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ABSTRACT

Assigning a physical interpretation to turbulent fluctuations beneath waves is complex because eddies are
advected by unsteady wave orbital motion. Here, the kinematic effects of wave orbital motion on turbulent
fluctuations at a fixed location were investigated using model turbulence spatial spectra (k spectra) together
with a general form of the frozen turbulence approximation. Model autospectra and cospectra included an
inertial subrange, a rolloff at energy-containing scales (L = 2m/k), and a dissipation range. Turbulence was
advected by a background flow composed of waves (rms orbital velocity o, peak frequency w,,, and spectral
width Aw,,) propagating parallel to a current u.. Expressions were derived for turbulence frequency spectra
(w spectra), and parameters were varied across ranges typical in the coastal ocean. Except close to the wave
band, the w-spectrum shape collapses with two dimensionless parameters, a velocity ratio o,/u,., and a time-
scale ratio u.ko/w,,, which can be used to diagnose the effects of wave advection on turbulence spectra. As
o/u. increases, less variance and covariance appear at low frequencies (w < u.ko) and more appear at high
frequencies (o > u.ko). If o,,/u. > 2, wave advection must be taken into account when estimating turbulence
length scales and integral quantities (e.g., Reynolds stress) from the low-frequency portion of spectra. The
offset of the —5/3 region due to waves is unaffected by the rolloff or dissipation range; therefore, previously
proposed methods for estimating dissipation rate from wave-affected —5/3 spectra are robust. Although
idealized, the results inform the interpretation of turbulence w spectra beneath waves and guide the esti-
mation of turbulence properties from those spectra.
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1. Introduction

In coastal and estuarine systems, turbulent stress
gradients are leading order in momentum budgets
(Geyer et al. 2000; Lentz et al. 1999). In these systems,
wave orbital motion and turbulent bottom and surface
boundary layers can extend over most, or all, of the
water column (e.g., Feddersen et al. 2007; Jones and
Monismith 2008). To quantify turbulence properties and
develop and test models for mixing in these systems, it is
therefore important to understand the interactions that
occur between turbulence and surface waves.

Surface waves affect turbulence in a kinematical sense
as well as a dynamical sense. Turbulent eddies are
advected in an unsteady way by wave orbital motion;
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therefore, assigning a physical interpretation to velocity
and scalar fluctuation at a fixed location is complex
(Lumley and Terray 1983). Additionally, a conceptual
problem arises when an Eulerian framework (fixed ref-
erence frame) is used for analyzing turbulence in the
presence of waves. It is therefore essential that the ef-
fects of the purely kinematic process of advection by
wave orbital motion are understood and differentiated
from dynamical interactions between waves and
turbulence.

Advection of turbulence by wave orbital motion is
particularly problematic when interpreting shallow-
water turbulence measurements. In shallow water,
sensors are typically mounted on moorings at fixed lo-
cations. Turbulent eddies are advected past the sensors
by the background flow and turbulence properties are
inferred from the resulting time series. Because time
scales for advection of turbulence past a point are short
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compared with time scales over which turbulence
evolves, the spatial structure of turbulence is inferred
from time series using a frozen turbulence approxima-
tion (Taylor 1938). Thus, the spatial structure of turbu-
lence is not observed directly but rather the distribution
of energy among turbulence length scales is inferred
from spectra in frequency space (w spectra). Dissipation
rates are typically estimated from —5/3 fits to the high-
frequency (inertial subrange) portion of w spectra.
Reynolds stresses can be estimated by integrating u/-w’
cospectra.

Waves introduce two distinct problems when esti-
mating turbulence statistics from this kind of data. First,
when turbulent eddies are advected past sensors by
wave orbital motion, the turbulence w spectrum is dif-
ficult to interpret as it can be quite different from the
corresponding spatial spectrum (k spectrum). As a
result, estimates of turbulence properties such as dis-
sipation rate from the o spectrum are affected dra-
matically by wave advection (Lumley and Terray 1983;
Trowbridge and Elgar 2001; Feddersen et al. 2007).
Second, the majority of the turbulence covariance is
associated with energy-containing eddies and often
overlaps in frequency space with the wave peak. Be-
cause wave orbital velocities can be two orders of
magnitude larger than turbulent velocity fluctuations,
correlations between horizontal and vertical wave or-
bital velocity components (wave biases) often dominate
stress estimates (Shaw and Trowbridge 2001; Rosman
et al. 2008). There has been considerable work on de-
veloping methods to isolate the turbulence spectrum by
removing parts of the velocity signal that are correlated
with surface elevation, pressure, or between velocities at
different locations (Benilov and Filyushkin 1970; Shaw
and Trowbridge 2001; Feddersen and Williams 2007).
While these methods can remove or reduce the wave
peak and often enable reasonable Reynolds stress esti-
mates, the effects of waves can never be removed from a
turbulence w spectrum because turbulent energy is re-
arranged in frequency space when eddies are advected
by wave orbital motion. To interpret observed w spectra
and evaluate estimates of turbulence properties, it is
therefore important to understand how advection of
turbulence by wave orbital motion affects turbulence
w spectra.

In this paper, we do not consider the problem of biases
in estimates of integral quantities (e.g., Reynolds stress)
caused by wave orbital velocities themselves. Rather,
our goal is to elucidate the kinematic effects of wave
advection on turbulence w spectra. In steady currents u,,
the frequency w of turbulent fluctuations observed at a
fixed location can be converted to the effective wave-
number « sampled using a simple form of Taylor’s
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frozen turbulence approximation: k = w/u.. When
eddies are advected by wave orbital motion, the situa-
tion is more complex as the energy corresponding to a
single-turbulence wavenumber is distributed over a
range of frequencies. The effect of unsteady wave ad-
vection on the turbulence w spectra can be investigated
using a more general form of the frozen turbulence ap-
proximation. If turbulence with a known « spectrum is
advected past a fixed location by known wave and cur-
rent velocities, the w spectrum that would be observed
can be calculated using a transformation between the
measurement time and the effective position in the
“frozen” turbulence field sampled. Using this approach,
Lumley and Terray (1983) solved for the w spectrum
that would be observed if inertial subrange isotropic
turbulence (Kolmogorov —5/3 law) was advected past a
point by waves propagating parallel to a uniform
current.

Lumley and Terray’s (1983) results illustrate that in
the presence of waves more of the turbulent energy
appears at frequencies higher than the wave frequency
than if the same turbulence is advected by a current
alone. Therefore, dissipation rate estimates from —5/3
fits to the inertial subrange of w spectra are biased
(overestimated) if waves are not taken into account in
the analysis. The method introduced by Lumley and
Terray (1983) is commonly used to estimate dissipation
rates from measured w-spectra-containing waves and
has been extended to cases in which waves propagate at
an angle to the current (Trowbridge and Elgar 2001),
elliptical wave orbital motion (Feddersen et al. 2007),
and directionally spread waves (Gerbi et al. 2009).
These methods appear to provide robust dissipation rate
estimates even when wave advection is very large, as in
the surfzone (Feddersen 2010, 2012).

The transformation from space (x, ) to time (¢, )
introduced by Lumley and Terray (1983) is general and
can be used to convert any spectral shape from wave-
number to frequency space using known wave and
current velocities. Gerbi et al. (2008) applied this
transformation to turbulence u'-w’ cospectra and illus-
trated that the distribution of turbulence covariance
(Reynolds stress) in frequency space is relatively un-
affected by waves if rms wave orbital velocities are less
than twice the current (o,,/u. < 2), but the rearrange-
ment of turbulence covariance in frequency space is
significant for o,,/u. > 2. In that work, semitheoretical
curves representing the k-spectrum shape were fit to the
low-frequency portion of turbulence cospectra, below
the wave peak. These fits were extrapolated across the
wave peak and higher frequencies and integrated to
estimate Reynolds stresses. However, the method was
limited to cases where o,/u., < 2, for which the
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distribution of covariance in frequency space is not sig-
nificantly affected by wave orbital motion.

Here, we extend previous work that investigated the
effects of wave advection on the inertial subrange part of
turbulence spectra (Lumley and Terray 1983; Trowbridge
and Elgar 2001; Feddersen et al. 2007) by considering a
more realistic turbulence spectrum that includes a rolloff
at energy-containing scales. The general frozen turbulence
approach is used to transform model turbulence « spectra
to w spectra observed at a point when the turbulence is
advected by waves and current. We systematically vary
the current, wave properties, and turbulence properties
across a wide parameter space that spans conditions in the
coastal ocean, extending the work of Gerbi et al. (2008) to
cases for which wave orbital motion is large compared with
the current. We then investigate how key properties of
w spectra vary across this parameter space. The results of
our analyses inform the interpretation of turbulence
o spectra from a fixed location and can be used to guide
the estimation of turbulence properties from those spectra.

2. Analysis framework

a. Transformation of spectra from wavenumber space
to frequency space

Physically, we imagine a three-dimensional spatial
field of turbulence that does not change in time. This
frozen spatial field of turbulent velocity fluctuations
u'(r) is advected past a sensor at position ry by the cur-
rent u. and wave orbital velocities u,,. The turbulent
velocity fluctuation measured by the sensor at each time
tis the turbulent velocity fluctuation at position r(¢) + rg
in the spatial turbulence field, where

Ke) = —J[ u +u (7)dr. (1)

0

Conceptually, this relationship can be used to convert
the three-dimensional spatial field of turbulent velocity
fluctuations to the time series of velocity fluctuations
observed by a sensor at a point. Because turbulence is a
stochastic process, the spatial field of turbulent velocity
fluctuations is not known. However, semitheoretical
models exist for turbulence spatial spectra that describe
the distribution of the energy and covariance among
turbulent length scales.

We begin with a turbulence spectrum in wave-
number space that is specified. The spectral tensor,
denoted ®;(x), quantifies the covariance between
velocity components in directions i and j per unit
volume in wavenumber space dk = (dky, dk,, dk3) at a
given wavenumber k = (ki, k2, k3). The correlation
function R;;(r), representing the correlation between
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velocity components i and j at points in space sepa-
rated by position vector r, is by definition the inverse
Fourier transform of the spectral tensor function,
that is,

where the integrations are from — to to . If turbu-
lence with spatial representation given by Eq. (2) is
advected past a sensor by a steady current u. and wave
orbital velocity u,,, then the effective spatial position in
the turbulence field that is sampled by the sensor at
time ¢ is given by Eq. (1). Therefore, the correlation
function of the measured velocity time series can be
written as

R.(1)= ”J @, (1)e™ " dic
KiKayks
- J J J D, (r)e™ e die, 3)

where x; has been defined as the direction of the current,
and r,,(¢) is the wave orbital excursion at time ¢. In the
last step, the negative sign in the first exponent can be
omitted because of symmetry.

Note that ®;;(x) is a function of the turbulence only,
and r,,(¢) is a function of the waves only. If it is assumed
that the waves and turbulence are independent random
processes, then Eq. (3) can be written as

Ri]‘(t) — JJJ q)l.j(K)eiKluft <eik-l‘w(t)> di. (4)
KikyK3

The angle brackets are the expected value of the
function inside the brackets at a given time ¢ over
many realizations. This term incorporates the statis-
tical distribution of r,, at a particular time ¢. Note that
(e} is the characteristic function of r,(f). It is
therefore the inverse Fourier transform of its proba-
bility density function p(r,,). If it is assumed that wave
orbital excursions have a Gaussian distribution, that
is, p(r,) is Gaussian (e.g., Wyngaard and Clifford
1977; Lumley and Terray 1983), which is true for
random waves, then the characteristic function can be
expressed as

(eimrw(t)> — e*K,Km[C]m(O)*Clm(t)] , (5)

where ¢;,,(¢) = (ri(t + 7)r,,(7)) is the cross-correlation
function of the wave orbital excursions in directions x;
and x,,,, and the angle brackets represent the expected
value over all times 7. The quantity ¢;,,(0) is therefore
the covariance of the orbital excursion components r;
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and r,,. Although the assumption that wave orbital
excursions have a Gaussian distribution breaks down
in very shallow water, it is a reasonable approximation
offshore of the surfzone. The assumption that fluctu-
ations due to waves and turbulence are uncorrelated
may also be poor under breaking waves. Therefore,
the results should be used with caution for analysis of
turbulence associated with wave breaking.

The correlation function ¢;,(¢) is the inverse Fourier
transform of the spectrum of wave orbital excursions
S,r.(w), which can be computed from the spectrum of
wave orbital velocities S, (w) as

0

= S, (@)
¢, (1) = L cos(@i)S,, (w) d = L cos(on) " do.

(6)

Substituting Eq. (5) into Eq. (4) yields an expression
for the correlation function of the turbulent velocity
fluctuations observed by the sensor as a function of the
turbulence wavenumber spectrum and the wave orbital
excursion statistics:

o

The turbulence frequency spectrum P;;(w) can then be
calculated as the Fourier transform of the turbulence
correlation function R;(¢):

q)i/‘ (K)eiKl el oK Ky [ (0)—¢,,, (D)] dic. (7)

1K2K3

P (@)= % J: R (1) di. @®)

For any given turbulence wavenumber spectrum ®;;(s)
and any known current u. and wave orbital velocity
spectrum S, (), the spectrum of turbulent fluctua-
tions that would be observed by a fixed sensor P;(w) can
be computed from Egs. (6) to (8).

In this study, we consider only the simplest case of
one-dimensional advection of turbulence by horizontal
wave orbital velocities and a parallel current. In this
case, the spatial structure of turbulence in the x; di-
rection controls the temporal fluctuations observed by
the sensor. Therefore, Eq. (7) can be written in terms of
one-dimensional spectrum Ej;(k;), defined as the con-
tribution to the covariance of u; and u; from all wave-
numbers with a k; component between k; and k1 + dk;
(see Pope 2000). The term E;; is related to the spectral
tensor ®;; by

For the 1D case, using Eq. (9), Eq. (7) reduces to

cI)ly.(K) dr, dk,. 9

2K3
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1(” ;
Rij(t) — zjﬂc Ei/_(Kl)emlucte—lel[cll(O)—cn(t)] dKl

0

=J E, (k) cos(ic,u, r) e iln©@=nOlgie - (10)
0

In this study, Egs. (6), (8), and (10) were used to trans-
form model turbulence wavenumber spectra to fre-
quency spectra that would be observed by a fixed sensor
when the turbulence was advected by currents and wave
orbital velocities with a range of peak periods and
amplitudes.

b. Representation of turbulence

The transformations above were applied to semi-
theoretical wavenumber spectra for both isotropic and
anisotropic turbulence.

1) ISOTROPIC TURBULENCE

In isotropic turbulence, ®;(x) is completely de-
termined by the energy spectrum because the turbu-
lence properties are independent of direction (Pope
2000). The energy spectrum E(k) represents the total
turbulent kinetic energy contained in wavenumbers with
magnitude between k and k + dk and can also be
thought of as ®;(x) stripped of all directional in-
formation, that is,

£ = [|[ 512100 + @00 + @,615(0] - ) e
(a1

Note that the scalar energy spectrum E(k), which de-
scribes the turbulent kinetic energy as a function of
wavenumber magnitude, is different from the one-
dimensional spectrum tensor E;(k;), which describes
the covariance between two velocity components as a
function of the wavenumber component in the x; di-
rection. Our notation follows that of Pope (2000).

Previous work (e.g., Lumley and Terray 1983;
Trowbridge and Elgar 2001) has used a Kolmogorov
—5/3 spectrum to describe the turbulence wavenumber
spectrum. Here, we use a spectrum that includes the
low-wavenumber rolloff and the dissipative range
(Figs. la,b,d,e). The spatial structure of isotropic
turbulence was represented using a model spectrum
with two adjustable parameters, the dissipation rate
e and the energy-containing turbulence length scale
L (Pope 2000). The spectra follow the Kolmogorov
—5/3 relationship in the inertial subrange, the low-
wavenumber rolloff is controlled by L, and the
high-wavenumber rolloff is controlled by the Kolmo-
gorov length scale n = (v*/g)"*, where v is kinematic
viscosity:
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FIG. 1. Model turbulence (a),(b),(d),(e) autospectra for isotropic turbulence with & = 1 X 10"*m?s > and (c),(f) cospectra for an-

isotropic turbulence with Reynolds stress of 1 X 10~ *m?*s 2

. Curves are one-dimensional spectra in the x; direction. Colors indicate

different energy-containing length scales L and dashed lines correspond to o = 27/L.

E(k) = Cs™ ¥, (kL)f, ().,

. L 5/3+p, B K/KO 5/3+p,
L [(kL)? + 472]? [(x/k,)” +1]"

£, = exp(—cy{[en)* + 41" — . })

= exp(—2mey{[(x/i, ) + (c,2m)' "™ = }).

(12)

The function f; determines the shape of the energy-
containing range and tends to unity for large «/kg.
Similarly, f,, describes the shape of the dissipation
range and tends to unity for small «/k,,. We use C = 1.5,
po = 2,cg =52, and ¢, = 0.40 (Pope 2000). We have
defined ko = 27/L as the wavenumber corresponding to
the peak in the variance-preserving form of the energy
spectrum, which differs from the definition of L used by
Pope (2000).

For isotropic turbulence, the one-dimensional spectra
are related to the energy spectrum by (Pope 2000)

E, (k)= r B (1 - i—i) d

Ky

dE“}

Ey(k,) :% [Ell(Kl) K dx, (13)

One-dimensional spectra were computed numerically from
Eq. (13) using the form of E(x) in Eq. (12) (Figs. 1a,b,d,e).

2) ANISOTROPIC TURBULENCE

For the anisotropic turbulence cospectrum FEj3(k1),
we used a spectrum shape proposed for the atmospheric
boundary layer by Kaimal et al. (1972) and later applied
to the coastal ocean bottom and surface boundary layers
by Trowbridge and Elgar (2003), Feddersen and
Williams (2007), and Gerbi et al. (2008):

fulh 7 3 1
N T sin (1) 7
K, 7)1+ (k,/Ky)

(14)

The shape of this spectrum is controlled by two pa-
rameters, the spatial scale of the energy-containing

turbulent eddies (27/k(), and the Reynolds stress u}u)

(Figs. le,f). For k >> ko, the spectrum goes like k7 7>

¢. Representations of waves

The transformation of turbulence spectra from
wavenumber to frequency space described in section 2a
assumes that wave orbital excursions are randomly dis-
tributed. To simulate random waves, we specified the
wave orbital excursion spectrum S, ,,(w). It was neces-
sary to specify the wave orbital excursion spectrum
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FIG. 2. Wave orbital excursion spectra used to transform tur-
bulence spectra from wavenumber to frequency space. Spectra
shown are narrowband Gaussian (Aw,/w, = 0.025), broadband
Gaussian (Aw,/0,, = 0.2), and a JONSWAP spectrum for fully
developed waves. All spectra shown are normalized such that the
integral of the corresponding orbital velocity spectrum is unity.

rather than the wave orbital velocity spectrum to
avoid the wave orbital excursion spectrum blowing
up at low frequencies. The wave orbital velocity
spectrum is related to the wave orbital excursion
spectrum by

Sulul(w) = wzsxlxl(w)’ (15)

and S,,,(w) was defined such that
J S,  (w)do= [ oS, (0)do=0,. (16)
0 171 Jo 171

Two different spectral shapes were used: Gaussian
and JONSWAP (Fig. 2). Although real wave spectra are
skewed to high frequencies, a Gaussian spectrum was
used in this study so that the width of the wave peak
could be controlled independently of the peak wave
frequency. These spectra had the form

A? (w—w )
S (w)= exp|— we | 17
xlx]( ) \/ZTvAa)W p |: 2Aw%\) ( )
where A% = f:;S,,lu] ()0 do = po?/w?, is  the
root-mean-square  wave  orbital  excursion,

w= (ow/ww)fzjf:Sulu1 (0)/w? do is a coefficient of order
unity that depends on the shape of the wave spectrum, w,,
is the peak wave frequency, and Aw,, is the width of the
wave peak (one standard deviation). Two different
spectral peak widths were used in the analyses: Aw,,/,, =
0.025 (narrowband) and Aw,,/w,, = 0.2 (broadband).

To compare results for narrowband and broadband
Gaussian spectra with more realistic wave distributions,
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as a third case a JONSWAP spectrum was used to de-
scribe the wave heights:

ag? ] |
S ) = exp| -4 2% (1)

Here, a controls the spectrum amplitude, g = 9.8 ms >

is acceleration due to gravity, 8 = 1.25 is a constant,
and y = 3.3 controls the enhancement of the wave
peak relative to background. The exponent r is
given by

Y
M] , 19)

r exp[ 2? 2
where ¢ = 0.07 for w < w,, and 0.09 for w > w,,.

The JONSWAP spectrum for wave heights was eval-
uated and converted to a spectrum for wave orbital ex-
cursions at the seafloor using the relationship from
linear wave theory,

—( -2
lexl = (sinhkh) S (20)

along with the dispersion relation w® = gk tanhkh,
where here « is the wavenumber of the wave and /4 is
the water depth. The coefficient a was set such that
Eqgs. (15) and (16) were satisfied. Although not ap-
propriate close to the surfzone, linear wave theory has
been shown to work well across the majority of the
continental shelf.

The correlation function of wave orbital excursions
was then computed from the wave orbital excursion
spectrum using Eq. (6). The peak wave frequency w,, as
well as the magnitude of the wave spectrum o, was
varied to investigate how wave properties affect ob-
served turbulence frequency spectra.

d. Cases

One-dimensional spectra [Eq1(k1), E33(k1), E13(k1)]
for isotropic and anisotropic turbulence described in
section 2b were transformed to corresponding
o spectra that would be observed at a fixed location for
four different peak wave frequencies, four energy-
containing turbulence length scales, and four currents
(64 combinations total; Table 1). For each combination
of these parameters, rms wave orbital velocities were
varied from 0 up to 7 times the current (o, /u. = 0-7).
The parameter space included peak wave frequencies
w,, ranging from 1/8 to 8 times the frequency corre-
sponding to advection of large turbulent eddies by the
current u.ky. These analyses were repeated for nar-
rowband and broadband Gaussian wave spectra and
JONSWAP wave spectra.
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TABLE 1. Parameters used to generate frequency spectra ob-
served when isotropic and anisotropic turbulence is advected past
a point by parallel waves and current.

Parameters Values

Peak wave frequency w,, (rad sfl) 0.31, 0.63,0.94, 1.26
Wave peak width Aw,/w,, 0.025, 0.2
Current u, (ms™ 1) 0.05,0.1,0.15,0.2
Rolloff wavenumber k (rad m’l) 3.1,4.2,6.3,12.6
Wave advection speed: current speed 0-7

o/u,
Frequency corresponding to large 0.125-8

eddies: wave frequency u.«o/w,,
Wave orbital excursion: large 0-9

eddy size oko/w,,

3. Results

a. Effects of wave advection on observed turbulence
w spectra

The integrals of turbulence autospectra and
cospectra, which represent the total velocity compo-
nent variances and covariances (Reynolds stresses),
respectively, are not altered by wave orbital motion.
However, as unsteady wave orbital velocities increase
relative to the steady current, the shapes of observed
spectra change (Figs. 3, 4). In our analyses, when rms
wave orbital velocities were smaller than the current
speed (o, /u. < 1), o spectra were affected little by
wave orbital motion and were similar to when tur-
bulence was advected by just a current. When rms
wave orbital velocities exceeded the current speed
(ow/u. > 1), less variance appeared to the left of the
wave frequency (o < w,,) and more appeared to the
right of the wave frequency (0 > w,,) than when tur-
bulence was advected by the current alone (Figs. 3, 4).
This is most easily seen in the variance-preserving
spectra. When plotted on a logarithmic frequency
scale, the area under these curves is proportional to
each frequency band’s contribution to the total
variance.

The turbulence o spectra can be divided into 1) a
low-frequency part (0w < w,, © < ucky) in which
spectral density is constant and there is an apparent
rolloff that resembles the rolloff in the wavenumber
spectrum at energy-containing scales, 2) an in-
termediate frequency part near the wave band in
which spectral density oscillates with frequency, and
3) a high-frequency part (o > w,,, ® > u ko) in which
spectral density is increased by waves. At frequencies
well above w, and u.kg, wave advection causes a
positive offset in the —5/3 part of the spectrum, as first
described by Lumley and Terray (1983). Both the
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apparent rolloff frequency and the high-frequency
extent of the intermediate range vary with properties
of the wave and turbulence spectra. The part of the
spectrum that is altered by wave advection extends to
lower frequencies for lower-frequency waves. The
intermediate frequency range extends to higher fre-
quencies as the wave frequency increases and as
the wave orbital velocity increases. The same gen-
eral patterns are true for both isotropic turbulence
autospectra and anisotropic turbulence cospectra
(Figs. 3, 4).

The shape of the wave spectrum does not signifi-
cantly affect the low- or high-frequency behavior of the
observed turbulence spectrum; however, it strongly
affects the spectrum shape close to the wave peak, in
the intermediate frequency range (Fig. 5). The nar-
rower the wave peak, the larger the magnitude of os-
cillations in the turbulence w spectrum near the wave
peak. Although these oscillations have a large effect on
the value of the spectrum at a given frequency near the
wave band, their effect on the integral of the spectrum
is minimal; therefore, the shape of integrated turbu-
lence spectrum is almost independent of the shape of
the wave spectrum.

b. Dimensionless parameters controlling the shapes
of observed spectra

Expressions for the shapes of observed w spectra can
be derived by substituting the expressions for model
k spectra [Egs. (12)—(14)] into the equations used to
transform spectra from wavenumber to frequency
space [Eqgs. (6), (8), (10)]. Variables in the equations
(ky, t, w) are then arranged into dimensionless
variables [w/(u.kg), s = ki/kg, and y = u.kot], where
w/(uckg) is dimensionless frequency, and s and y are
integration variables, resulting in expressions for
o spectra in terms of dimensionless parameter groups.
The shape of the dissipation range has negligible
effect on the w spectrum, except for very large values of
wl(uckg), corresponding to very small, high-frequency
fluctuations that are typically not resolved in field
measurements. Over the frequency range relevant to
field measurements, f, = 1, and the shape of the
w spectrum is independent of k1. We therefore take
fn = 1 in our theoretical analyses. Derivations are
provided in the appendix.

The resulting expression for the two-sided u; auto-
spectrum for isotropic turbulence is

2/3
€ 1 0w UK, O
Pll(w) = (_> F3< ] < 07 —W7 /*L) > (21)

K0 ucKO MCKO wW uc

where
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o0 s 52 ,
Fl(S): JS m(l_s—a> ds'.

For the u3 autospectrum Ps3, the same equations apply
except that F; is replaced by G;:

Gy =2 % 145 ay 2
O3] (it e)e e
The magnitude of the spectrum is proportional to
(e/k0)*"*/(uckp), while the spectrum shape is described
by the function F;. The w-spectrum shape therefore
depends primarily on the two parameters u.ko/w, and

o,/u.. Near the peak wave frequency, the w spectrum
is also affected by Sy, the wave orbital velocity
spectrum defined as a function of w/(u.xo) and nor-
malized such that[;S¥  [w/(ucko)ld[w/(ucro)] =1 (see
the appendix).

The corresponding expressions for the cospectrum for

anisotropic turbulence are

o
Ze 0 Zw 2
b uc7l"L>? ( 3)

where
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Nux, o, u’ 1272
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and F, and p are defined in Eq. (21).

The shapes of both turbulence autospectra and
cospectra in frequency space are controlled primarily
by the same two parameters: u.ko/w,, and o,/u.. The
first parameter u.ko/w, represents the ratio of the fre-
quency corresponding to the low-wavenumber rolloff
in the turbulence spectrum in the absence of waves
u.ko to the peak wave frequency w,. The second

sin (3_7r> J J Lme*i[w/(ucKo)*S]ye*[(ucko)/ww]z(tfw/llf)z[;ﬁFz()')]s2 dsdy,
7 —o J - 1 + ‘S‘

parameter o,,/u, is the ratio of the rms advection speed
by waves to the advection speed by current. A third
parameter o,ko/w,, representing the ratio of the rms
wave orbital excursion to the spatial scale of energy-
containing eddies, can be formed from the product of
UKo/, and o,,/u.. Equations (21)-(23) can be rewritten
in terms of any two of these three dimensionless
parameters.
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FIG. 6. Fraction of total (top) uj variance and (bottom) u{—uj} covariance that appears in the spectrum at fre-
quencies less than the frequency corresponding to energy-containing turbulence advected by the current u .« for
a range of wave conditions and turbulence properties. Results shown correspond to a broadband Gaussian wave
spectrum. (left) Plots of variance or covariance fraction vs velocity ratio o,/u.. Colors indicate different values of
the time-scale ratio u.ko/w,,. (right) Contours of variance and covariance fraction vs the velocity and time-

scale ratios.

When the fraction of the variance and covariance
appearing in the spectrum at frequencies less than the
frequency corresponding to advection of energy-
containing turbulence by the current u.kq is plotted
against o,,/u., the results collapse according to u.kp/w,,
(Figs. 6a,c). However, the results become independent
of u.xo/w,, for u.ky/w, > 1, which corresponds to wave
frequencies in the flat part of the turbulence spectrum,
below the turbulence rolloff frequency. That is, for
u.kolw, > 1, the fraction of the turbulent energy below
® = u.Kq is independent of the wave frequency and is a
function only of o,,/u..

When instead the fraction of the total variance and
covariance appearing in the spectrum at frequencies less
than the peak wave frequency is plotted against o,/u,,
the results collapse again according to the value of
u.kolw,, (Figs. 7a,c). When the variance and covariance
fraction below the wave frequency are plotted against
oKolw,, results for all 64 parameter combinations
collapse onto a single curve for high values of o,,k¢/w,,
(Figs. 7b,d). Curves for different u.k¢/w, values
collapse onto this curve when o, kp/w, > 2u.ko/w,,

corresponding to o, /u. > 2, that is, when the average
speed at which turbulence is advected past a point is
dominated by wave orbital motion rather than current.
This means that the fraction of the variance or co-
variance below the peak wave frequency depends only
on wave properties and is independent of the current if
alu. > 2.

¢. Properties of w spectra and dependence on
dimensionless parameters

We now consider how turbulence w-spectrum shapes
vary with the above dimensionless parameters, focusing
on properties that are relevant to interpreting observa-
tions and estimating turbulence parameters. The de-
pendences of spectrum properties on dimensionless
parameters are summarized in Table 2.

1) INERTIAL SUBRANGE (@ > 10u kg, > 10w,,)

For frequencies much higher than both the wave fre-
quency and the frequency corresponding to advection of
energy contain eddies by the current, the spectral energy
is increased by wave advection, and there is a positive
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offset in the spectrum (e.g., Fig. 4), as first described by
Lumley and Terray (1983). Eddies that appear in the
spectrum at these frequencies have length scales much
smaller than the wave orbital excursion (k > w,/0,).
Wave orbital motion together with the current de-
termines the speed at which they are advected past a
sensor. The advection speed varies over a wave cycle;
therefore, energy corresponding to a single-turbulence
wavenumber « is spread across a range of frequencies.
For k > ko, there is a rapid decrease in the turbulent
energy with increasing k. Additionally, for o,/u, > 1,
waves increase the time-averaged advection speed. The
net result is that turbulent energy is observed at higher
frequencies in the presence of waves than when the
turbulence is advected by just a current. For this rea-
son, there is a positive offset in the inertial subrange
part of the spectrum relative to when there are
no waves.

The offset in the high-frequency range of autospectra
has previously been described using a factor [ that
multiplies the expression for the —5/3 region in the
absence of waves (Trowbridge and Elgar 2001):

w) = ePuFw I
( ) (18/55)C 2/3 5/3 5/3
(w) = (24/55)Ce™*u* w1

Pll,inertial
P33,inertial (24)
If a k7 spectral shape is assumed for all wavenumbers,
then an expression for I can be derived by taking the
high-frequency limit of Eq. (21) (see the appendix). For
parallel waves and current, the expression is (see also
Trowbridge and Elgar 2001)

1 %0 2/3 5
1= \/_T;J7 <1 - %X) e*(l/z))( dX. (25)

The offset in the —5/3 part of the spectrum affects the
estimation of dissipation rates from fits to the high-
frequency portion of autospectra; correction of dissipa-
tion estimates is relatively straightforward.

Similar expressions can be derived for the high-
frequency limit of anisotropic turbulence cospectra, al-
though the dissipation rate cannot be calculated from
the anisotropic cospectrum. At high wavenumbers, the
cospectrum has a «~’” shape; therefore, cospectra,
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TABLE 2. Summary of dependence of spectrum properties on dimensionless parameters.

Low-frequency waves

High-frequency waves

UKolw,, > 1

Ukplw,, > 1

uckow,, <1

Uckplw,, <1

oulu.>1

o, <1

alu. > 1

o, <1

ol

o, /u,
U.kolw,, and o,,/u,

U.Kolw,, and o,,/u,

UKolw,,
U.kolw,, and o,,/u,

Fraction of variance in w < u. (Fig. 6)
Fraction of variance in o < w,, (Fig. 7)

O wKolw,,
o,/u.
oK, if o Kolw,, > 2
u.kolw,, and o,,/u,

T, Kolw,,

o, /U,
UcKo
Ukolw,, and o,,/u,
(o /tie) oy, if orplw,, > 1

o, lu,
o,.Ko, if o Kkolw,, > 2

o, /u,

Offset of —5/3 and —7/3 regions (Fig. 8)

UcKo
N/A (no offset)

VP spectrum high-frequency peak (wpeax; Fig. 9)

Very low-frequency offset (Fig. 10)

N/A (no offset)
(0wl oy, if okolw, > 1

UcKo

Apparent rolloff frequency (woo; Fig. 11)
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when plotted on log scales, have —7/3 slopes for high
frequencies. Wave advection causes an offset in the —7/3
part of the w spectrum that is analogous to the offset in
the —5/3 region in autospectra. The offset is also a
function of one parameter o,/u.. It can be shown (see
the appendix) that, for w > w,, and w > u.k¢, Eq. (23)
reduces to

—_ 7 . [37\ _
Pl3,inertial(w) = ull ug(ucKo)MS@ sim (7) w 7/3.], (26)

where

1 o0 o 4/3 5
J= ZJ (1 - x) e X gy (27)

The functional forms of 7 and J differ due to the different
exponent of « in the k spectrum.

We evaluated the accuracy of these relationships for
spectra that include a low-frequency rolloff (Fig. 1) by
fitting lines with —5/3 and —7/3 slopes to the inertial
subranges of computed autospectra and cospectra on
logarithmic axes. For the autospectra, we present re-
sults only for vertical velocities. Similar results were
obtained in our analyses of horizontal velocities. In
each case, the start and end points for the fit were
determined from the start and end points of the in-
ertial subrange of the corresponding « spectrum.
The low-frequency end point was chosen to be
the larger of «¢(u. + o), where kj; was the start of
the —5/3 (or —7/3) region in the « spectrum and 10w,,..
The term «y(u. + o,,) corresponds to advection of the
largest eddies in the inertial subrange at the speed
u. + o,, which is only exceeded 15% of the time for
random waves. The high-frequency end point was
chosen to be wy; = kpe(u. + 0,,), where kpp was the start
of the dissipation range for autospectra and the Nyquist
wavenumber for cospectra. End points w; < 10w,, and
wht > wn/8, where wy is the Nyquist frequency, were not
allowed.

The factors I and J were computed from spectral
fits for different current speeds, wave amplitudes,
wave frequencies, and turbulence length scales
(Fig. 8). Both I and J were a function of one variable
ow/u. and were independent of wave frequency and
turbulence length scale (Fig. 8), confirming that
the low-wavenumber rolloff in the turbulence
k spectrum has negligible effect on the —5/3 (or —7/3)
part of the w spectrum for the range of conditions
considered in this study. Results from the fits to au-
tospectra agreed well with the analytical solution of
Trowbridge and Elgar (2001), which was derived
for a Kolmogorov —5/3 k spectrum with no rolloff or
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FIG. 8. Offset of (a) the —5/3 region of autospectra and (b) the —7/3 region of cospectra due to advection of
turbulence by waves. Results shown correspond to a broadband Gaussian wave spectrum. Circles are plots of the
parameters I [Eq. (24)] and J [Eq. (26)] determined from fits to frequency spectra. Colors indicate turbulence length
scale, which determines the length of the inertial subrange. Results for different turbulence length scales are almost
indistinguishable, indicating that / and J depend only on o,,/u.. The dashed lines are the analytical forms for the

functions / [Eq. (25)] and J [Eq. (27)].

dissipation range. Therefore, dissipation estimates
from Eqgs. (24) and (25) are expected to be robust and
independent of details of the turbulence spectrum
and wave spectrum as long as the inertial subrange
spans a sufficient wavenumber range. Results from
fits to cospectra also agreed well with the theoretical
solution [Eq. (27)].

2) INTERMEDIATE FREQUENCY RANGE
05w, < o < 10w,,)

In the intermediate-frequency range close to the wave
peak, the shape of the turbulence w spectrum is complex
and depends on the shape of the wave spectrum. For
narrowband waves, there are large distinct fluctuations
in spectral density from 0.5w,, to 10w,, with dips in
spectral density at harmonics of the peak wave fre-
quency (Figs. 3, 4). The amplitude of these fluctuations
increases with increasing o,/u.. The fluctuations are
smaller and less well-defined for broadband waves
(Fig. 5).

As shown by Lumley and Terray (1983), the fre-
quency spectrum resulting from advection of turbu-
lence by monochromatic waves with no current is a
line spectrum that can be represented as the sum of
delta functions at harmonics of the wave frequency.
For waves with finite spectral width, the turbulence
frequency spectrum is a sequence of finite-width
peaks, centered at harmonics of the peak wave fre-
quency. The broader the wave spectrum, the broader
are the peaks in the turbulence spectrum and the more
overlap occurs between consecutive harmonics.
When a current occurs with monochromatic waves,

the line peaks at harmonics of the wave frequency are
broadened, and there is a singularity at harmonics of
the wave frequency (Lumley and Terray 1983). For
waves with finite spectral width, these singularities
become ‘‘dips” in the turbulence frequency spec-
trum. Therefore, the oscillations in the turbulence
spectrum are larger for larger o,/u. and also larger
and more well-defined for narrower wave spectra
(smaller Aw,,/o,; Fig. 5).

3) HIGH-FREQUENCY PEAK IN VARIANCE-
PRESERVING SPECTRUM (2u.kg < @ < 10u.ko,
® >2w,)

Although there are large fluctuations in the turbu-
lence w spectrum at frequencies close to the wave peak
(050w, < o < 10w,; see previous section), there are
some general trends in the underlying spectrum shape
within this frequency range. For all cases where the wave
orbital excursion is larger than the energy-containing
turbulent eddies (o, ko/w,, > 2), wave advection results
in a shift of the turbulence rolloff (or peak in variance-
preserving spectrum) to higher frequencies (e.g., Figs. 3,
4, left column). This is because energy-containing length
scales are smaller than the wave orbital excursion;
therefore, wave orbital motion increases the speed at
which eddies, from energy-containing scales through the
inertial subrange, are advected past the sensor. The bulk
of the turbulence spectrum, from the rolloff through the
inertial subrange, is therefore shifted to higher fre-
quencies. If o,ko/w, < 2, there is not a well-defined,
high-frequency peak in the variance-preserving
spectrum.
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containing turbulence (o,k¢/w,, > 2).

For each spectrum that satisfied the condition
owkolw,, > 2, the frequency of the peak in the variance-
preserving spectrum wpe,x Was estimated by smoothing
the variance-preserving spectrum to remove oscillations
and selecting the frequency that corresponded to the
maximum in the smoothed spectrum. For o,,/u. < 1, the
frequency of the peak is unaffected by wave advection
and wpeak ~ 2ucko. For o /ue > 1, wpear/tick increases
linearly with o,/u. (Fig. 9). This translates to an
Wpeax proportional to ok, corresponding to advec-
tion of energy-containing eddies at the rms wave or-
bital velocity. The dimensionless peak frequency
Wpeak/UcKo increases more slowly with o,/u, for cospectra
than for autospectra due to the more rapid decline in

R
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spectral energy with increasing wavenumber in cospectra.
These results suggest that if the wave orbital excursion is
long compared with energy-containing length scales
(owkolw,, > 2), energy-containing turbulence length
scales (L = 2m/ky) can be estimated from the peak
frequency in the variance-preserving turbulence
o spectrum wpe,k together with the ratio of the wave
orbital velocity to current o,/u,.

4) LOW-FREQUENCY RANGE (0 < 0.5w,,, ® < u.kq)

The shapes of the low-frequency parts of both auto-
spectra and cospectra resemble those in the absence of
waves (Figs. 3, 4, 5). At very low frequencies, the
spectrum is flat and spectral density does not vary with

o /u
w C

FIG. 10. Value of spectral density function in the very low-frequency part of the spectrum, below the apparent

rolloff frequency, vs wave to current velocity ratio. Results shown correspond to a broadband Gaussian wave
spectrum. Panels correspond to (a) the autospectrum and (b) the cospectrum. Colors indicate different values
of MCK()/(UW.
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Eq. (29).

frequency (Figs. 3,4, 5). We denote the spectral density
in this frequency range as Ps3 . The value of Ps3 ¢ in-
creases as 0,,/u. increases from 0 to 1 and then decays as
ow/u. increases further (Fig. 10a). The offset in Paz s
associated with waves is greatest for large u.ko/w,, and
reduces to zero for u.kp/w, < 1. The same pattern oc-
curs for Pi3 .

The rolloff in the spectrum appears to be shifted to
lower frequencies as wave orbital velocities increase
(Figs. 3, 4, 5). The frequency of this apparent rolloff
was estimated as wqg, the frequency above which
the spectral density is less than 90% of its value in the
very low frequency, flat part of the spectrum. The
apparent rolloff frequency was determined empiri-
cally from computed spectra and is plotted versus
parameters that control the spectral shape in Fig. 11.
The apparent rolloff frequency decreases as o,/u,
increases (Figs. 11a,c). This effect is more extreme
when u.ko/w, is larger, that is, when the wave fre-
quency is lower relative to the frequency corre-
sponding to advection of energy-containing eddies by
the current. When wq is plotted against o,«¢/w,, the
results collapse onto a single curve (Figs. 11b,d), il-
lustrating that the low-frequency spectral shape, in

dimensionless form, is determined primarily by the
ratio of wave orbital excursion to energy-containing
turbulence length scale. There are small deviations
from this curve according to the value of o,/u..
The apparent rolloff frequency is constant and in-
dependent of o ,ky/w, when o,kow, < 1 (Figs. 11b,d),
corresponding to cases where the wave orbital excursion
is smaller than the size of energy-containing eddies, and
therefore the frequency at which energy-containing
eddies appear in the spectrum is not altered by wave
advection.

It can be shown that in the limit of frequencies much
lower than the wave frequency (0 < w,,), if o, ko/w,, > 1,
Egs. (21) and (23) reduce to (see the appendix)

- T K, [ 2 (0] K, 2 — - a. 2 W/ 2
Pyy(w) = e oo Flollus)P p — gmulo,u oo, p

2 2
— o, /u) wlo?
e wtte WP13,lf’

(28)

P13((JJ) = efl’“[(”'w“o)/“’W]z[")/("‘c’(o)]zplllf

where P33 and P3¢ are the spectral densities in the
low-frequency flat parts of the autospectrum and co-
spectrum. Therefore, the low-frequency spectral shape
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in the presence of waves can be represented by the
constant spectral density at very low frequencies multi-
plied by a factor that decays exponentially with in-
creasing frequency. The decay scale for the spectrum in
dimensionless form is set by o,,k¢/w,,.. This exponential
decay factor causes the shift of the apparent rolloff to
lower frequency.

From Eq. (28), the apparent rolloff frequency in the
dimensionless spectrum is

——
= () (i)

where n = 100P53(w, )/ P33 is the spectral density at the
apparent rolloff frequency as a percentage of
the spectral density for @ — 0 (e.g., n = 90% for wq).
The values determined empirically from spectra agreed
very well with Eq. (29) for o,,k¢/w,, > 1 (Figs. 11b,d).
Equation (29) can be written in dimensional form as

-1
0, = 2n(55) (52) o

Therefore, the frequency at which the apparent low-
frequency rolloff occurs in the presence of waves is
proportional to the peak wave frequency and inversely
proportional to o,/u.. The apparent low-frequency
rolloff is therefore independent of the true rolloff that
occurs in the wavenumber spectrum at k ~ K.

(29)

(30)

4. Summary and conclusions

We have extended previous work that investigated the
kinematic effects of wave advection on fixed-location
observations of inertial subrange turbulence (Lumley and
Terray 1983) by considering the complete range of tur-
bulence length scales, from energy-containing scales to
dissipative scales. Using model turbulence k-spectrum
shapes together with a general form of the frozen tur-
bulence approximation, we investigated the effects of
wave orbital motion on turbulence w spectra across a
wide parameter space that includes conditions typical in
the coastal ocean, extending previous work (Gerbi et al.
2008) to situations where wave orbital velocities exceed
the current. While we found that the high-wavenumber
dissipation range has negligible effect on turbulence
w spectra across frequencies typically of interest, in-
teraction between wave advection and the rolloff at
energy-containing scales significantly affects the shapes
of turbulence w spectra.

We showed that the shapes of o spectra can be ex-
pressed as a function of two key dimensionless parameters:

ROSMAN AND GERBI
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o/u., the ratio of mean advection speed by waves to
the current, and u.kg/w,,, the ratio of the time scale
associated with waves to the time scale corresponding
to advection of energy-containing turbulence by the
current. The shape of the dimensionless spectrum at
high frequencies is controlled primarily by the param-
eter o,/u., while the low-frequency spectral shape is
controlled by o,,k¢/@,,.

Our analyses illustrated the dependences of charac-
teristic features of w spectra on these dimensionless
parameters (Table 2):

1) The offset due to waves of the —5/3 region of
autospectra and the —7/3 region of cospectra is a
function of o,/u. only, illustrating that the rolloff
and dissipation range have negligible effect on the
inertial subrange in wave-affected w spectra. Pre-
viously proposed methods for estimating dissipa-
tion rate (Trowbridge and Elgar 2001; Feddersen
et al. 2007; Gerbi et al. 2009) are therefore ex-
pected to be robust across a wide range of
conditions.

2) When o,/u. < 1, the peak in the variance-
preserving spectrum occurs at o ~ u.kg and is
unaffected by wave advection. If o,/u. > 1 and o, k¢
/w,, > 2, the peak in the variance-preserving spec-
trum occurs at w ~ o,,Kg, corresponding to advec-
tion of energy-containing eddies at the rms wave
orbital velocity. In these parameter ranges, turbu-
lence length scales can be estimated from the
frequency of the peak in the variance-preserving
turbulence spectrum if the wave peak can first be
adequately removed.

3) When the wave orbital excursion is smaller than
energy-containing eddies (o,,x¢/w,, < 1), the low-
frequency rolloff in autospectra and cospectra
is unaffected by wave advection and occurs at
® ~ u.kg. When o,ko/w,, > 1, there is an apparent
rolloff at @ ~ (o/u.) 'w,. Previously proposed
methods for estimating Reynolds stresses and turbu-
lence length scales by fitting to model spectrum shapes
to the low-frequency portion of w spectra (Gerbi et al.
2008; Kirincich et al. 2010) should therefore only be
used when ok, < 1 and o,/u. < 2. For larger
values of these parameters, the changes in the spec-
trum shape due to the wave advection derived in this
study must be taken into account.

Our model results have revealed the characteristics of
turbulence w spectra that can be attributed to the purely
kinematic process of advection by wave orbital motion.
Because spectrum shapes collapse according to key di-
mensionless parameters, these parameters can be used
to diagnose when wave advection needs to be taken into
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account and its effects turbulence spectra. Although
idealized, our model results provide insight into the in-
terpretation fixed-location turbulence observations
and a valuable point of comparison for the complex
spectral shapes that are often computed from field
measurements.
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APPENDIX

Expressions for the Shapes of Turbulence @ Spectra

a. Horizontal velocity autospectrum for isotropic
turbulence

An expression for the spectral shape, in frequency
space, can be derived by substituting the form of the
wavenumber spectrum in Egs. (12)-(13) into Egs. (6),
(8), and (10). The one-dimensional autospectrum for
uy, along direction x, in wavenumber space is

= Sy (@)
e, (1) = L e~

UK,
2
(—W) F,(ukt).
)

The term S;“Iul is the normalized, one-sided, wave orbital
velocity spectrum formed by first nondimensionalizing
frequency as w/(u.o) and then dividing by the variance
such that [, S* i o [0/ (ucko)] do/(ucro)] = 1. We define p as

o\ o \ 2 S, , (0)
M:<—w) Jsxx(w)dw:(_W) J%dw
o, ! o) Jo

0

dlo/(u k)] (A4)

1 * .
R11 (l) — z C£2/3K52/3 J7 F1 (S)e’s“a"otg_sz[(‘TWKO)/‘“W]Z[;J.—Fz(”c’(ol)] ds.

Now substituting Eq. (A5) into Eq. (8) gives
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E, (k)= r Ef{") (1 — :—§> dx

Ky

o 2
= Cg?B3, 5B s' (k,/K)
=Cek J/ (s’2+1)“/6 {1_ §2 ds’
KiKo
= C82/3K65/3F1 (r,/K) -
(A1)

The integration variable is s’ s = k/kq, and Ey; is defined
such that fo Ep (k1) dxy = u/?. Both Eyy and F, are even
functions, that is, E11(—k1) = E11(k1).

Substituting Eq. (Al) into Eq. (10) yields the ex-
pression for the autocorrelation function for turbulent
velocity fluctuations at a fixed location:

Ry0 =53] Eyleenice sl il ay
= %Csz’%gmr F, (s)e et e~ len@=en®l gy
h (A2)
Here, the integration variable is s = k1/ko.

From Eq. (6), the autocorrelation function for wave
orbital excursions is

2 2 S* /
= (&) (wVV) J ei[w/(”(—"o)]”c"o’Md[w/(ucKU)]

[w/ (MCKO)]

(A3)

The term p is a factor of order unity that depends
on the shape of the wave orbital velocity spec-
trum. For narrowband waves, u = 1. From the above
definitions, F,(0) = u, and hsz(y) 0. We also de-
fine $%  [w/(ucko)] =S, [w/(ucko)]/[w/(ucxo)] There-
fore, jO L [w/(uCKO)] d[w/(ucfco)] wlow/ (k)] % and
cn(0)= (a'w/ww) [w,/(teko)]* Jo 8% % o [0/ (ko) d[wlucko)].
Substituting Eq. (A3) into Eq. (A2) gives

(AS5)
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=_— J e R, (t)dt

where the integration variable y = u.kot. The term Py is

defined such that [*_Pj)(w)dw = u/2. Equation (A6)
gives the form of the dimensionless, two-sided spectrum
in frequency space F; as a function of the two parame-
ters u.ko/w,, and o,ko/w, and the wave spectrum shape
factor w.

1) HIGH-FREQUENCY LIMIT

For k/ko > 1 (s > 1), for positive s, F; reduces to
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s 2/3 1 C o0 0 ) 5 5 R
K_> WEJ J F (s)e /sl =sh o1V, P, 1= FONS g dy
o4 ).

2/3
€ 1 w UK, T
c 0 ~w
- 7F3 77777"['[‘ 9
K, U K uK, w u
c 0 c 0 w c

(A6)

The term F; is even, so for negative s, Fi(s) =
18/55\s|75/ ?. Following Trowbridge and Elgar (2001), in
the limit of high frequencies (short times), the autocor-
relation function can be expressed as

1/ o ?
w—%wv[p, 2( 0) (I/tKOt):|

(A8)

I\J

611([) - < 1(T)x1(t + 7))

This result is obtained by expanding x in a Taylor ex-
pansion around x(7).

F/(s)= r sgn(s’)s'™ 8/3( ) ds' = 18 §B (A7) Substituting Eq. (A8) into Eq. (A6) and using the
s 550 substitution y = u.kot yields
Py@)=4- g —( I 0)2/3J ls |75/3J o {0/l =shy =, Ju ) RS g gy (A9)
The integral with respect to y can be evaluated using standard integral tables, yielding
\/ 18 1 P
P, (w)= = —Ko(s/KO)m(O'w/uc) ! Lo Is| ™% exp(— {[w/(u k)] — s}’ 12(cr Ju,)’s?) ds.
Now using the variable substitution ¢ = [w/(ucko)]s ™!,
23 -5/3 1 [f 23 ,~(112)(a, Ju -0
Pu(“’) WSS C(s ) | | ((Tw/uc) J_x m 112)(o,fu) >(1=¢) de,
and substituting x = (u./a,)(1 — {) gives
P () 9 o )]~ 1 r 1-%w 2/367(1/2))(261 9 Cleu Y |o| 1 (A10)
w)=—C(e o — - =—C(e o
11 35 ¢ Vo )w u X X 55 ¢ s

where I = (1/v/2m) [~ |1 — (a'w/uc))(|2/% ~(2x dy. The expression for the —5/3 region in the absence of waves is

1 de; 9 23, 53
Pll(w) = EEH[Kl ()] d_aj = 53 C(suc) || . (A11)

Therefore, the spectral density is increased by a factor by wave advection. This and similar expressions have been used
previously to calculate dissipation rates from —5/3 fits to spectra in the presence of waves (e.g., Trowbridge and
Elgar 2001).
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2) LOW-FREQUENCY LIMIT

We now consider the apparent rolloff at frequencies @ < w,,. Assuming S¥

1
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is Gaussian [Eq. (17)],

Sj‘lxl [/ (u k)] = ulo,/(u, KO)]

From Eq. (A3), using standard integral tables,

Vo (BaJo oy )]

{_ /(1K) — “’w/(”cKo)]2 } )
2(A0, o o /(u_r,)

F0) = [, ) || 5007 (o) dlo0 )]

I J l[ﬂ)/(ll Ko)ly p{
" Vor (Ao, fo, ), /(u.k,)] 2(Aw, fo,) [0, /(1 k)]

= pelo/ )y o= (D) (B, o, /()P

ol — o, (uK)

}d[w/(ucxo)]

(A12)

For (Awy/oy,)[w,/(ucko)] > 1, F, decays to zero quickly with increasing y. The term F, decays to zero more quickly
and with fewer oscillations for broadband than narrowband waves.
The ratio of the spectral density at frequency w relative to its constant value at small w is

F(s)e —i{[0/(ux)]=s}y =50, kM0, Pl=F,0] gg g
o || R y

P

11]f r Jx F (s)e”ye 200,k Ple=F0)] gg dy

J J F, (s)e /o) 1=sby =10, P uli=espilo, [y exp{~(112) (8o fo, Vilo, o)D) s dy

Jm Jm F (s)euye (0'M KO)/ww] w(1—exp{i[w, /(1 ky)]y}exp{— (1/2)(Aww/wu) [o,,/(u, KO)] y }) ds dy

Using the variable substitutions { =

[ww/(ucko)]y and x = [@w/(ucko)]

Hs = [/(ucko)]},

P (o) L F {[, /(u,,)]x + [/ (1 x,)]} [ . it g 110t I+l k1Y L, Vo, P 1 -exp)expl ~(12) 8o o, Y1) gz

Py r Fy ([, /(u )} |'x 6 Lo ek Lo, Pl 1=xp(@) xpl=(12) 30, o, P71} i iy
i i [ Fl{[w‘1‘/([4(:KO)][X+(w/ww)]}ew(ow/u()le+2(w/ww)lx[ Xt il ) D (ol ) exp(iO)expl~(12) (B0, /0,8 g gy
— o HlE ko, Pl | I ~ )
[ Fy{[, /(u k) x}e " [ Xk il )¢ expi0) expl (1D (A, /0, )’ C] g 1y
~ g*M[(UW"(»)/w,,,]Z[“’/(’ﬂ"n)]z .
(A13)

In the last step, we assumed Fl{[ww/(l/.tCKU)])(‘f' Pn(wn) Z (o), Plo, k)P
[w/(ucko)]} = Fi{[ww/(ucko)]x}. The rolloff in Fi(s) P, 100
occurs at s = 1. Since the exponential in the outside ’ )
. 12 -1 -1 > e’ﬂ[(”'w"o)/"’w]
integral has decay scale [u'*(o,/u.)] " =~ (on/u.)
the integrand is dominated by y < (o,/uc)"" or equiv- T,K, 1 1o 12 Al4
alently [w,/(ucko)]x <[ww/(owko)]- The assumption ® > n(loo) ’ (Al4)

Fl{[ww/(ucKO)]X + [w/(ucKO)]} ~ Fl{[ww/(ucKO)]X} is
therefore reasonable if both w/(u.ky) < 1 and
oyl (ko) < 1.

From Eq. (A13), w/(u.ko) < 1 is guaranteed if

w

where n is the spectral density at frequency w, as a
percentage of the spectral density for @ — 0. For n = 90,
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Eq. (A14) yields (o, )/, > 0.3. Therefore, for n =
90, all these criteria are satisfied if ((TWKO)/L()W >1, that is,
if the wave orbital excursion is larger than the energy-
containing turbulent eddies.

1 dE
Ey(x)) = B {EII(KI) K dKH]
1
= 1C82/3K—5/3 Jm s 1— (Kl/KO) ds' —
2 0 Ky /K (S,z + 1)11/6 s?
2
= 1C82/3K7§/3J s’ 1+ (k) ds’
2 0 Ky /Ky (S/z + 1)11/6 s
= CszBK(;S/?’G1 (k,/x,).

The remainder of the analysis follows that for the u,
autospectrum. The final result is given in Egs. (21)
and (22).

1) HIGH-FREQUENCY LIMIT

The only difference between the high-frequency limit
for vertical and horizontal velocity components is the
difference between F; and G;. In the high-frequency
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b. Vertical velocity autospectrum for isotropic
turbulence

The 1D autospectrum for u; along direction x; in
wavenumber space is

d J” s’ (Ky/Ky)
d(K /K()) Ky /K (S,z + 1)11/6 s?

1)

(A15)

2) LOW-FREQUENCY LIMIT

The derivation for the low-frequency apparent rolloff
in the vertical velocity autospectrum follows that for the
horizontal spectrum exactly. For low frequencies, the
spectral density at frequency w relative to its constant
value for very low frequencies is

limit, P3(@) _ - ulto o, Plofu) P (A18)
33,1t
- 24 _
_ 8/3 PR TE
Gi(s) = [ 1 (1 * ) ds SSM ’ (A16) ¢. Cospectrum for anisotropic turbulence
Therefore, in the high-frequency limit, The equatioT1 for the one-sided cospectrum in wave-
number space is
213 =503 —
Py (w) = C(su ) 1, (A17) wuy 7 . (3w 1
E = — = | —. A19
13(kp) Kk, 37 S~ I |K1/K0|7/3 (A19)
where [ is the same as for the horizontal velocity auto-
spectrum [Eq. (A10)]. Substituting this into Eq. (10) yields
_1 B =ik u,t ,—k k[ (0)—c; (0)] d
R13(t) = E ) ElS(Kl)e 14l g7 K Leyy 11 K,
/— 7 377 ” 1 —ikyu s ,—s*k2[c,, (0)—c
where s = k/kq. Substituting Eq. (A3) into Eq. (A20) gives
3(t) — u1u3 lsm (377) J % e*ixouctsefsz[(owxo)/ww]z[psz(uﬁKOt)] ds. (A21)
T) )1+ s|

Now, substituting this into Eq. (8) with the variable substitution y = u.xt yields



930 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 47

1 ” —iwi
Pw(w):ZL R (1) di

u’lué 7 . (377) Jw Jm 1 —i{[w/(u_ky)]~s}ty ,— 2 2r 2

= sin| — e Hlolucg)l=sky =gV, I (o, u Y =B 001" g gy
u K, 12m? 7))l + \s|7/3

:ullulsH%( 0 UK ﬂ,u)' (A22)
ucKO ’ ucKO ww uc

1) HIGH-FREQUENCY LIMIT

The offset of the —7/3 region of cospectra can be derived in a similar way to the offset of the —5/3 region of
autospectra. Substituting Eq. (A9) into Eq. (A22) yields

— u/lug 7 : 3w ” - 1 —i{[o/(u,ky)]—s —-(12)(o /u, 252y2
P13(w)_ K 2 s 7 J—w,[—w1+|s|7/3e lloftero)] }ye ( ) Sy dey

In the limit of high wavenumbers (s >> 1), this expression reduces to

_u/lu/3 7 (37 N =713 - —i{[w/(u )]s}y ,~(12)(c, /u_)s2)?
PB(a))—uCK0 7.2 Sin = J_w N J_xe (/)] =shy o= (12)(0, )Y gy s,

The integral with respect to y can be evaluated using standard integral tables, yielding

w7 3r\ (o, \ ' [T - -2 2
P M3 O e “w 103 ,—(1/2)(0,,/u,) " {[w/(u ky)](1/s)—1} ds.
13(@) Y, - sm( 7 ) (%) me |s| e s

Now using the variable substitution ¢ = [w/(u.k()](1/s),

KOM

=713 oo
j 121 expl— (1) (e, fu) (¢ - 1] dL.

u| 7 3m\ fo \ 7!
P _ in( 20 [ Zw
13(@) Uk, 6mv/am Sm( 7 ) (uc)

and substituting x = (u/o,,)(1 — {) gives

c

uhul, 7 37 * T )
P 143 7 2T 1—» -2 4
13( ) ) o s1n( 7 ) Py o J_w u X| € X
7,0 =73

it; 7 sm(S—W) — J ﬂ), (A23)

u.K, 6m ALR u,
where AT 3\ @ |73
J(owlu) = (UNZm) [7 1~ (owlu)x| P exp[— (1/2)x2) dx. Py(w) = UIKZ o (7) e (A24)

Comparing with the expression for no waves,
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Therefore, J is the ratio of the spectral density in the —7/3
region in the presence of waves to that in the absence of
waves and is analogous to [ for isotropic turbulence
autospectra.

2) LOW-FREQUENCY LIMIT

The derivation for the apparent rolloff in P,; at fre-
quencies w < w,, follows the corresponding derivation
for Py; exactly. In the low-frequency limit,

P13(w) —~ e—p,[(a-wko)/ww]z[w/(uCKO)]2 . (A25)

13,1f
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