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Abstract Zika is an emerging virus whose rapid spread is of great public health concern.

Knowledge about transmission remains incomplete, especially concerning potential transmission in

geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we

developed a data-driven model linking vector species and the Zika virus via vector-virus trait

combinations that confer a propensity toward associations in an ecological network connecting

flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to

transmit the virus, seven of which are found in the continental United States, including Culex

quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to

confirm predictions of vector competence, enabling the correct identification of populations at risk

for transmission within the United States.

DOI: 10.7554/eLife.22053.001

Introduction
In 2014, Zika virus was introduced into Brazil and Haiti, from where it rapidly spread throughout the

Americas. By January 2017, over 100,000 cases had been confirmed in 24 different states in Brazil

(http://ais.paho.org/phip/viz/ed_zika_cases.asp), with large numbers of reports from many other

counties in South and Central America (Faria et al., 2016). Originally isolated in Uganda in 1947, the

virus remained poorly understood until it began to spread within the South Pacific, including an out-

break affecting 75% of the residents on the island of Yap in 2007 (49 confirmed cases) and over

32,000 cases in the rest of Oceania in 2013–2014, the largest outbreak prior to the Americas (2016-

present) (Cao-Lormeau et al., 2016; Duffy et al., 2009). Guillian-Barré syndrome, a neurological

pathology associated with Zika virus infection, was first recognized at this time (Cao-Lormeau et al.,

2016). Similarly, an increase in newborn microcephaly was found to be correlated with the increase

in Zika cases in Brazil in 2015 and 2016 (Schuler-Faccini et al., 2016). For this reason, in February

2016, the World Health Organization declared the American Zika virus epidemic to be a Public

Health Emergency of International Concern.

Despite its public health importance, the ecology of Zika virus transmission has been poorly

understood until recently. It has been presumed that Aedes aegypti and Ae. albopictus are the pri-

mary vectors due to epidemiologic association with Zika virus (Messina et al., 2016), viral isolation

from and transmission experiments with field populations (especially in Ae. aegypti [Haddow et al.,
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2012; Boorman and Porterfield, 1956; Haddow et al., 1964]), and association with related arbovi-

ruses (e.g. dengue fever virus, yellow fever virus). Predictions of the potential geographic range of

Zika virus in the United States,and associated estimates for the size of the vulnerable population, are

therefore primarily based on the distributions of Ae. aegypti and Ae. albopictus, which jointly extend

across the Southwest, Gulf coast, and mid-Atlantic regions of the United States (Centers for Disease

Control and Prevention, 2016). We reasoned, however, that if other, presently unidentified Zika-

competent mosquitoes exist in the Americas, then these projections may be too restricted and

therefore optimistically biased. Additionally, recent experimental studies show that the ability of Ae.

aegypti and Ae. albopictus to transmit the virus varies significantly across mosquito populations and

geographic regions (Chouin-Carneiro et al., 2016), with some populations exhibiting low dissemina-

tion rates even though the initial viral titer after inoculation may be high (Diagne et al., 2015). This

suggests that in some locations other species may be involved in transmission. The outbreak on Yap,

for example, was driven by a different species, Ae. hensilli (Ledermann et al., 2014). Closely related

viruses of the Flaviviridae family are vectored by over nine mosquito species, on average (see Sup-

plementary Data). Thus, because Zika virus may be associated with multiple mosquito species, we

considered it necessary to develop a more comprehensive list of potential Zika vectors.

The gold standard for identifying competent disease vectors requires isolating virus from field-

collected mosquitoes, followed by experimental inoculation and laboratory investigation of viral dis-

semination throughout the body and to the salivary glands (Barnett, 1960; Hardy et al., 1983),

and, when possible, successful transmission back to the vertebrate host (e.g. Komar et al., 2003).

Unfortunately, these methods are costly, often underestimate the risk of transmission

(Bustamante and Lord, 2010), and the amount of time required for analyses can delay decision

making during an outbreak (Day, 2001). To address the problem of identifying potential vector can-

didates in an actionable time frame, we therefore pursued a data-driven approach to identifying can-

didate vectors aided by machine learning algorithms for identifying patterns in high dimensional

data. If the propensity of mosquito species to associate with Zika virus is statistically associated with

common mosquito traits, it is possible to rank mosquito species by the degree of risk represented

by their traits – a comparative approach similar to the analysis of risk factors in epidemiology. For

instance, a model could be constructed to estimate the statistical discrepancy between the traits of

eLife digest Mosquitoes carry several diseases that pose an emerging threat to society.

Outbreaks of these diseases are often sudden and can spread to previously unaffected areas. For

example, the Zika virus was discovered in 1947, but only received international attention when it

spread to the Americas in 2014, where it caused over 100,000 cases in Brazil alone. While we now

recognize the threat Zika can pose for public health, our knowledge about the ecology of the

disease remains poor. Nine species of mosquitoes are known to be able to carry the Zika virus, but it

cannot be ruled out that other mosquitoes may also be able to spread the disease.

There are hundreds of species of mosquitoes, and testing all of them is difficult and costly. So far,

only a small number of species have been tested to see if they transmit Zika. However,

computational tools called decision trees could help by predicting which mosquitoes can transmit a

virus based on common traits, such as a mosquito’s geographic range, or the symptoms of a virus.

Evans et al. used decision trees to create a model that predicts which species of mosquitoes are

potential carriers of Zika virus and should therefore be prioritized for testing. The model took into

account all known viruses that belong to the same family as Zika virus and the mosquitoes that carry

them. Evans et al. predict that 35 species may be able to carry the Zika virus, seven of which are

found in the United States. Two of these mosquito species are known to transmit West Nile Virus

and are therefore prime examples of species that should be prioritized for testing. Together, the

ranges of the seven American species encompass the whole United States, suggesting Zika virus

could affect a much larger area than previously anticipated.

The next step following on from this work will be to carry out experiments to test if the 35

mosquitoes identified by the model are actually able to transmit the Zika virus.

DOI: 10.7554/eLife.22053.002
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known vectors (i.e., Ae. aegypti, Ae. albopictus, and Ae. hensilli) and the traits of all possible vectors.

Unfortunately, this simplistic approach would inevitably fail due to the small amount of available

data (i.e., sample size of 3). Thus, we developed an indirect approach that leverages the information

contained in the associations among many virus-mosquito pairs to inform us about specific associa-

tions. Specifically, our method identifies covariates associated with the propensity for mosquito spe-

cies to vector any flavivirus. From this, we constructed a model of the mosquito-flavivirus network

and then extracted from this model the life history profile and species list of mosquitoes predicted

to associate with Zika virus, which we recommend be experimentally tested for Zika virus

competence.

Results
In total, we identified 132 vector-virus pairs, consisting of 77 mosquito species and 37 flaviviruses.

The majority of these species were Aedes (32) or Culex (24) species. Our supplementary dataset con-

sisted of an additional 103 mosquito species suspected to transmit flaviviruses, but for which evi-

dence of a full transmission cycle does not exist. This resulted in 180 potential mosquito-Zika pairs

on which to predict with our trained model. As expected, closely related viruses, such as the four

strains of dengue, shared many of the same vectors and were clustered in our network diagram (Fig-

ure 1). The distribution of vectors to viruses was uneven, with a few viruses vectored by many mos-

quito species, and rarer viruses vectored by only one or two species. The virus with the most known

competent vectors was West Nile virus (31 mosquito vectors), followed by yellow fever virus (24 mos-

quito vectors). In general, encephalitic viruses such as West Nile virus were found to be more com-

monly vectored by Culex mosquitoes and hemorrhagic viruses were found to be more commonly

vectored by Aedes mosquitoes (see Gould and Solomon (2008) for further distinctions within Flavi-

viridae) (Figure 1).

Our ensemble of BRT models trained on common vector and virus traits predicted mosquito vec-

tor-virus pairs in the test dataset with high accuracy (AUC = 0.92 ± 0.02; sensitivity = 0.858 ± 0.04;

specificity = 0.872 ± 0.04). Due to non-monotonicity and existence of interactions among predictor

variables within our model, one cannot make general statements about the directionality of effect.

Thus, we focus on the relative importance of different variables to model performance. The most

important variable for accurately predicting the presence of vector-virus pair was the subgenus of

the mosquito species, followed by continental range (e.g. continents on which species are present).

The number of viruses vectored by a mosquito species and number of mosquito vectors of a virus

were the third and fifth most important variables, respectively. Unsurprisingly, this suggests that,

when controlling for other variables, mosquitoes and viruses with more known vector-virus pairs (i.e.,

more viruses vectored and more hosts infected, respectively), are more likely to be part of a pre-

dicted pair by the model. Mosquito ecological traits such as larval habitat and salinity tolerance were

generally less important than a species’ phylogeny or geographic range (Figure 2).

When applied to the 180 potential mosquito-Zika pairs, the model predicted thirty-five vectors to

be ranked above the threshold (set at the value of the lowest-ranked known vector), for a total of

nine known vectors and twenty-six novel, predicted mosquito vectors of Zika (Table 1). Of these vec-

tors, there were twenty-four Aedes species, nine Culex species, one Psorophora species, and one

Runchomyia species. The GBM model’s top two ranked vectors for Zika are the most highly-sus-

pected vectors of Zika virus, Ae. aegypti and Ae. albopictus.

Model validation
Our supplementary and primary models generally concur and their ranking of potential Zika virus

vectors are highly correlated (r = 0.508 and r = 0.693 on raw and thresholded predictions, respec-

tively). As one might expect, the supplementary model assigned fewer scores of low propensity

(Appendix 1—figure 2), suggesting that incorporating this additional uncertainty in the training

dataset eroded the model’s ability to distinguish negative links. The supplementary model’s perfor-

mance on the testing data (AUC = 0.84 ± 0.02), however, indicates that the additional uncertainty

did not impede model performance.

When trained on ‘leave-one-out’ datasets, all three models were able to predict the testing data

with high accuracy (AUC = 0.91, AUC = 0.91, AUC = 0.92 for West Nile, dengue, and yellow fever

viruses, respectively). Performance varied when models were validated against predictions of ‘known
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outcomes’. A model trained without West Nile virus predicted highly linked vectors reasonably well

(AUC = 0.69), however it assigned low scores to rarer ‘known’ vectors, such as Culiseta inornata,

which was only associated with West Nile virus. Similarly, the model trained on the dengue-omitted

dataset predicted training data and vectors of dengue itself with high accuracy (AUC = 0.92). While

the model trained without yellow fever performed well on the testing data, it performed poorly

when predicting vectors of yellow fever virus (AUC = 0.47). Unlike West Nile and dengue viruses, the

majority of the known vectors of yellow fever are only associated with yellow fever (i.e. a single vec-

tor-virus link), and so were excluded completely from the training data when all yellow fever links

were omitted. Additionally, several of the vector species are of the Haemagogus genus, which was

completely absent from the training data. Given the importance of phylogeny of the vector species

in predicting vector-virus links, it follows that a dataset with a novel subgenus would be difficult for

Figure 1. A network diagram of mosquito vectors (circles) and their flavivirus pairs (rectangles). The Culex mosquitoes (light blue) and primarily

encephalitic viruses (blue) are more clustered than the Aedes (orange) and hemmorhagic viruses (red). Notably, West Nile Virus is vectored by both

Aedes and Culex species. Predicted vectors of Zika are shown by bolded links in black. The inset shows predicted vectors of Zika and species names,

ordered by the model’s propensity scores. Included flaviviruses are Banzi virus (BANV), Bouboui virus (BOUV), dengue virus strains 1, 2, 3 and 4 (DENV-

1,2,3,4), Edge Hill virus (EHV), Ilheus virus (ILHV), Israel turkey meningoencephalomyelitis virus (ITV), Japanese encephalitis virus (JEV), Kedougou virus

(KEDV), Kokobera virus (KOKV), Kunjin virus (KUNV), Murray Valley encephalitis virus (MVEV), Rocio virus (ROCV), St. Louis encephalitis virus (SLEV),

Spondwendi virus (SPOV), Stratford virus (STRV), Uganda S virus (UGSV), Wesselsbron virus (WESSV), West Nile Virus (WNV), yellow fever virus (YFV),

and Zika virus (ZIKV).

DOI: 10.7554/eLife.22053.003
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the model to predict on, resulting in low model performance. The low performance of this model

illustrates that incorporating common traits and additional vector-virus links improves model predic-

tion. When traits were not available in the training dataset, model performance was much lower,

suggesting that there exists a statistical association between a vectors’ traits and its ability to trans-

mit a virus.
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Figure 2. Variable importance by permutation, averaged over 25 models. Because some categorical variables were treated as binary by our model (i.e.

continental range), the relative importance of each binary variable was summed to result in the overall importance of the categorical variable. Mosquito

and virus traits are shown in blue and maroon, respectively. Error bars represent the standard error from 25 models.
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Discussion
Zika virus is unprecedented among emerging arboviruses in its combination of severe public health

hazard, rapid spread, and poor scientific understanding. Particularly crucial to public health pre-

paredness is knowledge about the geographic extent of potentially at risk populations and local

environmental conditions for transmission, which are determined by the presence of competent vec-

tors. Until now, identifying additional competent vector species has been a low priority because Zika

Table 1. Predicted vectors of Zika virus, as reported by our model. Mosquito species endemic to the

continental United States are bolded. A species is defined as a known vector of Zika virus if a full

transmission cycle (see main text) has been observed.

Species GBM prediction �SD Known vector?

Aedes aegypti 0.81 ± 0.12 Yes

Ae. albopictus 0.54 ± 0.14 Yes

Culex quinquefasciatus 0.38 ± 0.14 No

Ae. polynesiensis 0.36 ± 0.13 No

Ae. scutellaris 0.33 ± 0.13 No

Ae. africanus 0.32 ± 0.11 No

Ae. furcifer 0.31 ± 0.16 Yes

Ae. vittatus 0.30 ± 0.20 Yes

Ae. taylori 0.30 ± 0.16 Yes

Ae. luteocephalus 0.25 ± 0.12 Yes

Ae. tarsalis 0.18 ± 0.11 Yes

Ae. metallicus 0.16 ± 0.08 No

Ae. minutus 0.16 ±0.09 No

Ae. opok 0.14 ± 0.06 No

Ae. bromeliae 0.11 ± 0.06 No

Ae. scapularis 0.10 ± 0.04 No

Cx. pipiens 0.10 ± 0.04 No

Ae. hensilli 0.10 ± 0.06 Yes

Ae. vigilax 0.10 ± 0.05 No

Cx. annulirostrix 0.08 ± 0.03 No

Psorophora ferox 0.08 ± 0.05 No

Cx. rubinotus 0.08 ± 0.07 No

Cx. tarsalis 0.08 ± 0.03 No

Ae. occidentalis 0.08 ± 0.05 No

Ae. flavicolis 0.07 ± 0.04 No

Ae. serratus 0.07 ± 0.04 No

Cx. p. molestus 0.07 ± 0.04 No

Ae. vexans 0.06 ± 0.04 No

Cx. neavei 0.06 ± 0.02 No

Runchomyia frontosa 0.06 ± 0.04 No

Ae. neoafricanus 0.06 ± 0.03 No

Ae. chemulpoensis 0.06 ± 0.03 No

Cx. vishnui 0.05 ± 0.01 No

Cx. tritaeniorhynchus 0.05 ± 0.01 No

Ae. fowleri 0.04 ± 0.03 Yes

DOI: 10.7554/eLife.22053.006
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virus has historically been geographically restricted to a narrow region of equatorial Africa and Asia

(Petersen et al., 2016), and the mild symptoms of infection made its range expansion since the

1950’s relatively unremarkable. However, with its relatively recent and rapid expansion into the

Americas and its association with severe neurological disorders, the prediction of potential disease

vectors in non-endemic areas has become a matter of critical public health importance. We identify

these potential vector species by developing a data-driven model that identifies candidate vector

species of Zika virus by leveraging data on traits of mosquito vectors and their flaviviruses. We sug-

gest that empirical work should prioritize these species in their evaluation of vector competence of

mosquitoes for Zika virus.

Our model predicts that fewer than one third of the potential mosquito vectors of Zika virus have

been identified, with over twenty-five additional mosquito species worldwide that may have the

capacity to contribute to transmission. The continuing focus in the published literature on two spe-

cies known to transmit Zika virus (Ae. aegypti and Ae. albopictus) ignores the potential role of other

vectors, potentially misrepresenting the spatial extent of risk. In particular, four species predicted by

our model to be competent vectors – Ae. vexans, Culex quinquefasciatus, Cx. pipiens, and Cx. tarsa-

lis – are found throughout the continental United States. Further, the three Culex species are primary

vectors of West Nile virus (Farajollahi et al., 2011). Cx. quinquefasciatus and Cx. pipiens were

ranked 3rd and 17th by our model, respectively, and together these species were the highest-rank-

ing species endemic to the United States after the known vectors (Ae. aegypti and Ae. albopictus).

Cx. quinquefasciatus has previously been implicated as an important vector of encephalitic flavivi-

ruses, specifically West Nile virus and St. Louis encephalitis (Turell et al., 2005; Hayes et al., 2005),

and a hybridization of the species with Cx. pipiens readily bites humans (Fonseca et al., 2004). The

empirical data available on the vector competence of Cx. pipiens and Cx. quinquefasciatus is cur-

rently mixed, with some studies finding evidence for virus transmission and others not (Guo et al.,

2016; Aliota et al., 2016; Fernandes et al., 2016; Huang et al., 2016). These results suggest, in

combination with evidence for significant genotype x genotype effects on the vector competence of

Ae. aegypti and Ae. albopictus to transmit Zika (Chouin-Carneiro et al., 2016), that the vector com-

petence of Cx. pipiens and Cx. quinquefasciatus for Zika virus could be highly dependent upon the

genetic background of the mosquito-virus pairing, as well as local environmental conditions. Thus,

considering their anthropophilic natures and wide geographic ranges, Cx. quinquefasciatus and Cx.

pipiens could potentially play a larger role in the transmission of Zika in the continental United

States. Further experimental research into the competence of populations of Cx. pipiens to transmit

Zika virus across a wider geographic range is therefore highly recommended, and should be

prioritized.

The vectors predicted by our model have a combined geographic range much larger than that of

the currently suspected vectors of Zika (Figure 3), suggesting that, were these species to be con-

firmed as vectors, a larger population may be at risk of Zika infection than depicted by maps focus-

ing solely on Ae. aegypti and Ae. albopictus. The range of Cx. pipiens includes the Pacific

Northwest and the upper mid-West, areas that are not within the known range of Ae. aegypti or Ae.

albopictus (Darsie and Ward, 2005). Furthermore, Ae. vexans, another predicted vector of Zika

virus, is found throughout the continental US and the range of Cx. tarsalis extends along the entire

West coast (Darsie and Ward, 2005). On a finer scale, these species use a more diverse set of habi-

tats, with Ae. aegypti and Cx. quinquefasciatus mainly breeding in artificial containers, and Ae. vex-

ans and Ae. albopictus being relatively indiscriminate in their breeding sites, including breeding in

natural sites such as tree holes and swamps. Therefore, in addition to the wider geographic region

supporting potential vectors, these findings suggest that both rural and urban areas could serve as

habitat for potential vectors of Zika. We recommend experimental tests of these species for compe-

tency to transmit Zika virus, because a confirmation of these vectors would necessitate expanding

public health efforts to these areas not currently considered at risk.

While transmission requires a competent vector, vector competence does not necessarily equal

transmission risk or inform vectorial capacity. There are many biological factors that, in conjunction

with positive vector competence, determine a vector’s role in disease transmission. For example,

although Ae. aegypti mosquitoes are efficient vectors of West Nile virus, they prefer to feed on

humans, which are dead-head hosts for the disease, and therefore have low potential to serve as a

vector (Turell et al., 2005). Psorophora ferox, although predicted by our model as a potential vector

of Zika virus, would likely play a limited role in transmission because it rarely feeds on humans
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(Molaei et al., 2008). Additionally, vector competence is dynamic, and may be mediated by environ-

mental factors that influence viral development and mosquito immunity (Muturi and Alto, 2011).

Therefore, our list of potential vectors of Zika represents a comprehensive starting point, which

should be furthered narrowed by empirical work and consideration of biological details that impact

transmission dynamics. Given the severe neurological side-effects of Zika virus infection, beginning

with the most conservative method of vector prediction ensures that risk is not underestimated, and

allows public health agencies to interpret the possibility of Zika transmission given local conditions.

Our model serves as a starting point to streamlining empirical efforts to identify areas and popu-

lations at risk for Zika transmission. While our model enables data-driven predictions about the geo-

graphic area at potential risk of Zika transmission, subsequent empirical work investigating Zika

vector competence and transmission efficiency is required for model validation, and to inform future

analyses of transmission dynamics. For example, in spite of its low transmission efficiency in certain

geographic regions (Chouin-Carneiro et al., 2016), Ae. aegypti is anthropophilic (Powell and

Tabachnick, 2013), and may therefore pose a greater risk of human-to-human Zika virus transmis-

sion than mosquitoes that bite a wider variety of animals. On the other hand, mosquito species that

prefer certain hosts in rural environments are known to alter their feeding behaviors to bite alterna-

tive hosts (e.g., humans and rodents) in urban settings, due to changes in host community composi-

tion (Chaves et al., 2010). Environmental factors such as precipitation and temperature directly

influence mosquito populations, and determine the density of vectors in a given area

(Thomson et al., 2006), an important factor in transmission risk. Additionally, socio-economic factors

such as housing type and lifestyle can decrease a populations’ contact with mosquito vectors, and

lower the risk of transmission to humans (Moreno-Madriñán and Turell, 2017). Effective risk model-

ing and forecasting the range expansion of Zika virus in the United States will depend on validating

Ae. aegypti Ae. albopictus Ps. ferox

Cx. pipiens Cx. quinquefasciatus Cx. tarsalis

Distribution maps of predict-

ed vectors of Zika virus in the 

continental US. Aedes 

species are shown in orange, 

Culex in blue and other 

genera in gray. Inset map 

represents overlay of all 

predicted vectors. The range 

of Ae. vexans encompasses 

the entire continental US and 

is not shown for clarity. 

Figure 3. Distribution maps of predicted vectors of Zika virus in the continental US. Maps of Aedes species are based on Centers for disease control

and prevention (2016). All other species’ distributions are georectified maps from Darsie and Ward (2005).
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the vector status of these species, as well as resolving behavioral and biological details that impact

transmission dynamics.

Although we developed this model with Zika virus in mind, our findings have implications for

other emerging flaviviruses and contribute to the recently developed methodology applying

machine learning methods to the prediction of unknown agents of infectious diseases. This tech-

nique has been used to predict rodent reservoirs of disease (Han et al., 2015) and bat carriers of

filoviruses (Han et al., 2016) by training models with host-specific data. Our model, however, incor-

porates additional data by constructing a vector-virus network that is used to inform predictions of

vector-virus associations. The combination of common virus traits with vector-specific traits enabled

us to predict potential mosquito vectors of specific flaviviruses, and to train the model on additional

information distributed throughout the flavivirus-mosquito network.

Uncertainty in our model arises through uncertainty inherent in our datasets. Vector status is not

static (e.g. mutation in the chikungunya virus to increase transmission by Ae. albopictus

[Weaver and Forrester, 2015]) and can vary across vector populations (Bennett et al., 2002). When

incorporating uncertainty in vector status through our supplementary model, our predictions gener-

ally agreed with that of our original model. However, the increased uncertainty did reduce the mod-

els’ ability to distinguish negative links, resulting in higher uncertainty in propensity scores (as

measured by standard deviation) and a larger number of predicted vectors. Additionally, the model

performs poorly when predicting on vector-virus links with trait levels not included in the training

data set, as was the case when omitting yellow fever virus. Another source of uncertainty is regard-

ing vector and virus traits. In addition to intraspecific variation in biological traits, many vectors are

understudied, and common traits such as biting activity are unknown to the level of species. Addi-

tional study into the behavior and biology of less common vector species would increase the accu-

racy of prediction techniques such as this, and allow for a better of understanding of species’

potential role as vectors.

Interestingly, our constructed flavivirus-mosquito network generally concurs with the proposed

dichotomy of Aedes species vectoring hemorrhagic or febrile arboviruses and Culex species vector-

ing neurological or encephalitic viruses (Grard et al., 2010) (Figure 1). However, there are several

exceptions to this trend, notably West Nile virus, which is vectored by several Aedes species. Addi-

tionally, our model predicts several Culex species to be possible vectors of Zika virus. While this may

initially seem contrary to the common phylogenetic pairing of vectors and viruses noted above,

Zika’s symptoms, like West Nile virus, are both febrile and neurological. Thus, its symptoms do not

follow the conventional hemorrhagic/encephalitic division. The ability of Zika virus to be vectored by

a diversity of mosquito vectors could have important public health consequences, as it may expand

both the geographic range and seasonal transmission risk of Zika virus, and warrants further empiri-

cal investigation.

Considering our predictions of potential vector species and their combined ranges, species on

the candidate vector list need to be validated to inform the response to Zika virus. Vector control

efforts that target Aedes species exclusively may ultimately be unsuccessful in controlling transmis-

sion of Zika because they do not control other, unknown vectors. For example, the release of geneti-

cally modified Ae. aegypti to control vector density through sterile insect technique is species-

specific and would not control alternative vectors (Alphey et al., 2010). Additionally, species’ habi-

tat preferences differ, and control efforts based singularly on reducing Aedes larval habitat will not

be as successful at controlling Cx. quinquefasciatus populations (Rey et al., 2006). Predicted vectors

of Zika virus must be empirically tested and, if confirmed, vector control efforts would need to

respond by widening their focus to control the abundance of all predicted vectors of Zika virus. Simi-

larly, if control efforts are to include all areas at potential risk of disease transmission, public health

efforts would need to expand to address regions such as the northern Midwest that fall within the

range of the additional vector species predicted by our model. An understanding of the capacity of

mosquito species to vector Zika virus is necessary to prepare for the potential establishment of Zika

virus in the United States, and we recommend that experimental work start with this list of candidate

vector species.

Evans et al. eLife 2017;6:e22053. DOI: 10.7554/eLife.22053 9 of 38

Research article Computational and Systems Biology Ecology



Materials and methods

Data collection and feature construction
Our dataset comprised a matrix of vector-virus pairs relating all known flaviviruses and their mos-

quito vectors. To construct this matrix, we first compiled a list of mosquito-borne flaviviruses to

include in our study (Van Regenmortel et al., 2000; Kuno et al., 1998; Cook and Holmes, 2006).

Viruses that only infect mosquitoes and are not known to infect humans were not included. Using

this list, we constructed a mosquito-virus pair matrix based on the Global Infectious Diseases and

Epidemiology Network database (GIDEON, 2016), the International Catalog of Arboviruses Includ-

ing Certain Other Viruses of Vertebrates (ArboCat) (Karabatsos, 1985), The Encyclopedia of Medi-

cal and Veterinary Entomology (Russell et al., 2013)and Mackenzie et al. (2012).

We defined a known vector-virus pair as one for which the full transmission cycle (i.e, infection of

mosquito via an infected host (mammal or avian) or bloodmeal that is able to be transmitted via

saliva) has been observed. Basing vector competence on isolation or intrathoracic injection bypasses

several important barriers to transmission (Hardy et al., 1983), and may not be true evidence of a

mosquito’s ability to transmit an arbovirus. We found our definition to be more conservative than

that which is commonly used in disease databases (e.g. Global Infectious Diseases and Epidemiology

Network database), which often assumes isolation from wild-caught mosquitoes to be evidence of a

mosquito’s role as a vector. Therefore, a supplementary analysis investigates the robustness of our

findings with regards to uncertainty in vector status by comparing the analysis reported in the main

text to a second analysis in which any kind of evidence for association, including merely isolating the

virus in wild-caught mosquitoes, is taken as a basis for connection in the virus-vector network (see

Appendix 1 for analysis and results).

Fifteen mosquito traits (Appendix 2—table 1) and twelve virus traits (Appendix 2—table 2) were

collected from the literature. For the mosquito species, the geographic range was defined as the

number of countries in which the species has been collected, based on Walter Reed Biosystematics

Unit, (2016). While there are uncertainties in species’ ranges due to false absences, this represents

the most comprehensive, standardized dataset available that includes both rare and common mos-

quito species. A species’ continental extent was recorded as a binary value of its presence by conti-

nent. A species’ host range was defined as the number of taxonomic classes the species is known to

feed on, with the Mammalia class further split into non-human primates and other mammals,

because of the important role primates play in zoonotic spillovers of vector-borne disease (e.g. den-

gue, chikungunya, yellow fever, and Zika viruses) (Weaver, 2005; Diallo et al., 2005; Weaver et al.,

2016). The total number of unique flaviviruses observed per mosquito species was calculated from

our mosquito-flavivirus matrix. All other traits were based on consensus in the literature (see Appen-

dix III for sources by species). For three traits – urban preference, endophily (a proclivity to bite

indoors), and salinity tolerance – if evidence of that trait for a mosquito was not found in the litera-

ture, it was assumed to be negative.

We collected data on the following virus traits: host range (Mahy, 2009; Mackenzie et al., 2012;

Chambers and Monath, 2003; Cook and Zumla, 2009b), disease severity (Mackenzie et al., 2012),

human illness (Chambers and Monath, 2003; Cook and Zumla, 2009), the presence of a mutated

envelope protein, which controls viral entry into cells (Grard et al., 2010), year of isolation (Karabat-

sos, 1985), and host range (Karabatsos, 1985). Disease severity was based on Mackenzie et al.

(2012), ranging from no known symptoms (e.g. Kunjin virus) to severe symptoms and significant

human mortality (e.g. yellow fever virus). For each virus, vector range was calculated as the number

of mosquito species for which the full transmission cycle has been observed. Genome length was cal-

culated as the mean of all complete genome sequences listed for each flavivirus in the Virus Patho-

gen Database and Analysis Resource (http://www.viprbrc.org/). For more recently discovered

flaviviruses not yet cataloged in the above databases (i.e., New Mapoon Virus, Iquape virus), viral

traits were gathered from the primary literature (sources listed in Appendix 3).

Predictive model
Following Han et al. (2015), boosted regression trees (BRT) (Friedman, 2001) were used to fit a

logistic-like predictive model relating the status of all possible virus-vector pairs (0: not associated,

1: associated) to a predictor matrix comprising the traits of the mosquito and virus traits in each
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pair. Boosted regression trees circumvent many issues associated with traditional regression analysis

(Elith et al., 2008), allowing for complex variable interactions, collinearity, non-linear relationships

between covariates and response variables, and missing data. Additionally, this technique performs

well in comparison with other logistic regression approaches (Friedman, 2001). Trained boosted

regression tree models are dependent on the split between training and testing data, such that each

model might predict slightly different propensity values. To address this, we trained an ensemble of

25 internally cross-validated BRT models on independent partitions of training and testing data. The

resulting model demonstrated low variance in relative variable importance and overall model accu-

racy, suggesting models all converged to a similar result.

Prior to the analysis of each model, we randomly split the data into training (70%) and test (30%)

sets while preserving the proportion of positive labels (known associations) in each of the training

and test sets. Models were trained using the gbm package in R (Ridgeway, 2015), with the maxi-

mum number of trees set to 25,000, a learning rate of 0.001, and an interaction depth of 5. To cor-

rect for optimistic bias (Smith et al., 2014), we performed 10-fold cross validation and chose a bag

fraction of 50% of the training data for each iteration of the model. We estimated the performance

of each individual model with three metrics: Area Under the Receiver Operator Curve, specificity,

and sensitivity. For specificity and sensitivity, which require a preset threshold, we thresholded pre-

dictions on the testing data based on the value which maximized the sum of the sensitivity and spec-

ificity, a threshold robust to the ratio of presence to background points in presence-only datasets

(Liu et al., 2016). Variable importance was quantified by permutation (Breiman, 2001) to assess the

relative contribution of virus and vector traits to the propensity for a virus and vector to form a pair.

Because we transformed many categorical variables into binary variables (e.g., continental range as

binary presence or absence by continent), the sum of the relative importance for each binary feature

was summed to obtain a single value for the entire variable.

Each of our twenty-five trained models was then used to predict novel mosquito vectors of Zika

by applying the trained model to a data set consisting of the virus traits of Zika paired with the traits

of all mosquitoes for which flaviviruses have been isolated from wild caught individuals, and,

depending on the species, may or may not have been tested in full transmission cycle experiments

(a total of 180 mosquito species). This expanded dataset allowed us to predict over a large number

of mosquito species, while reasonably limiting our dataset to those species suspected of transmitting

flaviviruses. The output of this model was a propensity score ranging from 0 to 1. In our case, the

final propensity score for each vector was the mean propensity score assigned by the twenty-five

models. To label unobserved edges, we thresholded propensity scores at the value of lowest ranked

known vector (Liu et al., 2013).

Model validation
In addition to conventional performance metrics, we conducted additional analyses to further vali-

date both this method of prediction, and our model specifically. To account for uncertainty in the

vector-virus links in our initial matrix, we repeated our analysis for a vector-virus matrix with a less

conservative definition of a positive link (field isolation and above), referred to as our supplementary

model. Vector competence is a dynamic trait, and there exists significant intraspecific variation in the

ability of a vector to transmit a virus for certain species of mosquitoes (Diallo et al., 2005;

Gubler et al., 1979). Our supplementary model is based on a less conservative definition of vector

competence and includes species implicated as vectors, but not yet verified through laboratory com-

petence studies, and therefore accounts for additional uncertainty such as intraspecific variation.

While this approach is well-tested in epidemiological applications (Parascandola, 2004), it has

only recently been applied to predict ecological associations, and, as such, has limitations unique to

this application. To further evaluate this prediction method, we performed a modified ‘leave-one-

out’ analysis, whereby we trained a model to a dataset from which a well-studied virus had been

omitted, and then predicted vectors for this virus and compared them against a list of known vec-

tors. We repeated this analysis for West Nile, dengue, and yellow fever viruses, following the same

method of training as for our original model. While this analysis differs from our original method, it

provides a more stringent evaluation of this method of prediction because the model is trained on

an incomplete dataset and predicts on unfamiliar data, a more difficult task than that posed to our

original model.
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Doherty RL, Carley JG, Gorman BM, Buchanan P, Welch JS, Whitehead RH. 1964. Studies of arthropod-borne
virus infections in Queensland. Australian Journal of Experimental Biology and Medical Science 42:149–164.
doi: 10.1038/icb.1964.16

dos Santos Silva J, Alencar J, Costa JM, Seixas-Lorosa E, Guimarães AÉ. 2012. Feeding patterns of mosquitoes
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Muñoz J, Ruiz S, Soriguer R, Alcaide M, Viana DS, Roiz D, Vázquez A, Figuerola J. 2012. Feeding patterns of
potential west nile virus vectors in south-west spain. PLoS ONE 7:e39549. doi: 10.1371/journal.pone.0039549,
PMID: 22745781

Multini LC, Marrelli MT, Wilke AB. 2015. Microsatellite loci cross-species transferability in aedes fluviatilis
(Diptera:culicidae): a cost-effective approach for population genetics studies. Parasites & Vectors 8:635.
doi: 10.1186/s13071-015-1256-9, PMID: 26667177

Murdock CC, Olival KJ, Perkins SL. 2010. Molecular identification of host feeding patterns of snow-melt
mosquitoes (Diptera: culicidae): potential implications for the transmission ecology of Jamestown canyon virus.
Journal of Medical Entomology 47:226–229. doi: 10.1093/jmedent/47.2.226, PMID: 20380304

Evans et al. eLife 2017;6:e22053. DOI: 10.7554/eLife.22053 21 of 38

Research article Computational and Systems Biology Ecology



Muriu SM, Muturi EJ, Shililu JI, Mbogo CM, Mwangangi JM, Jacob BG, Irungu LW, Mukabana RW, Githure JI,
Novak RJ. 2008. Host choice and multiple blood feeding behaviour of malaria vectors and other anophelines in
mwea rice scheme, Kenya. Malaria Journal 7:43. doi: 10.1186/1475-2875-7-43, PMID: 18312667

Muturi EJ, Alto BW. 2011. Larval environmental temperature and insecticide exposure alter aedes aegypti
competence for arboviruses. Vector-Borne and Zoonotic Diseases 11:1157–1163. doi: 10.1089/vbz.2010.0209,
PMID: 21453010

Muturi EJ, Muriu S, Shililu J, Mwangangi JM, Jacob BG, Mbogo C, Githure J, Novak RJ. 2008. Blood-feeding
patterns of culex quinquefasciatus and other culicines and implications for disease transmission in mwea rice
scheme, Kenya. Parasitology Research 102:1329–1335. doi: 10.1007/s00436-008-0914-7, PMID: 18297310

Mwandawiro C, Tsuda Y, Tuno N, Higa Y, Urakawa E, Sugiyama A, Yanagi T, Takagi M. 1999. Host-feeding
patterns of culex tritaeniorhynchus and anopheles sinensis (Diptera: culicidae) in a ricefield agroecosystem.
Medical Entomology and Zoology 50:267–273. doi: 10.7601/mez.50.267

Mwangangi JM, Mbogo CM, Muturi EJ, Nzovu JG, Githure JI, Yan G, Minakawa N, Novak R, Beier JC. 2007.
Spatial distribution and habitat characterisation of anopheles larvae along the kenyan coast. Journal of Vector
Borne Diseases 44:44–51. PMID: 17378216

Mwangangi JM, Muturi EJ, Mbogo CM. 2009. Seasonal mosquito larval abundance and composition in Kibwezi,
lower eastern Kenya. Journal of Vector Borne Diseases 46:65–71. PMID: 19326710

Mwangangi JM, Muturi EJ, Muriu SM, Nzovu J, Midega JT, Mbogo C. 2013. The role of anopheles arabiensis
and anopheles coustani in indoor and outdoor malaria transmission in Taveta district, Kenya. Parasites &
Vectors 6:114. doi: 10.1186/1756-3305-6-114, PMID: 23601146

Natal D, Barata EAMDF, Urbinatti PR, Barata JMS, Paula MBD. 1998. On the adult mosquito fauna (Diptera,
Culicidae) in an hydroelectric project area in the Parana river basin, Brazil. Revista Brasileira De Entomologia
41:213–216.

Navarro JC, Enriquez S, Duque P, Campana Y, Benitez-Ortiz W. 2015. New Sabethes (Diptera: culicidae) species
records for Ecuador, from Colonso-Chalupas biological reserve, province of napo (Amazon). Journal of
Entomology and Zoology Studies 3:169–172.

Nicholson J, Ritchie SA, Russell RC, Webb CE, Cook A, Zalucki MP, Williams CR, Ward P, van den Hurk AF. 2015.
Effects of cohabitation on the population performance and survivorship of the invasive mosquito aedes
albopictus and the resident mosquito aedes notoscriptus (Diptera: culicidae) in Australia. Journal of Medical
Entomology 52:375–385. doi: 10.1093/jme/tjv004, PMID: 26334811

Nikolay B, Diallo M, Faye O, Boye CS, Sall AA. 2012. Vector competence of culex neavei (Diptera: culicidae) for
usutu virus. The American Journal of Tropical Medicine and Hygiene 86:993–996. doi: 10.4269/ajtmh.2012.11-
0509, PMID: 22665607

Nir Y. 1972. Some characteristics of Israel turkey virus. Archiv Fur Die Gesamte Virusforschung 36:105–114.
doi: 10.1007/BF01250300, PMID: 5012435

Nisbet DJ, Lee KJ, van den Hurk AF, Johansen CA, Kuno G, Chang GJ, Mackenzie JS, Ritchie SA, Hall RA. 2005.
Identification of new flaviviruses in the kokobera virus complex. The Journal of General Virology 86:121–124.
doi: 10.1099/vir.0.80381-0, PMID: 15604438

Njabo KY, Cornel AJ, Sehgal RN, Loiseau C, Buermann W, Harrigan RJ, Pollinger J, Valkiūnas G, Smith TB. 2009.
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Indonesica De Morbis Tropicis; Quarterly Journal of Tropical Medicine and Hygiene 1:142–144. PMID: 18136
881

Van Regenmortel MHV, Fauquet CM, Bishop DHL. 2000. Virus Taxonomy : Classification and Nomenclature of
Viruses : Seventh Report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press.
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Appendix 1

Comparison model trained on virus isolation data
The primary model is trained on vector-virus pairs for which the full transmission cycle has been

observed. However, many sources, such as the Global Infectious Diseases and Epidemiology

Network database (GIDEON), interpret isolation of a virus in wild-caught mosquitoes as

evidence of a mosquito’s role as a vector. In order to investigate the robustness of our

findings, we conducted a supplementary analysis in which any evidence for association,

including isolation of the virus, is used as the basis for a link in the vector-virus network.

Data collection
As in the primary model, the mosquito-virus pair matrix was constructed based on the Global

Infectious Diseases and Epidemiology Network database (GIDEON, 2016), the International

Catalog of Arboviruses Including Certain Other Viruses of Vertebrates (ArboCat)

(Karabatsos, 1985), The Encyclopedia of Medical and Veterinary Entomology (Russell et al.,

2013) and (Mackenzie et al., 2012). This resulted in a dataset containing 180 mosquito

species and 37 viruses, for a total of 334 vector-virus pairs. The vector and virus trait

datasets were identical to those used in the primary model (see Appendix 2 for lists of

traits).

Predictive model
We used boosted regression trees (Friedman, 2001) to fit a logistic-like predictive model

relating the status of all possible virus-vector pairs (0: not associated, 1:associated) to a

predictor matrix comprising the traits of the mosquito and virus traits in each pair. We fit a

total of 25 models, applying different training and testing datasets to each, to reduce the

dependence dependent on the split between training and testing data. Prior to the analysis

of each model, we randomly split the data into training (70%) and test (30%) sets while

preserving the proportion of positive labels in each of the training and test sets. Models

were trained using the gbm package in R (Ridgeway, 2015), with the maximum number of

trees set to 25,000 and a learning rate of 0.001. To correct for optimistic bias (Smith et al.,

2014), we performed 10-fold cross validation and bagged 50% of the training data for each

iteration of the model. These methods are identical to those used to train the primary

model. We quantified variable importance by permutation (Breiman, 2001) to assess the

relative contribution of virus and vector traits to the propensity for a virus and vector to form

a pair.Each of our twenty-five trained models was then used to predict novel mosquito

vectors of Zika over the whole virus-vector pair dataset, resulting in twenty-five propensity

values assigned to each mosquito species, of which we took the mean. Our prediction

dataset, therefore, consisted of the common virus traits of Zika paired with the common

traits of all mosquitoes in our flavivirus dataset, for a total of 180 species. The output of this

model was a propensity score ranging from 0 to 1. In our case, the final propensity score for

each vector was the mean propensity score assigned by the twenty-five models. To label

unobserved edges, we thresholded propensity at the value of lowest ranked known vector

(Liu et al., 2013).

Results
Boosted regression models trained on the weakest evidence of association accurately predicted

mosquito vector-virus associations in the test dataset (AUC= 0.84 ±0.02). When thresholded

at the value of the lowest ranked known vector, the model predicted 66 potential vectors of

ZIKV, including 42 unknown vectors LABEL:table:predictions. The majority of predicted

vectors were Aedes species (39 species), with Culex as the second most predicted genus (15
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species). It included all but three of the vectors predicted by the main model (Ae.

occidentalis, Ru. frontosa, Cx. rubinotus).

Model comparisons
Our supplementary and primary models, trained on virus isolation and above and full

transmission cycle, respectively, generally concur. The models are fairly correlated

(Spearman’s coefficient, r=0.508 when considering the propensities of all 180 species 1.

However, when only comparing the correlation of propensities between those vectors above

the threshold of lowest ranked known vector, the models become much more correlated

(r=0.693). This suggests that our model has a higher sensitivity than specificity, and is better

able to predict those vectors that are competent for ZIKV than those that are not. The

predictive accuracy of our supplementary model was slightly lower than our primary model.

However, this may be an indirect effect of a lower positive-negative label ratio in the dataset

used in the primary model, which can artificially inflate AUC values (Lobo et al., 2008).

The models differ in their ability to differentiate between vectors and non-vectors. The

distribution of propensities for our main model is more skewed towards lower propensity

values than is the supplementary model 2. This is logical, as the dataset used to train the

main model contains a higher proportion of zeros (e.g. vector-virus pairs with no known

association) than the supplementary model. The difference in distributions is accounted for

by a similar discrepancy in threshold propensity values based on the lowest ranked known

vector. The main model, which has a higher frequency of near-zero propensities, uses a

lower threshold value than the supplementary model, however both thresholds qualitatively

lie above the majority of the distributions.

Conclusion
In summary, our supplementary model predicts which mosquito species may test positive for

ZIKV through isolation in wild-caught individuals. As isolation can be understood as evidence

of a vector’s role in transmission of a disease, our supplementary model may also be

interpreted as a ranking of potential vectors of ZIKV, similar to our main model. In fact, both

models are well correlated in their ranking of species, although the main model, which trains

on fewer vector-virus links, predicts fewer vectors than the supplementary model. Those

species predicted by both models, such as Cx. quinquefasciatus and Ae. vexans, should be

prioritized for further research on their competency to transmit ZIKV. Furthermore, as

suggested by the main model, the current geographic range at risk for ZIKV transmission in

the United States should be expanded to include the range of these species ranked highly

by both our main and supplementary models.

Appendix 1—table 1. Vector predictions by the supplementary model.

Vector
GBM Prediction

SD

Aedes aegypti 0.84 0.06

Aedes albopictus 0.81 0.07

Aedes vittatus 0.76 0.10

Aedes africanus 0.70 0.11

Aedes taylori 0.65 0.14

Aedes furcifer 0.65 0.14

Aedes luteocephalus 0.59 0.12

Aedes metallicus 0.59 0.13

Aedes opok 0.58 0.13

Culex quinquefasciatus 0.56 0.13

Appendix 1—table 1 continued on next page

Evans et al. eLife 2017;6:e22053. DOI: 10.7554/eLife.22053 28 of 38

Research article Computational and Systems Biology Ecology



Appendix 1—table 1 continued

Vector
GBM Prediction

SD

Aedes tarsalis 0.56 0.12

Aedes scutellaris 0.56 0.11

Aedes minutus 0.55 0.12

Aedes polynesiensis 0.53 0.11

Mansonia uniformis 0.52 0.12

Aedes fowleri 0.48 0.14

Aedes vexans 0.46 0.11

Aedes dalzieli 0.45 0.13

Culex annulirostris 0.45 0.08

Mansonia africana 0.42 0.12

Psorophora ferox 0.39 0.14

Culex tarsalis 0.38 0.09

Culex tritaeniorhynchus 0.37 0.08

Culex pipiens 0.37 0.13

Culex neavei 0.34 0.06

Aedes vigilax 0.34 0.07

Aedes flavicollis 0.33 0.14

Aedes scapularis 0.31 0.07

Aedes taeniarostris 0.31 0.13

Aedes jamoti 0.31 0.13

Aedes circumluteolus 0.30 0.13

Eretmapodites inornatus 0.30 0.15

Aedes cumminsii 0.29 0.11

Culex vishnui 0.28 0.05

Aedes lineatopennis 0.28 0.11

Aedes neoafricanus 0.27 0.11

Aedes bromeliae 0.26 0.10

Culex guiarti 0.26 0.06

Culex perfuscus 0.26 0.06

Aedes stokesi 0.26 0.12

Culex telesilla 0.25 0.06

Anopheles gambiae 0.24 0.11

Sabethes chloropterus 0.24 0.11

Aedes hensilli 0.24 0.09

Aedes serratus 0.23 0.06

Aedes chemulpoensis 0.23 0.08

Aedes normanensis 0.23 0.06

Culex bitaeniorhynchus 0.22 0.09

Culex pseudovishnui 0.22 0.05

Aedes argenteopunctatus 0.21 0.06

Wyeomyia vanduzeei 0.21 0.15

Culex p. molestus 0.21 0.06
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Appendix 1—table 1 continued

Vector
GBM Prediction

SD

Culex salinarius 0.20 0.04

Aedes grahami 0.19 0.15

Anopheles coustani 0.19 0.08

Aedes longipalpis 0.18 0.18

Uranotaenia sapphirina 0.17 0.08

Aedes domesticus 0.17 0.06

Aedes abnormalis 0.17 0.06

Aedes natronius 0.17 0.06

Eretmapodites chrysogaster 0.17 0.08

Aedes mcintoshi 0.17 0.06

Aedes ochraceus 0.16 0.06

Culex fatigans 0.16 0.07

Anopheles amictus 0.16 0.06

Eretmapodites quinquevittatus 0.16 0.08

DOI: 10.7554/eLife.22053.007

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●
●●

●

●
●

●

●

●
●
●

●

●●
●

●

●
●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Correlation Between Models

Main Model

S
u
p
p
le

m
e
n
ta

ry
 M

o
d
e
l

Spearman's Coefficient:0.508

Appendix 1—figure 1. Propensity values of the main and supplementary models. Dashed

lines represent corresponding threshold values for each model based on lowest ranked

known vector propensities.
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Appendix 1—figure 2. Distribution of propensity values for the main and supplementary mod-

els. Dashed lines represent corresponding threshold values for each model based on lowest

ranked known vector propensities.
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Appendix 2

Tables of vector and virus traits

Appendix 2—table 1. Table of mosquito traits used in model.

Trait Type Subcategories

Anthropophily binary NA

Subgenus factor NA

Host breadth numeric NA

Host range
binary
(x4)

Primate, Non-Primate Mammal, Bird, Cold-Blooded Vertebrate

Geographic area numeric NA

Continental range
binary
(x8)

Africa, Middle East, Australia, Pacific, Asia, Europe, North America,
South America

Biting time
binary
(x4)

Dawn, Day, Dusk, Night

Artificia container breeder binary NA

Oviposition site
binary
(x8)

Treehole, Natural Container, Permanent Fresh Water, Rockhole,
Marsh, Swamp, Temporary Ground Pools, Rice Paddy

Habitat discrimination numeric NA

Salinity tolerance binary NA

Habitat permanence binary NA

Urban preference binary NA

Endophily binary NA

No. of flaviviruses vec-
tored

numeric NA

DOI: 10.7554/eLife.22053.010

Appendix 2—table 2. Table of virus traits used in model.

Trait Type Subcategories

Group factor
Japanese Encephalitis, Ntaya, Yellow Fever, Aroa, Dengue, Koko-
bera, Spondweni

Continental range
binary
(x8)

Africa, Middle East, Australia, Pacific, Asia, Europe, North America,
South America

Clade factor VI, VII, IX, X, XI, XII, XIV,

Year isolated numeric NA

Mutated envelope binary NA

Host breadth numeric NA

Host Range
binary
(x6)

Human, Non-Human Primate, Rodent, Other Mammal, Bird,
Marsupial

Mosquito vector breadth numeric NA

Vectored by other ar-
thropods

binary NA

Disease symptoms
binary
(x2)

Encephalitis, Fever

Disease severity numeric NA

Genome length numeric NA

DOI: 10.7554/eLife.22053.011
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Appendix 3

Primary sources used for vector and virus traits

Appendix 3—table 1. Primary sources for mosquito traits.

Mosquito species Sources

Aedeomyia africana Robert et al. (1998), Harbach (2015), Omondi et al. (2015)

Aedeomyia catasticta Harbach (2015), Jansen et al. (2009), Wright et al. (1981)

Aedes abnormalis Iwuala (1981)

Aedes aegypti Halstead (2008), Ramasamy et al. (2011)

Aedes africanus Haddow (1961)

Aedes albopictus Ramasamy et al. (2011)

Aedes alternans NSW Health (2016), Russell et al. (2013), Knight et al. (2012)

Aedes argenteopunctatus Harbach (2015), Fontenille et al. (1998)

Aedes bancroftianus NSW Health (2016), Russell (1986), Harbach (2015)

Aedes bromeliae Bennett et al. (2015), Beran (1994), Digoutte (1999)

Aedes caballus Harbach (2015), Steyn and Schulz (1955)

Aedes canadensis Carpenter and LaCasse (1974), Andreadis et al. (2004)

Aedes cantans Renshaw et al. (1994, 1995), Service (1993)

Aedes cantator Giberson et al. (2007)

Aedes chemulpoensis Feng (1983)

Aedes cinereus
Morrison and Andreadis (1992), Anderson et al. (2007), Becker and
Neumann (1983), Molaei et al. (2008)

Aedes circumluteolus Jupp and McIntosh (1987), Paterson et al. (1964), Chandler et al. (1975)

Aedes cumminsi Lane and Crosskey (2012)

Aedes curtipes Harbach (2015), MacDonald et al. (1965), Knight and Hull (1953)

Aedes dalzieli Fontenille et al. (1998)

Aedes domesticus Harbach (2015), Lane and Crosskey (2012), Geoffroy (1987)

Aedes dorsalis Aldemir et al. (2010), Wang et al. (2012)

Aedes flavicolis Reinert (1970)

Aedes fluviatilis Multini et al. (2015), Baton et al. (2013), Reinert et al. (2008)

Aedes fowleri (Boussès et al., 2013)

Aedes furcifer Beran (1994), Hopkins (1952)

Aedes grahami Harbach (2015)

Aedes hensilli Ledermann et al. (2014), Bohart and Ingram (1946)

Aedes ingrami Lane and Crosskey (2012), Haddow (1946b, 1964, 1942)

Aedes jamoti Harbach (2015), Le Berre and Hamon (1961)

Aedes japonicus Kaufman and Fonseca (2014), Kampen and Werner (2014)

Aedes juppi Harbach (2015), Jupp and Kemp (1998)

Aedes koreicus Harbach (2015), Montarsi et al. (2013), Medlock et al. (2015)

Aedes lineatopennis
Harbach (2015), Amerasinghe and Indrajith (1995), Jupp (1967),
Linthicum et al. (1985)

Aedes longipalpis Harbach (2015)

Aedes luteocephalus Diallo et al. (2012a), Service (1965b), Boorman (1961)

Aedes mcintoshi Walter Reed Biosystematics Unit (2016), Harbach (2015)

Aedes mediolineatus Harbach (2015)
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Appendix 3—table 1 continued

Mosquito species Sources

Aedes melanimon
Walter Reed Biosystematics Unit (2016), Barker et al. (2009), Chap-
man (1960)

Aedes metallicus Harbach (2015), Beran (1994)

Aedes minutus Harbach (2015), Diallo et al. (2012b)

Aedes natronius Harbach (2015)

Aedes neoafricanus Harbach (2015), Diallo et al. (2012b), Hervy et al. (1986)

Aedes normanensis NSW Health (2016), Hearnden and Kay (1995)

Aedes notoscriptus
NSW Health (2016), Jansen et al. (2015), Nicholson et al. (2015),
Derraik et al. (2007), Frances et al. (2002)

Aedes occidentalis Harbach (2015), Evans (1926)

Aedes ochraceus Corbet (1962), Lutomiah et al. (2014)

Aedes opok Beran (1994), Herve et al. (1975), Germain et al. (1976)

Aedes polynesiensis Young (2007)

Aedes procax NSW Health (2016), Ryan and Kay (2000)

Aedes scapularis Forattini et al. (1988)

Aedes scutellaris Penn (1947)

Aedes serratus Guimarães et al. (2000), Cardoso et al. (2010)

Aedes simulans Harbach (2015)

Aedes sollicitans
Giberson et al. (2007), Carpenter and LaCasse (1974), Crans and
Sprenger (1996), Crans et al. (1996)

Aedes stokesi Harbach (2015), Reinert (1986)

Aedes taeniarostris Eastwood et al. (2013)

Aedes tarsalis Ellis et al. (2007)

Aedes taylori Walter Reed Biosystematics Unit (2016)

Aedes togoi Tsunoda et al. (2012), Lee and Hong (1995)

Aedes tremulus Kay et al. (2000), Webb et al. (2016)

Aedes trivittatus Carpenter and LaCasse (1974), Andreadis et al. (2004)

Aedes vexans Boxmeyer and Palchick (1999), Aldemir et al. (2010)

Aedes vigilax NSW Health (2016), Chapman et al. (1999)

Aedes vittatus Boorman (1961), Selvaraj and Dwarakanath (1992)

Anopheles amictus Hearnden and Kay (1995)

Anopheles barbirostris
Sriwichai et al. (2016), Amerasinghe and Indrajith (1995), Bashar et al.
(2012)

Anopheles coustani
Fornadel et al. (2011), Mwangangi et al. (2013), Muriu et al. (2008),
Mwangangi et al. (2007)

Anopheles crucians Grieco et al. (2006), Qualls et al. (2012)

Anopheles domicola Diagne et al. (1994)

Anopheles funestus Gillies et al. (1968), Githeko et al. (1996)

Anopheles gambiae Coggeshall (1944), Gillies et al. (1968), Huho et al. (2013)

Anopheles hyrcanus Rueda et al. (2006, 2005), Ponçon et al., 2007), Aldemir et al. (2010)

Anopheles maculipennis Aldemir et al. (2010), Brugman et al. (2015), Gordeev et al. (2005)

Anopheles meraukensis Cooper et al. (2006), NSW Health (2016)

Anopheles paludis Karch and Mouchet (1992), Mouchet (1957)

Anopheles pharoensis Gillies et al. (1968), Taye et al. (2006)

Anopheles philippinensis Toma et al. (2002), Silver (2007), Bashar et al. (2012)
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Appendix 3—table 1 continued

Mosquito species Sources

Anopheles pretoriensis Al-Sheik (2011), Shililu et al. (2003)

Anopheles punctipennis Carpenter and LaCasse (1974)

Anopheles quadrimacula-
tus

Carpenter and LaCasse (1974)

Anopheles subpictus Sinka et al. (2011)

Anopheles tesselatus Miyagi et al. (1983), Paramasivan et al. (2015)

Armigeres obturbans Harbach (2015)

Coquillettidia aurites Schwetz (1930), Njabo et al. (2009)

Coquillettidia linealis Russell et al. (2013), Williams (2005), Webb et al. (2016)

Coquillettidia metallica Njabo et al. (2009), Mcclelland ga et al. (1960)

Coquillettidia perturbans
Carpenter and LaCasse (1974), Anderson et al. (2007), Bosak et al.
(2001), Callahan and Morris (1987)

Coquillettidia richiardii Ventim et al. (2012), Serandour et al. (2006), Versteirt et al. (2013)

Coquillettidia venezuelen-
sis

Guimarães et al. (2000), Degallier et al. (1978)

Culex adamesi Sirivanakarn and Galindo (1980)

Culex annulirostris
NSW Health (2016), Hall-Mendelin et al. (2012), Williams and Kokkinn
(2005)

Culex antennatus
Gad et al. (1995), Karch et al. (1993), Morsy et al. (1990), Kenawy et al.
(1998)

Culex australicus NSW Health (2016), Russell (2012)

Culex bahamensis Lopes (1997)

Culex bitaeniorhynchus
Kulkarni and Rajput (1988), Fakoorziba and Vijayan (2008), Har-
bach (1988)

Culex caudelli Alfonzo et al. (2005), Chadee and Tikasingh (1989)

Culex coronator Yee and Skiff (2014), de Oliveria et al. (1985)

Culex crybda de Oliveria et al. (1985)

Culex duttoni Mwangangi et al. (2009)

Culex epidesmus Kanojia (2003), Reisen et al. (1976)

Culex fatigans
Flordia Medical Entomology Laboratory (2016), Liu et al. (1960),
Robinson (2005)

Culex fuscocephala
Ohba et al. (2015), Kulkarni and Rajput (1988), Amerasinghe and
Munasingha (1994), Wang (1975)

Culex gelidus Williams (2005), Sudeep (2014)

Culex guiarti Logan et al. (1991)

Culex modestus
Veronesi et al. (2012), Radrova et al. (2013),Muñoz et al. (2012), Chalvet-
Monfray et al. (2007), Fyodorova et al. (2006)

Culex nakuruensis Someren (1967)

Culex neavei Diallo et al. (2012a), Nikolay et al. (2012), Fall et al. (2013, 2011)

Culex nebulosus Adebote et al. (2006), Okorie (1978), Davis and Philip (1931)

Culex nigripalpus
Laporta et al. (2008), Carpenter and LaCasse (1974), Flordia Medical
Entomology Laboratory. (2016)

Culex p. molestus Robinson (2005), Gomes et al. (2013)

Culex perexiguus Muñoz et al. (2012), Ammar et al. (2012)

Culex perfuscus Hopkins (1952), Diallo et al. (2014), Service (1993)

Culex pipiens Harbach (1988), Anderson et al. (2007)

Culex poicilipes Muturi et al. (2008), Yamar et al. (2005), Chevalier et al. (2004)
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Appendix 3—table 1 continued

Mosquito species Sources

Culex pruina Wanson and Lebred (1946)

Culex pseudovishnui
Fakoorziba and Vijayan (2008), Reisen et al. (1976), Amerasinghe and
Indrajith (1995), Reuben et al. (1992)

Culex pullus Johansen et al. (2009), Webb et al. (2016)

Culex quinquefasciatus
Flordia Medical Entomology Laboratory (2016), DeGroote and Sugu-
maran (2012)

Culex restuans
Apperson et al. (2002), Ebel et al. (2005), Kilpatrick et al. (2005),
Molaei et al. (2008)

Culex rubinotus Jupp et al. (1976)

Culex salinarius Rochlin et al. (2008), Mackay et al. (2010), Rey et al. (2006)

Culex sitiens NSW Health (2016), Prummongkol et al. (2012)

Culex spissipes Takahashi (1968), Degallier et al. (1978)

Culex squamoses NSW Health (2016), Jansen et al. (2009)

Culex taeniopus Davies (1978), 1975), Lopes (1996)

Culex tarsalis Reisen (1993), Rueger et al. (1964)

Culex telesilla Njogu and Kinoti (1971)

Culex thalassius
Kerr (1932), Snow and Boreham (1978), Service (1993), Kirby et al.
(2008)

Culex theileri Aldemir et al. (2010), Muñoz et al. (2012), Simsek (2004)

Culex tritaeniorhynchus
Kanojia and Geevarghese (2004), Fakoorziba and Vijayan (2008),
Flemings (1959), Amerasinghe and Munasingha (1994),
Mwandawiro et al. (1999), Bhattacharyya et al. (1994), Reuben (1971)

Culex univittatus Jupp (1967), Chandler et al. (1975), Jupp and Brown (1967)

Culex virgultus Carpenter and LaCasse (1974)

Culex vishnui Chen et al. (2014), Bhattacharyya et al. (1994), Ohba et al. (2015)

Culex vomerifer
Ferro et al. (2003), Natal et al. (1998), Suárez-Mutis et al. (2009),
Sallum and Forattini (1996)

Culex weschei Snow and Boreham (1973), Lane and Crosskey (2012)

Culex whitmorei Begum et al. (1986), Reisen et al. (1976), Peiris et al. (1992)

Culex zombaensis Lane and Crosskey (2012), Logan et al. (1991)

Culiseta alaskensis Frohne (1953)

Culiseta impatiens Sommerman (1964), Frohne (1953), Murdock et al. (2010), Smith (1966)

Culiseta inornata Carpenter and LaCasse (1974), Smith (1966), Belton (1979)

Culiseta melanura
Molaei et al. (2006), Mahmood and Crans (1998), Flordia Medical
Entomology Laboratory (2016), Hickman and Brown (2013)

Deinocerites pseudes Martin et al. (1973), Peyton et al. (1964)

Eretmapodites chrysoga-
ster

Doucet and Cachan (1961), Sylla et al. (2013), Service (1965a),
Haddow (1946b)

Eretmapodites inornatus Haddow (1946a)

Eretmapodites oedipo-
deios (oedipodius)

Haddow (1946a), de Cunha Ramos and Ribeiro (1990)

Eretmapodites quinquevit-
tatus

Bohart and Ingram (1946), Jupp and Kemp (2002), Lounibos (1980)

Eretmapodites silvestris Lounibos (1980), Hoogstraal and Knight (1951)

Ficalbia flavens King and Hoogstraal (1946)

Haemagogus anastasionis
Van der Kuyp (1949), Bueno-MarÃ etal. (2015), Maestre-Serrano et al.
(2013)

Appendix 3—table 1 continued on next page

Evans et al. eLife 2017;6:e22053. DOI: 10.7554/eLife.22053 36 of 38

Research article Computational and Systems Biology Ecology



Appendix 3—table 1 continued

Mosquito species Sources

Haemagogus celeste
Bueno-MarÃ etal., 2015, Maestre-Serrano et al. (2013), Beran (1994),
Chadee et al. (1985)

Haemagogus equinus Chadee et al. (1985, 1993), Waddell and Taylor (1945)

Haemagogus janthinomys Arnell (1973), Alencar et al. (2005), Chadee et al. (1992)

Haemagogus leucocelae-
nus

Alencar et al. (2008), Pinto et al. (2009)

Haemagogus spegazzinii Arnell (1973), Galindo et al. (1951, 1950)

Mansonia africana Karch et al. (1993), Chandler et al. (1975), Hopkins (1952)

Mansonia septempunctata NSW Health (2016), Harbach (2015)

Mansonia titillans Carpenter and LaCasse (1974), Viana et al. (2010), Stein et al. (2013)

Mansonia uniformis Sabesan et al. (1991), Kumar et al. (1989), Wharton (1962)

Mimomyia hispida Boreham et al. (1975), Harbach (2015)

Mimomyia lacustris Harbach (2015)

Mimomyia splendens Boreham et al. (1975), Robert et al. (1998)

Orthopodomyia signifera Hanson et al. (1995), Burkett-Cadena (2013)

Psorophora albipes
Alfonzo et al. (2005), dos Santos Silva et al. (2012), Guimarães et al.
(2000)

Psorophora columbiae Carpenter and LaCasse (1974)

Psorophora ferox
Carpenter and LaCasse (1974), Flordia Medical Entomology Laboratory
(2016), Degallier et al. (1978), Molaei et al. (2008)

Runchomyia frontosa Cardoso et al. (2015), Heinemann et al. (1980)

Sabethes albiprivus Gomes et al. (2010), Pedro et al. (2008)

Sabethes belisarioi Pinto et al. (2009)

Sabethes chloropterus Beran (1994), Pinto et al. (2009), Galindo (1958)

Sabethes soperi Navarro et al. (2015), Harbach (2015)

Uranotaenia mashonaensis Harbach and Schnur (2007)

Uranotaenia sapphirina Cupp et al. (2003), Crans (2016)

Uranotaenia unguiculata
Khoshdel-Nezamiha et al. (2014), Ramsdale and Snow (2001),
Sebesta et al. (2010), Bagirov et al. (1994), Kenawy et al. (1987)

DOI: 10.7554/eLife.22053.012

Appendix 3—table 2. Primary sources for virus traits.

Virus Sources

Alfuy Virus Mackenzie et al. (2012)

Bagaza virus Mahy (2009), Llorente et al. (2015), Gamino et al. (2012)

Banzi virus Grard et al. (2010), Karabatsos (1985)

Bouboui virus Grard et al. (2010), Cook and Zumla (2009)

Bussuquara virus Beran (1994)

Dengue type 1 Cook and Zumla (2009)

Dengue type 2 Cook and Zumla (2009)

Dengue type 3 Cook and Zumla (2009)

Dengue type 4 Cook and Zumla (2009)

Edge Hill virus Mackenzie et al. (2012), Doherty et al. (1964)

Iguape Virus Coimbra et al. (1993), Mahy (2009)

Ilheus virus
Mahy (2009), Chambers and Monath (2003), Laemmert and Hughes
(1947), Aitken and Anderson (1959)
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Appendix 3—table 2 continued

Virus Sources

Israel turkey meningoence-
phalomyelitis virus

Mahy (2009), Nir (1972)

Japanese encephalitis virus Mahy (2009), Burke and Leake (1988), Gresser et al. (1958)

Jugra virus None

Kedougou virus Cook and Zumla (2009), Diagne et al. (2015a)

Kokobera virus Cook and Zumla (2009), Lequime and Lambrechts (2014)

Koutango virus Chambers and Monath (2003), Cook and Zumla (2009)

Kunjin virus Mahy (2009), Mackenzie et al. (2012)

Murray Valley encephalitis
virus

Cook and Zumla (2009), Mackenzie et al. (2012)

Naranjal virus Mahy (2009)

New Mapoon virus Nisbet et al. (2005), Mahy (2009)

Ntaya virus Mahy (2009)

Rocio virus Mahy (2009), Cook and Zumla (2009)

Saboya virus Mahy (2009), Traoré-Lamizana et al. (2001)

Sepik virus Mackenzie et al. (2012), Cook and Zumla (2009)

Spondweni virus Chambers and Monath (2003), Cook and Zumla (2009)

St. Louis encephalitis virus Mackenzie et al. (2012), Cook and Zumla (2009)

Stratford virus Mackenzie et al. (2012)

Tembusu virus Mahy (2009), Tang et al. (2015)

Uganda S virus Mahy (2009)

Usutu virus Mahy (2009), Chambers and Monath (2003), Cook and Zumla (2009)

Wesselbron Mahy (2009), Chambers and Monath (2003), Cook and Zumla (2009)

West Nile virus
Mackenzie et al. (2012), Cook and Zumla (2009a), Mores et al. (2007),
Turell et al. (2001)

Yaounde virus Mackenzie et al. (2012)

Yellow fever virus Mahy (2009)

Zika virus Chambers and Monath (2003), Cook and Zumla (2009)
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