
1

A User-Steered Energy Generation and
Consumption Multi-Model Simulation for Pricing

and Policy Development
Harrison B. Smith, Student Member, IEEE, Amy Pielow, Adithya Jayakumar,

Matteo Muratori, Student Member, IEEE, B. J. Yurkovich, Ramteen Sioshansi, Senior Member, IEEE,

Ashok Krishnamurthy, Member, IEEE, Giorgio Rizzoni, Fellow, IEEE, and Matthew C. Roberts

Abstract—Understanding energy use is critical. While simula-
tion is valuable, such models are simplified abstractions of actual
energy systems. We present an energy system multi-model imple-
mented with the newly developed LAPIS computational steering
API. We present an adaptable framework for the integration and
development of multi-model simulations. This framework has
key advantages including allowing independent development of
component simulations, limiting coordination overhead between
developers, and allowing modularity and flexibility in the overall
multi-model simulation. We use case studies to demonstrate the
capabilities of the multi-model energy system simulation and
LAPIS.

Index Terms—Multi-model simulation, computational steering,
energy system modeling, energy policy

I. INTRODUCTION

ENERGY-related issues are increasingly important. Re-

liance on fossil fuels has significant environmental,

geopolitical, energy supply, and macroeconomic effects. A

number of technologies, including renewable energy sources,

plug-in electric vehicles (PEVs), and efficient and smart ap-

pliances, are proposed to mitigate these issues. These are not

panacean solutions, however, and their use can have unin-

tended consequences. Moreover, most modern energy systems

are not centrally planned. Rather, energy technologies are

adopted and used by individuals, based on cost and other

considerations. Thus, governments, policymakers, and others

This material is based upon work supported by the National Science
Foundation under Grant No. 1029337.

H. Smith and A. Jayakumar are with The Ohio State University, De-
partment of Electrical and Computer Engineering, 2015 Neil Ave., Colum-
bus, OH 43210, Tel: +1-614-292-2572, Fax: +1-614-292-7596 (e-mail:
smith.3738@osu.edu and jayakumar.5@osu.edu).

A. Pielow and R. Sioshansi are with The Ohio State University, Department
of Integrated Systems Engineering, 1971 Neil Ave., Columbus, OH 43210,
Tel: +1-614-292-9461, Fax: +1-614-292-7852 (e-mail: pielow.1@osu.edu and
sioshansi.1@osu.edu).

M. Muratori, B. Yurkovich, and G. Rizzoni are with The Ohio State
University, Center for Automotive Research, 930 Kinnear Road, Colum-
bus, OH 43212, Tel: +1-614-292-5990, Fax: +1-614-688-4111 (e-mail:
muratori.2@osu.edu, yurkovich.7@osu.edu, and rizzoni.1@osu.edu).

A. Krishnamurthy is with the Renaissance Computing Institute of the
University of North Carolina at Chapel Hill, 100 Europa Dr., Suite 540,
Chapel Hill, NC 27517, Tel: +1-919-445-9640, Fax: +1-919-445-9669 (e-
mail: ashok@renci.org).

M. Roberts is with The Ohio State University, Department of Agricultural,
Environmental and Development Economics, 2120 Fyffe Rd., Room 103,
Columbus, OH 43210, Tel: +1-614-292-7911, Fax: +1-614-292-0078 (e-mail:
roberts.628@osu.edu).

often rely on indirect policy measures to guide energy system

development.

Understanding interactions between new and existing en-

ergy technologies, and policy impacts therein, is key to driving

sustainable energy use and economic growth. This endeavor

is easier said than done. With more complex technologies

and greater resource constraints, understanding the complete

energy generation, distribution, and consumption picture is

daunting. Fully understanding the intricacies of how renew-

able energy sources, an aging energy infrastructure, increas-

ing global energy demand, and PEVs interact is complex,

involving multiple domains of expertise. This multifaceted

problem lends itself to designing and implementing a large-

scale, interactive simulation that allows users to gain insights

into these topics to help inform their decision making.

By building a multidisciplinary team with expertise in

engineering, computer science, and economics, we are devel-

oping such a large-scale simulation. This paper presents the

energy system models and the computational solution used

to integrate the multi-model simulation. Illustrative results,

demonstrating the models’ value in energy system simula-

tion and policy analysis, are also presented. The tools and

techniques being developed are applicable to a wide array of

domains and computational tasks. Thus, we also summarize

the performance of our computational system in steering large-

scale multi-model simulations.

A. Integrated Computational System for Energy Pricing and

Policy

A computational model, called the Integrated Computational

System for Energy Pricing and Policy (ICS-EPP), is currently

being developed at The Ohio State University. The purpose

of the ICS-EPP (see Fig. 1) is to assist the formulation of

energy policy, pricing, and investment decisions. The ICS-EPP

includes interacting sub-models of: (i) individuals’ behavior;

(ii) sector- and time-resolved electricity demand; (iii) the

electric power system with distributed and stochastic supplies;

(iv) vehicle energy consumption; (v) long-term technology

investments; and (vi) different technology options.

The ICS-EPP is intended to help users explore the space

of possible policy options. The model simulates the effects of

policy on energy use and technology adoption. This allows

users to design a new energy system that meets their desired

3

complex technical issues unrelated to his or her primary field

of research.

LAPIS is specifically designed to address these and other

problems with steering. While developing the ICS-EPP sim-

ulation, we make use of some key methodologies discussed

in detail below. These methodologies, in parallel with com-

putational steering, results in a highly successful approach to

simulation development and execution.

II. ICS-EPP SUB-MODELS

The models constituting the ICS-EPP multi-model simu-

lation are developed independently, using a different set of

languages, computational tools, and techniques.

A. Residential Energy Demand

Implemented in MATLAB, this model simulates the elec-

tricity consumption of a residential sector using a bottom-

up approach [16]–[19]. Such energy demand is variable and

depends on physical factors (e.g., weather, temperature, and

dwelling characteristics) and the household members’ behav-

ior. The total electric power demand of each dwelling is

modeled as the sum of energy used by: (i) cold appliances

(e.g., refrigerators and freezers); (ii) heating, ventilation, and

air conditioning (HVAC); (iii) the household members’ ac-

tivities; (iv) lighting; and (v) ubiquitous electric consumption

(i.e., lights that are always on and appliance stand-by power)

[19]–[21]. The first three components are modeled using engi-

neering physically-based models, while individuals’ behaviors

are modeled using a heterogeneous Markov chain. The model

is calibrated and validated against metered electric load data

provided by American Electric Power and behavioral data

collected by the U.S. Bureau of Labor Statistics.

The model uses LAPIS to get weather data for HVAC

simulation. Users can vary model parameters to explore the

effects of different technologies. For instance, varying activity-

related energy use represents different appliance efficiencies.

These changes are communicated to the model during run-

time using LAPIS. The technology investment model (under

development) endogenously optimizes technology decisions,

which are communicated to the residential energy demand

model using LAPIS. The residential demand model outputs

10-minute resolved electric energy demand.

B. Commercial and Industrial Energy Demand

Implemented in MATLAB, this model is a two-part sim-

ulation that simulates electricity demand in the short-run on

an hour-to-hour basis using an autoregressive regression with

calendar (i.e., hour of day, day of week, etc.) and temperature

variables [22]. This captures diurnal and seasonal demand

patterns. As the ICS-EPP moves forward in time, these fore-

casts are updated by a second long-run model of interannual

demand growth that captures macroeconomic variables, such

as electricity and natural gas prices, population, and gross

state product. Regression-based methods are popular for cap-

turing diurnal and interannual electricity demand patterns [23],

[24]; however, integrating these predictions with long-term

growth factors is novel. The regression models are fit using

geographically-diverse data sets and comparisons of forecasts

to out-of-sample actual consumption data show accurate pre-

dictive power [22]. Users can modify the number of number of

commercial and industrial customers, the retail price structure,

and macroeconomic growth rates, which are communicated

to the model through LAPIS. The population input to the

long-run model matches that of the residential energy demand

model, as do the short-run weather variables. The output is

a 10-minute resolved vector of aggregate commercial and

industrial electricity demand.

C. Transportation Energy Demand

Implemented in MATLAB/Simulink, this model simulates

energy use when household members leave the home (as

determined by the residential model) [25]. This includes all

leisure and work-related travel. This model does not consider

commercial and industrial transport, as any associated electric-

ity use is captured in the commercial and industrial demand

model. The model uses a three-stage process. First, each trip’s

total travel time is determined based on the duration the

individual is away. This is then translated into a velocity profile

using a Markov-chain model. A backward vehicle dynamic

simulator is finally used to compute energy use. This model

architecture can simulate multiple vehicle types, including

conventional vehicles and PEVs. The model is calibrated to

empirical driving data and validated by comparing aggregate

transportation energy consumption to national averages [25].

LAPIS is used to couple the transportation model with the

residential and unit commitment models. The transportation

model uses LAPIS to read simulated activity patterns, which

determine when vehicle trips occur. Vehicle technology adop-

tion will eventually be modeled endogenously, making further

use of LAPIS.

D. Unit Commitment and Dispatch

Electricity generation is simulated using an industry-

standard unit commitment and dispatch model [26]. The model

is implemented as a mixed-integer program in Java using

the CPLEX 12.3 optimization API. Inputs include energy

demand data, which are given by the residential, commercial

and industrial, and transportation models. ICS-EPP currently

has the user specify the generation mix, which is input via

LAPIS. A technology investment model (under development)

will eventually model these decisions endogenously, based on

a cost-minimization objective and pertinent constraints (e.g.,

renewable portfolio standards or CO2 restrictions). The model

outputs, which are published to the visualization model using

LAPIS, include the electric output of each generator, and

associated costs and emissions.

E. Visualization

The visualization model is responsible for reporting and

controlling the overall simulation. The model provides a user

interface and control mechanism for the user to start, stop,

monitor, and modify simulations during runtime. It is designed

to be agnostic to the underlying simulation.

4

One issue that traditionally plagues the use of steering

is the lack of an intuitive interface. Thus, the use of these

systems is often limited to computer scientists with domain-

specific knowledge of steering. The visualization model aims

to allow novice and non-technical users to gain insights from

application-specific simulations without needing advanced

training in communication systems and parallel computing. In

our case, business analysts and policymakers can control and

monitor how different system inputs (e.g., generation mix and

technology uptake) affect simulation outputs (e.g., electricity

supply and energy use).

The visualization model has three software components

(see Fig. 3), the front-end, back-end processing, and storage

components.

Fig. 3. LAPIS visualization system architecture.

1) Front-end Component: This component is entirely web-

based, providing steering system users a complete abstraction

from the details of the inner-workings of the simulation.

The front-end, written in multiple web framework scripting

languages, presents both novice and expert users the ability to

dynamically change and monitor simulation inputs and outputs

in real-time using a dynamic AJAX/HTML browser-based user

interface.

2) Back-end Component: This component uses the LAPIS

API to communicate with the other steered models. The back-

end is written in Java and implements the native Java LAPIS

API to appear on the LAPIS steering network as another

model with its own defined inputs and outputs. By taking

advantage of the user-defined inputs and outputs of the back-

end component, other model authors can implement certain

controllable inputs to (and outputs of) their models, providing

on-line controllability of their specific model simulations from

the web-based front-end.

The back-end component also ensures synchronization be-

tween the models. The need for this is simple—different

models operate at different rates. For example, the commercial

and industrial energy demand model takes less than one

hundredth of the time taken by the residential model. Without

a synchronization mechanism, the faster models generate more

data than is needed by the other models to progress. This raises

the need for complicated data and memory management. The

back-end component simplifies this by requiring all models

connected to the LAPIS network to publish a timestep vari-

able, indicating the timestep of data being simulated by the

particular model. These published variables are used to ensure

that all of the models are time-synchronized as the simulation

progresses, since a model only proceeds to the next timestep

once all timestep dependencies are met (see Section III-B2 for

further details).

3) Storage Component: Implemented with a relational

database system (MySQL), this component is a go-between for

the back- and front-end components and stores all simulation

data and settings specified by the manifests for each individual

simulation (see Section III-B1 for further details of the model

manifest system). In addition to handling all simulation data,

the storage component also manages user account information

and user interactions on the system.

4) Demonstration Implementation: There currently exists

a multi-layer demonstration implementation of the visual-

ization model that includes a complete set of web layers

that communicate, store, and display simulation states using

LAPIS. A MySQL database stores the manifests, as well as the

simulation data that can be displayed on the front end. On top

of the database, there exists a Representational State Transfer

(REST) web service that is implemented in PHP. As with many

RESTful webservices, JSON is utilized to pass information

back and forth via HTTP. The front-end is implemented

using standard HTML/CSS and javascript (AJAX, jQuery) that

utilizes the RESTful webservice. MATLAB and Java APIs also

exist to facilitate the upload of initial and manifest data.

Fig. 4 shows the web-based interface of the ICS-EPP

visualization model at runtime. The top of the page (1)

provides a drop-down menu, allowing the user to select from

a set of steered computations available on the back end.

Based on this selection, the middle of the page (2) provides

a list of the constituent sub-models. Selecting a sub-model

presents a list of variables (3) that are published on the LAPIS

network that can be viewed or changed. The sub-model and

published variable lists are generated dynamically, based on

the model manifest files. Finally, the interface dynamically

generates figures displaying published variable information (4)

and allows the user to change the values of variables that are

specified as writable (5).

1

2

3

4
5

Fig. 4. Demonstration implementation of the ICS-EPP visualization model.

5

III. INTEGRATION OF INDEPENDENT MODELS: FORMING

THE MULTI-MODEL SIMULATION

The ICS-EPP is a multi-model simulation built out of inde-

pendently developed models, each covering a specific domain

of interest, and a front-end interface. These components are

interconnected via LAPIS and rely upon each other for input

parameters and data. We developed early versions of this

system, during the course of which we established some key

design strategies. Whereas model and front-end integration

was initially time consuming and difficult, these strategies

make the process nearly seamless and provide automation

benefits.

A. The LAPIS System

The primary design goal of LAPIS is to provide a steering

system that is sufficiently easy to use that non-specialist

researchers could learn the basics of its use in an afternoon.

At the same time, LAPIS is designed to be as platform-,

operating system-, and language-independent as possible. This

ensures that simulations using LAPIS are not compromised in

terms of portability, maintainability, or structure. LAPIS also

provides a simple mechanism for implementation of multi-

model simulations. Much like MPI and OpenMP do for paral-

lel computing, LAPIS provides an exampl standard for steering

systems. Today, LAPIS provides a cross-platform middleware,

a modular communication mechanism that currently supports

TCP-IP based communication, and APIs for both Java and

MATLAB. Future plans include additional communication

modules supporting File I/O, Infiniband, and SSH tunnels.

Additional plans involve the creation of APIs for C/C++,

Python, and other languages.

The LAPIS system models complex steered applications

as a collection of peer-to-peer connected nodes, each using

a three-layer software stack (see Fig. 5). The peer-to-peer

network is built and maintained automatically without the

need for end-user intervention. The API layer helps ensure

that a variety of languages can be used with LAPIS. The

COM layer ensures that the communication mechanism used

to connect components of the steered application can be easily

changed without requiring any user implementation changes.

Finally, the Daemon layer, written in Java, ensures that reim-

plementation of the core functionality of the LAPIS system

is never required. The three-layer stack additionally ensures

that LAPIS minimally impacts simulation performance. The

stack also ensures that using LAPIS does not negatively

affect maintainability or portability of the simulation. The

stack provides a set of standard interfaces used to expand the

functionality of the LAPIS system.

Use of the API itself is quite simple as usage is based on a

small number of easy to understand methods. The function

of the LAPIS system is based on a published-data model.

Within this model, any given node on the steering network

can publish internal state through an API call. Once published,

a node’s internal state can be accessed via ‘get’ and ‘set’

API calls by any other node on the network. Critical to the

success and functionality of this model is the handling of

requests for published data. Specifically, when a remote node

API Layer
Daemon

Layer
COM Layer

User
Application 1

LA
PI

S
So

ftw
ar

e
St

ac
k

API Layer
Daemon

Layer
COM Layer

User
Application 2

LA
PI

S
So

ftw
ar

e
St

ac
k

API Layer
Daemon

Layer
COM Layer

User
Application

LA
PI

S
So

ftw
ar

e
St

ac
k

n

LAPIS Steering Network

. . .

Fig. 5. The structure of the LAPIS system. LAPIS is as general purpose
a steering system as possible. As such, the system makes no distinctions
between nodes on the steering network.

requests either a ‘get’ or ‘set,’ LAPIS handles the request

automatically without interruption of the user code in any

way. As such, ‘get’ and ‘set’ commands can be issued and

responded to without a priori knowledge on the part of the

developer of either code body. For a simulation to be made

steerable, code is added to initialize the LAPIS system and

publish the internal states. No other modifications need be

made to the simulation code. These modifications alone are

sufficient to give a front-end interface, also using LAPIS, the

ability to connect to, read, and modify the internal state of the

simulation as it runs.

B. Development and Design Strategies

Our experience in integrating the ICS-EPP reveals two

useful model development strategies. Early on in the first-

generation multi-model, individual models were connected via

LAPIS manually. One developer was given responsibility for

implementation of a model manager, inspecting the code of

each model to extract the model name and the names of

published values. These names were then used in the imple-

mentation of the manager. It was quickly determined that such

a system would not only be a potential runtime bottleneck,

but also a development bottleneck as a greater number of

more complex models become involved in the simulation.

With this in mind, the second-generation system was built

with each model directly interfacing with other dependent

models. Each model is responsible for monitoring the state

of other dependent models. Dependent data are accessed only

after the generating model passes a certain timestep within

the simulation, and this time-synchronization is facilitated by

the back-end controller of the visualization model. While this

successfully eliminates the runtime bottleneck, full system

integration was still complicated and time consuming.

After the second generation, the idea of model manifests

was developed and implemented for each model. The addition

of manifests to the situation-aware models of the second-

generation system resulted in our third-generation model and

6

the approaches discussed below. Using this system, model

integration is greatly simplified and modularized. Interfacing

models to each other and to other components (such as front-

end interfaces) is done procedurally, and computational and

network loads can be distributed more evenly.

1) The Model Manifest System: Each model developer is

required to provide what is termed a ‘Model Manifest.’ This

manifest is a plain-text file that describes the full steering

interface of the model. These manifests are written in JSON

format, ensuring that they are human- and machine-readable.

The steering interface of the model includes a number of key

factors. These include the minimal timestep that is externally

viewable from the model (which may differ from the internal

timestep), the name of the model, and the published states

within the model.

In our usage, the published states come in two categories:

input parameters and simulation output. Input parameters are

any scalar values and flags that affect the internal operation

of the simulation (e.g., pause flags, flags that control execu-

tion of certain model subsections, and coefficients used for

convergence and scaling). The name, type, size, and default

values for these parameters, and a human-readable explanation

of they are used for within the simulation, are given in the

manifest. Simulation output values are characterized by their

continued growth as simulation time progresses. The manifest

specifies the names, type, unit, and rate of growth of these

output values, and a human-readable description of what the

values represent.

These manifests allow other developers to make use of

the simulations’ outputs within their own simulations. Using

LAPIS and the variable names and description within the

manifests, each model developer can leverage the other models

in the system without significant coordination effort. LAPIS

provides the ‘get’ and ‘set’ commands which provide

access to the published data by name. No further coordination

is required so long as each published internal state matches the

model manifest. Additionally, our front-end interface makes

use of all the model manifests in order to dynamically generate

the user interface. By reading each manifest, each model can

be presented to the end user with all of its inputs and outputs

available and clearly labeled.

2) Situation-Aware Models: The model manifests, paired

with a scheme we call ‘situation-aware models’ and outline

below, allows construction of large scale multi-models with

almost no integration effort.

a) Simulation Timestep: Every model uses an outermost

loop that iterates over timesteps. Models use LAPIS to pub-

lish their timestep variables and output data are indexed by

timestep.

b) Dynamically Growing Output: Models use LAPIS to

publish one-timestep sized instances of output data. As the

simulation runs, all output data for the entire simulation run

are kept available.

c) Time Dependencies: Developers are responsible for

knowing their models’ data dependencies and the associated

time shift. Each developer is responsible for maintaining a

small section of code that monitors model dependencies, and

only having the model progress when such dependencies

are met. Time-synchronization is managed by the back-end

component of the visualization model.
d) Steering Inputs: Every model publishes all inputs that

could conceivably be used to steer the simulation.

By having all developers follow these four principals, model

integration simply involves reading manifests and making

timestep comparisons. Models pause when data dependencies

are not met, and resume when model data become avail-

able. Different developers need only exchange manifests, thus

avoiding any developers having to analyze someone else’s

code. Finally, the manifests combined with timestep publishing

allows a front-end interface to be dynamically generated in a

highly logical way.

IV. RESULTS OF STRATEGIES USED

LAPIS provides numerous benefits to multi-model devel-

opers and users. The additional code needed to implement

the system is very limited and easy to write. The tools and

functionalities provided by LAPIS are user-friendly, intuitive,

compact, and can be written as a wrapper around the model

itself. The coordination needed between models is minimal and

developers need not know a priori about a future integration

via LAPIS. Any change within a sub-model does not require

changes in dependent models nor in the communication struc-

ture. Updated manifests reflect any differences in published

variables (the only ones seen by other models) between

updates, thus other models can easily be updated to match

these changes, if needed.

A. Benefits of Situation-Aware, Manifest Integration

The manifests themselves are beneficial in several ways.

JSON-format files are easily human-readable. Furthermore,

the manifest includes all the relevant information about the

published variables—e.g., the meaning of the data, units, time

interval in the simulation, frequency of publishing, size of the

variable, plotting details.

B. Benefits Derived from LAPIS System for Multi-Model

Written as a wrapper around the model, LAPIS maintains

history of all the internal states of the simulation at every run

and saves them to an external database. This allows executions

to be stopped, restarted, and replayed. A stopped execution can

be examined and redirected if the simulation is moving in an

undesirable direction. The entire system can also be loaded

from a single checkpoint saved in the SQL database, then

modified and rerun to see the effects of one or several variables

in isolation.

In isolating the core LAPIS architecture away from the

multi-model simulation, developers derive the benefits of a

language- and platform-independent tool. The interface the

user interacts with is standard and universal, and the code is

written in the same language as the developer’s model. Each

model can be written in the most appropriate environment and

models can operate together regardless of platform. Thus, if

some models require specific tools or technologies to function,

this does not limit the development options of the other

researchers.

7

V. LAPIS DEMONSTRATION

To demonstrate the use of LAPIS in steering multi-model

simulations and as a general-purpose computational steering

tool, we present some illustrative results of its capabilities.

A. ICS-EPP Demonstration

We first demonstrate the use of the ICS-EPP multi-model in

exploring the ramifications of energy policy decisions, through

a case study using the residential energy demand, commercial

and industrial energy demand, and unit commitment and dis-

patch models. The study compares generation costs, patterns,

and CO2 emissions in three cases: a base scenario, using only

the available conventional and wind generation (≈1.9 GW) in

Texas in 2005 (Madaeni and Sioshansi [27] detail the case

study); a high wind-penetration scenario, in which 10 GW

of added wind capacity; and a third scenario with the base

scenario generation mix and a $30/ton CO2 tax.

Table I summarizes modeled annual generation costs, fuel

mix, and CO2 emissions in the three cases modeled. As

expected, both added wind and a carbon tax reduce CO2 emis-

sions, with the latter giving greater reductions. Table I reports

fuel costs, which amount to about $16.30/MWh, $15.49/MWh,

and $17.86/MWh in the three cases, respectively. The case

with the carbon tax imposes an additional cost of $1.6 billion,

which is collected by the government and could be redis-

tributed or otherwise used.

TABLE I
SUMMARY OF ANNUAL GENERATION COST, BREAKDOWN, AND CO2

EMISSIONS

Base High-Wind Carbon Tax
Generation Cost [$ billion] 2.15 2.04 2.35
Generation Breakdown [%]

Coal 21 10 19
Natural Gas 40 32 41
Wind 5 25 5

CO2 Emissions 65.9 45.6 52.1
[million short tons]

B. LAPIS Demonstration

We also perform two scalability tests to demonstrate the

capabilities of LAPIS as a general steering and multi-model

simulation tool. The first test consists of passing arrays of

varying lengths between nodes connected on a two-node

LAPIS network. The first node publishes an array of double-

precision floating point numbers while the second reads the

values using the LAPIS ‘get’ command. The second test is

done by passing arrays of 100 double-precision floating point

numbers between nodes of different-sized LAPIS networks.

In these tests, the LAPIS network consists of a single ‘main’

node, which provides address information for the other N

nodes. These N nodes each publish a single array. The test

is conducted by having node n read the values published by

node n − 1 (node 1 reads the values published by node N)

using the LAPIS ‘get’ command. The ‘get’ commands are

issued repeatedly and simultaneously by the N nodes. All

of the nodes used in these tests are implemented in Java

and the nanoTime function from the Java system class is

used to measure the time taken for the ‘get’ commands to

finish. The tests are conducted using the OSC Oakley system.

Fig. 6 summarizes the results of the testing, showing the

average times taken for the ‘get’ command to finish under the

different scenarios. The figure shows that the time taken for a

‘get’ increases quadratically with array size. Conversely, the

time taken for a get’ is insensitive to LAPIS network size.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

10
1

Array Size

T
im

e
 [
s
]

5 10 15 20

LAPIS Network Size [Number of Nodes]

Array Size

LAPIS Network Size

Fig. 6. Performance of the LAPIS system as a function of array and steering
network size.

VI. CONCLUSION

Our group is using LAPIS to create a complex multi-model

energy system simulation. This simulation is not being created

monolithically, but rather from an assemblage of smaller,

easier to develop and test models. These models are being

developed by an interdisciplinary team of researchers working

independently and targeting previously established interfaces

and standards.

This model of simulation development carries some key

advantages. First, LAPIS allows parallel development of model

components without need for tight coordination between de-

velopers. Second, the manifest system and situation-aware

models allow for easy integration of component models into a

larger complex system. These benefits speed up development

and give a more useful simulation. These techniques are

widely applicable and can be used in any scenario where a

variety of models interact.

We demonstrate the use of our multi-model simulation in

examining the impacts of energy policy alternatives. The ICS-

EPP will be further developed to allow simulation of more

complex policy and technology alternatives. We also demon-

strate the ability of LAPIS to efficiently steer simulations,

involving different data array sizes and numbers of simulation

nodes.

8

REFERENCES

[1] J. D. Mulder, J. J. van Wijk, and R. van Liere, “A Survey of Compu-
tational Steering Environments,” Future Generation Computer Systems,
vol. 15, no. 1, pp. 119–129, 1999.

[2] S. G. Parker and C. R. Johnson, “SCIRun: A Scientific Program-
ming Environment for Computational Steering,” in Proceedings of the

IEEE/ACM SC95 Conference Supercomputing. San Diego, CA: Institute
of Electrical and Electronics Engineers, 3-8 December 1995.

[3] S. Bullock, J. Cartlidge, and M. Thompson, “Prospects for Computa-
tional Steering of Evolutionary Computation,” in Proceedings of the

Eighth International Conference on Artificial Life, R. Standish, M. A.
Bedau, and H. A. Abbass, Eds. The MIT Press, 2002, pp. 8–13.

[4] R. S. Kalawsky and S. P. Nee, “Important issues concerning interac-
tive user interfaces in grid based computational steering systems,” in
Proceedings of the UK e-Science All Hands Meeting 2004, S. J. Cox,
Ed. Nottingham, United Kingdom: Engineering and Physical Sciences
Research Council, 31 August-3 September 2004, pp. 886–893.

[5] R. Marshall, J. Kempf, S. Dyer, and C.-C. Yen, “Visualization methods
and simulation steering for a 3D turbulence model of Lake Erie,” in
Proceedings of the 1990 symposium on Interactive 3D graphics. New
York, NY: Association for Computing Machinery, 1990, pp. 89–97.

[6] W. Gu, G. Eisenhauer, E. Kraemer, K. Schwan, J. Stasko, J. Vetter, and
N. Mallavarupu, “Falcon: On-line Monitoring and Steering of Large-
scale Parallel Programs,” in Proceedings of the Fifth Symposium on the

Frontiers of Massively Parallel Computation, McLean, VA, 6-9 February
1995, pp. 422–429.

[7] D. A. Reed, C. L. Elford, T. M. Madhyastha, E. Smirni, and S. E.
Lamm, “The Next Frontier: Interactive and Closed Loop Performance
Steering,” in Proceedings of the 1996 International Conference on

Parallel Processing Workshop on Challenges for Parallel Processing,
Ithaca, NY, 12 August 1996, pp. 20–31.

[8] T. N. Palmer, A. Alessandri, U. Andersen, P. Cantelaube, M. Davey,
P. Délécluse, M. Déqué, E. Dı́ez, F. J. Doblas-Reyes, H. Feddersen,
R. Graham, S. Gualdi, J.-F. Guérémy, R. Hagedorn, M. Hoshen,
N. Keenlyside, M. Latif, A. Lazar, E. Maisonnave, V. Marletto, A. P.
Morse, B. Orfila, P. Rogel, J.-M. Terres, and M. C. Thomson, “De-
velopment of a European Multi-Model Ensemble System for Seasonal
to Inter-Annual Prediction (DEMETER),” Bulletin of the American

Meteorological Society, vol. 85, no. 6, pp. 853–872, June 2004.
[9] K. P. Georgakakos, D.-J. Seo, H. Gupta, J. Schaake, and M. B. Butts,

“Towards the characterization of streamflow simulation uncertainty
through multimodel ensembles,” Journal of Hydrology, vol. 298, no.
1-4, pp. 222–241, October 2004.

[10] Y. Osana, T. Fukushima, M. Yoshimi, Y. Iwaoka, A. Funahashi, N. Hiroi,
Y. Shibata, H. Kitano, and H. Amano, “An FPGA-Based, Multi-model
Simulation Method for Biochemical Systems,” in Proceedings of the

19th IEEE International Parallel and Distributed Processing Sympo-

sium. Denver, CO: Institute of Electrical and Electronics Engineers,
3-8 April 2005.

[11] G. A. Meehl, C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B.
Mitchell, R. J. Stouffer, and K. E. Taylor, “The WCRP CMIP3 Multi-
model Dataset: A New Era in Climate Change Research,” Bulletin of the

American Meteorological Society, vol. 88, pp. 1383–1394, Sepp 2007.
[12] S. M. Pickles, R. Haines, R. L. Pinning, and A. R. Porter, “Practical

Tools for computational Steering,” in Proceedings of the UK e-Science

All Hands Meeting 2004, S. J. Cox, Ed. Nottingham, United Kingdom:
Engineering and Physical Sciences Research Council, 31 August-3
September 2004, pp. 579–586.

[13] S. Jha, S. Pickles, and A. Porter, “A Computational Steering API
for Scientific Grid Applications: Design, Implementation and Lessons,”
in Proceedings of the Workshop on Grid Application Programming

Interfaces, Brussels, Belgium, 20 September 2004.
[14] G. Eisenhauer, K. Schwan, W. Gu, and N. Mallavarupu, “Falcon – To-

ward Interactive Parallel Programs: The On-line Steering of a Molecular
Dynamics Application,” in Proceedings of the Third IEEE International

Symposium on High Performance Distributed Computing, San Francisco,
CA, 2-5 August 1994, pp. 26–33.

[15] A. Modi, L. N. Long, and P. E. Plassmann, “Real-time visualization
of wake-vortex simulations using computational steering and Beowulf
clusters,” in VECPAR’02 Proceedings of the 5th international conference

on High performance computing for computational science, J. M. L. M.
Palma, A. A. Sousa, J. Dongarra, and V. Hernndez, Eds. Heidelberg,
Germany: Springer-Verlag Berlin, 2003, pp. 464–478.

[16] A. Capasso, W. Grattier, R. Lamedica, and A. Prudenzi, “A bottom-up
approach to residential load modeling,” IEEE Transactions on Power

Systems, vol. 9, pp. 957–964, May 1994.

[17] I. Richardson, M. Thomson, and D. Infield, “A high-resolution domestic
building occupancy model for energy demand simulations,” Energy and

Buildings, vol. 40, pp. 1560–1566, 2008.
[18] J. Widén and E. Wäckelgård, “A high-resolution stochastic model of

domestic activity patterns and electricity demand,” Applied Energy,
vol. 87, pp. 1880–1892, June 2010.

[19] M. Muratori, M. C. Roberts, R. Sioshansi, V. Marano, and G. Rizzoni,
“A highly resolved modeling technique to simulate residential power
demand,” Applied Energy, vol. 107, pp. 465–473, July 2013.

[20] M. Muratori, V. Marano, R. Sioshansi, and M. C. Roberts, “Residential
Power Demand Prediction and Modelling,” in The 24th International

Conference on Efficiency, Cost, Optimization, Simulation and Environ-

mental Impact of Energy Systems, Novi Sad, Serbia, 4-7 July 2011.
[21] M. Muratori, V. Marano, R. Sioshansi, and G. Rizzoni, “Energy

consumption of residential HVAC systems: a simple physically-based
model,” in 2012 IEEE Power and Energy Society General Meeting. San
Diego, CA, USA: Institute of Electrical and Electronics Engineers, 22-
26 July 2012.

[22] A. Pielow, R. Sioshansi, and M. C. Roberts, “Modeling Short-run
Electricity Demand with Long-term Growth Rates and Consumer Price
Elasticity in Commercial and Industrial Sectors,” Energy, vol. 46, pp.
533–540, October 2012.

[23] R. Ramanathan, R. F. Engle, C. W. J. Granger, F. Vahid-Araghi,
and C. Brace, “Short-run forecasts of electricity loads and peaks,”
International Journal of Forecasting, vol. 13, pp. 161–174, June 1997.

[24] V. Bianco, O. Manca, and S. Nardini, “Electricity consumption fore-
casting in Italy using linear regression models,” Energy, vol. 34, pp.
1413–1421, September 2009.

[25] M. Muratori, M. J. Moran, E. Serra, and G. Rizzoni, “Highly-Resolved
Modeling of Personal Transportation Energy Consumption in the United
States,” Energy, vol. 58, pp. 168–177, September 2013.

[26] G. S. Sheble and G. N. Fahd, “Unit commitment literature synopsis,”
IEEE Transactions on Power Systems, vol. 9, pp. 128–135, February
1994.

[27] S. H. Madaeni and R. Sioshansi, “The Impacts of Stochastic Program-
ming and Demand Response on Wind Integration,” Energy Systems,
vol. 4, pp. 109–124, June 2013.

Harrison B. Smith (S’02) is high performance
and scientific computing consultant. His research
focuses on scientific computing and traditional and
alternative high performance computing methods.

He holds a B.S., M.S., and Ph.D. in electrical
and computer engineering from The Ohio State
University.

Amy Pielow is a Ph.D. student in the Integrated
Systems Engineering Department at The Ohio State
University. Her research focuses on energy demand
and stochastic power system planning models.

She holds a B.A. in econonomics and a B.S. in
statistics from the University of Minnesota Duluth.

