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Abstract—We propose a two-stage mixed-integer linear stochas-
tic optimization model to analyze the scheduling of electricity-
production units under natural gas-supply uncertainty due to
pipeline congestion and natural gas-price variability. The first stage
of this stochastic optimization model represents the day-ahead
scheduling (i.e., unit commitment) stage, while the second stage
represents actual real-time operations through a number of sce-
narios. We use this model to analyze the effect on unit commitment
and dispatch of two types of natural gas-supply conditions. First,
we analyze a case involving low-cost natural gas supply with nat-
ural gas-transmission issues related to potential gas-pipeline con-
gestion. We then examine a case involving higher-cost natural gas,
which is used solely to attain feasibility with fast-ramping events.
The first case mimics situations in the ISO New England system, in
which relatively low-cost natural gas supply is uncertain in cold-
weather conditions due to natural gas-transmission bottlenecks.
The second case is reminiscent of situations in the California ISO
system, in which relatively expensive but flexible natural gas-fired
units need to be used to handle rapid changes in net demand in the
early mornings and late afternoons.

Index Terms—Natural gas supply, stochastic optimization, un-
certainty, unit commitment.

I. INTRODUCTION

T
HE amount of natural gas used as a primary energy source

in power system operations has increased dramatically in

recent years. Existing natural gas-fired generation accounted for

about 42% of the total installed capacity in the United States in

2015 [1]. Given currently low natural gas prices, the electricity

market is expected to introduce more natural gas-fired genera-

tion into power systems. Because many natural gas-fired units

choose interruptible natural gas-supply contracts [2], the avail-

ability of natural gas supply can threaten the secure operation

of electricity systems.

Several models are presented in the literature to study the

impact of natural gas on power system operations. Munoz et al.
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[3] consider natural gas supply in power system-reliability stud-

ies. Quelhas et al. [4] study the economic inter-dependencies

of electricity and various fuel-supply systems. Geidl et al. [5]

present a model for optimization in coupling energy systems in-

cluding electricity and natural gas systems. Liu et al. [6] present

a security-constrained unit commitment model, which consid-

ers both natural gas pipeline-transportation and contracts limits.

Li et al. [7] consider units that can switch generating fuels in

a security-constrained unit commitment. They incorporate a set

of natural gas constraints based on daily and hourly natural gas-

pipeline capacity. Both Qadrdan et al. [8] and Alabdulwahab

et al. [9] present studies of firming wind power in an integrated

natural gas and electricity network. Qadrdan et al. [8] provide a

set of nonlinear natural gas transportation constraints that con-

sider natural gas flow, compressors, and linepack within the

natural gas-pipeline network. Alabdulwahab et al. [9] model

both natural gas contract limits and transportation constraints.

Liu et al. [10] present a linearly approximated natural gas flow

model embedded within a robust unit commitment model. Alab-

dulwahab et al. [2] introduce a stochastic security-constrained

unit commitment model that integrates natural gas pipeline-

transportation constraints.

In this paper, we propose a two-stage stochastic unit commit-

ment model that integrates natural gas-supply constraints into

the commitment and dispatch processes. As is customary in

stochastic optimization models, this uncertainty is modeled via

scenarios. For sake of simplicity and to focus on the effect of

natural gas-supply shortages (as a result of natural gas-pipeline

issues) on the electrical system, we do not include a detailed rep-

resentation of the natural gas-pipeline system. However, such

detailed representation can be easily incorporated into the pro-

posed model.

Our model follows formative works on mixed-integer lin-

ear unit commitment [11] and two-stage stochastic electricity

market-clearing models [12]. We formulate this problem as hav-

ing day-ahead unit commitment decisions in the first stage, with

real-time dispatch and market-balancing decisions in the second

stage. The proposed model assumes a set of known real-time

demands, and can thus be used for day-ahead market-clearing.

As such, the model is prognostic of real-time operations, based

on forecasted demand, in the stochastic optimization sense. The

objective of the model is to minimize the sum of day-ahead

commitment and expected real-time dispatch costs. We con-

sider both hourly and daily natural gas-supply constraints. The

former are intended to represent physical constraints on instan-

taneous pipeline flows while the latter represent a limit on the
0885-8950 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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amount of fuel that is contracted for delivery during the day.

The scenarios in the stochastic optimization model capture un-

certainties in the hourly natural gas-pipeline capacities. These

scenarios, which are inputs to the model, can easily represent

any physical condition of the natural gas-supply system (e.g.,

reduced or no pipeline capacity). The extent to which natural

gas-supply scenarios have major impacts on electricity system

operations depends on how much the generation mix relies on

natural gas-fired units. To clearly show the effect on electricity

system operations of natural gas-supply shortages (which is the

focus of this paper), we neglect uncertainties other that those

pertaining to natural gas supply. Incorporating other sources of

uncertainty can be easily done. The proposed model can also be

refined by employing reserve policies that depend on the extent

of the uncertainty [13], [14].

We use our proposed model to study the effects of natural gas-

supply constraints on power system operations under two system

paradigms that are becoming increasingly common today. The

first is a case in which natural gas prices are relatively low

but potential natural gas-pipeline congestion limits the extent to

which the system can rely on natural gas-fired units. The second

case has relatively high natural gas prices, but the flexibility

of natural gas-fired units must be used to accommodate steep

ramps in the load profile. The first case is reminiscent of the

ISO New England system [1], where few natural gas-fired units

hold firm fuel-supply contracts. Thus, the system faces potential

natural gas-supply constraints during cold winter days [1]. The

second case is based on the California ISO system [15], which

is facing fast-ramping conditions due to diurnal wind and solar

production patterns. We examine the effects of these two types

of natural gas supply conditions on unit commitment, dispatch,

and day-ahead energy prices.

This work and our choice of the two system paradigms ex-

amined are motivated by recent events in the ISO New England

[1] and California ISO [16] systems. The overarching goal of

the work is to reveal insights into the effects of having power

systems with increasing penetrations of natural gas-fired gen-

eration, which we believe to be of value to the power system

engineering community. This paper makes two contributions,

which add to the existing literature studying the interactions of

electricity- and natural gas-supply networks:

1) developing a stochastic unit commitment model with a

representation of the constraints imposed by the natural

gas-supply network, and

2) carrying out detailed numeral simulations involving (a)

stochastic natural gas-supply uncertainty and (b) -price

variability.

The remainder of this paper is organized as follows. The

formulation of the proposed model is detailed in Section II.

Section III presents and analyzes a simple example based on

a four-node transmission network under the two natural gas-

supply paradigms discussed above. Section IV conducts the

same analysis using an eight-zone test system based on the ISO

New England system [17] and a 240-node system based on the

Western Electricity Coordinating Council (WECC) area [18].

Section V concludes.

II. MODEL FORMULATION

This section provides a detailed formulation of the proposed

model. We first introduce the model notation followed by the

mathematical formulation of the model.

A. Notation

Sets and Indices

∆ Set of natural gas pipelines

∆p Set of natural gas-fired units connected to pipeline p

Λ Set of buses

Λn Set of buses directly connected to bus n by a transmission

line

Ξ Set of scenarios

ΩG Set of natural gas-fired units

ΩG
n Set of natural gas-fired units connected to bus n

ΩT Set of thermal units

ΩT
n Set of thermal units connected to bus n

g Index of natural gas-fired units

i Index of thermal units

m,n Index of system buses

p Index of natural gas pipelines

t Index of time periods

ξ Index of scenarios

REF Reference bus with phase angle fixed equal to 0

Constants

bg Heat rate of natural gas-fired unit g [MBTU/MWh]

Bn,m Susceptance of transmission line connecting buses n

and m [p.u.]

cG
g Marginal cost of natural gas-fired unit g [$/MWh]

cT
i Marginal cost of thermal unit i [$/MWh]

CG ,NL
g No-load cost of natural gas-fired unit g [$]

CG ,SU
g Start-up cost of natural gas-fired unit g [$]

C
T ,NL
i No-load cost of thermal unit i [$]

C
T ,SU
i Start-up cost of thermal unit i [$]

Cmax
n,m Capacity of transmission line connecting buses n

and m [MW]

FG ,NL
g No-load gas consumption of natural gas-fired unit

g [MBTU]

FG ,SU
g Start-up gas consumption of natural gas-fired unit

g [MBTU]

Fmax
p,ξ ,t Hour-t capacity of natural-gas pipeline

p in scenario ξ [MBTU]

Fmax
p One-day contract limit of natural-gas pipeline

p [MBTU]

Ln,t Hour-t load at bus n [MW]

PG ,max
g Generating capacity of natural gas-fired unit g [MW]
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PG ,min
g Minimum-generation level of natural gas-fired unit

g [MW]

P
T ,max
i Generating capacity of thermal unit i [MW]

P
T ,min
i Minimum-generation level of thermal unit i [MW]

RG ,D
g Maximum downward reserve of natural gas-fired

unit g [MW]

RG ,U
g Maximum upward reserve of natural gas-fired unit

g [MW]

R
T ,D
i Maximum downward reserve of thermal unit i [MW]

R
T ,U
i Maximum upward reserve of thermal unit i [MW]

RDG
g Downward ramping limit of natural gas-fired unit

g [MW/hour]

RDT
i Downward ramping limit of thermal unit i [MW/hour]

RUG
g Upward ramping limit of natural gas-fired unit

g [MW/hour]

RUT
i Upward ramping limit of thermal unit i [MW/hour]

T Number of hours in the study horizon

V LOL Value of lost of load [$/MWh]

πξ Probability of scenario ξ

ρ Natural gas price [$/MBTU]

Variables

FG
g ,t Hour-t natural gas consumption of natural gas-fired

unit g in the scheduling stage [MBTU]

F S
p,t Hour-t natural gas flow through pipeline p in the

scheduling stage [MBTU]

fG
g ,ξ ,t Hour-t change in natural gas consumption of natural

gas-fired unit g in scenario-ξ operating stage [MBTU]

LSHED
n,ξ ,t Hour-t load shed at node n in scenario ξ operating

stage [MW]

PG
g ,t Hour-t production of natural gas-fired unit g in the

scheduling stage [MW]

PT
i,t Hour-t production of thermal unit i in the scheduling

stage [MW]

r
G ,D
g ,ξ ,t Hour-t downward reserve of natural gas-fired unit g

deployed in scenario ξ operating stage [MW]

r
G ,U
g ,ξ ,t Hour-t upward reserve of natural gas-fired unit g de-

ployed in scenario ξ operating stage [MW]

r
T ,D
i,ξ ,t Hour-t downward reserve of thermal unit i deployed

in scenario ξ operating stage [MW]

r
T ,U
i,ξ ,t Hour-t upward reserve of thermal unit i deployed in

scenario ξ operating stage [MW]

xG
g ,t Hour-t commitment status of natural gas-fired unit g:

equals 1 if on, 0 otherwise

xT
i,t Hour-t commitment status of thermal unit i: equals 1

if on, 0 otherwise

yG
g ,t Hour-t startup indicator of natural gas-fired unit g:

equals 1 if started up at the beginning of hour t, 0

otherwise

yT
i,t Hour-t startup indicator of thermal unit i: equals 1 if

started up at the beginning of hour t, 0 otherwise

zG
g ,t Hour-t shutdown indicator of natural gas-fired unit g:

equals 1 if shutdown at the beginning of hour t, 0

otherwise

zT
i,t Hour-t shutdown indicator of thermal unit i: equals 1

if shutdown at the beginning of hour t, 0 otherwise

θ0
n,t Hour-t phase angle of node n in the the scheduling

stage [rad]

θn,ξ ,t Hour-t phase angle of node n in scenario ξ operating

stage [rad]

B. Optimization Model

We now detail the formulation of the optimization model,

which has two types of constraints. The first, which consists of

constraint sets (2)–(11), represents the scheduling stage, when

day-ahead unit commitment decisions are made. The second,

consisting of constraint sets (12)–(28), represent the operating

stage, when per-scenario real-time operations are determined.

min

T
∑

t=1

{

∑

i∈ΩT

(

yT
i , tC

T ,SU
i + xT

i , tC
T ,NL
i + cT

i P T
i , t

)

(1)

+
∑

g∈ΩG

(

ρF G
g ,t + yG

g ,tC
G ,SU
g + xG

g ,tC
G ,NL
g + cG

g P G
g ,t

)

+
∑

ξ∈Ξ

πξ ·

(

∑

i∈ΩT

cT
i ·

(

r
T ,U
i ,ξ ,t − r

T ,D
i ,ξ ,t

)

+
∑

g∈ΩG

ρfG
g ,ξ ,t

+
∑

g∈ΩG

cG
g ·

(

r
G ,U
g ,ξ ,t − r

G ,D
g ,ξ ,t

)

+
∑

n∈Λ

V LOL LSHED
n ,ξ ,t

)}

s.t.
∑

i∈ΩT
n

P T
i , t +

∑

g∈ΩG
n

P G
g ,t − Ln ,t (2)

=
∑

m ∈Λn

Bn ,m · (θ0
n ,t − θ0

m ,t ); ∀n ∈ Λ, t ∈ T ;

θ0
REF , t = 0; ∀t ∈ T ; (3)

xG
g ,tP

G ,m in
g ≤ P G

g ,t ≤ xG
g ,tP

G ,m ax
g ; ∀g ∈ ΩG , t ∈ T ; (4)

xT
i , tP

T ,m in
i ≤ P T

i , t ≤ xT
i , tP

T ,m ax
i ; ∀i ∈ ΩT , t ∈ T ; (5)

F G
g ,t = bg P G

g ,t + F G ,NL
g xG

g ,t + F G ,SU
g yG

g ,t ;

∀g ∈ ΩG , t ∈ T ; (6)

F S
p ,t =

∑

g∈∆ p

F G
g ,t ; ∀p ∈ ∆, t ∈ T ; (7)

yG
g ,t − zG

g ,t = xG
g ,t − xG

g ,t−1 ; ∀g ∈ ΩG , t ∈ T ; (8)

yT
i , t − zT

i , t = xT
i , t − xT

i , t−1 ; i ∈ ΩT , ∀t ∈ T ; (9)

xG
g ,t , y

G
g ,t , z

G
g ,t ∈ {0, 1}; ∀g ∈ ΩG , t ∈ T ; (10)

xT
i , t , y

T
i , t , z

T
i , t ∈ {0, 1}; ∀i ∈ ΩT , t ∈ T ; (11)

∑

i∈ΩT
n

(rT ,U
i ,ξ ,t − r

T ,D
i ,ξ ,t ) +

∑

g∈ΩG
n

(rG ,U
g ,ξ ,t − r

G ,D
g ,ξ ,t ) + LSHED

n ,ξ ,t

=
∑

m ∈Λn

Bn ,m · (θ0
n ,t − θn ,ξ ,t − θ0

m ,t + θm ,ξ ,t );

∀n ∈ Λ, t ∈ T, ξ ∈ Ξ; (12)

θREF ,ξ , t = 0; ∀t ∈ T, ξ ∈ Ξ; (13)
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−Cm ax
n ,m ≤ Bn ,m · (θn ,ξ ,t − θm ,ξ ,t ) ≤ Cm ax

n ,m ;

∀n ∈ Λ, m ∈ Λn , t ∈ T, ξ ∈ Ξ; (14)

0 ≤ LSHED
n ,ξ ,t ≤ Ln ,t ; ∀n ∈ Λ, t ∈ T, ξ ∈ Ξ; (15)

xG
g ,tP

G ,m in
g ≤ P G

g ,t + (rG ,U
g ,ξ ,t − r

G ,D
g ,ξ ,t )

≤ xG
g ,tP

G ,m ax
g ; ∀g ∈ ΩG , t ∈ T, ξ ∈ Ξ; (16)

0 ≤ r
G ,U
g ,ξ ,t ≤ xG

g ,tR
G ,U
g ; ∀g ∈ ΩG , t ∈ T, ξ ∈ Ξ; (17)

0 ≤ r
G ,D
g ,ξ ,t ≤ xG

g ,tR
G ,D
g ; ∀g ∈ ΩG , t ∈ T, ξ ∈ Ξ; (18)

(P G
g ,t + r

G ,U
g ,ξ ,t − r

G ,D
g ,ξ ,t ) −(P G

g ,t−1 + r
G ,U
g ,ξ ,t−1 − r

G ,D
g ,ξ ,t−1 )

≤ RUG
g ; ∀g ∈ ΩG , t ∈ T, ξ ∈ Ξ; (19)

(P G
g ,t−1 + r

G ,U
j,ξ ,t−1 − r

G ,D
g ,ξ ,t−1 ) −(P G

g ,t + r
G ,U
g ,ξ ,t − r

G ,D
g ,ξ ,t )

≤ RDG
g ; ∀g ∈ ΩG , t ∈ T, ξ ∈ Ξ; (20)

xT
i , tP

T ,m in
i ≤ P T

i , t + (rT ,U
i ,ξ ,t − r

T ,D
i ,ξ ,t ) ≤ xT

i , tP
T ,m ax
i ;

∀i ∈ ΩT , t ∈ T, ξ ∈ Ξ; (21)

0 ≤ r
T ,U
i ,ξ ,t ≤ xT

i , tR
T ,U
i ; ∀i ∈ ΩT , t ∈ T, ξ ∈ Ξ; (22)

0 ≤ r
T ,D
i ,ξ ,t ≤ xT

i , tR
T ,D
i ; ∀i ∈ ΩT , t ∈ T, ξ ∈ Ξ; (23)

(P T
i , t + r

T ,U
i ,ξ ,t − r

T ,D
i ,ξ ,t ) − (P T

i , t−1 + r
T ,U
i ,ξ ,t−1 − r

T ,D
i ,ξ ,t−1)

≤ RUT
i ; ∀i ∈ ΩT , t ∈ T, ξ ∈ Ξ; (24)

(P T
i , t−1 + r

T ,U
i ,ξ ,t−1 − r

T ,D
i ,ξ ,t−1 ) − (P T

i , t + r
T ,U
i ,ξ ,t − r

T ,D
i ,ξ ,t )

≤ RDT
i ; ∀i ∈ ΩT , t ∈ T, ξ ∈ Ξ; (25)

fG
g ,ξ ,t = bg · (rG ,U

g ,ξ ,t − r
G ,D
g ,ξ ,t );

∀g ∈ ΩG , t ∈ T, ξ ∈ Ξ; (26)

F S
p ,t +

∑

g∈∆ p

fG
g ,ξ ,t ≤ F m ax

p ,ξ ,t ; ∀p ∈ ∆, t ∈ T, ξ ∈ Ξ; (27)

T
∑

t=1

(F S
p ,t +

∑

g∈∆ p

fG
g ,ξ ,t ) ≤ F m ax

p ; ∀p ∈ ∆, ξ ∈ Ξ. (28)

Objective function (1) minimizes the total expected operational

costs of all thermal and natural gas-fired units over the T -hour

model horizon. This objective consists of several terms. The

first two terms represent the cost of committing and scheduling

thermal and natural gas-fired units in the day-ahead scheduling

stage.

For reasons of generality, we assume that natural gas-fired

plants incur two types of costs. The first is a fuel cost, which

depends on the amount of natural gas consumed for genera-

tor startups, no-load fuel use, and actual electricity production.

The second are non-fuel costs, which are also associated with

generator startups, no-load, and actual production. These lat-

ter costs can encompass variable operations and maintenance,

among other costs. Fuel cost is computed by calculating the

total amount of natural gas consumed by a natural gas-fired

unit and multiplying this quantity by the assumed natural gas

price.

The remaining objective-function terms represent the ex-

pected cost of operating the thermal and natural gas-fired units

and the system in real-time. Specifically, the:
∑

i∈ΩT

cT
i ·

(

r
T ,U
i,ξ ,t − r

T ,D
i,ξ ,t

)

,

term represents the cost of adjusting the output of thermal

generators in real-time, the:
∑

g∈ΩG

[

ρfG
g ,ξ ,t + cG

g ·
(

r
G ,U
g ,ξ ,t − r

G ,D
g ,ξ ,t

)]

,

term represents the cost of adjusting the output of natural gas-

fired generators in real-time (including incremental natural gas

costs), and the:
∑

n∈Λ

V LOLLSHED
n,ξ ,t ,

term represents the cost of any load that must be shed in real-

time.

As noted before, the proposed model has two types of con-

straints. The first, consisting of constraint sets (2)–(11), impose

day-ahead scheduling-stage restrictions. Constraints (2) enforce

load-balance at each node in the scheduling stage. The left-hand

side of each equality is the total power generated by all of the

units connected to bus n in hour t, less the load at that node.

The right-hand side of the equality gives the total net power

flow in hour t through the transmission lines directly connected

to node n. We assume a well designed power system that is

able to supply the demand under normal operating conditions.

Thus, load shedding is not considered at the scheduling stage,

which represents an average normal condition. Load shedding

is, however, considered at the operating stage in the event of an

extreme natural gas-supply scenario. Load-balance is imposed

at the scheduling stage in the model to be able to compute day-

ahead locational marginal prices (LMPs), once binary variables

are fixed to their optimal values. In this way we can examine the

impacts of natural gas-supply conditions on day-ahead LMPs.

Because LMPs are computed using dual variables of equality

constraints, they can be negative.

Constraints (3) fix the phase angle at the reference node to

zero in each hour at the scheduling stage. Constraints (4) and (5)

impose minimum- and maximum-generating capacities on the

natural gas-fired and thermal units, respectively. Constraints (6)

and (7) define fuel usage of each natural gas-fired unit and

total pipeline capacity scheduled for use in each hour at the

scheduling stage.

Constraints (8) and (9) impose the state transitions that define

the values of the y and z variables for the natural gas-fired

and thermal units, respectively, in terms of changes in the x

variables from one hour to the next. Constraints (10) and (11)

require these variables to take on binary values.

The remaining constraints impose operating-stage restric-

tions. Constraints (12) impose hourly nodal load-balance. We

define real-time load-balance in terms of incremental changes

(relative to the scheduling stage) in generation and load shed on

the left-hand sides of the equalities. The right-hand sides of the

equalities give incremental changes in power flows, which are

based on incremental changes (relative to the scheduling stage)

in phase angles. The operating-stage load-balance constraints
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are formulated in this manner (i.e., in terms of incremental

changes relative to the scheduling stage) to avoid redundancy

with the scheduling-stage load-balance constraints. If such re-

dundancy is included in the constraints, dual variables cannot

be reliably used to compute LMPs.

Constraints (13) fix the phase angles at the reference node to

zero. Constraints (14) impose the flow limits on each transmis-

sion line in each scenario and hour. The flow limits are repre-

sented at the operating stage, which is when they are relevant

in the sense that they may be binding. Thus, these constraints

do not need to be represented at the scheduling stage. Con-

straints (15) restrict load shedding to be less than actual load in

each hour.

Constraints (16)–(20) are technical limits on the operations

of natural gas-fired units. Constraints (16) impose minimum

and maximum generating capacities on natural gas-fired units.

Constraints (17) and (18) enforce upward and downward reserve

limits, respectively, for natural gas-fired units. Constraints (19)

and (20) impose upward and downward ramping restrictions

on natural gas-fired units, respectively. Constraints (21)–(25)

are analogous technical restrictions on the operation of thermal

units. Because ramping limits are represented at the operating

stage, which is when they are relevant in the sense that they may

be binding, they do not need to be represented at the scheduling

stage.

Finally, constraints (26) compute incremental (relative to the

scheduling stage) fuel usage by each natural gas-fired unit in

each hour of each scenario. Constraints (27) and (28) impose

the two types of natural gas-supply constraints discussed in the

introduction. Specifically, constraints (27) are physical pipeline-

capacity restrictions in each hour while constraints (28) impose

the contract limit on daily natural gas use.

C. Value of Stochastic Solution Computations

One way that we demonstrate the benefits of our proposed

two-stage stochastic planning model is by computing the value

of stochastic solution (VSS). VSS gives an estimate of the ben-

efit of modeling uncertainty when making stage-1 unit commit-

ment decisions [19].

We compute the VSS by first solving the following determin-

istic version of the model introduced in Section II-B in which

the uncertain natural gas-pipeline capacities, Fmax
p,ξ ,t , are replaced

by their expected values:

F̄max
p,t =

∑

ξ∈Ξ

πξF
max
p,ξ ,t .

This model is formulated as:

min

T
∑

t=1

{

∑

i∈ΩT

(

yT
i,tC

T ,SU
i + xT

i,tC
T ,NL
i + cT

i PT
i,t

)

(29)

+
∑

g∈ΩG

(

ρFG
g ,t + yG

g ,tC
G ,SU
g + xG

g ,tC
G ,NL
g + cG

g PG
g ,t

)

}

s.t.
∑

i∈ΩT
n

PT
i,t +

∑

g∈ΩG
n

PG
g ,t − Ln,t (30)

=
∑

m∈Λn

Bn,m · (θ0
n,t − θ0

m,t);∀n ∈ Λ, t ∈ T ;

θ0
REF,t = 0;∀t ∈ T ; (31)

xG
g ,tP

G ,min
g ≤ PG

g ,t ≤ xG
g ,tP

G ,max
g ;∀g ∈ ΩG , t ∈ T ; (32)

xT
i,tP

T ,min
i ≤ PT

i,t ≤ xT
i,tP

T ,max
i ;∀i ∈ ΩT , t ∈ T ; (33)

FG
g ,t = bgP

G
g ,t + FG ,NL

g xG
g ,t + FG ,SU

g yG
g ,t ;

∀g ∈ ΩG , t ∈ T ; (34)

F S
p,t =

∑

g∈∆p

FG
g ,t ;∀p ∈ ∆, t ∈ T ; (35)

yG
g ,t − zG

g ,t = xG
g ,t − xG

g ,t−1 ;∀g ∈ ΩG , t ∈ T ; (36)

yT
i,t − zT

i,t = xT
i,t − xT

i,t−1 ; i ∈ ΩT ,∀t ∈ T ; (37)

xG
g ,t , y

G
g ,t , z

G
g ,t ∈ {0, 1};∀g ∈ ΩG , t ∈ T ; (38)

xT
i,t , y

T
i,t , z

T
i,t ∈ {0, 1};∀i ∈ ΩT , t ∈ T ; (39)

−Cmax
n,m ≤ Bn,m · (θn,t − θm,t) ≤ Cmax

n,m ;

∀n ∈ Λ,m ∈ Λn , t ∈ T ; (40)

PG
g ,t − PG

g ,t−1 ≤ RUG
g ;∀g ∈ ΩG , t ∈ T ; (41)

PG
g ,t−1 − PG

g ,t ≤ RDG
g ;∀g ∈ ΩG , t ∈ T ; (42)

PT
i,t − PT

i,t−1 ≤ RUT
i ;∀i ∈ ΩT , t ∈ T ; (43)

PT
i,t−1 − PT

i,t ≤ RDT
i ;∀i ∈ ΩT , t ∈ T ; (44)

F S
p,t ≤ F̄max

p,t ;∀p ∈ ∆, t ∈ T ; (45)

T
∑

t=1

F S
p,t ≤ Fmax

p ;∀p ∈ ∆. (46)

Objective function (29) is the same as that of the stochastic prob-

lem, except that there are no recourse decisions and, as such,

no second-stage cost. Constraints (30)–(39) are identical to con-

straints (2)–(11) of the stochastic model. Constraints (40)–(46)

impose operating-stage constraints from the stochastic model on

the deterministic problem. Specifically, constraints (40) impose

flow limits on transmission lines, constraints (41)–(44) impose

ramping limits and constraints (45) and (46) impose natural gas

capacities. Constraints (45) are analogous to constraints (27),

except that natural gas usage is restricted to the expected capac-

ity of each pipeline in each hour.

Once this deterministic problem is solved, the values of the

scheduling-stage variables (i.e., FG
g ,t , F S

p,t , PG
g ,t , PT

i,t , xG
g ,t , xT

i,t ,

yG
g ,t , yT

i,t , zG
g ,t , zT

i,t , and θ0
n,t) are fixed in the original stochastic

problem, which is solved to determine the operating-stage vari-

ables and the optimal objective-function value of the stochastic

model, which we denote z∗D . If we let z∗S denote the optimal

objective-function value obtained from solving the stochastic

problem (without fixing the scheduling-stage variables using

the deterministic model), then the VSS is given by:

z∗D − z∗S
z∗S

.
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Fig. 1. Four-node power system and single natural gas pipeline used in the
examples of Section III.

TABLE I
FOUR-NODE POWER SYSTEM TRANSMISSION DATA

From Node To Node B C m a x

1 2 4.48 1200

1 3 5.05 1200

2 4 5.75 1200

3 4 5.67 1200

III. EXAMPLES

This section analyzes two simple examples, which illustrate

the model detailed in Section II. The first is what we term

a ‘low-gas-price’ example, in which both thermal and natural

gas-fired generators are sufficiently flexible to serve the load.

However, potential restrictions on natural gas use limit the extent

to which the system can rely on natural gas-fired generators

to serve load. The second, which we call a ‘high-gas-price’

example, requires the use of flexible but expensive natural gas-

fired units to accommodate fast-ramping events that cannot be

met by thermal units alone.

Both examples are based on the four-node electricity network

shown in Fig. 1. The network includes two thermal units, located

at nodes of their own, two natural gas-fired units, that are located

at the same node and served by a single natural gas pipeline, and

a single demand node. The corresponding transmission line data

are provided in Table I, although there is no transmission con-

gestion in this example. We study the commitment and dispatch

of the system over a 12-hour planning horizon. We assume that

the single pipeline serving the two natural gas-fired units can

have binding hourly flow capacities. Fig. 2 shows the hourly

pipeline capacities under the three scenarios that we model.

Scenario 1 represents an ‘uncapacitated’ scenario, in which the

hourly pipeline capacities are not binding even if the two natural

gas-fired units are operating at maximum load. The other two

scenarios represent cases in which some contingency restricts

pipeline use, especially in the middle of the planning horizon.

We now detail the other data and results of the two examples.

A. Low-Gas-Price Example

1) Data: Table II summarizes the cost and constraint data

for the thermal and natural gas-fired units in the low-gas-price

Fig. 2. Natural gas pipeline hourly capacity scenarios.

TABLE II
THERMAL AND NATURAL GAS-FIRED UNIT DATA

FOR THE LOW-GAS-PRICE EXAMPLE

Marginal Start-Up

Unit Cost Cost RU, RD P m a x P m in

Thermal

1 75.0 800 100 600 30

2 80.5 900 100 600 20

Natural Gas

1 55.0 560 250 600 25

2 50.0 420 250 600 25

Fig. 3. Load data for the low-gas-price example.

example. The natural gas price used in this case is $4/MBTU.

Fig. 3 shows the load data used. Due to their relatively low

operating costs, the system operator prefers using the natural

gas-fired generators to serve the system load. However, the pos-

sibility of binding natural gas-supply constraints in Scenarios 2

and 3 (cf. Fig. 2) may limit their use.

2) Results: We examine system operations and market out-

comes under two probability distributions for the pipeline-

capacity scenarios. The first distribution assumes an 80%

probability that the pipeline is uncapacitated, otherwise each of

scenarios 2 and 3 are equally likely with 10% probabilities each.

Thus, this first distribution has scenario-probability vector π =
(0.8, 0.1, 0.1). The second distribution assumes that the pipeline

is uncapacitated with probability 1, or π = (1.0, 0.0, 0.0).
The thermal units are not committed when the pipeline is un-

capacitated with probability 1, i.e., with the second probability

distribution vector, π = (1.0, 0.0, 0.0). When there is a nonzero

probability that the pipeline will be capacitated, this results in

committing the thermal units. In this latter case the two thermal
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TABLE III
OPTIMAL UNIT COMMITMENT DECISIONS FOR THE LOW-GAS-PRICE EXAMPLE

Distribution 1 Distribution 2

π = (0.8, 0.1, 0.1) π = (1.0, 0, 0)

Thermal Natural Gas Thermal Natural Gas

Hour 1 2 1 2 1 2 1 2

1 0 0 1 1 0 0 1 1

2 0 0 1 1 0 0 1 1

3 1 1 1 1 0 0 1 1

4 1 1 1 1 0 0 1 1

5 1 1 1 1 0 0 1 1

6 1 1 1 1 0 0 1 1

7 1 1 1 1 0 0 1 1

8 1 1 1 1 0 0 1 1

9 1 1 1 1 0 0 1 1

10 1 0 1 1 0 0 1 1

11 0 0 0 1 0 0 0 1

12 0 0 0 1 0 0 0 1

Fig. 4. Day-ahead prices at the demand node in the low-gas-price example.

units are committed between hours 3 and 10 and from hours 3

to 9, respectively. These thermal units are committed with the

latter distribution because there is a nonzero probability that a

binding pipeline-capacity constraint will prevent the natural gas-

fired units from serving all of the loads in hours 3 through 10.

Table III provides detailed unit commitment decisions.

Fig. 4 shows hourly day-ahead prices at the demand node un-

der the two pipeline-capacity distributions. As expected, prices

tend to be higher with the capacitated probability distribution.

This is because the pipeline-capacity constraints result in greater

use of higher-cost thermal units, which set the margin during

hours when the pipeline could be binding. It is important to stress

that the possibility of binding pipeline constraints impact day-

ahead prices, regardless of whether those binding constraints

are actually realized in real-time.

The VSS for this example, with probability distribution vec-

tor π = (0.8, 0.1, 0.1), is 0.0638 (the VSS is, by definition, 0

with probability distribution vector π = (1.0, 0.0, 0.0), because

there is no uncertainty in this case). This means that when there

is uncertainty regarding available natural gas, explicitly model-

ing this uncertainty in determining unit commitments reduces

expected operating costs by 6.38%. Expected operation costs

increase if the system is committed using expected pipeline ca-

pacities (in the deterministic model) because less thermal gen-

eration is committed (compared to the stochastic model). As a

TABLE IV
THERMAL AND NATURAL GAS-FIRED UNIT DATA

FOR THE HIGH-GAS-PRICE EXAMPLE

Marginal Start-Up

Unit Cost Cost RU, RD P m a x P m in

Thermal

1 75.0 600 100 600 30

2 80.5 700 100 600 20

Natural Gas

1 105.0 680 250 600 25

2 100.0 440 250 600 25

Fig. 5. Load data for the high-gas-price example.

Fig. 6. Day-ahead prices at the demand node in the high-gas-price example.

result, loads must be curtailed in some of the scenarios in which

the natural gas pipeline is capacitated.

B. High-Gas-Price Example

1) Data: This example assumes the same physical power

system structure shown in Fig. 1 and summarized in Table I and

the same pipeline-capacity scenarios shown in Fig. 2. Table IV

and Fig. 5 summarize the generator and load data, respectively,

for this example. This example has higher natural gas prices

of $12/MBTU, resulting in a cost reversal between the thermal

and natural gas-fired units relative to the low-gas-price example.

The load profile in this example has steeper ramps before and

after the peak, which requires the use of the expensive natural

gas-fired units.

2) Results: We examine system operations and market out-

comes assuming that the natural gas pipeline is uncapacitated

with probability 1, i.e., with π = (1.0, 0.0, 0.0). Because of the

steep ramps in hours 3, 4, 8, and 9 and the limited ramping

capabilities of the thermal units, the more expensive natural

gas-fired units must be committed. Table V summarizes the op-

timal unit commitment decisions. Fig. 6 shows the resulting

effect on day-ahead energy prices at the demand node. Prices

are seen to rise exactly during the hours when binding ramping

constraints require the use of expensive natural gas-fired units.
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TABLE V
OPTIMAL UNIT COMMITMENT DECISIONS FOR THE HIGH-GAS-PRICE EXAMPLE

Thermal Natural Gas

Hour 1 2 1 2

1 1 1 0 0

2 1 1 0 0

3 1 1 1 1

4 1 1 0 1

5 1 1 0 1

6 1 1 0 0

7 1 1 0 1

8 1 1 0 1

9 1 1 1 1

10 1 1 0 0

11 1 0 0 0

12 1 0 0 0

Prices in hours 2 and 10 are lower than the marginal cost of the

thermal units. This is because increasing demand in either of

hours 2 or 10 allows greater use of thermal generation (in place

of natural gas-fired generation) in hours 3 and 9. The prices

reflect this value of shifting loads to hours 2 and 10. Sioshansi

et al. provide a formal analysis of this pricing rule when ramping

constraints are binding [20].

IV. CASE STUDY

In this section we further analyze the effects of the low- and

high-gas-price examples examined in Section III, using case

studies that are modeled around real-world power systems. More

specifically, we examine a reduced eight-zone model of the ISO

New England system [17] and a 240-node representation of

the WECC, which includes the California ISO system [18].

Both cases assume a 24-hour optimization horizon in the unit

commitment model.

A. Eight-Zone Test System

The eight-zone case study, which is modeled around the ISO

New England system, is used to further study the effects of

the low-gas-price case. The setting studied in Section III-A is

reminiscent of recent events in the ISO New England system, in

which the system is not able to rely on normally low-cost natural

gas-fired units due to binding pipeline-capacity constraints [1].

1) Data: This case examines an eight-zone model of the

ISO New England system [17], [21]. For sake of simplicity

and to focus on the effect of natural gas-supply shortages, only

thermal and natural gas-fired units are considered in our case

study. The units in the system are aggregated into 37 units total—

17 thermal and 20 natural gas-fired. Table VI summarizes the

location, marginal generation cost, ramping limits (upward and

downward ramping limits are assumed to be the same for each

unit), and generating capacity of each unit. All of the units are

assumed to have a minimum output level of 0 MW.

Loads are modeled using actual historical load data [22],

which are scaled based on the generation capacity modeled in

this case study. Fig. 7 shows the load profile, which is aggre-

gated over the eight zones in the network. Our case study uses

TABLE VI
UNIT LOCATION, COST, AND CONSTRAINT DATA FOR ISO NEW

ENGLAND-BASED EIGHT-ZONE CASE STUDY

Unit Zone Marginal Cost RU, RD P m a x

Thermal

1 ME 160.55 120.0 600.4

2 ME 233.00 120.0 431.0

3 ME 154.16 115.5 115.5

4 VT 185.00 120.0 620.2

5 NH 54.57 120.0 400.2

6 SEMA 153.16 120.0 558.7

7 SEMA 192.06 120.0 553.0

8 RI 192.00 120.0 435.0

9 CT 160.00 120.0 447.9

10 CT 233.42 120.0 407.4

11 CT 200.14 120.0 400.0

12 CT 192.06 120.0 236.0

13 CT 151.16 120.0 168.0

14 CT 152.16 120.0 130.5

15 CT 192.06 117.0 117.0

16 CT 54.00 81.0 81.0

17 CT 325.00 120.0 225.0

Natural Gas

1 ME 51.13 400.0 693.8

2 ME 53.14 400.0 685.3

3 ME 51.00 400.0 490.4

4 ME 80.00 244.9 244.9

5 NH 51.13 400.0 508.0

6 WCMA 53.00 238.3 238.3

7 WCMA 123.00 141.0 141.0

8 SEMA 85.00 400.0 675.5

9 SEMA 86.00 244.8 244.8

10 SEMA 85.25 141.1 141.1

11 SEMA 85.50 104.9 104.9

12 RI 55.72 400.0 515.5

13 RI 55.72 270.9 270.9

14 RI 85.00 264.9 264.9

15 RI 50.23 248.7 248.7

16 RI 85.50 238.6 238.6

17 RI 84.50 149.0 149.0

18 RI 85.00 149.0 149.0

19 CT 78.00 400.0 447.9

20 CT 85.03 43.9 43.9

Fig. 7. Load data for the ISO New England-based eight-zone case study.

the electric system topology reported by Krishnamurthy et al.

[17]. We assume two natural gas pipelines. Natural gas-fired

units 1–5 are supplied by one pipeline and units 6 and 20 are

supplied by the other. We assume that there are 10 equally likely

pipeline-capacity scenarios. These scenarios result in a variety

of pipeline-capacity conditions. Some scenarios have binding

pipeline capacities during the full 24-hour optimization hori-

zon, others have binding pipeline capacity constraints during

peak hours, and some have uncapacitated natural gas pipelines.
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Fig. 8. Load-weighted day-ahead LMPs in the ISO New England-based eight-
zone case study.

Fig. 9. Load-weighted day-ahead LMPs for the energy system footprint, ME
zone, and other zones in the ISO New England-based eight-zone case study with
restricted transmission capacity.

The scenarios are selected to be realistic (i.e., to mimic recent

conditions under which the ISO New England system experi-

ences binding pipeline constraints) and to obtain the desired

price behavior. Needless to say, other scenario selections may

result in different price behavior.

2) Results: Fig. 8 shows load-weighted day-ahead LMPs.

As expected, prices increase during peak-load hours and de-

crease in off-peak hours. The LMPs in hour 9 are dramatically

high because the upward ramping constraints for thermal units 4,

10, and 12 are binding in scenario 10. Scenario 10 is the one in

which natural gas availability is highly limited. The proposed

model commits natural gas-fired units during all 24 hours of the

optimization horizon. Lower-cost natural gas-fired units are pri-

oritized in the commitment and dispatch over higher-cost units.

Although the natural gas pipelines are not capacitated in all sce-

narios, low-cost natural gas-fired unit are not fully loaded in the

scheduling stage. Rather, the dispatch of each natural gas-fired

unit is adjusted in the operating stage depending on how much

pipeline capacity is available in the recourse stage. The model

limits the commitment and dispatch of higher-cost thermal units,

which is consistent with the cost-minimization objective.

On the other hand, reducing the capacities of the electricity

transmission lines that directly connect zones ME and NH re-

sults in transmission congestion. Fig. 9 shows load-weighted

average (across the entire system footprint) day-ahead LMPs as

well as day-ahead LMPs for the ME zone and the load-weight

average LMPs of the other zones. The nodal price differences

Fig. 10. Load data for the WECC-based 240-node case study.

are caused by transmission-line congestion. The commitment

status of the thermal and gas-fired units are similar between

the congested and uncongested cases, showing that the commit-

ment decisions are fundamentally driven by natural gas-pipeline

capacities. The high prices in hour 16 are caused by binding up-

ward ramping limit for all of the thermal units that are on-line

as well as limited natural gas availability in some scenarios. Ad-

ditional thermal unit would be started-up if the load in hour 16

is further increased.

The VSS for the cases with and without transmission con-

gestion are 0.0724 and 0.074, respectively. As with the low-

gas-price example examined in Section III-A, if the system is

committed using a deterministic model with expected pipeline

capacities, fewer thermal units are committed as compared to

those committed by the stochastic model. As a result, there is

non-zero energy curtailment in some of the scenarios in which

the natural gas pipelines are capacitated.

The model is programmed using GAMS version 24.4.6 and

solved using CPLEX version 12.6.2.0 on a computer with an

Intel Core i7 2.6 GHz processor with 8 GB of RAM. The com-

putation time of each of the eight-zone cases is approximately

15 minutes.

B. 240-Node Test System

The 240-node case study, which is modeled around the WECC

system, is used to further study the effects of the high-gas-price

case. The assumptions underlying the analysis in Section III-B

are reminiscent of what is expected to occur in the California

ISO system in the near future. As the penetrations of solar photo-

voltaic and wind generators increase, high ramps in the net load

(i.e., load less renewable production) profile are expected in the

mornings and evenings. These ramps are anticipated to be met

using relatively high-cost natural gas-fired generators [15], [16].

1) Data: This case study is based on a 240-node reduced

model of the WECC system [18] and analyzes the effect of

high natural gas prices. To reduce computational complexity,

the system is modeled as consisting of 31 units—16 thermal

and 15 natural gas-fired. The loads are modeled as being at 25

of the nodes. Unit, transmission line, and load data are based

on the reduced WECC model provided by Price and Goodin

[18]. Fig. 10 shows the aggregated (over the 25 load nodes) load

profile, which has steep ramps in the morning and afternoon.
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TABLE VII
UNIT LOCATION, COST, AND CONSTRAINT DATA FOR WECC-BASED

240-NODE CASE STUDY

Unit Node Marginal Cost RU, RD P m a x P m in

Thermal

1 180 80 50 1100 25

2 202 83 50 900 25

3 230 80 50 800 25

4 160 79 50 1100 25

5 164 79 50 1000 25

6 167 84 50 800 25

7 172 85 50 800 25

8 188 85 50 800 25

9 192 77 50 900 25

10 208 79 50 800 25

11 215 82 50 800 25

12 221 80 50 800 25

13 223 76 50 1200 25

14 239 80 50 1000 25

15 240 79 50 800 25

16 237 82 50 900 25

Natural Gas

1 191 170 200 1000 20

2 201 145 400 900 20

3 204 165 400 1200 20

4 210 180 400 1200 20

5 214 175 400 1200 20

6 224 160 400 1600 20

7 238 165 400 1200 20

8 159 185 200 1200 20

9 187 165 200 800 20

10 218 173 200 800 20

11 220 144 400 500 20

12 229 173 400 950 20

13 175 166 400 1400 20

14 225 173 400 900 20

15 233 167 200 1000 20

Table VII shows marginal cost, ramping limit, capacity, and

minimum generation level data for the thermal and natural gas-

fired units. The system is assumed to have two natural gas

pipelines. The first pipeline is shared by natural gas-fired units

1–7 while the other serves natural gas-fired units 8–15. Due

to the relatively low demand of natural gas in this high-gas

price case study, we only consider one scenario in which the

natural gas pipelines are uncapacitated with probability 1. The

case study assumes a natural gas price of $11/MBTU, based on

historical natural gas prices in California [23].

2) Results: Because of their relatively high cost, only nat-

ural gas-fired unit 11, the cheapest among all of the natural

gas-fired units, is committed in hours 9, 13, and 14. This unit is

committed solely because of the steep ramps and the need for

its greater ramping capability (compared to the thermal units).

Fig. 11 shows load-weighted average day-ahead LMPs, which

are computed once binary variables are fixed to their optimal

values. There is no transmission line congestion in this case,

so all the LMPs at each of the 240 nodes in each same hour

are the same. As in the high-gas-price example examined in

Section III-B, day-ahead prices spike when natural gas-fired

units must be committed to accommodate steep ramps. More-

over, we find that day-ahead prices in hours 8 and 15 are much

lower than the marginal cost of any unit (indeed, they are

Fig. 11. Load-weighted day-ahead LMPs in the WECC-based 240-node case
study.

Fig. 12. Load-weighted day-ahead LMPs for the entire system footprint and
for nodes 55 and 77 in the WECC-based 240-node case study with restricted
transmission capacity.

negative). This is because of the same phenomenon that higher

loads in these hours allows more lower-cost thermal generation

to substitute high-cost natural gas-fired generation in hours 9

and 14. High LMPs in hours 10 and 11 due to binding ramping

limits of thermal units, and higher load in these hours require

the use of high-cost natural gas-fired generation.

As in the case examined in Section IV-A, reducing the ca-

pacity of the transmission lines directly connecting node 77

to 55 and node 77 to 145 causes congestion to occur in hour 10.

This results in LMP differences across the nodes in hour 10.

Fig. 12 shows load-weighted LMPs and LMPs at two nodes—

55 and 77—that have large price differences in hour 10. Node 77

is connected to a low-cost thermal unit through an uncongested

transmission line. Thus, increased demand in this node can be

served by this low-cost thermal unit. However, additional de-

mand in node 55 can only be served by high-cost natural gas-

fired units, due to binding transmission and ramping constraints.

This explains the significant LMPs differences between these

two nodes. The congested case also sees some differences in the

units committed compared to the uncongested case, again due

to locational constraints that require the use of natural gas-fired

units to serve the fast-ramping event.

The case study is implemented in the same environment that

the eight-zone case study is, and requires about three minutes

of computation time.

V. CONCLUSION

This paper proposes a two-stage stochastic unit commitment

model that integrates natural gas-supply conditions into power
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system operations. Our modeling framework assumes that unit

commitment decisions are made day-ahead, in the face of natural

gas-capacity-constraint uncertainties. The second stage of our

model allows the dispatch of the committed units to respond to

real-time natural gas availability.

We use this model to study the effects on power system opera-

tions of two types of natural gas-supply conditions. The first has

low natural gas prices, but potential natural gas-supply bottle-

necks. These possible natural gas-supply constraints necessitate

the use of higher-cost thermal units and have an effect on day-

ahead prices. It is important to stress that these effects occur

regardless of whether any natural gas pipeline is actually capac-

itated in real-time. The second assumes relatively high natural

gas prices. The system must use expensive natural gas-fired gen-

eration, due to the operating flexibility of those units (relative to

thermal units) to handle fast-ramping events. We demonstrate

the effects of these fast-ramping events on day-ahead LMPs.

We do not study the impacts of uplifts, which are necessitated

by the non-convex nature of unit commitments to ensure that

the commitment and dispatch is economically nonconfiscatory.

While such uplifts will have some impacts on market settlement,

they should not alter the general conclusions derived [24].

The two types of natural gas-supply conditions that we mod-

eled are inspired by conditions facing the ISO New England and

California ISO systems. It is important to note, however, that

these types of fuel-supply conditions may increasingly become

an issue in other power systems. Models, such as the one that we

propose here, could be used to help system operators, genera-

tors, and utilities mitigate the effects of such conditions. Indeed,

a key contribution of the model proposed here is providing a

tool to ‘quantify’ the impact of natural gas-supply uncertainty

and natural gas prices on LMPs and the scale and extent of such

impacts.

Comprehensive modeling of the natural gas pipeline system

will make the proposed model more realistic, but will not change

the conclusions derived. Enhancing the modeling of the natural

gas-pipeline system is an area for further research. It should also

be noted that any technique aimed at improving computational

efficiency or achieving tractability in large-scale systems (e.g.,

decomposition or scenario reduction techniques) can be applied

to the proposed model.
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