Science In the Cloud (SIC): A use case in MRI Connectomics
Gregory Kiar"?, Krzysztof J. Gorgolewski®, Dean Kleissas®, William Gray Roncal®>, Brian Litt®’,
Brian Wandell®®, Russel A. Poldrack®, Martin Wiener®, R. Jacob Vogelstein, Randal Burns’,
Joshua T. Vogelstein™?

Corresponding Author: Joshua T. Vogelstein jovo@jhu.edu

Abstract

Modern technologies are enabling scientists to collect extraordinary amounts of complex and
sophisticated data across a huge range of scales like never before. With this onslaught of data,
we can allow the focal point to shift from data collection to data analysis. Unfortunately, lack of
standardized sharing mechanisms and practices often make reproducing or extending scientific
results very difficult. With the creation of data organization structures and tools which
drastically improve code portability, we now have the opportunity to design'such a framework
for communicating extensible scientific discoveries. Our proposed solution<leverages these
existing technologies and standards, and provides an accessible and extensible model for
reproducible research, called "science in the cloud" (SIC). Exploiting scientific containers, cloud
computing, and cloud data services, we show the capability to.compute in the cloud and run a
web service that enables intimate interaction with the'tools and data presented. We hope this
model will inspire the community to produce reproducible and, importantly, extensible results
which will enable us to collectively accelerate the rate at which scientific breakthroughs are
discovered, replicated, and extended.

1 Introduction

Neuroscience is currently in-awgolden age of data and computation. Through recent
technological advances [1], experimentalists can now amass large amounts of high quality data
across essentially all experimental paradigms and spatiotemporal scales; such data are ripe to
reveal the principles of brain function and structure. In fact, many public datasets and open-
access data hosting repositories are going online [2; 3].

Concurrent.withthis onslaught of data is a desire to run analyses, not just on data collected in a
single lab, but also on other publicly available datasets. Various tools have been developed by
the community which solve a wide variety of computational challenges on all types of data,
enabling difficult scientific questions to be answered. With the ability to perform analyses often
dependent only upon access to data and code resources, neuroscience is now more accessible,
with a lower barrier to entry.

However, there is no tool or framework that enables research to be performed and
communicated in a way that lends itself to easy extensibility, much less reproducibility.
Currently, re-performing and extending published analyses whether through data or code is
often un- bearably difficult: (i) data may be closed-access; (ii) data may be organized in an ad
hoc fashion; (iii) the code may be closed-source or undocumented; (iv) code may have been run
with undocumented parameters and dependencies; (v) analyses may have been run with code

compiled for specific hardware. These properties make validating and extending scientific
claims challenging.

A focus on reproducibility is already commonplace in a variety of disciplines. In genomics,
Bioboxes [4] provide a framework for reproducible and interchangeable analysis containers,
and tools are exploiting scalable computing solutions and being published with reproduction
instructions (see: [5; 6]). Commentaries on reproducible research provide suggestions to
researchers on how to tackle the challenges that are present in their scientific settings [7; 8].
While these works have accelerated reproducibility and extensibility in their fields, the methods
proposed do not scale to the cloud or enable real-time interactivity, and have yet to be
thoroughly applied to the burgeoning field of computational neuroscience.

The notion of a universally web-viewable laboratory [9] is also growing in popularity; and many
initiatives have been successful in contributing to this vision. In plant biology, CyVerse [10]
provides infrastructure for tools, data, and education. In neuroscience; platforms such as LONI's
Pipeline [11] and neuGRID [12] alleviate the burden of managing.captive. computing resources
and integrating them with datastores, while NeuroDebian [13]-provides quick and easy access
to a variety of neuroimaging tools. Leveraging the NeuroDebian platform, NITRC has
encouraged a transition to the cloud by releasing an Amazon Machine Image (AMI)* preloaded
with commonly used packages. In parallel, many groups have strived to breach the frontier
through such efforts as developing sophisticated resource estimation-based deployment
strategies [14], and these have shown the great potential for a cloud-based approach to
neuroimaging [15]. Each of these projects has made valuable contributions to the progress
towards accessibility and portability of neuroscience research.

Deployment

Interactive Demos I
N P
i W@

|

Computing

Virtualization

Cloud Data Storage

Figure 1: Framework for science in the cloud illustrating the six necessary components for
SIC. Cloud data storage enables universal access to data products. Data organization
structures enable consistent tools and user interactions across datasets. Interactive
demonstrations allow users to participate in live scientific analyses. Virtualization enables
tools to be deployed reliably and consistently. Deployment tools organize re- sources
provided by computing platforms, and enable users to run analyses at scale. Together, these
tools create a framework for discovery that is optimized for extensible science.

We propose a solution to these gaps in the form of a framework which leverages publicly
documented and deployable cloud instances with specific pipelines installed and configured to
extend published findings: an implementation we simply term "science in the cloud," or, SIC
(Latin for “thus was it written”). SIC instances have several fundamental components, as
summarized in Figure 1. To address data access, we put data in the cloud. To address data
organization, we utilize recently proposed data standards. To address closed source and
undocumented code, we generate open-source code and interactive demonstrations. To
address software and hardware dependencies, we utilize virtualization, automated
deployment, and cloud computing. SIC puts these pieces together to create a computing
instance launched in the cloud, designed not only for generating reproducible research,but also
enabling easily accessible and extensible science for everyone. SIC is designed to minimize the
bottlenecks between publication and novel discoveries; leveraging the experience of the
community, we propose a solution for transitioning to a universal, and “future-proof,”
deployment of software to the cloud.

We introduce and document an example use case of SIC with the ndmg pipeline, thus entitled
SIC:ndmg. We have developed a capability which enables users to:launch a cloud instance and
run a container which performs an analysis of a cohort of structural and diffusion magnetic
resonance imaging scans by (i) downloading the required data from a public repository in the
cloud, (ii) fully processing each subject's data to estimate a connectome for each subject's
associated graph statistics, and, optionally, (iii) plot<quality control figures of various
multivariate graph statistics.

2 Methods

There are six key decisions which must be made when following SIC: data storage, data
organization, interactive demonstrations, \virtualization, deployment, and computing. The
selection made for each of these components will have a significant impact on available
selections for the others. The final product will be a highly interdependent network of tools and
data. Table 1 shows a_ summary of the selections made for each of the criteria enumerated in
the previous section:with rationales for the decisions. In general, the tools selected were those
which provided.the most command-line/Application Programming Interface (API) support for
their service and had.the most complete documentation or online support community, enabling
setup with'relative ease.

Cloud Data Storage There are several options when storing data in a publicly accessible
location, such as a cloud storage service or public repositories. Depending on the nature of the
data being stored, different concerns (such as privacy) must be satisfied. For instance, sensitive
data (i.e. not anonymized/de-identified) requires authentication for access, whereas de-
identified data does not. It is our recommendation to host de-identified data in the cloud and
store linking metadata privately on HIPPA (or equivalent) compliant organization datastores.
Researchers who may not wish to release their data prior to publication are encouraged to
store their data with secure protocols. The datastore should also be accessible through an API,
or another interface enabling developers to access the data programmatically. Depending on
the desired organization, autonomy is also a valuable feature, affording the developer full

control on how the data is stored, as opposed to working within the confines of an existing
infrastructure. The type of virtualization (described below) used may also influence the types of
shared datastores which will be natively compatible with the application. Considering the
above, Amazon's S3 service was used in this SIC implementation because it satisfied all of these
requirements. While Google's Cloud Engine or Microsoft Azure also satisfy these requirements,
the decision to use S3 was made based upon our existing domain knowledge and familiarity
with each of these systems.

Data Organization The newly publicly-available data then needs to be organized in
accordance with a data specification which enables users to navigate the repository
successfully. Such standards include both file formats, which can be interpreted by programs, as
well as folder organizations, which enable grouping of data by subject, observation, type, etc.
Depending on the modality of data being used, there are different structures which can be
adopted. In the case of MRI, the BIDS [16] specification is a well-documented and.community-
developed standard which is intuitive and allows data to be both easily read- able by humans
and navigated by programs. Organizations such as '""Neurodata without Borders" [17] would
serve as additional options for physiology data, but are unsuitable for this application. Formats
such as MINC [18] focus heavily on metadata management but less on file hierarchy, making
them useful though not fully sufficient for this application. Though some standards may
consider securely handling identifying information, we recommend only storing de-identified
data publicly to avoid possible security risks.

Table 1: There are six key components which must be selected for SIC. Bold indicates
the selections made here, with their positive and negative qualities compared to some
alternatives.

Hurdles Available Tools Pros of Selection Cons of Selection
53, Drophox, requires familiarity
1) Data Storage . API, pay-by-usage .
) J Google Drive pay=by g with Amazon tools
BIDS [16], documented, new. not vet full
2) Data Organization NWB [17], validator, active acio J]te'd e 4
MINC [18] community pte
3) Interactive demo's Jupyter, R versatile, optimized for
o T Notebook, Shiny accessible Python
Docker . .
’ lightweight,

4) Virtualization

Virtualbox [19],
VMware [20]

self-documented

5) Deployment

Batch/ECS,
Kubernetes [21],
MyBinder [22],
CBRAIN [23],
Nextflow [24]

no additional
dependencies

restricted to
Amazon's cloud

6) Computing

EC2, Google
Compute
Engine [25],
Microsoft

scalable, flexible

requires
technological
expertise

Azure [26]

Interactive Demonstrations [To_éncourage use of data and the tools used to analyze it,
interactive demonstrations that enable users to visualize and work with some subset of the
data are extremely valuable.. Various programming languages have different types of
demonstration environments available which either enable full interactivity or are pre-compiled
to display code and results. A popular tool for interactive development and deployment of
Python code.is Jupyter, and thus was the tool used here. The popularity of this tool hopefully
increases the average user's familiarity with the interface, lowering the barrier to entry for
interacting with SIC:ndmg. If a developer is more familiar with another programming language,
there is no particular reason why one would select Jupyter over an equivalent package in R,
such as:R Notebook.

Virtualization Developing and distributing virtualized environments containing all neces- sary
code products guarantees consistent dependencies and application setup, and therefore
minimizes user effort to obtain expected performance. These virtual environments should be
able to be deployed on any operating system and have minimal hardware-dependent code. A
key desiderata is that the virtualization system minimizes unnecessary overhead for the
application. Though it does not affect run-time performance, a repository of public machine
images is an attractive feature for this model as it enables sharing configurations. Docker [27]

was chosen because it satisfies these practical requirements, and the accessibility of Docker
Hub enables images to be quickly found and deployed. Virtual machines such as those created
in Virtual Box [19] or VMware [20] provide lots of range in terms of operating systems which
can be launched and allow native access to the machine through a GUI. However, though these
are great features, they are unnecessary for this application. An additional attractive feature of
Docker is that translating a README file (which enumerates dependencies or installation
instructions) to a Dockerfile forces developers to improve their documentation and increases
the useability of their tool. Though this is certainly extra work for the developer, the process
requires only knowledge of the documented Docker schema and the editing of plain-text files,
which we believe to be a relatively low cost to the developer.

Deployment Deployment platforms allow users to define a specific set of instructions that
can be launched on a single machine or multiple machines simultaneously. In physical hard-
ware configurations, a cluster's scheduler would play this role; in the cloud, such tools are able
to take advantage of computing resources across different locations<«and services, and enable
scaling with the amount of processing required. Middleware such-as Kubernetes [21], Tutum?,
or Nextflow [24] can enable a user to distribute their jobs acress a cluster existing in different
computing environments (i.e. separate clouds). When using a single cloud, such as Amazon or
Google, native applications support managing resources efficiently. In the case of SIC:ndmg, we
elected to deploy entirely in Amazon's cloud; therefore, we used Amazon's Batch to launch the
pipeline distributed across multiple computing nodes, and. Amazon's ECS to deploy a distributed
and scalable SIC service. Tools such as CBRAIN:[23], LONI [11], and MyBinder [22] also enable
distributed deployment of code, but are more specialized in the requirements of the tools and
services that can be launched and are thus more restrictive.

Computing Cloud computing=services' enable users to launch customized machines with
specific hardware configurations and specifications, making them versatile for different
varieties and scales of analyses.. The more general the hardware that can be used, the more
accessible the tool is'for a user to adapt and use in their own environment. Selecting the
commercial cloud for deployment as opposed to data center resources enables greater
accessibility and transparency to users, is more scalable, and enables parallel jobs to be run in
completely-isolated resources. Cloud deployments also provide consistent performance across
nodes, and have a much lower start-up cost than utilizing local computing resources. Since
there ' were no.specific hardware requirements in this application, and there existed previous in-
house experience with the service, Amazon's EC2 was selected in this usecase. The benefit of
using EC2 is that deploying code at different scales and locations is trivially extendable, so
implementations can be easily taken from prototype to deployment. Amazon's cloud enables
launching computing resources based on AMlIs with preinstalled dependencies, increasing the
flexibility of the processes which can be launched.

Further details of our specific implementation and methods are provided in Appendix A.

3 Results

We demonstrate a working example of SIC, SIC:ndmg. The ndmg pipeline [28] is an open-
source, scalable pipeline for human structural connectome estimation from diffusion and
structural MR images (collectively referred to hereafter as "multimodal MRI", or M3RI for
brevity). The result is a portable and easily extensible tool for scalable connectome generation.
A live demonstration is presented that enables reader interaction with the pipeline at the cost
of a simple URL click, and data products of the tool are presented in both the context of
‘reproducibility’ and ‘extensibility.” This tool enables quantitative structural analyses of the
human brain to be performed on populations of M3RI scans, and can lead to discoveries of the
relationship between brain connectivity and neurological disease.

3.1 Neuroscience as a Service

The analysis transforms "raw'" M3RI data into graphs. Kiar et al., (in preparation) describes the
pipeline in detail; here we provide a brief overview. The pipeline (Figure 2) consists of four main
steps: registration, tensor calculation, tractography, and graph generation. Note that the
choices below are made for expediency and simplicity; other choices might be beneficial
depending on context. Table 2 summarizes the duration and cost of each step for a given
dataset processed and stored in the cloud.

Registration in ndmg is performed in several stages using FSL [29]. First, the diffusion image is
self-aligned and noise-corrected using the eddy correct function. Second, the transform is
computed which aligns the BO volume of the diffusion image to the structural scan using
epi_reg. Third, the transform between the structural image and a reference atlas is computed
with flirt. Finally, the transforms are.combined and applied to the self-aligned diffusion image.
The tensor calculation and tractography steps are performed with the DiPy package [30]. A
simple tensor model fits a 6-component tensor to the image, and deterministic tractography
with the EuDx algorithm is'run, producing a set of streamlines. Graph generation takes as input
the fiber streamlines,.and maps them to regions of interest (ROls) defined by a pre-built
parcellation (such <@as those packaged with FSL or generated with brain segmentation
algorithms) and.returns.an ROI-wise connectome. An edge is added to the graph for each pair
of nodes along a given fiber. The final step is computing (multivariate) graph statistics on the
estimated connectomes. The statistics computed are [31]: number of non-zero edges, degree
distribution, eigen sequence, locality-statistic 1, edge weight distribution, clustering coefficient,
and betweenness centrality. These statistics provide insight into the structure of the brain
graphs, and provide a low-dimensional feature by which the graphs for different scans can be
compared to one another. To provide a preliminary quality control step, we plot the graph
statistics [31] for each graph (Figure 4).

Diffusion r——— - ——— —— ndmg pipeling - ——— — —— — —— — — — — — q

Mmuti-modalemg. L — — — — — — — — — - -
Data Collection
Figure 2: Structure of the ndmg pipeline connectome estimation. Taking as input diffusion
and T1 weighted MRI, ndmg first aligns the diffusion data to a reference atlas by means of
the T1 image. Tensors are then computed from the aligned diffusion volume. Fiber
streamlines are generated by performing tractography on the tensors. Finally, the fibers

are mapped between regions of interest (ROls) which then become nodes in the graph.

Table 2: Approximate cost and time breakdown per subject of the ndmg pipeline run-
ning in Amazon EC2 with data stored in S3 and computation with m4.large machines at
spot pricing of $0.0135 per hour (Accessed on 2017/01/04). The values were obtained
by processing data from the NKI1 dataset with 40 sessions. The reader should note that
Amazon S3 data I/O is not free, as it may appear, but is simply inexpensive for data this
size.

Operation Time per session (min) Cost per session (1/100 USD)
data storage -- 1.048/month

data l/O -- 0.000

Total -- 1.048/month

registration 25 0.563

tensor calculation 2 0.045

fiber tractography 5 0.112

graph generation 30 0.675

Total 62 1.395

3.2 Live Demonstration
A demonstration of SIC:ndmg is available at http://scienceinthe.cloud/. This SIC instance is
deployed via ECS on an Amazon micro-instance which is very affordable, so it can stay online
indefinitely with little cost or maintenance ($100/year). This instance is running a Jupyter server
which. contains the demonstration notebook, sic_ndmg.ipynb. Launching the notebook pulls up
an interface which resembles that of Figure 3A.

A B C

Demonstration Notebook Produced Connectome Summary Statistics
JU p)‘ ter sic_ndmg pue wy Run Summary Statistic Computation

delp T S0 BUSE 5 T LTS EeGHONTIgS 150 Uty ECtS o

B o+ 2 @ B+ % (W B O Markdown i = Gellc

SIC for ndmg Pipeline

ndmg cantains o fypes of analysls: conneciome genmeration a

Run Gonnectome Generation

The fivat aban of nomg hums ‘W NIl images nto sonnactomai
Feavlly downsampied for this complutational cemorsimton, wh

Figure 3: States of the demonstration notebook in the cloud. A) A Jupyter notebook
displaying descriptions and code snippets to be run for both connectome- estimation and
summary statistic computation. B) After running connectome generation, an'adjacency
matrix will appear to provide a visualization. C) Summary statistic computation calculates
several graph features and plots them in a multipanel figure. Theddemonstration notebook
is running version v0.0.39 of ndmg.

For demonstration purposes, a downsampled subject is used in this notebook which reduces
analysis time from ~1 hr/subject/core to ~3 min/subject/core. The ndmg pipeline has two levels
of analysis: graph generation and summary statistic computation. Graph generation is the
process of turning diffusion and structural MR images into-a connectome (i.e. brain graph), and
the summary statistic computation produces:a graph of several graph features on each
produced connectome and plots them together. Running through the notebook (Figure 3A)
chronologically will produce the brain_graph, display the graph (Figure 3B), compute summary
statistics (Figure 3C), and then plot the statistics.

3.3 Reproducible Results

In addition to the live_ demonstration, SIC:ndmg was used to process the NKI1 [32] dataset
consisting of 40 M3R/scans. Instructions on setting up a cluster and running this analysis can be
found in Appendix.A. The NKI1 dataset is made publicly available through CORR [32], but has
been organized in‘accordance to the BIDS [16] specification and re-hosted on our public S3
bucket, mrneurodata. The dataset consists of MPRAGE, DWI, and fMRI scans, where each
subject has been scanned at least twice for each modality. More information about the subjects
in this dataset’and the scanning parameters used can be found on the CORR website®.

miskost, The arefysis nhoukd e B o seendy

NKI1 Dataset (Desikan parcellation)

B
e

20

Qela‘livi .Prntla bility
Relative Probability
:'tela'[i\.re Probability
Relative PrtiilJaDi lity

o] 20k

Betweenness Centrality Clustering Coefficient Degree Edge Weight

Eigenvalue
Count
Relative Probability

0 L IR VRE
1 35 70 800 1000 o 1M FY

Dimension Number of Nan-zeros Locality Statistic-1

Figure 4: Running SIC:ndmg on the NKI1 dataset produces plots of graph statistics. Shown
in order from left to right starting in the:top row are betweenness centrality distribution,
clustering coefficient distribution, degree distribution, edge weight distribution, eigen
sequence, number of non-zero edges, and the locality statistic-1 distribution of the graphs.
The displayed summary statistics were computed on the graphs generated with the
Desikan parcellation, using the bids/ndmg:v0.0.41-2 Docker image.

Running the Docker-hosted scientific container bids/ndmg:v0.0.41-2 on the NKI1 dataset
produced Figure 4, costing under S1, as is summarized in Table 2. Table 3 summarizes the
parameters used as‘inputs to SIC:ndmg to generate the graphs. Figure 4 provides insight into
the variance of the dataset through a variety of different metrics. According to published work
on these summary statistics [31], this dataset and pipeline combination produces expected
results. A key benefit of this visualization is that it has high information density, showing us
distributions for a variety of features for a large number of graphs, as opposed to more
common 1-dimensional features [33]. This figure was produced by the parameters summarized
in Table 4.

The demonstration in the previous section executed the exact same pipeline that was used to
generate Figure 4. The sole difference between execution of the demonstration and this
implementation -- aside from the data being processed -- is the specific Docker container being
used. The reason for this difference is that the demonstration is required to run as a web
service, so additional packages and setup are required.

Ak

Table 3: Command line arguments for connectome generation

Parameter Value

data input directory /data/raw
data output directory /data/connectome

analysis level participant
bucket name mrneurodata
path on bucket NKI24

Table 4. Command line arguments for summary statistic computation.

Parameter Value

data input directory /data/connectome/graphs
data output directory /data/qc
analysis level group

3.4 Extensible Results

A crucial property of SIC is the simplicity it affords users to perform extensible science. Ex-
tensibility in this context can occur on several levels, including changing or adding (i) data, (ii)
analyses, or (ii) visualizations. Figure 5 shows an example of such extensibility. A different
dataset, the KKI2009 dataset [34], ‘was processed using modified code, plotting the degree
distribution on a log scale, with an additional plot added for cumulative variance analysis. The
container used for this analysis on Docker hub is bids/ndmg:v0.0.41-2. Further details and
instructions about how:to extend SIC:ndmg specifically are available in Appendix B.

4 Discussion

Though therexemplar application used to demonstrate the value of SIC was the one-click ndmg
pipeline, the framework is not restricted to this tool, or even one-click tools at all. For instance,
a recent manuscript presented the notion of BIDS Apps [35]: containerized neuroimaging
applications which operate on data stored in the BIDS data structure. These apps4 enable
complex workflows to be executed, often taking in configuration files to allow for complicated
parameter sets to be delivered more conveniently than via the command line. Such containers
are a terrific usecase for SIC, and can be seamlessly interchanged with one another in a given
deployment. SIC can use tools such as FreeSurfer or ANTs in certain processing steps with no
software changes. Developing pipelines within the SIC framework enhances their
reproducibility and the extensibility of publications using them, potentially increasing their
scientific impact.

KKI2009 Dataset (Desikan parcellation)

4

I 5 s 3
m o m m
0 0 0 0
o Q o o 1
2 o g 2
o o o o
2 2 - 2w 2
5 = 5 5
n o m i
L o o @
o o o (=3
a 4] v}
£.001 0.0% a1 10 2 3 1000 10k
Betweenness Centrality (log scale) Clustering Coefficient Degree (log scale) Edge Weight {log scale)
a
8
z &
g 5 . 5
2 5 2
| C [3] 3
e g 0o .9 0.5
o
oo E L 5
- -
2 s
o '
4 a WIBERLN (RN AE &
1 35 70 1000 1200 100k 1M Y 35 70
Dimension Number of Non-zeros Locality Statistic-1 (log scale) Dimension

Figure 5: Analyses performed with code developed under the SIC framework are easily
extensible. The extensions made between this plot and Figure 4 are a) using a different
dataset, in this case KKI2009, b) adjusting existing plotting code in order to improve
visualization of vertex degree in alog scale, and c) adding cumulative variance analysis of
the graph. The displayed summary statistics were computed on the graphs generated with
the Desikan parcellation, using the bids/ndmg:v0.0.41-2 Docker image.

The SIC framework does not need to be confined to monolithic tools and containers. With
further work, this concept can be integrated into a platform in which users are able to launch a
variety of analyses on a variety of datasets. The self-documenting and reproducible web-calls
which launch cloud. containers performing computational tasks have potential to drastically
improve the feedback loop between a scientist and their peers. This enables analyses to be
easily replicated and refined, thus expediting scientific discovery. Tools such as Binder [22]
accomplish this beautifully for Python, but the benefits of SIC are that this model can be applied
not only to any containerizable application, but big data as well.

The distinct advantage of using Docker for virtualization as opposed to virtual machines is the
lack of both computational and data overhead. Though virtual machines can be used for
pipeline deployment, they are based upon hard drive files which can bloat the host system.
Virtual machines also require computational overhead to distribute processes to the host
system, which Docker interfaces with directly. In many applications, virtual machines are a wise
or even necessary tool of choice, though when the sole objective is the execution of a pipeline
followed by termination of the environment, the benefits of minimal overhead often outweigh
those of the additional features which may be available through virtual machines. Tools which

aid in the deployment of virtualized environments such as Vagrant can be paired with a method
of virtualization, whether Docker or otherwise, and they provide further documentation
describing the process for launching an environment containing a given tool for execution.

The selections made in SIC:ndmg regarding the six technological components highlighted above
were chosen based on what the authors perceived to be most widely used and supported in the
active online community. Other tools enumerated in Table 1 provide alternative features which
can make SIC instances appear and run quite differently when developed separately, but
ultimately provide a comparable experience for the user. For instance, the decision to_store
data independently from a public repository (such as NITRC [36], LONI’s IDA [37], LORIS[38], or
ndstore [39]) leaves the onus of data organization on the developer rather than the repository,
but in either case the user is able to access the data they need. This decision in“particular was
made so that the developer would have complete control over their data and implementation.
However, hosting data within an environment such as those listed would have the:advantage of
enabling use of the infrastructure already built to support these platforms, such as performing
meta-analyses and tracking provenance of the data itself, and is an exciting avenue for future
work. While functionality for deploying in parallel to the cloud was developed with Amazon's
Batch directly for interfacing with their cloud, alternative deployment tools such as Kubernetes
are attractive options, because they provide clear visualizations of running processes and
process versions and would enable SIC to deploy pipelines across multiple computing clouds or
clusters. Deployments making use of local datacenters as opposed to the cloud are identical in
execution to those in the cloud, once Docker (or the virtualization engine of choice) is installed
on the shared resources and a scheduling framework is available.

This manuscript proposes a model for extensible and accessible development that did not strain
those who have already been developing or using reproducible tools, but rather enhanced their
ability to do so. Domain /knowledge; such as that of Docker, is not uniform across disciplines,
and this may discourage developers from complying with this methodology. However, it is our
belief that the proposed framework does not require additional development beyond what
already goes into creating and using a reproducible tool. For instance, in the case of Docker, a
Dockerfile simply documents the instructions which are to be executed upon booting a brand-
new computer and installing a given tool and its dependencies. Documenting this process is
essential for developers, and many tools contain a README file describing the installation
process. Once' a Docker container exists, the process of re-executing and testing these
instructions often requires far fewer keystrokes and ambiguity in the instructions is eliminated.
There ‘are certainly start-up costs when transitioning to new tools such as virtualization
platforms, but it is our view that the gained transparency and portability within SIC greatly
outweighs the costs.

In summary, the SIC framework presents a standard of reliability and extensibility for scientific
data distribution and analysis. SIC is an important building block towards a global scientific
community, regardless of scientific discipline, and provides a practical implementation of the
idiom that science is done by "'standing on the shoulders of giants."

Acknowledgements

This project stemmed from a sequence of three different initiatives. First, the Global Brain
Workshop® brought together a collection of 60+ scientists who converged on a set of grand
challenges for global brain sciences. There was universal agreement that a global framework
[40] would be instrumental in transitioning neuroscience from a data deluge to a data delight.
Then, at the Open Data Ecosystem for Neurosciences®, the working group on reproducibility
decided that an example of a reproducible and extensible framework would be highly
informative for ourselves and the greater community. Finally, the inaugural Stanford Center.for
Reproducible Neuroscience Coding Sprint’ brought leaders in neuroimaging from atound the
globe to chart a path forward with standardizing a process for containerizing both open- and
closed-source tools [35].

Affiliations

1Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

2Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA.

3Department of Psychology, Stanford University, Stanford, CA, USA.

*Johns Hopkins University Applied Physics Lab, Columbia, MD, USA.

5Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.

6Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.

'Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
8Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA, USA.
9Department of Psychology, George Mason University, Fairfax, VA, USA.

Availability of supporting source code and requirements
Project name Science in the Cloud

Project home page http://scienceinthe.cloud

Operating system(s) Platform independent

Programming languages Python, Docker, Bash

Other requirements Docker, AWS credentials

License Apache 2.0

Availability of Supporting Data
Snapshots of code can be found in the GigaScience repository, GigaDB [41].

Declarations

Competing Interests The authors declare no competing interests in this manuscript.
Abbreviations Amazon Machine Image (AMI), Application Programming Interface (API),
Brain Imaging Data Structure (BIDS), Multimodal Magnetic Resonance Imaging (M3RI),
Neurodata Without Borders(NWB), Science in the Cloud (SIC)

Funding The authors would like to graciously thank: NIH, NSF, DARPA, IARPA, Johns Hop-
kins University, and the Kavli Foundation for their support. Specific award information can be
found at https://neurodata.io/about.

References

[1] S.Grillner et al., "Worldwide initiatives to advance brain research,” Nature
Neuroscience, vol.19, no.9, pp. 1118--1122, 2016.

[2] R. A. Poldrack and K. J. Gorgolewski, “Making big data open: data sharing in
neuroimaging," Nature Neuroscience, vol. 17, no. 11, pp. 1510--1517, 2014.

[3] L. G. Kini, K. A. Davis, and J. B. Wagenaar, “Data integration: Combined imaging and
electrophysiology data in the cloud,” Neurolmage, vol. 124, pp. 1175--1181, 2016.

4] P. Belmann, J. Droge, A. Bremges, A. C. McHardy, A. Sczyrba, and M. D. Barton,
“Bioboxes: standardised containers for interchangeable bioinformatics software,” GigaScience,
vol. 4, no. 1, p. 1, 2015.

[5] A. Bremges, |. Maus, P. Belmann, F. Eikmeyer, A. Winkler, A. Albersmeier, A. Puhler, A.
Schliter, and A. Sczyrba, “Deeply sequenced metagenome and metatranscriptome of a biogas-
producing microbial community from an agricultural production-scale biogasplant,”
GigaScience, vol. 4, no. 1, p. 1, 2015.

(6] M. E. Aranguren and M. D. Wilkinson, “Enhanced reproducibility of sadi web service
workflows with galaxy and docker," GigaScience, vol. 4, no. 1, p. 1, 2015:

[7] S. R. Piccolo, A. B. Lee, and M. B. Frampton, “Tools and techniques for computational
reproducibility,” bioRxiv, p. 022707, 2015.

[8] R. D. Peng, "Reproducible research in computational science," Science, vol. 334, no.
6060, pp. 1226--1227, 2011.

[9] G. B. Frisoni, A. Redolfi, D. Manset, M. E. Rousseau, A. Toga, and A. C. Evans, “Virtual
imaging laboratories for marker discovery in neurodegenerative diseases," Nature Reviews
Neurology, vol. 7, no. 8, pp. 429-- 438,2011.

[10] U. K. Devisetty, K. Kennedy, P. Sarando, N. Merchant, and E. Lyons, “Bringing your tools
to cyverse discovery environment using:docker,” F1000Research, vol. 5, 2016.

[11] I Dinov, K. Lozev, P.Petrosyan, Z. Liu, P. Eggert, J. Pierce, A. Zamanyan, S. Chakrapani, J.
VanHorn, D. S. Parker et al., “Neuroimaging study designs, computational analyses and data
provenance using the loni pipeline,” PloS one, vol. 5, no. 9, p. e13070, 2010.

[12] A. Redolfi;zR. McClatchey, A. Anjum, A. Zijdenbos, D. Manset, F. Barkhof, C.S penger, Y.
Legré, L. O. Wahlund,C. B. di San Pietro et al., “Grid infrastructures for computational
neuroscience: the.neugrid example,” Future Neurology, vol. 4, no. 6, pp. 703--722, 2009.

[13] _ Y. Halchenko, M. Hanke, and V. Alexeenko, “Neurodebian: an integrated, community-
driven, free software platform for physiology,” in Proceedings of The Physiological Society. The
Physiological Society, 2014.

[14]>.. M. Minervini, C. Rusu, M. Damiano, V. Tucci, A. Bifone, A. Gozzi, and S. A.
Tsaftaris,”Large-scale analysis of neuroimaging data on commercial clouds with content-aware
resource allocation strategies,” International Journal of High Performance Computing
Applications, 2014.

[15] M. Minervini, M. Damiano, V. Tucci, A. Bifone, A. Gozzi, and S. A. Tsaftaris, “Mouse
neuroimaging phenotyping in the cloud,” in Image Processing Theory, Tools and Applications
(IPTA), 2012 3rd International Conference on. IEEE, 2012, pp. 55--60.

[16] K. Gorgolewski, T. Auer, V. Calhoun, C. Craddock, S. Das, E. Duff, G. Flandin, S. Ghosh, T.
Glatard, Y. Halchenko et al., “The brain imaging data structure, a format for organizing and
describing outputs of neuroimaging experiments.”

[17]). L. Teeters, K. Godfrey, R. Young, C. Dang, C. Friedsam, B. Wark, H. Asari, S. Peron, N. Li,
A. Peyracheetal., “Neurodata without borders: creating a common data format for
neurophysiology,” Neuron, vol. 88, no. 4, pp. 629--634, 2015.

[18] R.D.Vincent, A. Janke, J. G. Sled, L. Baghdadi, P. Neelin, and A. C. Evans, “Minc 2.0: a
modality independent format for multidimensional medical images,” in 10th Annual Meeting of
the Organization for Human Brain Mapping, vol. 2003, 2004, p. 2003.

[19]). Watson, “Virtualbox: bits and bytes masquerading as machines,” Linux Journal;vol.
2008, no. 166,p.1, 2008.

[20] M. Rosenblum,”Vmware’s virtual platform,” in Proceedings of hotchips, vol::1999,
pp.185--196.

[21] E. A. Brewer, "Kubernetes and the path to cloud native,” in Proceedings of the Sixth
ACM Symposium on Cloud Computing. ACM, 2015, pp. 167--167.

[22] “Binder,” http://mybinder.org/, accessed:2016-09-10.

[23] T. Sherif, P. Rioux, M. E. Rousseau, N. Kassis, N. Beck, R./Adalat, S. Das, T. Glatard, and A.
C. Evans, “Cbrain: a web-based, distributed computing platform for collaborative neuroimaging
research,” Recent Advances and the Future Generation of Neuroinformatics Infrastructure, p.
102, 2015.

[24] P. DiTommaso, M. Chatzou, P. P. Baraja, and C. Notredame, “A novel tool for highly
scalable computational pipelines," 2014.

[25] S.Krishnan and J. L. U. Gonzalez,”Google compute engine,” in Building Your Next Big
Thing with Google Cloud Platform. Springer, 2015, pp. 53--81.

[26] “Microsoft azure: Cloud computing platform and services,”
https://azure.microsoft.com/en-us/, accessed: 2016-10-30.

[27] D. Merkel, “Docker: lightweight linux containers for consistent development and
deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[28] G. Kiar, W. Gray Roncal, D. Mhembere, E. Bridgeford, R. Burns, and J. T. Vogelstein,
“ndmg: Neurodata's mri graphs pipeline,” Aug. 2016. [Online]. Available:
http://dx.doi.org/10.5281/zenod0.60206

[29] M. Jenkinson, P. Bannister, M. Brady, and S. Smith, “Improved optimization for the
robust and accurate linear registration and motion correction of brain images,” Neuroimage,
vol. 47, no. 2, pp. 825--841, 2002.

[30] E.Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and .
Nimmo=Smith, “Dipy, a library for the analysis of diffusion mri data,” Frontiers in
neuroinformatics, vol. 8, p. 8, 2014.

[31] D.Mhembere, W. Gray Roncal, D. Sussman, C. E. Priebe, R. Jung, S. Ryman, R. J.
Vogelstein, J. T. Vogelstein, and R. Burns, “Computing scalable multivariate glocal invariants of
large (brain-) graphs,” in Global Conference on Signal and Information Processing (GlobalSIP),
2013 IEEE. IEEE, 2013, pp. 297--300.

[32] X.-N. Zuo, J. S. Anderson, P. Bellec, R. M. Birn, B. B. Biswal, J. Blautzik, J. C. Breitner, R. L.
Buckner, V. D. Calhoun, F. X. Castellanos et al., “An open science resource for establishing

reliability and reproducibility in functional connectomics,” Scientific data, vol. 1, p. 140049,
2014,

[33] R.C.Craddock, S. Jbabdi, C.-G. Yan, J. T. Vogelstein, F. X. Castellanos, A. Di Martino, C.
Kelly, K. Heber- lein, S. Colcombe, and M. P. Milham, “Imaging human connectomes at the
macroscale,” Nature methods, vol. 10, no. 6, pp. 524--539, 2013.

[34] B.A.Landman, A.J. Huang, A. Gifford, D. S. Vikram, I. A. L. Lim, J. A. Farrell, J. A. Bogovic,
J. Hua, M. Chen, S. Jarso et al., “Multi-parametric neuroimaging reproducibility: a 3-t resource
study,” Neuroimage, vol. 54, no. 4, pp. 2854--2866, 2011.

[35] K. J. Gorgolewski, F. Alfaro-Almagro, T. Auer, P. Bellec, M. Capota, M. Chakravarty, N. W.
Churchill, R. C. Craddock, G. Devenyi, A. Eklund, O. Esteban, G. Flandin, S. Ghosh, J. S.
Guntupalli, M. Jenkinson, A. Keshavan, G. Kiar, P. R. Raamana, D. Raffelt, C. J. Steele,.P.-O.
Quirion, R. E. Smith, S. Strother, G. Varoquaux, T. Yarkoni, Y. Wang, and R. Poldrack; “Bids apps:
Improving ease of use, accessibility and reproducibility of neuroimaging data analysis
methods,” bioRxiv, 2016. [Online]. Available: http:
//biorxiv.org/content/early/2016/10/05/079145

[36] X.-z.J. Luo, D. N. Kennedy, and Z. Cohen, "Neuroimaging informaticstools and resources
clearing house (nitrc) resource announcement,” Neuroinformatics, vol. 7,/no. 1, pp. 55--56,
2009. [Online]. Available: http://dx.doi.org/10.1007/s12021-008-9036-8

[37] J.D.VanHornand A. W. Toga, "ls it time to reprioritize neuroimaging databases and
digital repositories?” Neuroimage, vol. 47, no. 4, pp. 1720--1734, 2009.

[38] S. Das, A. P. Zijdenbos, D. Vins, J. Harlap, and A. C. Evans, ”Loris: a web-based data
management system for multi-center studies,” Frontiers.in neuroinformatics, vol. 5, p. 37,
2012.

[39] R.Burns, K. Lillaney, D. R. Berger, L. Grosenick, K. Deisseroth, R. C. Reid, W. Gray Roncal,
P. Manavalan, D. D. Bock, N. Kasthuri et al.; “The open connectome project data cluster:
scalable analysis and vision for high-throughput neuroscience,” in Proceedings of the 25th
International Conferenceion Scientific and Statistical Database Management. ACM, 2013, p. 27.
[40] J.T.Vogelstein, K./Amunts, A. Andreou, D. Angelaki, G. Ascoli, C. Bargmann, R. Burns, C.
Cali, F. Chance, M. Chun, G. Church, H. Cline, T. Coleman, S. de La Rochefoucauld, W. Denk, A.
Belén Elgoyhen, R. E. Cum- mings, A. Evans, K. Harris, M. Hausser, S. Hill, S. Inverso, C. Jackson,
V. Jain, R. Kass,B. Kasthuri, K. Kording, S. Koushika, J. Krakauer, S. Landis, J. Layton, Q. Luo, A.
Marblestone, D. Markowitz, J. McArthur, B. Mensh, M. Milham, P. Mitra, P. Neskovic, M.
Nicolelis,(R. O'Brien, A. Oliva, G. Orban, H. Peng, A. Picchini-Schaffer, M. Picciotto, J.-B. Poline,
M.-m. Poo, A. Pouget, S. Raghavachari, J. Roskams, T. Sejnowski, F. Sommer, N. Spruston, L.
Swanson, A. Toga, R. J. Vogelstein, R. Yuste, A. Zador, R. Huganir, and M. Miller, “Grand
Challenges for Global Brain Sciences,” ArXiv e-prints, Aug. 2016.

[41] G. Kiar, K. Gorgolewski, D. Kleissas, W. Gray Roncal, B. Litt, B. Wandell, R. Poldrack, M.
Wiener, R. J. Vogelstein, R. Burns, and J. T. Vogelstein, “Example use case of sic with the ndmg
pipeline (sic:ndmg),” GigaScience Database, 2017. [Online]. Available:
http://dx.doi.org/10.5524/100285

Appendix A Reproduction Instructions

Outlined here are the required steps to reproduce both the analysis of data in the cloud, as well
as the live demonstration notebook server. In the command blocks which follow, all commands
preceded by a S should be executed. Commands which are executed in a single line but were
too long to fit on the page end with \ and are carried over to lines which have been indented.
Below, the assumption is that the commands are being executed on a Unix-based machine with
access to a terminal. If one is working with a Windows operating system, installing.a GNU
environment such as Cygwin® will enable the user to have a similar experience.

A.1 Processing Data in the Cloud

Through use of the AWS Batch tool, a scalable computing cluster isaable to belaunched in the
cloud and jobs can be submitted to it for analysis via the command line. The process which
must be followed is: create a computing environment, create a job-submitting queue, create a
job definition, and finally, submit jobs to the cluster. Wediscuss.how to accomplish each of
these steps, and provide the scripts which were used for the deployment presented in this
manuscript. One prerequisite for the instructions that follow'is that the data in question for
processing is made available at a public read- and write-able S3 bucket in the BIDS data format.

A.1.1 Setting up an AWS Batch cluster

Following the AWS Batch® Getting Started tutorial, one can create a cloud computing cluster for
themselves, establish a job-accepting queue, define jobs, and submit jobs to the queue, all
within the web console. Though these operations can be done via the command line as well,
they will only need to be performed once so it is not significantly advantageous to script these
steps.

At each of these steps there are several decisions which must be made regarding the size of the
cluster, the-number of cores, what container image to use in your job definition, and more. The
definitions used to setup the ndmg pipeline and cluster can be found in the SIC Github
repositorym.

A.1.2 Launching jobs on the cluster

Once the cluster is live and a job definition for the ndmg pipeline has been created, jobs can
start being submitted to the queue. When submitting a job to the cluster, one must first take
the existing task definition for the process they are trying to run, and then override relevant
portions of this definition for the desired usecase. For instance, if one wishes to run a single
subject from the NKI1 dataset stored on our public S3 bucket, they may create a job submission
which summarizes this'’. This step can be done either from within the console or via the
command line. In order to use the command line interface, one must first install the Amazon

CLI tool and configure it with their user credentials to ensure that processes launched via the
command line and web console are linked.

If one wishes to launch many jobs at once, the ndmg package contains a script which accepts an
S3 bucket, a path to the dataset on that bucket, and will then launch all of the subjects within
that dataset on the previously created cluster. Currently, this functionality does not exist within
the Docker container version of ndmg, as it requires supplying authentication information to
Amazon. However, passing this information to the Docker container safely and securely is a
feature which the developers hope to eventually make available. To use this script, one must
have installed the ndmg package in Python, and then may type the following line from a
terminal window:

S ndmg_cloud --bucket s3_bucket_name --bids_dir \
path_on_bucket

As well as receiving output to the terminal, opening the Batch web.console to view that the
jobs have been launched can serve as confirmation that this is completed. Once the processing
is complete, the outputs will be pushed back to the provided'S3 bucket and the results can be
analyzed.

A.2 Launching Demonstration Notebook Service

The interactive SIC:ndmg notebook can be a valuable way to experience the ndmg pipeline and
walk through the steps it takes, from generating graphs to plotting them and producing
summary statistics. This interactive notebook is contained within its own Docker container, and
automagically launches the service upon creating an instance of the container. We will walk
through the brief process of launching this container on your local machine so that you may
interact with it or change ityourself.

A.2.1 Setting up Your Machine

The only required setup for running locally is to install Docker. Docker has installation helpers
for all operating systems available on their website'?. Once Docker is installed, it is important to
make sure that theport 8888 is open for Docker. In the case of Mac OS X and Linux, this should
be the:case automatically, but for Windows it currently must be opened through the
networking options of VirtualBox.

A.2.2'Launching the Docker container

The user can launch the service with a single command from a terminal with access to Docker.
This terminal is the standard terminal on Linux or Mac OS X, and can be the Powershell or
provided terminal when installing Docker. The following command launches this service:

S git clone https://github.com/neurodata/sic ~/sic
S cd ~/sic/code/jupyter
S docker build -t neurodata/sic .

S docker run -d -p 8888:8888 neurodata/sic

You can interact with the demo via a web browser. Navigate to localhost:8888 in the browser of
your choosing to see this service live.

Appendix B Extension Instructions

As this is a living and breathing project undergoing development, changes are being made
regularly. The reproduction instructions given in Appendix A will reproduce the exact results
presented within this manuscript. There are several ways described below which enable staying
up-to-date with the project and performing one's own analyses using this tool.

B.1 Updating the ndmg Container

In order to achieve state-of-the-art performance from the ndmg pipeline, the version of the
container being used should be updated to the latest release. In the job definition created
above, specifying that the container image being used is bids/ndmg:latest as opposed to
bids/ndmg:v0.0.41-1, for instance, will ensure that the most recent version of the.code.is being
used.

B.2 Using Your Data

The ndmg pipeline processes data according to the BIDS data specification. To use the tool with
an alternate dataset, it first needs to be organized according to this specification. This can be
validated using the BIDS Validator™®. Once the data are organized, they can either be uploaded
to an S3 bucket and processed with a command similarto that in Section A.1.2 (updating the
bucket name and path to data on the bucket), or kept locally with the bucket and remote_path
values omitted, if one wishes to run the pipeline locally.

B.3 Changing the Parameters

All of the code for this project is open-source and resides in a Github repository”’. To test the
pipeline with different sets of parameters, it'can be cloned and the source code can be
modified directly. The repository can be cloned to the HOME directory with the following.

S git clone https://github.com/neurodata/ndmg ~/ndmg

Once adjustments have been made and the new pipeline is ready to be tested, the package can
be re-installed by executing the setup.py file contained within the repository.

$ c¢d ~/ndmg
S python setup.py install

B.4 Changing the Functions

Much like changing parameters, once the repository is cloned it is possible to swap out
algorithms or implementations for various parts of the pipeline. Examples of tools which could
be replaced include registration or tractography. Again, once this is completed, the pipeline
must be re-installed prior to execution.

Notes

https://www.nitrc.org/forum/forum.php?forum_id=3664
*https://cloud.docker.com
*http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
*Enumerated here: http://bids-apps.neuroimaging.io/apps/
>http://brainx.io

®https://neurographics.net/2016/07/28/oden-2016/
"https://goo.gl/DDMcMG

®https://www.cygwin.com/

*https://aws.amazon.com/batch/
Ohttps://github.com/neurodata/sic/tree/master/code/ec2/batch/json_files
Yhttps://github.com/neurodata/sic/blob/master/code/ec2/batch/json_files/job.json
12https://www.docker.com/products/overview
13http://incf.github.io/bids—validator/

14https://github.com/neurodata/nd mg

