such that {i,j} is an edge if and only if
A/(p; +p;) has dimension d — 1. Obviously, G(A) = G(Proj(A)). The graph G(A) is sometimes called
the Hochster-Huneke graph of A, after the work [HH94]. In this language, Theorem 3.1 implies that:



Corollary 3.7. Any connected graph is the Hochster—Huneke graph of a reduced 2-dimensional Cohen-
Macaulay standard graded K-algebra.

After completing at the irrelevant ideal, this yields an affirmative answer to the question raised in [SWS14]
of whether any graph is the Hochster-Huneke graph of a complete equidimensional local ring (indeed one
can show that for a positively graded K-algebra the dual graph does not change after completing at the
irrelevant ideal, as it follows by the Equation (4) of [Va09, Theorem 1.15]).

Theorem 3.1 is of interest also from the point of view of a recent result obtained in [KLZ14]: The
Lyubeznik complex of A is the simplicial complex A(A) on vertices {1,..., s}, where {ig,...,ix} is a face
if and only if dim(A/(p;, + ...+ ps,)) > 0. (The terminology is due to the paper [Ly07], where the
complex A(A) was introduced.) If dim(A/(p; + p; + px)) = 0 for all 7 < j < k and dim(A/(p; +p;)) >
0 < dim(A4/(p;+p;)) = d—1 (e.g. when Proj(A) is a curve such that no three irreducible components
meet at the same point), then A(A) = G(A). So, Theorem 3.1 implies that

Corollary 3.8. Any connected graph is the Lyubeznik complex of a reduced 2-dimensional Cohen-
Macaulay standard graded K-algebra.

On the other hand, the results of [KLZ14] imply that, among graphs, only trees can be the Lyubeznik
complex of a d-dimensional standard graded Cohen-Macaulay K-algebra with d > 3 (if K is separably
closed).

4 From curves to graphs

In this section we prove the main result of the paper. Our first goal is to establish a bound on the
regularity of a projective scheme as the sum of the regularities of its primary components. Unfortunately,
this goal is hopeless in general, as there are counterexamples already among surfaces (see Example 4.3).
However, here we prove it for curves (cf. Lemma 4.2 below), and later we will show that this suffices.

Lemma 4.1 (essentially Caviglia [Ca07]). Let I,J be graded ideals of S. If the Krull dimension of
Tor? (S/1,8/.J) is at most 1, then reg(I NJ) < regI +reg.J.

Proof. By a result of Caviglia [Ca07, Corollary 3.4] we have
reg S/(I +J) <regS/I + regS/J.
From the short exact sequence 0 — S/(INJ) — S/I® S/J — S/(I+ J)— 0, we immediately obtain
reg S/(INJ) < max{regS/I,regS/J, 1 +regS/(I +J)} <regS/I+regS/J+1.
This is equivalent to the claim, because reg.S/H = reg H — 1 for any graded ideal H. O

Lemma 4.2. Let C CP" be a curve and C' = U;_,C; a primary decomposition of C, then:
(1) regC <regCy + ...+ regCs.
(2) If in addition C is reduced and dim C; = dim C; then reg C' < degC.

def

Proof. For any t € {2,...,s}, set J; = I, + ﬂf;} Ic,. The ideal J; defines a 0-dimensional projective
scheme, so dim S/.J; < 1. Moreover, J; annihilates Tor? (S/ N!Z! I¢,, S/I¢,). So the Krull dimension
of Tory (S/ N!Z1 Ic,, S/I¢,) is at most 1. By Lemma 4.1 and by induction on ¢, we obtain reg ¢ <
i reg Ic,, which proves part (1) of the claim.
As for part (2), note that deg C = Y_;_, deg C;. Since the Eisenbud-Goto conjecture holds for integral
curves [GLP83], we have
reg C; < deg C; — dim(Span C;) + 2.

Therefore reg C; < deg C; if dim(Span C;) > 2. On the other hand, if the dimension of Span C; is 1, then
C; is a line: so regC; = 1 = deg C;. By part (1) of the claim, which we have already proved, we conclude
that

regC’SZregC’,-gZdegCi:degC. O

=1 i=1



Example 4.3. The above lemma cannot be extended to dimension > 1. The following example is due
to Aldo Conca: Let H C P* be the plane 1 = z2 = 0. Let p be the kernel of the map from K|z, ..., 74
to Kla, b, ¢] given by:

zo — a’b, z1 — b, T — a’c, x5 — abc?, x4 — b2,

This p is a prime ideal of height 2 and regularity 5. Let X C P* be the surface it defines. One has
reg X =5, regH = 1, but reg(X U H) = 7. One can see (via Lemma 4.2) that any general hyperplane
section of X U H has regularity smaller than 7. This is because X U H is not arithmetically Cohen-
Macaulay.

Theorem 4.4. Let r,r’ be positive integers. Let X C P™ be an arithmetically Gorenstein scheme of
reqularity r +1 and let X = X7 U X, U...U X, be the primary decomposition of X. If reg X; <1’ for all
i=1,...,s, then the dual graph G(X) is | “t5=L |-connected.

r’

Proof. First we show that there is no loss in assuming that X is a curve. In fact, if dim X > 2, as explained
in [BV14, Lemma 2.12] we can always take a general hyperplane section of X, thereby obtaining a scheme
X’ c P*~! of dimension one less, such that G(X) = G(X’). Since X is arithmetically-Gorenstein and the
hyperplane section is general, in passing from X to X’ both the arithmetically-Gorenstein property and
the (global) Castelnuovo-Mumford regularity are maintained. Caveat: the regularities of the components
need not be maintained; but since the regularity of a general hyperplane section of any projective scheme
cannot be larger than the regularity of the original scheme [Ei05, Lemma 4.8 + Corollary 4.10], the
regularities of the components of X’ can only be smaller or equal than those of X, so they will still be
bounded above by r’. Iterating this process dim X —1 times, we can reduce ourselves to the 1-dimensional
case.

By the assumption, S/Ix is a Gorenstein ring of regularity r and reg Iy, <+ foralli=1,...,s. Let
B be a subset of {1,...,s} of cardinality |B| < L”:«#J Let A={1,...,s}\ B. Define

Xa = Uiea Xi,
def
X5 =Uiep Xi-

Our goal is to show that the dual graph of X 4 is connected, or in other words, that X 4 is a connected
curve. (This would imply the claim, because the dual graph of X 4 is exactly the dual graph of X with
the vertices in B removed, and B was an arbitrary subset of {1,..., s} of cardinality less than L#J 2

The curves X 4 and X p are geometrically linked by X, which is arithmetically Gorenstein. Exploiting
that dim X; =1 for alli =1,...,s, both X4 and Xp are locally Cohen-Macaulay curves. By Schenzel’s
work [Sc82] (see also Migliore [Mi98, Theorem 5.3.1]) this implies the existence of a graded isomorphism

Hy(S/Ix,) 2 Hy(S/Ix,)" (2 = 7).

In particular the two finite K-vector spaces HL(S/Ix,)o and HL(S/Ix,)r—2 are dual to one another.
Notice that the connectedness of C'4 (which is what we want to show) follows by the vanishing of
HL(S/14)0, and thus of H.} (S/Ig),—2. So it is enough to show that

reg S/Ix, <r—2.

But reg S/Ix, =reg Xp — 1, and by our Lemma 4.2 we have precisely

/1 /1
regXB§|B|.r’§QH:,J1>r’§<H:,1>r’r1. O

One might wonder if the previous statement still holds by replacing the “bounded regularity” assump-
tion for the primary components, with a “bounded degree” assumption. The answer is positive, but an
additional assumption is needed, namely, X should be reduced.

Corollary 4.5. Let D and r be positive integers. Let X C P™ be a reduced arithmetically Gorenstein

scheme of reqularity r+1. If every irreducible component of X has degree < D, then the dual graph G(X)

is | “B=L | -connected.




Proof. If X has dimension N, let us take N — 1 general hyperplane sections and call X’ the resulting
curve. As in the proof of Theorem 4.4, X’ is arithmetically Gorenstein and G(X) = G(X"). Since general
hyperplane sections maintain the degree, each irreducible component of X’ has degree < D. Moreover,
X' is reduced, since X is. By [GLP83], we infer that each irreducible component of X’ has also regularity
< D. Applying Theorem 4.4, we conclude. O

Corollary 4.6. Let X1,...,Xs C P™ be integral projective curves of degrees di < do < ... < ds. If
X =Ui_, X; CP" is a complete intersection, then each X; must meet at least | NFt9==1 | of the other
X;’s, where

n—1 n—1 s s 1/(n—1)
Nmin{ZéknJrl : 9, €N and HékZdz}Z(nl). (Zd’> -1
k=1 i=1 i=1

k=1

Proof. If X C P" is defined by n—1 equations of degrees 41, ..., d,_1, then it is arithmetically Gorenstein

of regularity 71 6, —n+2, and [[}—] 0x = >.5_, di. So G(X) is L%J—connecmd by Corollary

Example 4.7 (27-lines). With the notation of Corollary 4.6, if s =27, d; = 1 and n = 3, then N = 10.
So if a union of 27 lines in P? happens to be a complete intersection, then each line must meet at least
10 of the others by Corollary 4.6.

It is easy to see that the union of the 27 lines in a smooth cubic surface in P? is a complete intersection
(the cubic cut out by a union of 9 planes); one can see that any of the 27 lines meet ezactly with 10 of
the others. In this sense Corollary 4.6 is sharp.

4.5. In particular, each vertex of G(X) has valency at least |

In case the regularities of the irreducible components are quite diverse (for example, if one component
has much larger regularity than all the other ones) the following sharpening of Theorem 4.4 could be
convenient:

Theorem 4.8. Let r be a positive integer. Let X C P™ be an arithmetically Gorenstein scheme of
reqularity r +1 and X = X7 U X U ... U X, be the primary decomposition of X. Then the dual graph
G(X) is f(r)-connected, where

f(r) £ max {i € N s.t. for all B C [s] of cardinality i — 1, one has Zreng <r-—1}
jEB

The proof is the same of Theorem 4.4. Of course, the analogous sharpening of Corollary 4.5 holds.

Remark 4.9. Suppose an arithmetically Gorenstein scheme X has at least two primary components. It
is natural to ask whether the regularity of the components is bounded above by reg X. The answer is:
e positive for the components @) that are arithmetically Cohen—-Macaulay (one has reg @ < reg X —1);
e “very” negative in general, even if X is a complete intersection, as the example below shows.
Let us consider the complete intersection

2000 2000 3 3 2
I = (zox™" —x4235”", zox123 + 2%, 2§+ 2x125) C S = Qlxos ..., 24].

With Macaulay2 [M2] we can see that the primary decomposition of I consists of three ideals:

B ( xozlx3+xi7 I8+2I1117§, I%OOOI3+I%999I§, xox%ooofxgooom’ )
)

Q1= 2,.4000 4000 6000 6000 10000 9999
THTy O — 2x7 " T3T4, ToXy T — 2T T3, Ti + 227"y

Q2 = (£47$%7330$17338 + 2$1$§) )

2 2000 __ :1;%000:13 2000

2 .2 3 2 3.2 3 2

Os = T3Ty, T3T4, TOT3T4, T3, ToT3, ToT1T3 + Ty, THx3, Ty + 27123,

= 5 .
TG5TE, Toxy 4, ToT, T3+ XXy XY

The dual graph is K3. While the regularity of I is 2005, the regularities of the @;’s are 10000, 3 and
2003, respectively. In fact, S/Q; is not Cohen-Macaulay.



4.1 Sharpness of the bound

The L”"’:i:_lj connectivity bound given by Theorem 4.4 is sharp for ' = 1, as already noticed in [BV14].
In this section we prove that such bound is sharp also for some r’ > 1. This answers a question by
Michael Joswig (personal communication). To this end, we focus on arithmetically Gorenstein curves in
P4, for which a routine to generate examples is available.

Let k > 2 be an integer and let n = 2k+1. Let M be an n X n upper triangular matrix of homogenous
polynomials of degree d in Q[zg, ..., z4]. Let A= M — M?". By definition, A is skew-symmetric. Let I be
the ideal generated by the pfaffians of size n—1 of A. By a result of Eisenbud—Buchsbaum, if height I = 3
then S/I is Gorenstein of regularity dn — 3. Of course, the ideal I is completely determined by the matrix
M, and for this reason we will denote it by I;.

Example 4.10. Consider the upper triangular matrix

0 2%+ w2423 0 0 375 + T3 + 1374

0 0 T5Ty — T3 0 T3 — 23
M=1|0 0 0 23 4 z571 T2+ 2371 — Towy

0 0 0 0 T5To — 33%

0 0 0 0 0

Using Macaulay2 [M2], we computed the ideal Ip;. The regularity of S/Ip is 2-5—3 = 7. There are
eight primary components of I, of regularities

3,2, 2, 6, 3,4, 4, and 3,

with respect to the default ordering used by the software, namely, the graded reverse lexicographic order.
So the maximum regularity is 6. According to Theorem 4.4, the dual graph is L”‘E%_lj—connected7 that
is, 2-connected. In fact, the dual graph has 8 vertices and edge list

Gs = {12,14,23,24,27, 34,35, 36,37, 38, 45, 46, 47, 48, 56, 57, 58, 67, 68, 78}.

Indeed this G5 is not 3-connected, as the vertex labeled by 1 has degree two. So the bound given by
Theorem 4.4 is best possible on this example.

Example 4.11. Consider the upper triangular matrix

0 ac% + 2423 0 0 T3T5 + x% + x374

0 0 T5Tq4 — T3 0 173 + 75
M/ = 0 0 0 I§+I5IE1 £L‘§+I31‘1 — T2y

0 0 0 0 T5X0 — :v%

0 0 0 0 0

This is almost identical to the matrix M of Example 4.10! The only change is a minus sign that has
become a plus, in the fifth binomial of the second row. Again using Macaulay2 [M2], we computed the
ideal Ip;r associated. The regularity of S/I; is 7; the eight primary components of I, have regularities

3,2,2,7, 3,4, 4, and 3.

So the maximum regularity is now 7. Note that with respect to Example 4.10 all the regularities are
unchanged, except the maximal one, which has increased by one. This time, with Theorem 4.4 we can
only say that the dual graph is LLFJ—connected, that is, 1-connected. And as a matter of fact, the
dual graph is now

G = {14,23,24,27, 34, 35, 36, 37, 38, 45, 46, 47, 48, 56, 57, 58, 67, 68, 78},

which is 1-connected, but not 2-connected, because the vertex labeled by 1 has now degree one. (In fact,
Gg is the G5 of Example 4.10 with the edge 12 deleted.)

These examples show that the bound given by Theorem 4.4 is best possible, and quite sensitive to
minimal variations in the regularity. Of course, the sharpness of a bound on some examples, does not
imply that the bound is sharp on all examples. There are plenty of arithmetically Gorenstein curves
whose dual graph is much more connected than what Theorem 4.4 enables us to see.
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Appendix

Here we show that some dual graphs of (affine or projective) line arrangements are not dual graphs of
any simplicial complex of any dimension. The proof of this fact is quite elementary, but we decided to
include it for completeness. Let us start with some easy notation. By convention,

— the (—1)-simplex is just the empty set;

— the join of the empty set with a complex C, is C' itself.

Definition 4.12 (d-star, d-windmill). Let d > 1.

A d-star is the complex obtained by joining the graph K3 with a (d — 2)-simplex.

A d-windmill is the complex obtaned by joining the graph K 3 with a (d — 2)-simplex. (Equivalently, a
d-windmill is the join of 3 disjoint points with a (d — 1)-simplex).

Figure 2: The 2-star, the 2-windmill, and the unique pure 2-complex with the diamond graph as dual.

Lemma 4.13. For any fized positive integer d, there are exactly two pure d-complexes with dual graph
Ks, namely, the d-star and the d-windmall.

Proof. The dual graph does not change under taking cones, and in particular, it does not change under
taking joins with simplices. Hence, the d-star and the d-windmill both have K3 as dual graph (because
both K3 and K 3 have K3 as dual graph). Conversely, let C' be a pure d-complex with dual graph Ks;
we claim that C' is either a d-star or a d-windmill. If d = 1, the claim is clear. So assume d > 2. Let X,
Yo and X3 be the d-simplices of C. Set

I=>1NXN%s.

Let us denote by ¢ (respectively, by i) the total number of vertices of C' (respectively, of I'). Since two of
the ¥; have exactly d vertices in common, by the inclusion-exclusion formula we have

c=3(d+1)—3d+i=3+(dimI +1).

But ¢ > d + 2, otherwise C' would consist of a single simplex. So dim/ > d — 2 and therefore
dimlink(7,C') < 1. So link(Z,C) is a graph with dual graph Kjs; hence, it must be either Kj itself,
or a disjoint union of three points. Since C is the join of link(7, C') with a simplex, the claim follows. [

Lemma 4.14. Let G be the diamond graph, that is, K, minus an edge. In any fized dimension d > 1,
there is exactly one pure simplicial d-complex with dual graph G. This complez is obtained from a d-star
by glueing in a further d-simplex to one of the internal (d — 1)-faces of the d-star. In particular, the two
non-adjacent d-simplices of the complex share exactly d — 1 vertices.

Proof. Let E be a complex with dual graph {12,13,23,24,34}. Let X; be the facet of C' corresponding
toi (i = 1,...,4). Let C be the subcomplex of E induced by the facets X1,¥ and ¥3. By Lemma
4.13, C' is either a d-star or a d-windmill. If C' is a d-star, then F must be obtained by attaching ¥4
to the (d — 1)-face X3 N X3 of C. In particular ¥; NX, = 31 N Xy N X3 consists of d — 1 vertices, and
the claim is proven. If instead C is a d-windmill, by definition there are three vertices vy, vs,v3 and a
(d—1)-simplex ¢ such that 3; = v; * o for each i. Consider the subcomplex D of E formed by Yo, X3 and
34. The dual graph of D is K3, so by Lemma 4.13, D is either a d-star or a d-windmill; but it cannot be
a d-windmill, otherwise the common intersection 5 N X3 N ¥4 would have to be o, which is contained in
31: a contradiction, in G there is no edge 14. So E is obtained from D by glueing the simplex ¥; onto
the internal face X5 N X3 of the d-star D. ]

Lemma 4.15. No simplicial complex of any dimension has the graph Gy of Figure 1 as dual graph.
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Proof. By contradiction, let F' be a d-dimensional complex with dual graph
G, ={12,13,15,23,24, 34,45}.

Let ¥; be the facet of F' corresponding to i (i = 1,...,5), and let E be the subcomplex induced by the
first four facets. The dual graph of E coincides with the diamond graph G of Lemma 4.14, so we know
how E looks like. In particular ¥; and X4 have d — 2 vertices in common. In the rest of the proof we
give a formal reason why the way the pattern of adjacencies of the fifth simplex yields a contradiction.
(We invite the reader to check this in Figure 4.1, by trying to place a fifth triangle X5 in the rightmost
complex so that it has edges in common only with the two triangles that are not adjacent to one another.)

Let us agree on some notation first. Without loss of generality, we can assume the subcomplex induced
by the first three facets 31,5, 33 is a d-star, and the complex induced by Yo, X3, 3, is a d-windmill.
(If not, we switch the labels of 3; and ¥4.) By definition of windmill, if 0 = 35 N X3, there are three
vertices vy, v3, vy such that ¥; (i = 2,3,4) is of the form v; * 0. Also, there is exactly one vertex v of o
that does not belong to ¥;. With this notation, the list of vertices of 3; and that of ¥, have an overlap
of exactly d — 1 vertices. In fact, the lists differ only in the following:

e v5 and vz only belong to 3q;

e v and vy only belong to ¥4.
But the new simplex Y5 is adjacent to both ¥; and 4. This means that when we compare the list
of vertices of ¥; with the list of vertices of X5, we see only one change, and this change is one of the
following four:
(a) wvq is replaced by v;
(b) wvq is replaced by wvy;
(¢) ws is replaced by v;
(d) ws is replaced by vy.
In cases (a) (resp. (c) ), X5 has then the same set of vertices of X3 (resp. of ¥s), a contradiction. In
cases (b) (resp. (d)), X5 would be adjacent to X3 (resp. to Xs), also a contradiction. O

Similarly one can show that the graph G5 of Figure 1 cannot be the dual graph of any simplicial
complex, either. We leave it to the reader to construct two projective line arrangements with the graphs
G1 and Go as dual.
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