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ABSTRACT

For improved spectrum utilization, the key technique for ac-
quiring spectrum situational awareness (SSA) — spectrum
sensing — is greatly improved by cooperation among the
active spectrum users, as network size increases. However,
the many cooperative spectrum sensing (CSS) schemes that
have been proposed are based on the assumptions of accu-
rate noise power estimates, characterizable variation in noise
level and absence of false or malicious users. As part of a
series of SSA research projects, in this research work, we
propose a novel scheme for minimizing the effects of noise
power estimation error (NPEE) and received signal power
falsification (RSPF) by energy-based reliability evaluation.
The scheme adopts the Voting rule for fusing multiple spec-
trum sensing data. Based on simulation results, the pro-
posed scheme yields significant improvement, 68.2—88.8%,
over the conventional CSS schemes, when compared on the
basis of the schemes’ stability to uncertainties in noise and
signal power.

CCS Concepts

•Networks → Network performance analysis;

Keywords
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1. INTRODUCTION
The current trend in demand and usage has exposed the

vast underutilization of the available spectrum resources. As
reported in a Federal communications commission (FCC)
submission [1], for example, at least 80 percent of the spec-
trum below 3 GHz is unexploited the United States. As a
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result, methods and techniques have been proposed in liter-
ature, under the umbrella of cognitive radio networking, for
improving spectrum utilization. To achieve that objective,
assumptions about the state of the system are required, es-
pecially due to the heterogeneous and dynamic nature of
future communication systems. One such assumption is
the accuracy of noise power estimate, a highly variable pa-
rameter and one of the key metrics for achieving spectrum
situational awareness (SSA) through spectrum sensing by
energy detection. Although collaboration among multiple
users helps to improve the performance of energy detection,
the current cooperative spectrum sensing (CSS) schemes
were formulated based on systematic and predictable noise
component sources. Hence, in order to minimize the overall
effects of noise for improved energy detection performance, a
sensing scheme that considers the randomness and volatility
of noise is required.

A number of techniques for minimizing the effects of noise
power estimation error (NPEE) and received signal power
falsification (RSPF) have been proposed. Some are based
on individual secondary user (SU) properties such as signal-
to-noise ratio (SNR), some are based on the interaction
among SU’s such as cluster index and consensus), while some
are based on the detection threshold [2] [3]. Incorporating
NPEE into threshold settings is one step to correctly adapt
the process of energy detection to the random distribution
of noise power. However, presetting the detection thresh-
old to vary over a predetermined range, in order to conform
to noise variation, would mean constraining the variation
of noise between bounds, which are indeterminable to pre-
cision and irreproducible in variation. On the other hand,
energy detection threshold can be modeled to adapt to the
dynamics of noise power but the approach would also re-
quire making certain assumptions: identical distribution of
noise samples, known noise average power fluctuation factor
[2], and uniform SNR [3].

Hence, the novelty of this research work lies in the con-
sideration of unsystematic and unpredictable inaccuracies in
signal and noise power during spectrum sensing by energy
detection. The rest of the paper is organized as follows:
section II describes the system models, including the radio
propagation, energy detection, noise and signal attack mod-
els; section III explains the proposed CSS scheme — energy-
based reliability evaluation; the simulation experiments and
results are discussed in section IV; while the conclusion and
future works are stated in section V.
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2. SPECTRUM SENSING

2.1 System Model
Considering a n-secondary-user cognitive radio network

(CRN), deployed in a region covered by a 50 dBm (100
Watt) EIRP primary user (PU) transmitter with a cover-
age radius R km. The secondary users (SU’s) are assumed
to be independent and stationary. A SU is r km away from
the PU transmitter with received SNR γ. To detect the
presence of a PU transmission, a SU: measures the power
of the received signal Pmeas

S ; computes the estimated noise
power P est

N ; then transmits the Pmeas
S and P est

N to the data
fusion center (DFC) where the two energy parameters are
corrected for error to obtain P corr

S and P corr
N respectively.

At the DFC, the detection threshold λ is computed based
on a pre-fixed probability of false alarm PFA and P corr

N , fol-
lowed by a comparison with P corr

S . If P corr
S > λ the DFC

concludes for the SU, with a detection probability PD, that
there is a PU transmission in progress, else that the channel
is free. The DFC then combines the probabilities by the
Voting rule to obtain the fused probability of detection QD

and false alarm QFA.

2.2 Radio Propagation Model
The simulation environment is developed using the irreg-

ular terrain model (ITM) [4], a radio propagation model
developed by the Institute for Telecommunication Sciences,
National Telecommunications and Information Administra-
tion, U.S. Department of Commerce. The PU transmits at
600 MHz from a height of 305 m with location and time reli-
ability of 50% each while the receiver antenna height is 9 m,
with 2 dBi antenna gain and horizontal polarization. The
average terrain height is 90 m, the surface refractivity is 301
N-units and the ground dielectric constant and conductivity
are 15 and 0.005 S/m respectively.

2.3 Energy Detection Model
Compared to other methods of detecting signals, such as

the matched filter method and the cyclic feature detection
method, the energy detection method requires no knowl-
edge of the signal characteristics nor it’s periodicity; it is
simple and requires less computation but highly susceptible
to variation in noise power. To characterize the impact of
noise variation on energy detection, the detection process is
modeled as a binary hypothesis testing problem:

{

H0 : x(k) = n(k)
H1 : x(k) = h(k)s(k) + n(k), k = 1, 2, ...,M

(1)

Where x(k) represents the received signal; s(k), the trans-
mitted signal; h(k), the channel gain; n(k), zero-mean addi-
tive white Gaussian noise with variance σ2 ; M , the number
of samples; and H0 and H1, the hypothesis of the absence
and presence of PU signal respectively.

Assuming: x(k) and s(k) are independent; h(k) is con-
stant during the detection process; SU channels are inde-
pendent; and the PU and SU’s share the same spectrum
allocation, the test statistics for the energy detection pro-
cess, which is equivalent to an estimate of the received sig-
nal power, measured by applying a band-pass filter to the
received signal in a particular frequency region in time do-

main [5], is given by:

xE =
1

M

M
∑

i=1

|xi|2 , M = 2tB (2)

Where, xi is the i − th received signal sample i , t is the
sensing time and B is the bandwidth.

Based on the Central Limit Theorem, when M >> 1 , the
test statistics can be approximated as a Gaussian random
variable [5], giving:

PFA = Q
(√

M(λ− 1)
)

(3)

PD = Q

(
√
M(λ− (γ + 1))√

2(γ + 1)

)

(4)

Where, λ is the energy detection threshold; γ = Pmeas
S /P est

N

and Q(x) is the Marcum-Q function.

2.4 Noise and Attack Model

2.4.1 Noise

The estimation of noise power is based on ambient tem-
perature, which is unstable in time domain. Hence, noise
power estimates suffer from random error with severe im-
pact on energy detection for CRN’s. In this research work,
the range of noise power estimates is modeled as an open
set, with positive and negative deviations from an assumed
average P avg

N thus,

P est
N,i − P avg

N = {∆−
N,1, ..., 0, ...,∆

+
N,NSU−1,∆

+
N,NSU

} (5)

P avg
N = PTN + SG+NF (6)

PTN = 10log10(1000kTB) (7)

Where P est
N,i is the estimated noise power at the i-th SU;

∆+
N,i and ∆−

N,i are the positive and negative deviation, re-

spectively, from the average noise power; |∆+
N,i| and |∆−

N,i|
are not necessarily equal; NSU is the total number of SU’s
present in the network; PTN is the thermal noise in dBm; SG
is the System Gain in dBm; NF is the noise figure in dBm; k
is the Boltzmann constant (1.3807x10−23 joules/K); T is the
Ambient Temperature in Kelvin; and B is the Bandwidth in
Hz.

For a comprehensive analysis of the effects of NPEE and
the proposed minimization approach, a spectrum of different
combinations of NPEE’s are considered: when all the SU’s
experience the same negative NPEE; when all the SU’s ex-
perience the same positive NPEE; and random combinations
of positive and negative NPEE.

2.4.2 Attack

As in the IEEE 802.22 standard [5], the DFC is aware of
each SU’s location and orientation and by the radio propa-
gation model [4] and dynamic signal strength mapping, can

predict the received signal power P pred
S . While honest SU’s

report the actual Pmeas
S and P est

N , malicious SU’s may re-
port any combination of false Pmeas

S and P est
N . However, the

main factors that determine the impact of spectrum sensing
data falsification (SSDF) on the performance of energy de-
tection include the number of honest SU’s Nhonest

SU , the num-
ber of malicious SU’sNmalicious

SU , the magnitude of NPEE and

319



RSPF, and the distribution and cooperation among the ma-
licious SU’s in the network. The simple and self-correcting
approach to minimizing the effects of malicious SU’s would
be by having a large ratio of honest SU’s to malicious SU’s.
However, that approach is not always realizable since the
number of malicious SU’s in a network, at any time, is
beyond the control of the DFC. Hence, for a complete in-
vestigation of the effects of malicious SU’s and analysis of
the minimization approach, the extremes of attack (from
a large Nhonest

SU /Nmalicious
SU ratio to the emulation of honest

SU’s) are considered. The range of possibilities includes:
Nhonest

SU > Nmalicious
SU ; Nhonest

SU < Nmalicious
SU ; SU emulation;

and positive, negative and random RSPF.

3. PROPOSED COOPERATIVE SPECTRUM

SENSING SCHEME
The conventional method for fusing sensing data combines

the raw computations from SU’s without testing for authen-
ticity. That approach is prone to error and susceptible to
infiltration by faults from noise and signal data. Hence, to
boost the dependability of the final decision made at the
DFC, the SU sensing data must be corrected for faults. In
our proposed scheme, we consider the range of possible gov-
erning factors that could affect a SU sensing data reliability
(Ri): the SNR at the SU γi, the distance of the SU from
the PU or incumbent device transmitter ri, the intention of
the SU (honest or malicious) Ii, measurement error Merr,i,
device error Derr,i, computational error Cerr,i and environ-
mental error Eerr,i.

Ri = f(γi, ri, Ii, Merr,i, Derr,i, Cerr,i, Eerr,i) (8)

Where the impact of γi and ri are dependent and those of
Ii, Merr,i, Derr,i, Cerr,i and Eerr,i are cumulative.
Hence, in order to minimize the effects of NPEE and

achieve a dependable probability of incumbent transmission
detection, the proposed scheme, shown in Fig. 1, adopts an
energy-based reliability evaluation approach.

3.1 Energy-based Reliability Evaluation
For the purpose of this work: the value of a parameter ob-

tained by direct physical measurement (e.g. sampling and
analysis) is referred to as a measured quantity; the value
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Figure 1: The proposed cooperative spectrum sens-
ing scheme. It is based on the use of estimation,
prediction and measurement for minimizing the im-
pacts of NPEE and RSPF on signal detection.

obtained indirectly by measuring a related parameter is re-
ferred to as an estimated quantity; while the value obtained
from an existing mathematical model is referred to as a
predicted quantity. In order to determine the true value
of a parameter, its estimated and measured equivalents are
weighted and adapted based on its predicted value and the
observed absolute deviation; the observed quantity is cor-
rected and adapted based on a more reliable equivalent.

Let Pcorr be the corrected value of a parameter P; Pmeas,
the measured value of P; Ppred, the predicted value of P;
Pest, the estimated value of P; rmeas, the weighted reliabil-
ity of Pmeas; rpred, the weighted reliability of Ppred; and rest,
the weighted reliability of Pest. Hence,

Pcorr = rmeasPmeas + rpredPpred + restPest (9)

Where rmeas, rpred and rest are adapted to the variation of
Pmeas, Ppred and Pest respectively.

3.1.1 Detection and minimization of noise power es-
timation error

Based on the assumption that all the SU’s in the network
are honest (Nmalicious

SU = 0), the corrected noise power is
calculated from (9) thus,

P corr
N = restN P est

N + rmeas
NS Pmeas

N+S − rpredS P pred
S (10)

Where restN is the weighted reliability of noise power based
on the measured ambient temperature; and P est

N is the es-
timated noise power based on ambient temperature; rmeas

NS

is the weighted reliability of the measured signal plus noise
power; Pmeas

N+S is the measured signal plus noise power; rpredS is
the weighted reliability of the predicted signal power based
on the pathloss model; and P pred

S is the predicted signal
power based on the pathloss model.

If the estimated noise power is equal to the expected value,
that is, the NPEE ∆N = 0, then

{

P est
N = Pmeas

N+S + P pred
S

restN = rmeas
NS = rpredS = 0.5

(11)

Otherwise,
⎧

⎨

⎩

restN = 0.5− 0.5 ∗ |P est
N −Pmeas

N+S +P
pred
S

|

Pmeas
N+S

−P
pred
S

rmeas
NS = rpredS = 1.0− restN

(12)

Where,

restN =

{

0.0 < restN ≤ 0.5
0.0 otherwise

3.1.2 Detection and minimization of received signal
power falsification

Based on the assumption of accurate noise estimate (∆N =
0), the corrected signal power is calculated from (9) thus,

P corr
S = rmeas

NS Pmeas
N+S − restN P est

N + rpredS P pred
S (13)

If the reported measured signal power is equal to the pre-
dicted signal power, that is, the RSPF ∆S = 0, then

{

Pmeas
N+S − P est

N = P pred
S

rmeas
NS = restN = rpredS = 0.5

(14)

Otherwise,
⎧

⎨

⎩

rmeas
NS = restN = 0.5− 0.5 ∗ |Pmeas

N+S −P est
N −P

pred
S

|

P
pred
S

rpredS = 1.0− rmeas
NS

(15)
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Where,

rmeas
NS = restN =

{

0.0 < rmeas
NS ≤ 0.5

0.0 otherwise

3.2 Data fusion by voting rule
Having corrected the energy parameters, the probabilities

of false alarm and detection is computed from (3) and (4),
and then combined based on Voting rule — a preferable
weighted-data fusion method [5]. Thus,

QD =

N
∑

k≥(τ∗N)

(

N !

k!(N − k)!
(PD,i)

k(1− PD,i)
N−k

)

(16)

Where N is the number of SU’s being considered; τ is the
voting threshold for k successes and was set at 0.5 for the
simulation experiment; while PD,i is the detection probabil-
ity for the i-th SU. The global decision is made based on QD

and QFA, which is also calculated from (16) by replacing
PD,i with PFA,i.

4. SIMULATION RESULTS AND ANALYSIS
Different combinations of NPEE and RSPF were simu-

lated in MATLAB in order to characterize the effects of un-
certainties on the performance of energy detection for spec-
trum sensing and also demonstrate the efficiency of the pro-
posed approach. For the simulation, P avg

N is set at -65 dBm
while the channel bandwidth B is 6 MHz (for minimal mul-
tipath fading [5]).

As shown in Fig. 2(a), negative NPEE increases the prob-
ability of detection for a fixed probability of false alarm
and vice versa. The figure also reveals the sensitivity of
the detection probability to a unit magnitude decibel er-
ror as seen in the rapid spread of the receiver operating
characteristics curves (ROC) curves from the average noise
power. At QF = 0.1037, the actual probability of detection
is 0.5052 but when the magnitude of NPEE is varied be-
tween −3 ≤ ∆N(dBm) ≤ 3, the detection probability fluc-
tuates between 0.7922 ≤ QD ≤ 0.3473 respectively. With
the proposed scheme, however, the fluctuation is reduced
to 0.5512 ≤ QD ≤ 0.5044 (Fig. 2(b)), an equivalent of
88.8% improvement based on stability to NPEE. To demon-
strate the efficacy of the scheme in a more practical scenario,
NPEE’s at the different SU’s is made to vary randomly be-
tween−5 ≤ ∆N(dBm) ≤ 5 (Fig. 2(c)). The results obtained
are similar to those of equal NPEE.

Fig. 3(a) and 3(b) show the performance of the proposed
scheme over the conventional method when all the SU’s in
the network had equal magnitude of RSPF while in Fig. 4,
the simulation is carried out with different combinations of
the honest and malicious users: 100 percent honest users;
50 and 100 percent malicious users all with -2 dBm RSPF;
and 50 and 100 percent malicious users with the malicious
users emulating the absence of PU transmission. The figures
reveal the upshot of error in PS by replicating the effect of
the RSPF from a single SU as a cumulative effect from all
the SU’s in the network. As expected, positive RSPF re-
sults in increased probability of detection, and vice versa,
while an increase in the number of malicious users (from 0
to 5 to 10 in the 10-user network) results in a pronounced
corresponding effect in the detection probability. Based on
the simulation parameters, with an even number of honest
and malicious users in the network and ∆S = −2dBm (Fig.

4(a)), at QF = 0.1037, the actual probability of detection
is 0.5052 (as in the previous cases) but when the number of
malicious users increases to 5 and 10, the detection proba-
bility are 0.5052 and 0.3871 correspondingly, while the pro-
posed scheme (Fig. 4(b)) reduces the instability to 0.5052
and 0.4676 respectively — approximately 68.2% improve-
ment based on stability to RSPF. On the other hand, when
all the SU’s in the network have equal RSPF (Fig. 3(a) and
3(b)), the improvement is similar to that in Fig. 2(a) and
2(b). For the cases where individual malicious users have
random RSPF, Fig. 3(c) illustrates the efficiency of the pro-
posed scheme in minimizing the impact of RSPF. From the
plots (Fig. 3(c)), the scheme also proves to be better than
the conventional method in stabilizing the detection proba-
bility with the potential to completely detect and eliminate
all RSPF, provided P pred

S is accurate.

5. CONCLUSIONS
In this paper, we have presented a novel cooperative spec-

trum sensing scheme, based on radio propagation models,
measured signal power and estimated noise power, for min-
imizing the effects of NPEE and RSPF. NPEE and RSPF
were detected and corrected based on reliability metrics ob-
tained by comparing the measured signal power and the es-
timated noise power to the predicted received signal power.
Simulation results revealed the behavior of the ROC curve in
different cases and combinations of NPEE and RSPF. The
performance of the proposed scheme over the conventional
method varies between 68.2 and 88.8% when compared us-
ing the resulting ROC curves. While the scheme relies on
the accuracy of the predicted received signal power, we have
designed and initiated our next research plan with the main
focus of improving the prediction accuracy using machine
learning techniques.
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Figure 2: ROC curves comparing the proposed scheme to the conventional method based on the performance
in minimizing the effects of positive and negative uncertainties in noise power estimates for a 10-SU cognitive
radio network. (a) and (b) simulates the scenario with equal NPEE at each SU while (c) simulates constrained
but random NPEE.
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Figure 3: ROC curves comparing the proposed scheme to the conventional method based on the performance
in minimizing the effects of positive and negative deviations from the actual received signal power for a
10-SU cognitive radio network. (a) and (b) assumed each SU’s received signal power had equal magnitude
of deviation while (c) assumed random deviations. The emulation of SU for the absence of PU transmission
was simulated with ∆S = Pmeas

S .
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Figure 4: ROC curves comparing the proposed scheme, in (b), to the conventional method, in (a), based
on the performance in minimizing the effects of a slight and total deviation from the actual received signal
power, for a 10-SU cognitive radio network with different combinations of honest and malicious users: 100%
honest SU’s, 50% honest SU’s; and 100% malicious SU’s respectively.
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