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Abstract

Mogami introduced in 1995 a large class of triangulated 3-dimensional pseudomanifolds,
henceforth called “Mogami pseudomanifolds”. He proved an exponential bound for the size
of this class in terms of the number of tetrahedra. The question of whether all 3-balls are
Mogami has remained open since; a positive answer would imply a much-desired exponential
upper bound for the total number of 3-balls (and 3-spheres) with N tetrahedra.

Here we provide a negative answer: many 3-balls are not Mogami. On the way to
this result, we characterize the Mogami property in terms of nuclei, in the sense of Collet—
Eckmann—Younan: “The only three-dimensional Mogami nucleus is the tetrahedron”.

Introduction

A long standing open question in discrete geometry (also highlighted by Gromov, cf. [Gro00,
pp. 156-157]) is whether there are exponentially many simplicial complexes homeomorphic to the
3-sphere, or more than exponentially many. What is counted here is the number of combinatorial
types, in terms of the number N of tetrahedra. This enumeration problem is crucial for the
convergence of a certain model in discrete quantum gravity, called “dynamical triangulations”;
see for example the book [ADJ97] or the survey [RWO00] for an introduction.

By deleting one simplex from any (triangulated) 3-sphere, we obtain a (triangulated) 3-ball.
Conversely, by coning off the boundary of any 3-ball, we get a 3-sphere. This close relation
between 3-spheres and 3-balls is reflected in the asymptotic enumeration. In fact, it is not hard
to see that 3-balls are more than exponentially many if and only if 3-spheres are. In other words,
one can equivalently rephrase our enumeration problem by replacing “3-sphere” with “3-ball”.

To tackle the problem, in 1995 Durhuus and Jénsson introduced the class of Locally Con-
structible (“LC”) manifolds, for which they were able to prove an exponential upper bound
[DJ95] [BZ11, Theorem 4.4]. The geometric idea is ingeniously simple. Let us agree to call
tree of d-simplices any triangulated d-ball whose dual graph is a tree. Definitorially, LC
manifolds are those triangulations of manifolds with boundary that can be obtained from some
tree of d-simplices by repeatedly gluing together two adjacent boundary facets. This adjacency
condition for the matching, together with the fact that trees are exponentially many, results in
a global exponential upper bound.
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Durhuus and Jénsson conjectured that all 3-spheres (and all 3-balls) are LC. This was dis-
proven only recently by the author and Ziegler [BZ11]. The key for the disproval was a char-
acterization of the LC property in terms of simple homotopy theory: “A 3-sphere is LC if and
only if it admits a discrete Morse function with exactly two critical faces” [BZ11, Cor. 2.11].
Knot theory provides then obstructions to the latter property.

In 1995, Mogami introduced another class of manifolds, henceforth called “Mogami mani-
folds” [Mog95]. Essentially, these are the triangulations of manifolds with boundary that can be
obtained from a tree of d-simplices by repeatedly gluing together two incident boundary facets
(Remark 8). Since “adjacent” implies “incident”, LC obviously implies Mogami. The converse
is false: here we prove that a cone is Mogami if and only if its basis is strongly-connected
(Proposition 14), so many cones are Mogami but not LC.

Building on top of Durhuus—Joénsson’s work, Mogami was able to show an exponential bound
also for his broader class of manifolds. Mogami’s argument is based on link planarity and is
specific to dimension 3, whereas Durhuus—Jénsson’s argument can be extended to arbitrary
dimension [BZ11, Theorem 4.4]. Still, an interesting conjecture arises from Mogami’s work:
Perhaps all 3-balls or 3-spheres are Mogami, even if not all of them are LC [Mog95, p. 161].

Mogami’s conjecture is weaker than Durhuus—Jénsson’s, but a positive solution would still
solve the enumeration problem: It would imply that there are only exponentially many 3-
balls. Mogami’s conjecture is harder to tackle, mainly because we lack a characterization of the
Mogami property in terms of simple homotopy theory. Hence the methods that allowed to solve
Durhuus-Jénsson’s conjecture do not extend.

Meanwhile, in 2014 Collet, Eckmann and Younan showed that the total number of 3-spheres
or 3-balls crucially depends on the number of 3-balls that have all vertices on the boundary.
More specifically: Let us call nucleus a 3-ball with all vertices on the boundary, and in which
every interior triangle contains at least two interior edges. (The notion was first introduced
by Hachimori, under the name “reduced ball” [Hac00, p. 85|; the name “nucleus” appears in
[CEY14]). The enumeration problem of 3-balls (or 3-spheres) is equivalent to the question of
whether nuclei are exponentially many, or more [CEY14, Theorem 5.17].

In the present paper, we combine Mogami’s and Collet—-Eckmann-Younan’s intuitions, by
characterizing the Mogami property among 3-balls without interior vertices.

Main Theorem I (Corollary 37 & Theorem 44). The only Mogami nucleus is the tetrahedron.
Moreover, for 3-balls without interior vertices, the following inclusions hold:

{shellable} C {LC} = {Mogami} C {collapsible} C {all 3-balls without interior vertices}.

In particular, Bing’s thickened house with two rooms [Hac01] and all non-trivial nuclei listed
in [CEY14] yield counterexamples to Mogami’s conjecture. Using knot theory, we can even give
a coarse estimate for the asymptotic number of non-Mogami balls:

Main Theorem II (Lemma 39 & Propositions 41, 42, 43.). Let B be a 3-ball with a knotted
spanning edge and with all vertices on the boundary. If the knot is

e a single trefoil, then B can be collapsible but it cannot be Mogami;

e a connected sum of 2 or more trefoils, then B is neither Mogami nor collapsible.
Moreover, the number of non-Mogami 3-balls without interior vertices is asymptotically the same
as the total number of 3-balls without interior vertices.

With this, the problem of enumerating combinatorial types of 3-balls remains wide open.
All the known strategies expected to succeed in showing an exponential bound (cf. e.g. [ADJ97,
295-296]) have currently failed. A combinatorial criterion that divides the entire family of trian-
gulated 3-manifolds (or d-manifolds, for any fixed d) into nested subfamilies, each of exponential
size, was introduced in [Benl2]; metric restrictions on triangulations that also give exponential
bounds have been discovered in [AB13+].



Methods

Our proof is technical but the main idea is elementary, and best sketched with an example. In
Figure 1, we show a portion of the boundary of some nicely triangulated 3-ball B; specifically,
the star of a vertex v in dB. For brevity throughout the paper we say “boundary-link of v”
instead of “link of v in the boundary of B”.

Figure 1: LEFT: Part of the boundary of a 3-ball B. The identification of the triangles pgv and p'q’v is
a Mogami step. Once we perform it, the link inside OB of the vertex v “splits” (CENTER): from a circle,
it becomes two disjoint circles. Topologically, 0B gets “pinched” at the vertex v (RIGHT).

The middle triangles pgv and p’q’v are incident, but not adjacent. Their identification is
a “Mogami gluing”, but not an “LC gluing” (cf. Definitions 5, 6). As depicted in Figure 1,
the gluing changes the topology of the boundary: v becomes a singularity, in the sense that
its link is disconnected. Also, the bottom triangles rquv and rq'v, after the gluing ¢ = ¢/, now
share 2 edges out of 3; so the gluing leads us out of the world of simplicial complexes. We call
such configuration of two boundary triangles sharing exactly 2 edges a wound. Let us now
perform a second identification, namely, let us glue the bottom triangles together. As we do
that, the topology changes back: The boundary-link of v returns to be a single circle, as one of
its connected components (the digon on vertices r and ¢ = ¢’) is sunk into the interior. The step
of gluing together two boundary triangles with exactly 2 edges in common is called a healing.
(The same step was called “type-(iv) LC gluing” in [BZ11, Definition 3.17].) The healing makes
the wound disappear, as the triangle resulting from the identification is sunk into the interior.

Now, let us start back from B and let us perform the same two gluings in inverse order:
Bottom first, then middle. There are two pleasant novelties with this reshuffling:

(1) When the bottom triangles are glued, they share only 1 edge, so the gluing is not a healing.

(2) When the middle triangles are glued, they share 1 edge, not just one vertex. As a result,
their gluing is now a legitimate LC gluing.

By postponing the Mogami-non-LC move to after the healing move, topologically these two

bizarre moves have ‘canceled out’; and we have obtained a sequence in which all triangles that

we match have exactly 1 edge in common at the moment of the gluing. The final complex is

obviously the same ball as before.

Using this idea, we will prove that all Mogami 3-ball without interior vertices are LC (The-
orem 35). The trick is to systematically rearrange the Mogami sequence to obtain a sequence
that is also LC. This does not work for all pseudomanifolds; but if we focus on Mogami construc-
tions of 3-balls without interior vertices, we know that the boundary-link of every vertex should
eventually become a 1-sphere. Hence, all the extra components of a boundary-link created by
Mogami non-LC gluings have to be suppressed throughout the construction. Now, the only way
to suppress a component is via a “healing” step. By reshuffling, we will obtain a new sequence
where the non-LC step and the healing step ‘cancel out’.



Notation

Throughout this paper, d is always an integer > 2. For the definitions of simplicial complex,
regular CW complex, pure, shellable, cone..., we refer the reader to [BZ11]. Following [BZ11], by
pseudomanifold we mean a finite regular CW complex which is pure d-dimensional, simplicial,
and such that every (d — 1)-cell belongs to at most two d-cells. The boundary is the smallest
subcomplex of the pseudomanifold containing all the (d — 1)-cells that belong to exactly one
d-cell. We call “d-ball” (resp.“d-sphere” ) any simplicial complex homeomorphic to the unit
ball in R? (resp. to the unit sphere in R%1). A tree of d-simplices is any d-ball whose dual
graph is a tree.

Definition 1 (UNITE; SPLIT). Let P;, P be two disjoint d-pseudomanifolds, d > 2. The opera-
tion unite consists in identifying a (d — 1)-face A" in 9P, with a (d — 1)-face A” in IP». (For
d = 3, this was called “step of type (i)” in [BZ11, Definition 3.17].) If the P; do not have interior
vertices, neither does the obtained pseudomanifold ); and if both P;’s are d-balls, so is (). Note
also that ) contains in its interior a (d — 1)-face A with A completely contained in Q).

The inverse operation is called “split”. (For d = 3, this goes under the name of “Cut-a-
3-face” in [CEY14, p. 267] and of “Operation (I)” in [Hac00, p. 85].) It is defined whenever a
pseudomanifold @ has some interior (d — 1)-face A with A C 9Q. If @ is simply-connected,
the effect of SPLIT is to divide @ (along the face A) into two disconnected pseudomanifolds. In
general, the effect of SPLIT on the dual graph of the pseudomanifold is to delete one edge.

Trees of N d-simplices are characterized as the d-complexes obtainable from N disjoint d-
simplices via exactly N — 1 UNITE steps.

Definition 2 (FOLD; SPREAD). Let P be a d-pseudomanifold, d > 2. The operation FOLD
consists in identifying two boundary facets A’; A” that share exactly one (d— 2)-face e; compare
Figure 2. (For d = 3, the operation was called “an LC step of type (ii)” in [BZ11, Definition
3.17].) If P is a d-ball, then the obtained pseudomanifold @ is homeomorphic to P. (This is
false if P is an arbitrary pseudomanifold, cf. Example 31.) Moreover, if d > 3 and P does not
have interior vertices, neither does (). The obtained pseudomanifold () contains in its interior a
(d — 1)-face A with exactly d — 1 of its facets in JQ: in fact, the only facet of A in the interior
of @ is the (d — 2)-face e.

The inverse operation is called SPREAD; compare Figure 2. (For d = 3, it goes under the
name ‘Open-a-2-face” in [CEY14, p. 267] and “Operation (II)” in [Hac00, p. 85]). It is defined
whenever a pseudomanifold ) has some interior (d — 1)-face A that has one of its (d — 2)-faces
in the interior of @, and all its other (d — 2)-faces in the boundary of Q.

e; (on the boundary)

-
€3 €2
(in the interior) (on the boundary)

Figure 2: A SPREAD operation for d = 3. (Picture taken from [Hac00, p. 85].) The inverse move —
namely, to identify two boundary triangles with exactly one edge in common — is called FOLD.

When SPREAD is applied to a simplicial complex, it outputs a simplicial complex. In contrast,
it is easy to see that FOLD moves may lead out of the world of simplicial complexes.

Next, we introduce nuclei, which were called “reduced balls” in [Hac00, p. 85]:



Definition 3 (Nucleus). Let d > 2. A nucleus is a d-ball where

(1) every (d — 3)-face belongs to the boundary, and

(2) every interior (d — 1)-face has at least d — 1 of its d facets in the interior of the ball.
The d-simplex (for which condition (2) is void) is called the trivial nucleus.

The only 2-dimensional nucleus is the trivial one. For d > 3, however, many non-trivial
d-nuclei exist [CEY14]; for example, Hachimori’s triangulation of Bing’s thickened house with 2
rooms [Hac01].

Lemma 4 (Hachimori [Hac00], Collet-Eckmann—-Younan [CEY14]). Every 3-ball without inte-
rior vertices can be reduced to a disjoint union of nuclei with some (greedy) sequence of SPLIT
and SPREAD moves. Without loss of generality, one can assume that all SPREAD steps are
performed before the SPLIT ones.

The next move can be viewed as a variation/expansion of FOLD.

Definition 5 (LC gluing). Let P be a d-pseudomanifold, d > 2. Identifying two boundary
facets A, A” whose intersection is (d — 2)-dimensional is an operation called an LC gluing.

Every fold is an LC gluing. The converse is false: for example, when d = 2, gluing together
two boundary edges that have both endpoints in common is an LC gluing, but not a fold. The
difference is topologically remarkable. It was proven in [BZ11] that the only manifolds obtainable
from a tree of d-simplices with FOLD moves, are d-balls. In contrast, with LC gluings one can
obtain all polytopal d-spheres, for example. It was proven in [Benl5] that except when d = 4,
all simply-connected smooth d-manifolds (with or without boundary!) have a triangulation that
can be obtained from some tree of simplices via LC gluings (cf. Theorem 10).

Here is a further generalization, potentially leading to a broader gauge of complexes:

Definition 6 (Mogami gluing). Let P be a d-pseudomanifold, d > 2. Identifying two boundary
facets A’, A” whose intersection is nonempty is an operation called a Mogami gluing.

Clearly, every LC gluing is a Mogami gluing, while the converse is false (unless d = 2). We
have arrived to the most important definition of the paper:

Definition 7 (LC manifolds; Mogami manifolds). Let d > 2. Let M be a pure d-dimensional
simplicial complex with N facets that is also a pseudomanifold. M is called LC (resp. Mogami)
if it can be obtained from a tree of N d-simplices via some sequence, possibly empty, of LC gluings
(resp. of Mogami gluings). We refer to the sequence as “the LC construction” (respectively, “the
Mogami construction”). With abuse of notation, the intermediate pseudomanifolds in the LC
construction of an LLC manifold are also called “LC pseudomanifolds”; same for Mogami.

Remark 8. The original definition of [Mog95], given only for d = 3, was slightly different.
Mogami considered a class € of 3-pseudomanifolds obtained from a tree of tetrahedra by per-
forming either (1) LC gluings, or (2) identifications of incident boundary edges, subject to a
certain planarity condition.

Now, identifying 2 boundary edges that share a vertex v creates new adjacencies between
triangles that before were only incident at v. So it is clear that Mogami 3-pseudomanifolds (with
our definition) all belong to the class €, since we could realize any Mogami gluing as a “combo”
of an identification of adjacent boundary edges followed by an LC gluing.

Conversely, we claim that all manifolds in € are Mogami. (This is false for pseudomanifolds.)
In fact, if we identify two boundary edges that share a vertex v in the boundary of an arbitrary
pseudomanifold, we create an entire “singular edge”. To get a manifold, we have to get rid of
this singular edge; the only way to do so is by identifying two triangles A’, A” containing that
edge, at some point in the Mogami construction. But then we can rearrange the sequence of
gluings by performing the Mogami gluing A’ = A” before all other gluings.



1 General Aspects of Mogami Complexes

Let us start with a topological motivation to study the Mogami class.
Proposition 9. Fvery Mogami d-pseudomanifold is simply-connected.

Proof. By induction on the number of Mogami gluings. Any tree of simplices is topologically a
ball, hence simply connected. Consider now the moment in which we glue together two incident
boundary facets A’ and A” of a simply-connected d-pseudomanifold P; and suppose a new loop
arises. This means that we have just identified two endpoints ' € A’ and 2”7 € A” of a path
whose relative interior lies completely in the interior of P. Let v be a vertex in A’ N A”. By
homotoping both 2’ and z” to v, one sees that the “new loop” is actually homotopy equivalent
to an “old loop” already contained in P (hence homotopically trivial, by induction.) O

Not all triangulations of simply-connected manifolds are Mogami, as we will prove in Theo-
rem 44. However, a partial converse to Proposition 9 can be derived from [Benl15]:

Theorem 10 (Benedetti [Benl5]). For d # 4, any PL triangulation of any simply-connected
d-manifold (with boundary) becomes an LC triangulation after performing a suitable number of
consecutive barycentric subdivisions.

In particular, every simply-connected smooth d-manifold d # 4, admits a Mogami triangulation.

Recall that a simplicial complex is called strongly-connected if it pure (i.e. all facets have
the same dimension) and its dual graph is connected. By induction on the number of Mogami
steps, one can easily prove:

Proposition 11. Every Mogami d-pseudomanifold is strongly-connected, and all vertex links in
it are strongly-connected as well.

The converse does not hold: any triangulation of an annulus is strongly-connected and has
strongly-connected links, but it cannot be Mogami by Proposition 9.

For 2-dimensional pseudomanifolds, the LC property and the Mogami property are equiva-
lent, because two boundary edges are adjacent if and only if they are incident. We show next
that the two properties diverge from dimension 3 on.

In [BZ11, Lemma 2.23] it is shown that the union of two LC pseudomanifolds with a
codimension-one strongly-connected intersection, is LC. Interestingly, an analogous result holds
for the Mogami property, basically up to replacing “strongly-connected” with “connected”:

Proposition 12. Let A, B, C be three d-pseudomanifolds such that AU B = C. Assume AN B
is pure (d — 1)-dimensional and connected. If A and B are both Mogami, so is C.

Proof. First of all, we observe that AN B is contained in both 0A and 0B. In fact, since AUB is
a pseudomanifold, every (d — 1)-face of AN B can be contained in at most two d-faces of AU B,
so it has to be contained in exactly one d-face of A and in exactly one d-face of B.
Since AN B is connected, we can find a total order Fy, ..., Fy of the facets of AN B such that
for each 7 > 1, F; is incident to some Fj, with j < 4. Let us fix a Mogami construction for A
and one for B. Let T4 (resp. Tg) be the tree of d-simplices from which A (resp. B) is obtained.
If we perform a UNITE move and join T4 and Tp “at Fy”, we obtain a unique tree of tetrahedra
T containing all facets of C. Each F; (i > 1) corresponds to two distinct (d — 1)-faces in the
boundary of T, one belonging to T4 and one to Tg; we will call these two faces “the two copies
of F;”. Now C' admits a Mogami construction starting from T¢, as follows:
(a) first we perform all identifications of boundary facets of T¢ that belonged to T4, exactly as
prescribed in the chosen Mogami construction of A from T'y;



(b) then we perform the identifications given by the Mogami construction of B;
(c) finally, for each ¢ > 1 (and in the same order!), we glue together the two copies of F;.
Since each F; is incident to some Fj, with j < ¢, the gluings of phase (c) are Mogami gluings. [

Corollary 13. Some 3-dimensional pseudomanifolds are Mogami, but not LC.

Proof. Let C and Cy be two shellable simplicial 3-balls consisting of 4 tetrahedra, as indicated
in Figure 3. (The 3-balls are cones over the subdivided squares on their front.) Since shellable

Figure 3: Gluing the simplicial 3-balls along the shaded 2-dimensional subcomplex (which is connected,
but not strongly-connected) gives a Mogami 3-pseudomanifold that is not LC. Note that the resulting
3-pseudomanifold is a cone over an annulus (the vertex v is the apex of the cone).

implies LC [BZ11] and LC implies Mogami, both C; and Cy are Mogami. Glue them together
in the shaded subcomplex in their boundary (which uses 5 vertices and 2 triangles.) Note that
such subcomplex is connected, but not strongly-connected. Let P be the resulting 3-dimensional
pseudomanifold. By Proposition 1 the pseudomanifold P is Mogami. It remains to prove that P
cannot be LC. For this we use a topological result by Durhuus and Jénsson [DJ95]: If L is any
LC 3-dimensional pseudomanifold, then any strongly-connected component of L is a 2-sphere;
in addition, any two strongly-connected components of JL intersect in at most one point. Yet
our OP has a different topology: It is a “pinched sphere”, i.e. the space obtained by identifying
two antipodal points of a 2-sphere. Hence, P cannot be LC. (Alternatively, one can also observe
that P is a cone over an annulus; an annulus is not simply connected and therefore not LC; via
[BZ11, Proposition 3.25], this implies that P cannot be LC either.) Ol

We have arrived to another crucial difference between the LC and the Mogami notion, namely,
the behavior with respect to taking cones. In [BZ11, Proposition 3.25] it is proven that for any
pseudomanifold P and for any vertex v not in P, the cone v P is LC if and only if P is LC.
It turns out that cones tend to be Mogami more often.

Proposition 14. Let A be a d-pseudomanifold. Let v be a new point. The cone v A is Mogami
if and only if A is strongly-connected.

Proof. The “only if” part follows from Proposition 11, since the link of v in v * A is A itself.
As for the “if”: Since the dual graph of A is connected, we may choose a spanning tree, which
uniquely determines a tree of d-simplices Ty inside A. Since every (d—1)-face of A belongs to at
most two d-simplices, the complex A can be obtained from T via identifications of pairs of (not
necessarily incident!) boundary facets. Now let us take a new vertex v. Clearly v Ty is a tree
of (d+ 1)-simplices. Let us ‘mimic’ the construction of A from T, to obtain a construction of
v A from v« Ty. (By this we mean that if the construction of A from T started by gluing two
faces o/ and o” of 0T, then we should start the new construction of v x A from taking v * Ty
by gluing v * o’ with v« ¢”; and so on.) Clearly, v * A is obtained from v * Ty via identifications
of pairs of boundary facets that contain v, and therefore are incident. O



Corollary 15. For each d > 3, some d-dimensional pseudomanifold is Mogamsi, but not LC.

Proof. Let k be any integer such that 2 < k < d — 1. Let A be any k-pseudomanifold that
is strongly-connected, but not LC. (They exist; for example, for k& = 2 one can choose any
triangulation of an annulus; compare Figure 3, which illustrates the case d = 3.) Take d — k
consecutive cones over C'. The resulting d-complex is Mogami by Proposition 14 and not LC by
[BZ11, Proposition 3.25]. O

Corollary 16. Not all Mogami spheres are PL.

Proof. Homology d-spheres exist in each dimension d > 3. Let P be the suspension of a homology
d-sphere. Let S be the suspension of P. By Edwards’ criterion (cf. e.g. [Benl5] for a quick
survey), S is a non-PL triangulated (d + 2)-dimensional sphere. By Proposition 14 both (v * P)
and (w= P) are Mogami, because P is strongly connected. Since S is of the form (v P)U(w* P),
by Proposition if follows that S is Mogami. O

2 Intermezzo: Planar matchings and extensively-LC manifolds

Here we show that all 2-spheres and 2-balls are Mogami and even LC independently from which
tree of triangles one starts with. These results are not new; they essentially go back to Durhuus,
cf. [Dur90] [DJ95, p. 184], but we include them to showcase some proof mechanisms that will
later be needed in the 3-dimensional case. We also discuss a higher-dimensional extension of this
phenomenon of “irrelevance of the chosen tree”, called “extensively-LC” property. The reader
eager for new theorems may skip directly to the next Section.

We need some additional notation. By a cycle we mean from now on a simple cycle; that
is, any closed path in which all vertices are distinct, except for the first and last one. A graph
(resp. a multigraph) is for us a 1-dimensional simplicial complex (resp. a 1-dimensional cell
complex). In other words, graphs are multigraphs that do not have loops or double edges. Given
any simplicial complex, we call “free” any face that is properly contained in only one other face.
The free faces in a graph are called leaves; some complexes have no free face. An elementary
collapse is the deletion of a single free face (and of the other face containing it).

Definition 17 (Extensively collapsible). A complex C is called extensively-collapsible if any
sequence of elementary collapses reduces C' to a complex that is itself collapsible. In other words,
C is extensively collapsible if and only if by performing elementary collapses, we never get stuck.
We also say that C' is extensively-collapsible onto D if any sequence of elementary collapses
that does not delete faces of D, reduces C' to a complex that is itself collapsible to D.

For example, trees are extensively collapsible; in fact, every tree is extensively collapsible
onto any of its subtrees. It is well-known that all collapsible 2-complexes are also extensively-
collapsible, cf. e.g. [HAMO93]. However, an 8-vertex example of a collapsible but not extensively-
collapsible complex (in fact, a 3-ball) was given in [BL13].

Lemma 18. Let C be a cycle. Let M be any planar matching, partial or complete, of the edges
of C. Let G be the multigraph obtained from C by pairwise identifying the edges according to M
(preserving orientation). The following are equivalent:

(1) G contains at most one cycle;

(2) G can be obtained from C via some sequence of LC gluings.

Proof. “(2) = (1)”: Let C be a cycle. Any LC gluing of two edges of C' either
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Figure 4: A 12-gon (left) and the (multi)graph obtained from it by identifying two non-adjacent edges
(right). Note that this graph cannot be obtained from the 12-gon via LC gluings.

— preserves the number of cycles (if the edges share only one vertex), or

— ‘kills’ one cycle (in case the edges have both endpoints in common).

So when we perform local gluings on a multigraph, the total number of cycles can only decrease.
Since we started with a cycle, G contains at most one cycle.

“(1) = (2)”: Fix a planar matching 9t of C. If 9 is a complete matching, the resulting
multigraph G will be a tree; if instead it is partial, G will be a cycle with some trees attached.
We proceed by induction on the number n of edges of C, the case 3 < n < 6 being easy. Let
e’, e’ be two edges of C that are matched in 9. If €/, e” are adjacent in C, their identification
is an LC gluing, and there is nothing to show; so we shall assume they are not adjacent. The
effect of the gluing ¢’ = ¢” is to squeeze C into a left cycle L and a right cycle R, bridged by
a single edge e (as in Figure 4). Moreover, 9 restricts to planar matchings on both L and R.
Of these two “submatchings”, at least one has to be complete, otherwise the final multigraph
G would contain at least two cycles. We will assume the submatching on L is complete, the
other case being symmetric. Let G, be the subtree of G corresponding to the edges of L. Let
v =eNG. Choose a collapsing sequence of the tree G, onto v. This yields a natural ordering
€o, €1, --. , ex_1 of the k edges of the tree G, where e; is the i-th edge to be collapsed and e;_4
contains v. Observe that eg must be a leaf of G ; it corresponds therefore to a pair of adjacent
edges ¢(, and ejj of L matched under 9. Recursively, for each 4, the edges e, and e/ become
adjacent once we have identified e;- with e;’ , for all 7 < 4. In other words, the identifications
(e} = e)o<i<k—1, performed in this order, are legitimate LC gluings. Now we are ready to
rearrange the sequence, by postponing the initial step ¢’ = €”. So let us set e, := e, €], =€
and e} := €”. Starting from the initial cycle C, let us perform (e} = e]) after all of the gluings
(e = 62)099&71 have been carried out. The advantage is that e} = e} is now an LC step,
because e;_1 and ej, both contained the vertex v (so after ), and e]_, are identified, the edges
e), = e} become incident at v).

We are eventually left with the right cycle R. The subgraph Gg of G corresponding to the
edges of R contains at most one cycle. By inductive assumption, G can be obtained from R via
a sequence of LC gluings. The latter sequence, performed after (e; = €/)o<i<y, forms a longer
sequence of LC gluings that constructs G from C. O

Remark 19. Topologically, the proof above can be recapped as follows. Initially, we have an
“unwanted” non-LC gluing ¢/ = €” that increases the number of cycles from 1 to 2. Since in
the end the graph G produced has at most 1 cycle, at some point the extra cycle has to be
suppressed. The only way to suppress a cycle with a planar matching, is to identify some pair
of edges f’, f” that have both endpoints in common. Our proof strategy was:

e to postpone the gluing ¢/ = €”, so that it is becomes an LC gluing; and also

e to anticipate f/ = f”, so that these two edges are glued when they only share one of their

endpoints, not both.

We did not change the matching; we only changed the order in which the matching is performed.
But in the rearranged sequence, no step increases the number of cycles by one. (There is also



one less step that decreases the number of cycles by one; these two steps ‘canceled out’.)

Here is a variation we will need in the next Section. Given a graph G, we say that a vertex
v of G is active if it belongs to a cycle. For example, every vertex of a cycle C' is active. If
we perform an LC gluing of two adjacent edges of C, the vertex between the two edges gets
“de-activated”. In a tree, no vertex is active.

Lemma 20. Let C be a cycle. Let 9t be any complete planar matching of the edges of C. Let G
be the tree obtained from C' by pairwise identifying the edges according to M, as in the previous
Lemma. Given an arbitrary vertex co of C, there is a sequence of LC gluings that produced G
from C and in which the vertex cq is active until the very last gluing.

Proof. Since every tree is simplicially collapsible onto any of its vertices, we may choose a
collapsing sequence of G onto the vertex corresponding to c¢g. Now, every pair of adjacent edges
in C' matched by 90 corresponds to a leaf in the tree G; and elementary collapses in G (which
are just leaf deletions) correspond to LC gluings on C. Hence, our collapse of G' onto ¢y induces
a sequence of LC gluings, the last of which identifies two edges sharing both endpoints (one of
the endpoints being c¢g). O

Remark 21. Unlike Lemma 18, Lemma 20 does not extend to partial matchings. For example,
let us start with a hexagon of vertices {a, b, ¢, d, e, f}, and let us identify [b, ¢] and [c, d] (preserving
orientation). This makes b coincide with d. Let us then glue together the edges [a, b] and [d, €],
which have just become adjacent. The resulting partial matching 9 satisfies the condition of
Lemma 18; however, there is only one possible possible sequence of LC gluings realizing 9, and
this only possible sequence deactivates the vertex c in the first step.

Definition 22 (Extensively LC). Let P be a d-dimensional pseudomanifold. We say that P is
extensively LC if, for any spanning tree T' of the dual graph of B, (a complex combinatorially
equivalent to) P can be obtained via LC gluings from the tree of d-simplices T dual to T

If we replace “any” with “some” in the definition above, we recover the classical definition
of LC. Hence, “extensively-LC” trivially implies LC. See Remark 27 below for the difference.

Proposition 23 (essentially Durhuus [Dur90]). All 2-balls and 2-spheres are extensively LC.

Proof. Let B be an arbitrary 2-sphere or 2-ball. Let T and T be as in the definition of
extensively-LC. By construction, we know that B is obtained from T by some matching 9 of
the edges of 0T, which is a 1-dimensional sphere (or in other words, a cycle). Note that the
matching is uniquely determined once the tree Ty is chosen. If B is a 2-sphere, the matching
is complete; if B is a ball, 0B is a cycle, the matching is partial, and the edges left unmatched
are precisely the edges of dB. In both cases, the multigraph obtained from 9Ty via the identi-
fications in 9 contains at most one cycle. Using Lemma 18, we conclude. O

If T is a spanning tree of the dual graph of a (connected) d-manifold, following [BZ11,
p. 214] we denote by K the (d — 1)-dimensional subcomplex of the manifold determined by all
the (d — 1)-faces that are not intersected by 7. When d = 3, K7 is 2-dimensional. Recall that
for 2-complexes collapsibility and extensive-collapsibility are equivalent notions. Using this, it
is an easy exercise to adapt the original proofs of [BZ11, Corollary 2.11] and of [BZ11, Corollary
3.11], respectively, to derive the following results:

Theorem 24. Let S be a triangulated 3-sphere. The following are equivalent:
(i) S is extensively-LC;
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(ii) for every spanning tree T of the dual graph of S, the complex KT is collapsible;
(iii) for every tetrahedron A of S, the 3-ball S — A is extensively collapsible;
(iv) for some tetrahedron A of S, the 3-ball S — A is extensively collapsible.

Theorem 25. Let B be a triangulated 3-ball. The following are equivalent:
(i) B is extensively-LC;
(ii) for some tetrahedron A, the 3-ball B — A is extensively collapsible to OB;
(iii) for every tetrahedron A, the 3-ball B — A is extensively collapsible to OB;
(iv) for every spanning tree T of the dual graph of S, the complex KT collapses to 0B.

Corollary 26. FEvery triangulated d-ball or d-sphere with less than 8 vertices is extensively-LC.

Proof. By a result of Bagchi and Datta [BD05], all acyclic 2-complexes with less than 8 vertices
are collapsible; it follows that all collapsible 2-complexes with less than 8 vertices are extensively
collapsible [BL13]. O

Remark 27. Some 3-sphere with 8 vertices that is LC, but not extensively, is presented
in [BL13]. After we remove a tetrahedron from such sphere, we obtain a collapsible ball B;
but there is also a sequence of elementary collapses that from B gets us stuck in an 8-vertex
triangulation of the Dunce Hat [BL13]. (See also [Benl0, pp. 107-109] for a similar example
with 12 vertices.) Moreover, the boundary of the 7-simplex is not extensively-LC, since (after
the removal of an arbitrary 6-face) there is a sequence that gets us stuck in a 8-vertex Dunce
Hat: This was first shown by Crowley et al., cf. [C&03] [BL13, Section 5.3].

3 The only Mogami nucleus is the simplex

Let us now focus on d = 3. We wish to study how LC or Mogami steps in a construction of
a 3-manifold affect the boundary-link of a single vertex. The four examples we present will be
crucial in the proof of our Main Theorems. First we need one additional notation.

Definition 28 (Merging). Let C, D be two cycles with an edge e in common. The merging
operation produces a new cycle as follows: we take the union C'U D, and we delete the edge e.

Example 29. Let B be a 3-ball. Let e be an edge in dB. Let v and w be the two vertices in
link (e, 0B). If we identify the two triangles v x e and w * e, this is a legitimate LC gluing — in
fact, a FOLD. Let @ be the pseudomanifold obtained. Topologically, @ is also a 3-ball. With
slight abuse of notation, let us keep calling v be the vertex of @) resulting from the identification
of v and w. It is easy to see that link (v, 0Q) is the cycle obtained by merging link (v,0B) and
link (w, 0B).

Example 30. Let B be a 3-ball. Let = be a vertex in dB. Let ej, es be two edges in link (x, 0B).
If we identify the two triangles x * e; and x * es, this is a legitimate Mogami gluing. Let v, w;
be the two endpoints of e;. Similarly, let vo, ws be the two endpoint of e, labeled so that the
vertex that is identified to vy is vy. Let @ be the obtained pseudomanifold (which is not a ball,
this time.) Let us call v the vertex of @ resulting from the identification of the two vertices
v; and ve. It is easy to see that link (v, 0Q) is a cycle. It is obtained from Cy = link (v, 9B)
and C9 = link (vg, 0B) with an operation that is an LC gluing plus a merging. More precisely,
C1 and C5 do not have an edge in common; they share only the vertex x. However, the cycle
link (v,0Q) can be obtained from C; and Cy by first identifying [x,w;] (which is in C}) and
[x,ws] (which is in C9), and then by performing a merging at the resulting edge [z, w].

11



Example 31. Let P be a pseudomanifold obtained from a 3-ball by performing one Mogami
gluing of 2 triangles sharing only a vertex v, and then another Mogami gluing of 2 triangles
sharing only a vertex w # v, such that v and w belong to adjacent triangles in P. Then:

e link (v, 0P) is the disjoint union of two cycles, A, and By;

e link (w, OP) is also the disjoint union of two cycles, A, and By;

e link (v, 9P)Nlink (w, P) consists of an edge e, which (up to relabeling) belongs to A,NA,,.
Let us identify the two triangles v*e and w*e, and let ) be the resulting pseudomanifold. With
the usual abuse of notation, let us call v be the vertex of () obtained from the identification of v
and w. It is easy to see that link (v, 0Q) is a disjoint union of three cycles, namely B,,, B,,, and
a third cycle obtained by merging A, and A,. In particular, Q) is not homeomorphic to 9P.
(This pathology is due to the presence of two different singularities in P, which are identified in
the gluing; on LC pseudomanifolds, FOLD does preserve the homeomorphism type).

Example 32. Let us start with an annulus of 4 squares, and let us subdivide each square
into four triangles by inserting the two diagonals (Figure 5). Let w be one of the four square
barycenters. Let a,b,c,d be the four corners of the square containing w, labeled so that ab
and cd are free edges (i.e. edges that belong to one triangle only). Let A be the obtained
simplicial complex. Let us take a cone v * A from a vertex v outside A. This v x A is a Mogami
pseudomanifold by Proposition 14. The boundary-link of v consists of 2 squares. Note that from
v* A one can easily obtain a Mogami 3-ball without interior vertices by pairwise identifying the
top four triangles. Instead, from vx A, let us perform a FOLD step by gluing [c, d, v] with [c, d, w].
Let P be the obtained pseudomanifold. Since v A contained triangles [a, b, v] and [a, b, w], now
that v is carried onto w we have in P two distinct triangles A; and As that share one edge and
also the opposite vertex. Hence P (which topologically is homeomorphic to v* A, cf. Example 29)
is not a simplicial complex.

e
==\,

Figure 5: The triangulated annulus A (in purple). The cone v x A is a Mogami pseudomanifold, with a
singularity at v. With a couple of LC gluings (on the four top triangles), from v x A it is possible to get
a 3-ball without interior vertices. But if from v x A we glue together the triangles [v,¢,d] and [¢,d, w],
this is a faux pas (Remark 33).

Remark 33. No 3-ball without interior vertices can be obtained via Mogami gluings from the
pseudomanifold P of Example 32. In fact, assume by contradiction that R is a ball without
interior vertices obtained with a Mogami construction from P. Because R is a simplicial complex,
in R the two triangles A and Ay that share the vertices v, a, b must be identified at some point;
so we might as well glue them immediately. Let us call @) be the pseudomanifold obtained from
P by gluing A1 = As. We may assume that R is obtained via Mogami gluings from (). Since R
is a ball without interior vertices, the link of v in R must be a disk. Since @ is not a simplicial
complex the notion of “link of v in @” is not well-defined; but we can look at the spherical link
L of v in @, which is what we would get by intersecting () with a sphere of small radius centered
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at v. (In simplicial complexes, this is isomorphic to the vertex link.) Up to homeomorphism,
we can think of L as a 2-dimensional simplicial complex obtained from a finely triangulated
annulus by identifying (coherently, without twists) two parallel edges in different components of
the boundary. Note that L is not planar, in the sense that no simplicial complex homeomorphic
to L can be drawn in R? without self-intersections. Now, any further Mogami step performed
on ) will possibly modify L only via identifications in its boundary. Topologically, these steps
may transform the spherical link of v into a torus, but not into a 2-ball (or a 2-sphere). A
contradiction.

In fact, the topological argument of Remark 33 above proves the following:

Lemma 34. Let M be a Mogami pseudomanifold obtained from a 3-ball via a single Mogami
gluing that is not an LC gluing. Let v be the singular vertex of M. Let Cy and Ca be the two
disjoint components of the boundary-link of v. Suppose there is a vertexr w # v in OM such that
link (v, OM ) Nlink (w, OM) consists of 2 edges, one in Cy (say, [a,b]) and one in Ca (say, [c,d]).
Let P be the pseudomanifold obtained from M wvia the LC gluing that identifies the triangles
[v,¢,d] and [c,d,w]. There is no 3-ball without interior vertices that can be obtained via Mogami
gluings from the pseudomanifold P.

We are now ready to prove our main result.

Theorem 35. Let B be a Mogami 3-ball without interior vertices. Let T be the tree of tetra-
hedra from which B is constructed, via some sequence of Mogami gluings. Then, B can also be
constructed from Ty via some sequence of LC gluings. In particular, all Mogami 3-ball without
interior vertices are LC.

Proof. If all Mogami gluings are L.C gluings, there is nothing to prove. Otherwise, let us consider
the first Mogami gluing A, = Aj that is not LC. Let v = Aj N Aj. By definition there are
disjoint edges ), d; such that Aj = v x ), and Aj = v ). Let P be the pseudomanifold
obtained after the gluing A{j = Ajj; the vertex v is in the boundary of P, while the triangle A
obtained from the identification is in the interior of P. We denote by dy the edge opposite to v
in Ag. As we saw in Figure 1, the gluing creates a singularity at v: namely, link (v, OP) consists
of two cycles. Since B is a 3-ball with all vertices on the boundary, the subsequent Mogami
gluings in the construction of B from P will
e keep the vertex v in the boundary, and
e eventually “kill” one of the two connected components of link (v, dP).
Let us call C' the “doomed” component, that is, the cycle of link (v, 0P) none of whose edges
will eventually appear in link (v, 0B). Let us denote by ¢ the vertex of dy that belongs to C.
Our strategy is to consider this cycle C and rearrange the sequence of gluings according to
Lemma 20, so that after the rearrangement, all gluings in the sequence are LC gluings, and the
last pair of edges glued is a pair adjacent to the edge Jy. Before doing this, though, we need a
delicate preliminary argument. In fact, while constructing B from P, all triangles of star (v, 0P)
are going to be matched and sunk into the interior; but what we do not know for sure, is whether
they are going to be matched to one another. A priori, there are other two possibilities that we
should consider (both of which could occur multiple times):
(a) for some edge e of C, it could happen that v % e is matched in an LC gluing with some
triangle w * e outside star (v, OP);
(b) or it could also happen that v * e is matched in a Mogami gluing to another triangle that
does not contain v, but contains exactly one of the two endpoints (let us call it x) of e.
The steps above affect the boundary-link of v as follows.
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I) The cycle C'is “expanded” via a merging operation. For example, in case (a) the boundary-
link of v gets merged with the boundary-link of w, as explained in Example 29. Case (b) is
similar: The vertex v is identified with a vertex vs of the other triangle, and essentially the
boundary-link of v gets merged with the boundary-link of ve (after an LC gluing; compare
Example 30.)

IT) Possibly, the link of P might acquire further connected components. This happens when

the vertex w identified with v is also a singularity, a case we saw in Example 31.

These cases, however, do not ruin our proof strategy — they just delay it. Our remedy in
fact is to anticipate all matchings of the type (a) and (b) described above, in a “first round”
of identifications. For example, if a single triangle v * e is later matched in a FOLD with some
triangle w * e outside star (v, OP), then we can rearrange the sequence by performing such LC
gluing immediately. After all identifications of type (a) and (b) have been carried out, if P is
the resulting pseudomanifold, we ask ourselves again: are all triangles of star (v,dP;) going to
be matched exclusively with one another? If not, we repeat the procedure above, in a second
round of identifications, and we call the obtained pseudomanifold P,. And so on.

The effect of these rounds on the boundary-link of v is to expand it by inglobating new edges.
We make a crucial claim: in these rounds of identifications, the components of the boundary-
link of v remain separate. The proof of this claim relies on Lemma 34. In fact, suppose by
contradiction that passing from P; to P», say, we have included into C' an edge [a, b] that belongs
to another component of the boundary-link of v (which is what we have done in Example 32.)
This means that in P, we have a singularity v, and two distinct triangles containing v and the
edge [a,b]. So if we want to obtain a simplicial complex, we are forced to glue the two triangles
together; and with the same proof of Remark 33, no matter how we continue this Mogami
construction, we are never going to achieve a 3-ball without interior vertices. A contradiction.
(This shows that the components of the boundary-link of v never have an edge in common; in
analogous way, adapting Lemma 34, one proves they cannot have vertices in common, either.)

Eventually, after a finite number of rounds, we will reach a pseudomanifold P’ such that:

e link (v, OP’) consists of k > 2 connected components,

e B is obtained with a list of Mogami gluings from P’, a process in which exactly k — 1 of
the components of link (v, dP’) are going to be “killed”,

e if C’ is the connected component of link (v, 9P’) obtained from C' via merging operations,
then for any edge e of C' there exists an edge f of C’ such that, in one of the Mogami
gluings that leads from P’ to B, the triangle v e is identified with v * f .

In fact, we can repeat the reasoning above until the last property holds for all the k—1 “doomed”
connected components of link (v, 0P’).

Note that C’ contains all vertices of C. This is because the merging operation does not
delete any vertex. In particular, the vertex cg = dg N C of C' will be present in C” as well.

We are now in the position to use Lemma 20. The Mogami construction that leads from P’
to B yields a complete matching of the edges of C’. Clearly, ordering the edges in link (v, OP’) is
the same as ordering the triangles in star (v, P’); also, two edges e, f are adjacent in the link of
v if and only if vxe and v« f are adjacent in the star of v. Let us thus reorder the gluings involving
triangles in star (v, 0P’), according to Lemma 20, so that the vertex ¢y is deactivated last. In
this order, the identifications “killing” the component C’ are all LC gluings. Furthermore, it is
easy to see that all gluings mentioned above (those leading from P to P’, plus all LC gluings
that kill C”) can be performed before the identification A = A{j. With this postponement the
step A = Aj becomes an LC gluing: In fact, after all other identifications have been carried
out, A} and Aj share the edge [v, ¢p]. In conclusion, by reshuffling the Mogami sequence we got
rid of the first non-LC step. By induction, we reach our claim. O
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Corollary 36. Let B be a 3-ball without interior vertices. The following are equivalent:

(1) B is Mogami;

(2) Bis LC;

(3) some (possibly empty) sequence of SPREAD operations reduces B to a tree of tetrahedra;

(4) B has trivial nuclei (that is, some sequence of SPREAD and SPLIT operations reduces B to
disjoint tetrahedra.)

Proof. “(1) < (2)” follows from Theorem 35.

“(2) & (3)”: In [BZ11, Lemma 3.18] it is shown that a 3-ball B without interior vertices is
LC if and only if it can be obtained from a tree of tetrahedra via FOLD steps. The conclusion
follows by reversing the construction.

“(3) & (4)”: It follows from the characterization of tree of N tetrahedra as the complexes
that can be reduced to NV disjoint tetrahedra using N — 1 SPLIT operations. O

Corollary 37. The only Mogami nucleus is the tetrahedron.

Proof. Clearly a tetrahedron is Mogami. On any other nucleus, neither SPREAD nor SPLIT steps
are possible, because every interior triangle has at most one edge on the boundary. ]

Corollary 38. Some 3-balls are not Mogami.

For example, Hachimori’s triangulation of Bing’s (thickened) house with two rooms, de-
scribed in [HacO1] [Hac00, p. 89], is a non-trivial nucleus with 1554 tetrahedra. The smallest
non-trivial nucleus found so far with computer tools has only 37 tetrahedra [CEY14, p. 260].

Relation with knots and collapsibility

A spanning edge in a 3-ball B is an interior edge with both endpoints on the boundary. A
spanning edge [z,y] is called knotted if some (or equivalently, any) path in 0B from x to y,
together with the edge [z, y], forms a non-trivial knot. For brevity, we call a 3-ball B knotted
if it contains a knotted spanning edge.

Using the same exact proof of [BZ11, Proposition 3.19], one can obtain the following conse-
quence of Corollary 36:

Lemma 39. Mogami 3-balls without interior vertices do not contain knotted spanning edges.

Compare the result above with the following Lemma (which is known, but we include a proof
for completeness):

Lemma 40. Every (tame, non-trivial) knot can be realized as knotted spanning edge in some
3-ball without interior vertices.

Proof. The following classical construction goes back to Furch [Fur23]: Let us dig a hole, shaped
like the chosen knot, inside a suitably fine pile of cubes, stopping one step before destroying the
property of having a 3-ball. Let us then triangulate every cube according to a standard pulling
triangulation. This construction is carried out in detail for the trefoil knot by Hachimori [Hac01,
model “Furch’s knotted hole ball”]; compare also [BZ11, Example 2.14 & Figure 3]. Observe
that the 3-ball obtained with such construction typically contains plenty of interior vertices.
However, we can progressively “shell out” all cubes that are far away from the knot, until we
reach a thinner triangulation without interior vertices. (Another way to reach such triangulation
is to simply apply the spread and the split operations greedily. It is an easy topological exercise,
essentially analogous to the proof of Lemma 39, to check that none of these operations can delete
or modify the existing knot.) O
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From Lemma 39 and Lemma 40, we can find infinitely many examples of 3-balls that are
not Mogami. In fact, we can prove an asymptotic enumeration result:

Proposition 41. In terms of the number N of facets, the number of non-Mogami 3-balls without
interior vertices is asymptotically the same of the total number of 3-balls without interior vertices.

Proof. Let us fix a 3-ball A with some knotted spanning edge and with all vertices on 0A
(cf. Lemma 40). Let F4 be the number of facets of A. Let us also fix a triangle A4 C 0A. Now,
let B be an arbitrary 3-ball with /N tetrahedra, without interior vertices, and with a distinguished
triangle Ag C dB. From B we can obtain a 3-ball B’ with N + F4 tetrahedra via a UNITE step
that consolidates the 3-balls A and B by identifying A4 = Ap. (Ignore the fact that there are
multiple ways to do this, according to rotation, as this amounts to an asymptotically neglectable
factor.) No matter how we choose B, the union B’ = AU B is going to contain the same knotted
spanning edge of A. But since all its vertices are on the boundary, by Lemma 39 the ball B’
cannot be Mogami. Now note that B" determines B: In fact, for any interior triangle A of B’
with all three edges on 9B’, we could split B’ at A and check if one of the two 3-balls obtained
is combinatorially equivalent to A (if it is, the other 3-ball is B). Hence the transition from B
to B’ yields an injective map

{ 3-balls with N tetrahedra } { non-Mogami 3-balls with N + F4 tetrahedra }

and with O interior vertices and with O interior vertices
If we pass to the cardinalities and let NV tend to infinity, Fl4 being constant, we conclude. [

Finally, we recall the connection of knot theory with simplicial collapsibility:

Proposition 42 (essentially Goodrick, cf. [Benl2, Corollary 4.25]). Let K be any knot whose
group admits no presentation with 2 generators. (For example, the double trefoil). Any knot
with a knotted spanning edge isotopic to K, cannot be collapsible.

Proposition 43 ([BZ11, Theorem 3.23]). For any 2-bridge knot K (for example, the trefoil),
there is a collapsible 3-ball without interior vertices with a knotted spanning edge isotopic to K.

Summing up, we have the following hierarchy:

Theorem 44. For 3-balls without interior vertices, the following inclusions hold:
{shellable} C {LC} = {Mogami} C {collapsible} C {all 3-balls without interior vertices}.

Proof. Any linear subdivision of a (convex) 3-dimensional polytope (with or without interior
vertices) is collapsible [Chi67] and even LC [BZ11, Theorem 3.27]. However, Rudin proved in
1958 that not all these linear subdivisions are shellable [Rud58]; her counterexample, known
as “Rudin’s ball”, is a subdivision of a tetrahedron with all 14 vertices on the boundary. The
equivalence of LC and Mogami is discussed in Corollary 36. Any knotted 3-ball described in
Proposition 43 is collapsible, but cannot be Mogami by Lemma 39. Finally, 3-balls without
interior vertices that are not collapsible can be produced by pairing together Lemma 40 and
Proposition 42: For example, any 3-ball without interior vertices and with a knotted spanning
edge isotopic to the double trefoil would do. O
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