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a b s t r a c t

This paper specifies and estimates state-level models of short- and long-term electricity demand in the

United States. The short-term model predicts hourly load based on weather and calendar inputs. The

long-term model estimates interannual demand, and includes population, prices, and gross state product

as predictors. These models are combined to incorporate the short- and long-term trends in electricity

consumption when generating forecasts of diurnal patterns into the future. Finally, the authors inves-

tigate the effects of short-run price elasticities of demand. The short-term model is shown to be within

95% accuracy of actual levels in out-of-sample tests.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The demand for electricity fluctuates on familiar cycles and with

known influences in the short-term, and its long-term growth

coincides with trends in macroeconomic indicators. Accurately

forecasting the level of demand on disparate time scales is neces-

sary for utilities to schedule generators, plan system maintenance,

and devise long-term investments. Short-term forecasts are

commonly made in half- or 1-h intervals 24e168 h in advance of

the pertinent period. Seasonal patterns such as day of week and

month of year, as well as temperature and humidity, are the most

significant factors influencing demand within a year. Both types

of factors work in conjunction with each otherdalthough on

a day-to-day basis the specific day of the week is of great impor-

tance, temperature also matters. Monthly seasonality primarily

reflects meteorological conditions. These variables become less

significant with longer time horizons; models of long-run elec-

tricity demand typically forecast aggregate monthly or annual

levels. Changes in long-run demand are normally correlated with

changes in economic indicators such as gross domestic product and

prices of electricity and other fuels.

In the short-term, regression techniques are common for

modeling the quantity of electricity demanded. Pardo et al. [1] use

autoregressive least-squares regression to explore the effects of

temperature and seasonality on daily load. For modeling the daily

peak and monthly aggregate demand levels, Mirasgedis et al. [2]

also use regressions which include seasonal and temperature

variables. Both of these papers are primarily concerned with the

role of weather in demand quantity fluctuations. The peak load,

average load, temperature, and calendar particulars of the previous

day are the basis for the bivariate model of next-day hourly peak in

the work of Engle et al. [3]. Forecasts for diurnal load profiles can be

made in a comparable manner; Ramanathan et al. [4] build 24

separate regression models, one for each hour of the day with

unique regressors. A similar approach is used by Taylor and Buizza

[5] to forecast load at various cardinal points of the day, including

midday and midnight.

Similar methods are applied to long-term forecasts as well. For

example, Mohamed and Bodger [6], Amarawickrama and Hunt [7]

and Bianco et al. [8] use annual demand regression models that

consider macroeconomic factors, such as gross domestic product

and population. Efforts to combine monthly and annual aggregate

forecasts from the same data set through cointegration of time

series can be found in the work of Engle et al. [9]. The authors

capture short-term effects in a monthly model, and then improve it

by introducing a factor from a separate annual model influenced

more by long-term trends. Artificial neural networks are another

* Corresponding author.

E-mail addresses: pielow.1@osu.edu (A. Pielow), sioshansi.1@osu.edu

(R. Sioshansi), roberts.628@osu.edu (M.C. Roberts).

Contents lists available at SciVerse ScienceDirect

Energy

journal homepage: www.elsevier .com/locate/energy

0360-5442/$ e see front matter � 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.energy.2012.07.059

Energy 46 (2012) 533e540



method common in the literature for both time scales. Ringwood

et al. [10] investigate the influences on demand in multiple time

frames by modeling daily, weekly, and yearly quantity demanded

using neural networks. More recently, Taylor et al. [11] develop an

intra-hour neural network and compare it to double exponential

smoothing, regression with principal component analysis, and

seasonal ARMA models for two data sets of diurnal load profiles on

hourly and half-hourly intervals.

A natural extension of predicting the quantity of electricity

demand is investigating how this quantity changes under different

pricing policies. Price elasticities are a measure of how much the

quantity demanded for a good changes given a change in price.

These elasticities can be estimated for changes in the price of the

good itself (own) or a change in the price of a different good (cross).

With respect to electricity load, the different goods can be thought

of as electricity in different hours of the day. An increase (decrease)

in price in an hour may decrease (increase) demand in that hour,

and change the quantity demanded in adjacent hours as well. Prices

can be structured in several ways, for instance a constant time-

invariant price or a time-of-use tariff, with different prices

applied to consumption during different blocks of time. The hourly

own- and cross-price elasticities of demand used in this work are

determined by Taylor et al. [12]. These elasticities are estimated

from eight years of data for industrial customers across all hours of

the day.

Despite the existing body of literature on short- and long-term

forecasting, little work which utilizes multiple time horizons is

available. In the short-run, models frequently only predict peak or

aggregate daily load. We investigate how similar modeling tech-

niques to those found in the literature can be used to predict

continuous demand with one function. Furthermore, by predicting

the entire diurnal load profile with a single regression model,

exploring the interactions in quantity demanded between different

hours is possible. Thus, effects of different pricing strategies can be

captured by utilizing customers’ price elasticities. We explore cases

where there is a simple peak and off-peak structure and where the

price increases with the consumption level. In addition, as a pop-

ulation and economy grow, the amount of electricity demanded in

aggregate can grow as well. We develop a second model of annual

aggregate electricity demand regressed against macroeconomic

variables. Using the long-term growth rates, as determined by this

annual aggregate model, fine-grain predictions further into the

future are possible. Although predictions of peak and aggregate

load as found in the literature are necessary for planning, fore-

casting temporally disaggregated load allows further refinement.

The remainder of this paper is organized as follows. Section 2

details the development of the two models; first, the diurnal

model form and the data used to develop it are considered and then

a similar treatment for the annual regression is undertaken. How

these models are combined to forecast loads in the future is also

discussed. In Section 3, the estimated regression coefficients are

reported along with results from out-of-sample validation of the

proposed short-term model and forecasted results and the appli-

cation of cross- and own-price elasticities. Section 4 concludes and

summarizes the work.

2. Data and methodology

2.1. Diurnal model

Our initial regression model for diurnal load profiles is of a log-

linear form incorporating calendar and weather variables. Elec-

tricity demand has daily, weekly, and monthly cycles which can be

described by Fourier series over the respective period. A Fourier

series is a linear combination of sine and cosine functions of

differing frequencies used to approximate a given function arbi-

trarily well. This method is advantageous over the classic approach

of dummy variables to represent the particular hour, day, and

month of an observation. Fewer variables are necessary to repre-

sent each time frame; a model with two frequencies at each time

scale is optimal with our data, for a total of 16 predictors instead of

40. The three cycles modeled with this method are hour of the day

patterns, hour of theweek patterns, andmonth of the year patterns.

The longest of these cycles is evident in Fig. 1, which shows hourly

load in the state of Ohio by a subset of American Electric Power’s

(AEP’s) commercial and industrial customers in the year 2010.

Demand peaks during the summer months, but otherwise is rela-

tively steady on a seasonal basis. This may be in part because

cooling technologies used in the summer tend to be electric, while

heating technologies used in winter months are not. Fig. 2 displays

the first two weeks of hourly demand levels from the same

consumers as in Fig. 1. The weekly and daily cycles are apparent.

Also evident is the difference in demand from weekdays to week-

ends, as the first 48 h are over a holiday weekend, and the next 120
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Fig. 1. Hourly electricity demand of 78,000 commercial and industrial customers in

the state of Ohio in the year 2010. Data obtained from AEP.
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Fig. 2. Diurnal demand patterns for same subset of commercial and industrial

customers shown in Fig. 1 in the first two weeks of the year. Data obtained from AEP.
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represent Monday through Friday. The quantity demanded in the

first 48 h is particularly low, even for Saturdays and Sundays,

because of the holiday, and motivates the inclusion of variables to

capture this effect. The data shown in Figs. 1 and 2 are obtained

from AEP.

In addition to these seasonal terms, there are indicator variables

for each year in the sample. The three final calendar regressors

represent weekends and holidays. This holiday variable includes

days which are not considered holidays, but immediately precede

or follow a holiday and exhibit holiday-like tendencies. Indicator

variables for Saturdays and Sundays also capture the behavior over

the entire respective day. This model structure allows even atypical

patterns such as floating holidays to be represented. Variability

from weather conditions is modeled by heating degrees (HD) and

cooling degrees (CD), defined as HDt ¼ max{Tref�Tt,0} and

CDt ¼ max{Tt�Tref,0} where Tt is the mean daily temperature for

hour t and Tref is a reference temperature. Following the work of

Engel et al. [3] and Pardo et al. [1], we assume Tref ¼ 65 �F. The

relationship between total quantity demanded and temperature is

nonlinear due to some electric heating; hence, a single temperature

variable is not sufficient. Combining these terms in a least-squares

regression results in the following model:

%DQt ¼b0 þ b1HDt þ b2HD
2
t þ b3CDt þ b4CD

2
t þ b5HOLt

þ b6SUNt þ b7SATt þ
X12

i¼1

X3

j¼1

X2

m¼1

�
gisin

�
2pmsj;t

�

þ gicos
�
2pmsj;t

��
þ

X4

k¼1

dkYk;t þ εt : ð1Þ

The variables sj,t represent the time of the respective Fourier

expansion for a particular observation. For instance, the first hour of

the year (t ¼ 1) would have s1,1 ¼1/24, s2,1 ¼1/168, and s3,1 ¼1/12,

for hour of the day, hour of the week, and month of the year

periods, respectively. HOLt, SUNt, SATt, and Yk,t are binary indicator

variables for holidays, Sundays, Saturdays, and the years

2006e2009, respectively, and εt is the residual term. The percent

difference of the dependent variable is to prevent scaling and

heteroscedasticity issues.

Our data for the short-term diurnal regressions consist of hourly

electricity demand and daily weather information. Three data sets

contain load data for a subset of approximately 105,000, 65,500,

and 78,000 AEP commercial and industrial customers from the

states Texas, Virginia, and Ohio, respectively, from January 1, 2006

to December 31, 2010 with 43,824 hourly observations. A fourth

data set of roughly 16,000 customers in Michigan has 43,080

observations, spanning the same time frame except for December

2009. The average load for the customers in these samples are 183,

1447, 1372, and 1016 MW for Michigan, Ohio, Texas, and Virginia,

respectively. Each of these data sets is used to estimate a separate

model specific to the location. Of these data, 35,064 (34,320 for

Michigan) observations are used to estimate themodel coefficients,

and the final year of data, consisting of 8760 observations, is

used for out-of-sample validation. Maximum and minimum daily

temperatures from three weather stations1 in each state, as

obtained from the U.S. National Climatic Data Center, are averaged

to determine HD and CD in the model.

Diagnostic tests on the model determined by (1) indicate posi-

tive autocorrelation of the residuals, a common issue in time series,

suggesting model adjustments are needed. The Durbin-Watson

(DW) test of the residuals checks for evidence of correlation;

a statistic from this test differing significantly from 2 (with

a possible range of 0e4) indicates correlation. Despite the model

seeming well fit, with R2 values of approximately 0.8 for all of the

data sets used, these and other statistics such as t-tests are

misleading and biased if autocorrelation is present. To correct this

issue, autoregressive residual terms with 1-, 2-, 3-, 144-, 145-, and

168-h lags are included in the model. These are determined by

analysis of autocorrelation and partial autocorrelation functions.

The modified model is given by:

%DQt ¼ b0 þ b1HDt þ b2HD
2
t þ b3CDt þ b4CD

2
t þ b5HOLt

þ b6SUNt þ b7SATt þ
X12

i¼1

X3

j¼1

X2

m¼1

�
gisin

�
2pmsj;t

�

þ gicos
�
2pmsj;t

��
þ

X4

k¼1

dkYk;t þ r1εt�1 þ r2εt�2

þ r3εt�3 þ r4εt�144 þ r5εt�145 þ r6εt�168 þ εt : ð2Þ

Terms that are also found in (1) retain their meanings and εt�i

represents the ith lag from time t of the residual term. The coeffi-

cients of these autoregressive terms are determined by minimizing

the sum of squared errors.

2.2. Annual aggregate model

Although calendar and weather factors best predict short-run

levels of electricity demand, macroeconomic changes predomi-

nately determine long-term trends in aggregate quantities

demanded. For our model, these include the gross state product

(GSP) and average annual retail price of electricity. In addition,

industrial customers are those most capable of fuel switching in

response to the relative prices of electricity and its alternatives;

therefore, average annual retail natural gas prices are included to

capture this substitutability. Finally, the level of economic activity is

correlated to the population in an area. Our model takes the form:

%DAy ¼ a0þa1%DGSPyþa2%DPyþa3%DNGPyþa4%DPOPy

þa5Tyþεy; (3)

where Ay is the annual aggregate commercial and industrial

quantity demanded, GSPy is the gross state product, Py is the annual

quantity-weighted mean price of electricity, NGPy is the annual

quantity-weighted mean price of natural gas, POPy is the state

population, Ty is a time trend variable, and εy is the error term, all in

year y. The percent difference operator from y�1 to y is used to

make the data stationary. Augmented Dickey Fuller (ADF) unit root

tests of the variables find them to be nonstationary, as is typical for

such time series. An ADF test rejects the null hypothesis that the

percent difference data are nonstationary at a 95% confidence level,

so these values are taken to be stationary. Results from these tests

for the dependent variable can be found in Table 1dresults for the

other variables are similar.

Table 1

Results of ADF test on dependent variable in (3).

State Test statistic p-value

Michigan �2.381 0.020

Ohio �3.060 0.005

Texas �2.429 0.018

Virginia �2.968 0.005

1 We choose weather stations based on data availability and geographic diversity.

The locations, by state, of the stations are: Adrian, Chatham, and Gladwin, Michi-

gan, Akron, Bellefontaine, and Jackson, Ohio, Camp Pickett, Clintwood, and Edin-

burg, Virginia, and Borger, Dell City, and Refugio, Texas.
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For the long-run model, aggregate annual electricity demanded

quantities of commercial and industrial sectors from 1990 to 2010

are used as the dependent variable. These data are available from

the U.S. Department of Energy’s Energy Information Administration

(EIA), as are the electricity and natural gas price data also used.

Electricity prices are state average retail prices in cents per kilowatt

hour. The natural gas prices used are state average retail prices in

dollars per thousand cubic feet. For both electricity and natural gas,

the prices are the mean as weighted by the respective commercial

and industrial sector load. GSP is publicly available from the Bureau

of Economic Analysis. Lastly, population estimates are from the U.S.

Census Bureau.

2.3. Simultaneous use of short- and long-run models

The two models described in Sections 2.1 and 2.2 convey

informative predictions separately, but used in conjunction they

allow forecasts of hourly demand level further into the future than

otherwise possible. The process follows three steps. First, the short-

run forecasts are made. Then the long-run growth rates are pre-

dicted and applied to the short-run forecasts. Finally, changes in the

quantity demanded as a consequence of short-run inter-hourly

price changes are calculated using short-run own- and cross-price

elasticities.

As most of the regressors in (2) are dependent on the time being

forecasted, predictions based on this model are simple to produce.

Because the short-run model includes indicator variables for

2006e2009, a base year for predictions is necessary. The year

variable must be within the sample period, but the other calendar

variables should reflect the actual year of the forecast, to accurately

represent when holidays and weekends occur. Once a given time

frame is decided, pertinent weather data must be input to (2). This

gives a diurnal load profile corresponding to the base year selected,

which we denote y0, with the calendar and weather data for the

future year to be modeled, which is denoted fbQ tg.

The model (3) describes how aggregate annual electricity

demand changes as a result of differences in macroeconomic

variables. The interannual demand growth rates estimated by this

model can be used to improve the short-run forecasts generated by

(2) into the future. If we let ~y denote the future year for which

a diurnal load forecast is desired, the base-year load profile is scaled

to the future year as:

~Q t ¼ bQ t,

Y~y

y¼ y0þ1

�
1þ %DAy

�
; (4)

where the %DAy ’s are estimated using model (3), based on esti-

mates of future macroeconomic variables. Equation (4) assumes

that the change in annual aggregate demand applies uniformly to

all hours of the day.

The load profiles given by (4) can be further refined to account

for the effect of time-variant pricing schemes using interhourly

demand elasticities. If we let ht,j denote the elasticity of quantity

demanded in hour t relative to a price change in hour j, pbj denote an

assumed baseline price in hour j, and pj the actual price in hour j,

the resulting change in hour-t quantity demanded is given by:

%D~Q t ¼
X24

j¼1

ht;j
pj � pbj

pb
j

: (5)

Equation (5) assumes that the change in hour-t quantity

demanded depends on price changes during all 24 h of the corre-

sponding day, although the model can be generalized to consider

the effects of less or more hours. The changes in quantity deman-

ded determined in (5) can be applied to the load profiles computed

in (4) to arrive at the load profile:

Q t ¼ ~Q t,

�
1þ %D~Q t

�
; (6)

which corresponds to year ~y and includes interhourly demand

elasticities.

For our application of the model, we assume a base year of 2009.

The calendar variables are determined based on the specific year

forecast. For diurnal forecasts, the 30-year norm temperatures from

the same weather stations used for estimating the models are used

as the future weather. Some assumptions are necessary to facilitate

long-run forecasting as well; independent variables such as GSP

and population in (3) must first be estimated before the regression

model can be used. We assume these variables grow linearly into

the future. Fig. 3 shows the GSP of Virginia for the years

1990e2009, published by the U.S. Department of Commerce’s

Bureau of Economic Analysis, and the linear fit used to forecast

future GSP. The model has an R2 of 0.9826. Although prices are

more volatile than GSP, this approximation is representative of the

fits for all the data sets and independent variables, thus a simple

linear regression is justifiable. The elasticities used are values re-

ported by Taylor et al. [12], and the baseline price is the predicted

price from the linear approximation of retail price used in (3). The

results from these two models, and how the price elasticities affect

the quantity demand forecasted, are explained further in the

Section 3.

3. Results and forecasts

3.1. Model results

Regression coefficients for short-run models (1) and (2) are

given in Tables 2e5. Each table contains the results for one

particular data set and associated t-values for the models with and

without autoregressive residual variables. As expected, when

considering the results from (1), holidays and weekends are highly

significant for all the data sets. In general, the values for these

variables are negative, which follows the intuition that demand is

lower during these periods. The Fourier terms representing hour of
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Fig. 3. Actual and predicted values of gross state product in Virginia for the years

1990e2009. R2 ¼ 0.9826.
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Table 2

Regression estimates for short-term models in Equations (1) and (2) for Michigan.

Regression R2 ’s are 0.653 and 0.793, respectively. Model (1) has a DW statistic of

1.078.

Equation (1) Equation (2)

Variable Coefficient t-value Coefficient t-value

Constant �0.144 �1.990 �0.089 �9.990

HD 0.001 0.231 �0.003 �0.030

CD 0.025 1.170 0.027 0.002

HD2 0.000 �0.334 0.000 0.021

CD2 �0.003 �1.310 �0.002 �0.006

Day Hour 1 4.400 212.000 4.400 2.360

Day Hour 2 �1.380 �66.500 �1.380 �0.741

Day Hour 3 �1.210 �58.100 �1.210 �0.648

Day Hour 4 �1.980 �95.400 �1.990 �1.070

Week Hour 1 0.808 36.000 0.761 0.408

Week Hour 2 �0.497 �10.800 �0.438 �0.235

Week Hour 3 0.834 33.600 0.762 0.408

Week Hour 4 �0.470 �14.300 �0.428 �0.230

Month 1 �0.006 �0.162 �0.012 �0.006

Month 2 �0.002 �0.035 �0.008 �0.005

Month 3 0.006 0.217 �0.037 �0.020

Month 4 �0.001 �0.030 �0.002 �0.001

Y200 0.037 0.874 0.009 0.004

Y2007 �0.007 �0.172 0.007 0.003

Y2008 0.001 0.031 �0.001 0.000

HOL �0.184 �2.210 �0.063 �0.033

SAT 1.240 13.900 0.942 0.433

SUN 0.393 4.400 0.463 0.213

εt�1 35.700 0.000

εt�2 8.750 19.200

εt�3 1.300 4.700

εt�144 20.100 0.697

εt�145 13.700 10.800

εt�168 30.500 7.360

Table 3

Regression estimates for short-term models in Equations (1) and (2) for Ohio.

Regression R2 ’s are 0.389 and 0.433, respectively. Model (1) has a DW statistic of

1.848.

Equation (1) Equation (2)

Variable Coefficient t-value Coefficient t-value

Constant 0.221 2.300 0.195 10.600

HD 0.002 0.290 0.003 0.013

CD 0.003 0.111 0.005 0.001

HD2 0.000 �1.080 0.000 �0.019

CD2 0.000 �0.229 �0.001 �0.002

Day Hour 1 4.300 128.000 4.310 1.120

Day Hour 2 �1.590 �47.300 �1.590 �0.413

Day Hour 3 �0.864 �25.700 �0.868 �0.225

Day Hour 4 �1.690 �50.100 �1.690 �0.437

Week Hour 1 0.595 16.400 0.568 0.147

Week Hour 2 �0.206 �2.770 �0.203 �0.053

Week Hour 3 0.688 17.100 0.647 0.168

Week Hour 4 �0.218 �4.100 �0.211 �0.055

Month 1 0.086 1.670 0.075 0.019

Month 2 0.070 1.060 0.053 0.014

Month 3 0.092 2.280 0.076 0.020

Month 4 �0.027 �0.790 �0.027 �0.007

Y2006 �0.196 �2.880 �0.188 �0.037

Y2007 �0.140 �2.060 �0.138 �0.027

Y2008 �0.148 �2.200 �0.144 �0.028

HOL �0.119 �0.772 �0.007 �0.001

SAT 0.892 4.330 0.670 0.149

SUN �0.179 �0.888 �0.188 �0.042

εt�1 1.060 0.275

εt�2 5.480 1.420

εt�3 �0.102 �0.026

εt�144 12.800 3.330

εt�145 4.130 1.070

εt�168 15.400 4.000

Table 4

Regression estimates for short-term models in Equations (1) and (2) for Texas.

Regression R2 ’s are 0.563 and 0.705, respectively. Model (1) has a DW statistic of

1.256.

Equation (1) Equation (2)

Variable Coefficient t-value Coefficient t-value

Constant 0.243 3.350 0.262 20.800

HD �0.007 �0.724 �0.017 �0.033

CD 0.005 0.382 0.008 0.014

HD2 0.000 0.506 0.000 0.015

CD2 0.000 �0.583 �0.001 �0.020

Day Hour 1 4.630 198.000 4.790 1.820

Day Hour 2 �2.540 �108.000 �2.700 �1.030

Day Hour 3 �1.080 �46.200 �1.130 �0.430

Day Hour 4 �1.230 �52.400 �1.280 �0.485

Week Hour 1 0.457 18.100 0.427 0.162

Week Hour 2 0.016 0.306 �0.058 �0.022

Week Hour 3 0.545 19.500 0.501 0.190

Week Hour 4 �0.103 �2.790 �0.140 �0.053

Month 1 0.009 0.210 �0.005 �0.002

Month 2 0.020 0.324 0.059 0.022

Month 3 0.038 1.140 0.035 0.013

Month 4 0.001 0.051 0.072 0.027

Y2006 0.010 0.216 �0.041 �0.012

Y2007 �0.033 �0.707 �0.005 �0.002

Y2008 �0.051 �1.110 �0.074 �0.021

HOL �0.361 �3.350 �0.141 �0.037

SAT 0.700 4.900 0.437 0.142

SUN �0.431 �3.070 �0.394 �0.128

εt�1 34.300 13.000

εt�2 5.340 2.030

εt�3 �0.161 �0.061

εt�144 18.900 7.150

εt�145 12.100 4.590

εt�168 18.800 7.130

Table 5

Regression estimates for short-term models in Equations (1) and (2) for Virginia.

Regression R2 ’s are 0.544 and 0.726, respectively. Model (1) has a DW statistic of

1.123.

Equation (1) Equation (2)

Variable Coefficient t-value Coefficient t-value

Constant 0.177 3.210 0.176 20.800

HD 0.003 0.509 0.001 0.008

CD �0.010 �0.687 �0.017 �0.012

HD2 0.000 �1.890 0.000 �0.029

CD2 0.001 0.519 0.001 0.009

Day Hour 1 3.290 173.000 3.300 1.860

Day Hour 2 �0.766 �40.200 �0.767 �0.433

Day Hour 3 �0.788 �41.400 �0.793 �0.447

Day Hour 4 �1.640 �86.300 �1.640 �0.928

Week Hour 1 0.508 24.700 0.475 0.268

Week Hour 2 �0.008 �0.192 0.020 0.012

Week Hour 3 0.524 23.100 0.473 0.266

Week Hour 4 �0.071 �2.360 �0.038 �0.021

Month 1 0.021 0.728 0.002 0.001

Month 2 0.030 0.793 �0.001 �0.001

Month 3 0.038 1.590 0.028 0.015

Month 4 0.014 0.742 �0.044 �0.024

Y2006 �0.062 �1.600 �0.041 �0.017

Y2007 �0.057 �1.470 �0.010 �0.004

Y2008 �0.014 �0.359 �0.003 �0.001

HOL �0.260 �2.970 �0.237 �0.092

SAT 0.592 5.080 0.397 0.192

SUN �0.223 �1.950 �0.153 �0.074

εt�1 29.500 16.700

εt�2 5.520 3.110

εt�3 �1.500 �0.844

εt�144 20.300 11.400

εt�145 15.600 8.820

εt�168 30.100 17.000
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the day and hour of the week are also significant. These terms

together are capable of capturing most of the trend on an hour-to-

hour basis; however, variables representing the year-to-year

growth are also important, which in part necessitates models for

longer time scales for forecasts to be accurate. The weather-related

termsdheating and cooling degrees and their squared termsdare

most significant for Texas.

Relative summer temperatures in Texas are higher than in the

other three states, which may explain the increased importance.

Other potential predictors, such as an indicator for daylight savings

time and a set of Fourier terms for seasons of the year are found to

be insignificant. The remaining variables are used to maintain the

samemodel structure for all four data sets, despite varying levels of

significance.

As discussed in the previous section, a second formulation is

developed, motivated by the low DW statistics indicating positive

residual autocorrelation in (1). With the inclusion of autoregressive

residual terms in Equation (2), some changes in the results are

observed. Coefficients of some of the original variables change in

magnitude and significance, but relative size and direction remain

the same for most. In all cases, the constant term remains or

increases in significance. The additional autoregressive terms are

significant as well. The hour of day, holiday, Saturday, and Sunday

terms remain large in relative magnitude. In all cases the R2

improves from (1) to (2), especially for Virginia and Texas.

Values in Tables 2e5 are estimated using four of the five years of

available data, with the remaining observations excluded to use for

out-of-sample validation. To check the fitness of the models, we

compare the actual observations to the forecasted values for this

final year. A common measurement of this deviation is mean

absolute percentage error (MAPE), which measures the difference

between actual and predicted values averaged over the time

horizon. MAPE is given by:

100

T

XT

t¼1

����Qt � bQ t

����
Qt

; (7)

where Qt represents the actual value at time t and bQ t is the cor-

responding predicted value. Table 6 details these results for both

formulations of the short-runmodel, where T¼ 8760. The inclusion

of autoregressive error terms improves the forecasts significantly,

and our MAPE values are comparable to values reported in the

literature.

The results of the long-termmodel of aggregate annual demand

are reported in Table 7. We only estimate the long-term model for

the four states for which we have data to fit the short-term

model. Nevertheless, the long-term model could be estimated for

other states, since the required data are publicly available. Coeffi-

cients from the regression are the first value of each column and

state, and the associated t-values are reported in parentheses. In

general, changes in GSP and the price of electricity are the most

significant factors in determining changes in quantity demanded.

On the other hand the time trend, the final regressor, is less

significant. As the data have been made stationary, it is logical that

little time-varying trend remains. Our R2 values are in line with the

long-run models estimated by Engle et al. [9]. Although a model

with absolute levels (as opposed to percent differences) of annual

aggregate demand yields higher R2 values, the use of such non-

stationary data yield inconsistent coefficient estimates and

spurious regression results [13].

3.2. Load predictions: the effects of growth and price elasticity

Fig. 4 summarizes how diurnal load patterns change over the

long-term when interannual growth rates are applied. It shows

a one-week load pattern in June during a base year of 2009,

computed using model (2). It also shows the load pattern during

the same week in 2014, with growth rates derived from model (3)

applied using Equation (4). This load pattern assumes 2.6% and 3.5%

annual GSP and electricity price growth, respectively, based on

a linear fit to historical data as illustrated in Fig. 3. For purposes of

comparative statics, the figure also shows load profiles for the same

week in 2014 with different rates of macroeconomic growth. One of

the load patterns considers a case in which the economy experi-

ences high growth during the five years, with an annual GSP

growth rate of 8%. The other load pattern assumes annual electricity

price increases of 5%.

Because the diurnal load data used to estimate the short-term

diurnal model represents only a small subset of all commercial

and industrial customers in each of the four states, the diurnal load

profiles generated by model (2) are scaled to represent aggregate

statewide consumption. This is done by comparing the total

quantity demand in 2009 in the short-run data sets to aggregate

statewide consumption reported by the EIA. If we let Ay denote

aggregate annual statewide consumption and Qt the hourly

consumption of the customer subset in the diurnal data, the scaling

factor for the year is given by:

Sy ¼
Ay

P8760
t¼1 Qt

: (8)

For instance, the hourly quantity demand by the subset of

commercial and industrial customers in Ohio in 2009 is approxi-

mately 15% of the total statewide consumption, thus the outputs of

model (2) are scaled by a factor of 6.667 to forecast statewide

commercial and industrial consumption. This scaling factor is

applied to all of the hourly loads generated by the short-term

model, and is included in Fig. 4 and all subsequent figures.

Although the days shown in Fig. 4 represent different calendar

days of the month in the years 2009 and 2014, they represent the

same days of the first week of June. In the base case with long-run

average macroeconomic growth rates, natural gas price increases

Table 6

MAPE of models (1) and (2) for one year of out-of-sample data used in the model

validation process.

State Equation (1) Equation (2)

Michigan 4.326 3.744

Ohio 4.031 3.870

Texas 3.638 3.443

Virginia 4.508 3.725

Table 7

Regression estimates for long-term model in Equation (3). t-values for each coefficient are reported in parentheses.

State Constant GSP P NGP POP T R2 DW

Michigan 0.008 (0.157) 0.736 (2.434) �0.223 (�0.814) 0.101 (1.151) �2.155 (�0.536) �0.002 (�0.551) 0.556 2.28

Ohio �0.029 (�0.599) 0.763 (1.330) �0.698 (�1.516) 0.046 (0.957) �0.699 (�0.161) 0.002 (0.728) 0.615 1.41

Texas 0.001 (0.027) 0.281 (1.448) �0.014 (�0.136) 0.015 (0.447) 0.275 (0.298) �0.000 (�0.242) 0.278 2.37

Virginia 0.105 (1.701) �1.377 (�1.444) �0.730 (�2.046) 0.211 (2.529) �1.133 (�0.512) 0.002 (0.898) 0.420 2.31
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and GSP growth increase electricity consumption. However, there

are increases in electricity prices as well, causing a net decrease in

consumption relative to 2009. Population growth in Ohio is also

forecasted to decline, further reducing demand. This results in

a 295 MW reduction in the maximum peak during the week

between 2009 and 2014. When electricity prices increase 5%

annually, this negative impact dominates the other macroeconomic

changes, with further declines in consumption levels. On the other

hand, high GSP growth results in increasing quantities demanded.

In addition to modeling the diurnal load profile, we also explore

the effects of short-run inter-hourly price changes on demand. This

is done using own- and cross-price elasticities of demand, which

describe how consumers’ electricity demand changes due to price

changes during different hours of the day. For instance, if the price

during the middle of the afternoon, which tends to be a peak

demand period, is higher relative to the price during other hours of

the day, an industrial consumer may move production and asso-

ciated electricity demand away from this period. A utility sched-

uling generators can use this information to create a price structure

which minimizes costs by shifting some demand away from the

peak. Given our prediction of the entire diurnal load profile, we can

utilize hourly elasticity estimates to capture such effects. Taylor

et al. [12] report estimated own- and cross-price elasticities of

demand between each pair of hour within a day. Many customers

do not face complex tariff structure with hourly prices, thus our

analysis uses these elasticities to estimate the effects of simpler

pricing schemes.

Fig. 5 shows the results of applying these elasticities over a 35-h

period in February under three different pricing schemes. The first

is a standard time-invariant tariff, with the price of energy being

uniform across all hours. The loads in this case are not affected

when the elasticities are applied using Equation (5), since all of the

hourly price changes are zero. The second case considers a two-tier

price structure in which prices between 9 am and 6 pm are 12.5%

higher than the price in the time-invariant tariff and prices in the

remaining hours are 12.5% lower. The third case considers a more

complex multi-tiered price structure. From 8 pm to 6 am, prices are

20% lower than the baseline price in the time-invariant tariff, from

7 to 8 am prices are 12.5% lower than the baseline, from 11 am to 5

pm prices are 12.5% higher than the baseline, and in the remaining

hours prices are 6.25% above the baseline. Both of these price tariffs

result in shifting of demand away from high-price hours toward

lower-price hours and a flattening of the load profile. The multi-

tiered tariff yields a 20% reduction in the peak quantity deman-

ded and an overall consumption decrease of 2% relative to the time-

invariant tariff.

4. Conclusion

In this paper we develop a model to represent the level of

electricity demand in commercial and industrial sectors as

a combination of short-term and long-term trends. The short-term

model, which is based on weather and calendar data, can predict

diurnal load profiles within a year with 95% accuracy in out-of-

sample forecast validation. We employ Fourier series of varying

periodicities to capture the effects of different seasonalities. This

model is of a percent difference autoregressive form. Incorporating

forecasts of weather variables, instead of historical averages, and

evaluating how forecasts change is of future interest, as well as

investigating the impact of other weather conditions, such as

humidity, wind speed, and ambient sunlight.

In addition, a second model of aggregate electricity demand

levels measures interannual growth rates based on population, GSP,

and price changes. In combination, these allow for fine-grain fore-

casts into the future. Presently, the model assumes, when shifting

the diurnal predictions by this interannual growth rate, that the

change affects all hours uniformly.Whether or not peak and off-peak

loads do indeed grow at equal rates in the long-term is a topic

worthy of further investigation. Finally, changes in quantity

demanded are observed when different pricing policies are enacted

based on measurements of commercial and industrial customers’

hourly own- and cross-price elasticity of demand. Peak loads are

found to shift up to 20%with only amodest change in relative prices.

The models are calibrated, validated, and demonstrated based

on four states for which we have hourly data to fit the short-term

model. Results from each of these states, in terms of model fit

and predictive ability, are similar. Thus, the model seems applicable

for a variety of underlying data sets. The same techniques could be

used to forecast and model electricity demands in other states or

countries, if similar data are available. The results of this model can

be a useful input for long-term generation, transmission, and

distribution capacity planning done by utilities and system opera-

tors. Utilities, system operators, and policy makers may also be

interested in using this model to study the effects of different
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Fig. 4. Modeled diurnal demand of entire commercial and industrial sector in Ohio

during the first week of June in 2009 and 2014.
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pricing tariffs on electricity demand and ancillary impacts associ-

ated with that energy use.
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