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1. Introduction

The demand for electricity fluctuates on familiar cycles and with
known influences in the short-term, and its long-term growth
coincides with trends in macroeconomic indicators. Accurately
forecasting the level of demand on disparate time scales is neces-
sary for utilities to schedule generators, plan system maintenance,
and devise long-term investments. Short-term forecasts are
commonly made in half- or 1-h intervals 24—168 h in advance of
the pertinent period. Seasonal patterns such as day of week and
month of year, as well as temperature and humidity, are the most
significant factors influencing demand within a year. Both types
of factors work in conjunction with each other—although on
a day-to-day basis the specific day of the week is of great impor-
tance, temperature also matters. Monthly seasonality primarily
reflects meteorological conditions. These variables become less
significant with longer time horizons; models of long-run elec-
tricity demand typically forecast aggregate monthly or annual
levels. Changes in long-run demand are normally correlated with
changes in economic indicators such as gross domestic product and
prices of electricity and other fuels.
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In the short-term, regression techniques are common for
modeling the quantity of electricity demanded. Pardo et al. [1] use
autoregressive least-squares regression to explore the effects of
temperature and seasonality on daily load. For modeling the daily
peak and monthly aggregate demand levels, Mirasgedis et al. [2]
also use regressions which include seasonal and temperature
variables. Both of these papers are primarily concerned with the
role of weather in demand quantity fluctuations. The peak load,
average load, temperature, and calendar particulars of the previous
day are the basis for the bivariate model of next-day hourly peak in
the work of Engle et al. [3]. Forecasts for diurnal load profiles can be
made in a comparable manner; Ramanathan et al. [4] build 24
separate regression models, one for each hour of the day with
unique regressors. A similar approach is used by Taylor and Buizza
[5] to forecast load at various cardinal points of the day, including
midday and midnight.

Similar methods are applied to long-term forecasts as well. For
example, Mohamed and Bodger [6], Amarawickrama and Hunt [7]
and Bianco et al. [8] use annual demand regression models that
consider macroeconomic factors, such as gross domestic product
and population. Efforts to combine monthly and annual aggregate
forecasts from the same data set through cointegration of time
series can be found in the work of Engle et al. [9]. The authors
capture short-term effects in a monthly model, and then improve it
by introducing a factor from a separate annual model influenced
more by long-term trends. Artificial neural networks are another



534 A. Pielow et al. / Energy 46 (2012) 533—540

method common in the literature for both time scales. Ringwood
et al. [10] investigate the influences on demand in multiple time
frames by modeling daily, weekly, and yearly quantity demanded
using neural networks. More recently, Taylor et al. [11] develop an
intra-hour neural network and compare it to double exponential
smoothing, regression with principal component analysis, and
seasonal ARMA models for two data sets of diurnal load profiles on
hourly and half-hourly intervals.

A natural extension of predicting the quantity of electricity
demand is investigating how this quantity changes under different
pricing policies. Price elasticities are a measure of how much the
quantity demanded for a good changes given a change in price.
These elasticities can be estimated for changes in the price of the
good itself (own) or a change in the price of a different good (cross).
With respect to electricity load, the different goods can be thought
of as electricity in different hours of the day. An increase (decrease)
in price in an hour may decrease (increase) demand in that hour,
and change the quantity demanded in adjacent hours as well. Prices
can be structured in several ways, for instance a constant time-
invariant price or a time-of-use tariff, with different prices
applied to consumption during different blocks of time. The hourly
own- and cross-price elasticities of demand used in this work are
determined by Taylor et al. [12]. These elasticities are estimated
from eight years of data for industrial customers across all hours of
the day.

Despite the existing body of literature on short- and long-term
forecasting, little work which utilizes multiple time horizons is
available. In the short-run, models frequently only predict peak or
aggregate daily load. We investigate how similar modeling tech-
niques to those found in the literature can be used to predict
continuous demand with one function. Furthermore, by predicting
the entire diurnal load profile with a single regression model,
exploring the interactions in quantity demanded between different
hours is possible. Thus, effects of different pricing strategies can be
captured by utilizing customers’ price elasticities. We explore cases
where there is a simple peak and off-peak structure and where the
price increases with the consumption level. In addition, as a pop-
ulation and economy grow, the amount of electricity demanded in
aggregate can grow as well. We develop a second model of annual
aggregate electricity demand regressed against macroeconomic
variables. Using the long-term growth rates, as determined by this
annual aggregate model, fine-grain predictions further into the
future are possible. Although predictions of peak and aggregate
load as found in the literature are necessary for planning, fore-
casting temporally disaggregated load allows further refinement.

The remainder of this paper is organized as follows. Section 2
details the development of the two models; first, the diurnal
model form and the data used to develop it are considered and then
a similar treatment for the annual regression is undertaken. How
these models are combined to forecast loads in the future is also
discussed. In Section 3, the estimated regression coefficients are
reported along with results from out-of-sample validation of the
proposed short-term model and forecasted results and the appli-
cation of cross- and own-price elasticities. Section 4 concludes and
summarizes the work.

2. Data and methodology
2.1. Diurnal model

Our initial regression model for diurnal load profiles is of a log-
linear form incorporating calendar and weather variables. Elec-
tricity demand has daily, weekly, and monthly cycles which can be
described by Fourier series over the respective period. A Fourier
series is a linear combination of sine and cosine functions of
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Fig. 1. Hourly electricity demand of 78,000 commercial and industrial customers in
the state of Ohio in the year 2010. Data obtained from AEP.

differing frequencies used to approximate a given function arbi-
trarily well. This method is advantageous over the classic approach
of dummy variables to represent the particular hour, day, and
month of an observation. Fewer variables are necessary to repre-
sent each time frame; a model with two frequencies at each time
scale is optimal with our data, for a total of 16 predictors instead of
40. The three cycles modeled with this method are hour of the day
patterns, hour of the week patterns, and month of the year patterns.
The longest of these cycles is evident in Fig. 1, which shows hourly
load in the state of Ohio by a subset of American Electric Power’s
(AEP’s) commercial and industrial customers in the year 2010.
Demand peaks during the summer months, but otherwise is rela-
tively steady on a seasonal basis. This may be in part because
cooling technologies used in the summer tend to be electric, while
heating technologies used in winter months are not. Fig. 2 displays
the first two weeks of hourly demand levels from the same
consumers as in Fig. 1. The weekly and daily cycles are apparent.
Also evident is the difference in demand from weekdays to week-
ends, as the first 48 h are over a holiday weekend, and the next 120
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Fig. 2. Diurnal demand patterns for same subset of commercial and industrial
customers shown in Fig. 1 in the first two weeks of the year. Data obtained from AEP.
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represent Monday through Friday. The quantity demanded in the
first 48 h is particularly low, even for Saturdays and Sundays,
because of the holiday, and motivates the inclusion of variables to
capture this effect. The data shown in Figs. 1 and 2 are obtained
from AEP.

In addition to these seasonal terms, there are indicator variables
for each year in the sample. The three final calendar regressors
represent weekends and holidays. This holiday variable includes
days which are not considered holidays, but immediately precede
or follow a holiday and exhibit holiday-like tendencies. Indicator
variables for Saturdays and Sundays also capture the behavior over
the entire respective day. This model structure allows even atypical
patterns such as floating holidays to be represented. Variability
from weather conditions is modeled by heating degrees (HD) and
cooling degrees (CD), defined as HD; = max{Twr—T;0} and
CD; = max{T;—T;e,0} where T; is the mean daily temperature for
hour t and Tf is a reference temperature. Following the work of
Engel et al. [3] and Pardo et al. [1], we assume T.f = 65 °F. The
relationship between total quantity demanded and temperature is
nonlinear due to some electric heating; hence, a single temperature
variable is not sufficient. Combining these terms in a least-squares
regression results in the following model:

%AQ; =By + B1HD; + B2HD? + B3CD; + B4CD? + BsHOL;
12 3 2

+ ﬁﬁSUN[ + 675AT[ + Z Z Z [yisin (2TCmijt)

i—1j=1m=1

4
+ 708 (2m )] + Y O Yip +er. (1)
k=1

The variables 1, represent the time of the respective Fourier
expansion for a particular observation. For instance, the first hour of
the year (t = 1) would have 111 =1/24, 121 =1/168, and 137 =1/12,
for hour of the day, hour of the week, and month of the year
periods, respectively. HOL;, SUN;, SAT;, and Y are binary indicator
variables for holidays, Sundays, Saturdays, and the years
2006—2009, respectively, and &; is the residual term. The percent
difference of the dependent variable is to prevent scaling and
heteroscedasticity issues.

Our data for the short-term diurnal regressions consist of hourly
electricity demand and daily weather information. Three data sets
contain load data for a subset of approximately 105,000, 65,500,
and 78,000 AEP commercial and industrial customers from the
states Texas, Virginia, and Ohio, respectively, from January 1, 2006
to December 31, 2010 with 43,824 hourly observations. A fourth
data set of roughly 16,000 customers in Michigan has 43,080
observations, spanning the same time frame except for December
2009. The average load for the customers in these samples are 183,
1447, 1372, and 1016 MW for Michigan, Ohio, Texas, and Virginia,
respectively. Each of these data sets is used to estimate a separate
model specific to the location. Of these data, 35,064 (34,320 for
Michigan) observations are used to estimate the model coefficients,
and the final year of data, consisting of 8760 observations, is
used for out-of-sample validation. Maximum and minimum daily
temperatures from three weather stations' in each state, as
obtained from the U.S. National Climatic Data Center, are averaged
to determine HD and CD in the model.

Diagnostic tests on the model determined by (1) indicate posi-
tive autocorrelation of the residuals, a common issue in time series,

! We choose weather stations based on data availability and geographic diversity.
The locations, by state, of the stations are: Adrian, Chatham, and Gladwin, Michi-
gan, Akron, Bellefontaine, and Jackson, Ohio, Camp Pickett, Clintwood, and Edin-
burg, Virginia, and Borger, Dell City, and Refugio, Texas.

Table 1

Results of ADF test on dependent variable in (3).
State Test statistic p-value
Michigan —2.381 0.020
Ohio —3.060 0.005
Texas —2.429 0.018
Virginia —2.968 0.005

suggesting model adjustments are needed. The Durbin-Watson
(DW) test of the residuals checks for evidence of correlation;
a statistic from this test differing significantly from 2 (with
a possible range of 0—4) indicates correlation. Despite the model
seeming well fit, with R? values of approximately 0.8 for all of the
data sets used, these and other statistics such as t-tests are
misleading and biased if autocorrelation is present. To correct this
issue, autoregressive residual terms with 1-, 2-, 3-, 144-, 145-, and
168-h lags are included in the model. These are determined by
analysis of autocorrelation and partial autocorrelation functions.
The modified model is given by:

%AQ; = Bo + B1HD; + BHD} + B5CD; + $4CDF + BsHOL;
12 3 2

+ B6SUNt + B7SATe + >~ >~ > [v;sin(2mmryy)

i=1j=1m=1

4
+7i€os(2mmj )] + > Yy + prec—1 + pagr—2
k=1

+ P3&r-3 + P4Er—144 + P5€r_145 + PeEr—168 T Et- (2)

Terms that are also found in (1) retain their meanings and &;_;
represents the ith lag from time t of the residual term. The coeffi-
cients of these autoregressive terms are determined by minimizing
the sum of squared errors.

2.2. Annual aggregate model

Although calendar and weather factors best predict short-run
levels of electricity demand, macroeconomic changes predomi-
nately determine long-term trends in aggregate quantities
demanded. For our model, these include the gross state product
(GSP) and average annual retail price of electricity. In addition,
industrial customers are those most capable of fuel switching in
response to the relative prices of electricity and its alternatives;
therefore, average annual retail natural gas prices are included to
capture this substitutability. Finally, the level of economic activity is
correlated to the population in an area. Our model takes the form:

BAAy = g+ aq BAGSPy + ap APy + a3 BANGP), + a4 ZAPOPy,
+asTy+ey, (3)

where A, is the annual aggregate commercial and industrial
quantity demanded, GSPy is the gross state product, Py is the annual
quantity-weighted mean price of electricity, NGPy is the annual
quantity-weighted mean price of natural gas, POP, is the state
population, Ty is a time trend variable, and ¢y is the error term, all in
year y. The percent difference operator from y—1 to y is used to
make the data stationary. Augmented Dickey Fuller (ADF) unit root
tests of the variables find them to be nonstationary, as is typical for
such time series. An ADF test rejects the null hypothesis that the
percent difference data are nonstationary at a 95% confidence level,
so these values are taken to be stationary. Results from these tests
for the dependent variable can be found in Table 1—results for the
other variables are similar.
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For the long-run model, aggregate annual electricity demanded
quantities of commercial and industrial sectors from 1990 to 2010
are used as the dependent variable. These data are available from
the U.S. Department of Energy’s Energy Information Administration
(EIA), as are the electricity and natural gas price data also used.
Electricity prices are state average retail prices in cents per kilowatt
hour. The natural gas prices used are state average retail prices in
dollars per thousand cubic feet. For both electricity and natural gas,
the prices are the mean as weighted by the respective commercial
and industrial sector load. GSP is publicly available from the Bureau
of Economic Analysis. Lastly, population estimates are from the U.S.
Census Bureau.

2.3. Simultaneous use of short- and long-run models

The two models described in Sections 2.1 and 2.2 convey
informative predictions separately, but used in conjunction they
allow forecasts of hourly demand level further into the future than
otherwise possible. The process follows three steps. First, the short-
run forecasts are made. Then the long-run growth rates are pre-
dicted and applied to the short-run forecasts. Finally, changes in the
quantity demanded as a consequence of short-run inter-hourly
price changes are calculated using short-run own- and cross-price
elasticities.

As most of the regressors in (2) are dependent on the time being
forecasted, predictions based on this model are simple to produce.
Because the short-run model includes indicator variables for
2006—2009, a base year for predictions is necessary. The year
variable must be within the sample period, but the other calendar
variables should reflect the actual year of the forecast, to accurately
represent when holidays and weekends occur. Once a given time
frame is decided, pertinent weather data must be input to (2). This
gives a diurnal load profile corresponding to the base year selected,
which we denote yg, with the calendar and weather data for the
future year to be modeled, which is denoted { Qt}.

The model (3) describes how aggregate annual electricity
demand changes as a result of differences in macroeconomic
variables. The interannual demand growth rates estimated by this
model can be used to improve the short-run forecasts generated by
(2) into the future. If we let y denote the future year for which
a diurnal load forecast is desired, the base-year load profile is scaled
to the future year as:

H (1+%AAy), (4)

where the %AA, s are estimated using model (3), based on esti-
mates of future macroeconomic variables. Equation (4) assumes
that the change in annual aggregate demand applies uniformly to
all hours of the day.

The load profiles given by (4) can be further refined to account
for the effect of time-variant pricing schemes using interhourly
demand elasticities. If we let »;; denote the elasticity of quantity
demanded in hour t relative to a price change in hour j, pjl? denote an
assumed baseline price in hour j, and p; the actual price in hour j,
the resulting change in hour-t quantity demanded is given by:

N
%AQ; = Zm_jib. (5)
=1 P

Equation (5) assumes that the change in hour-t quantity
demanded depends on price changes during all 24 h of the corre-
sponding day, although the model can be generalized to consider

the effects of less or more hours. The changes in quantity deman-
ded determined in (5) can be applied to the load profiles computed
in (4) to arrive at the load profile:

Q = Q- (1+%8Q), (6)

which corresponds to year y and includes interhourly demand
elasticities.

For our application of the model, we assume a base year of 2009.
The calendar variables are determined based on the specific year
forecast. For diurnal forecasts, the 30-year norm temperatures from
the same weather stations used for estimating the models are used
as the future weather. Some assumptions are necessary to facilitate
long-run forecasting as well; independent variables such as GSP
and population in (3) must first be estimated before the regression
model can be used. We assume these variables grow linearly into
the future. Fig. 3 shows the GSP of Virginia for the years
1990—-2009, published by the U.S. Department of Commerce’s
Bureau of Economic Analysis, and the linear fit used to forecast
future GSP. The model has an R? of 0.9826. Although prices are
more volatile than GSP, this approximation is representative of the
fits for all the data sets and independent variables, thus a simple
linear regression is justifiable. The elasticities used are values re-
ported by Taylor et al. [12], and the baseline price is the predicted
price from the linear approximation of retail price used in (3). The
results from these two models, and how the price elasticities affect
the quantity demand forecasted, are explained further in the
Section 3.

3. Results and forecasts
3.1. Model results

Regression coefficients for short-run models (1) and (2) are
given in Tables 2—5. Each table contains the results for one
particular data set and associated t-values for the models with and
without autoregressive residual variables. As expected, when
considering the results from (1), holidays and weekends are highly
significant for all the data sets. In general, the values for these
variables are negative, which follows the intuition that demand is
lower during these periods. The Fourier terms representing hour of
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Fig. 3. Actual and predicted values of gross state product in Virginia for the years
1990—-2009. R? = 0.9826.
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Table 2 Table 4

Regression estimates for short-term models in Equations (1) and (2) for Michigan. Regression estimates for short-term models in Equations (1) and (2) for Texas.

Regression R? 's are 0.653 and 0.793, respectively. Model (1) has a DW statistic of Regression R? ’s are 0.563 and 0.705, respectively. Model (1) has a DW statistic of

1.078. 1.256.

Equation (1) Equation (2) Equation (1) Equation (2)

Variable Coefficient t-value Coefficient t-value Variable Coefficient t-value Coefficient t-value
Constant -0.144 —1.990 —0.089 —9.990 Constant 0.243 3.350 0.262 20.800
HD 0.001 0.231 —0.003 —0.030 HD —0.007 —0.724 —0.017 —0.033
CD 0.025 1.170 0.027 0.002 CD 0.005 0.382 0.008 0.014
HD? 0.000 -0.334 0.000 0.021 HD? 0.000 0.506 0.000 0.015
cD? —0.003 -1.310 —0.002 —0.006 CcD? 0.000 —-0.583 —0.001 —-0.020
Day Hour 1 4.400 212.000 4400 2.360 Day Hour 1 4.630 198.000 4.790 1.820
Day Hour 2 —1.380 —66.500 —1.380 -0.741 Day Hour 2 —2.540 —108.000 —2.700 —1.030
Day Hour 3 -1.210 —58.100 -1.210 —0.648 Day Hour 3 —1.080 —46.200 -1.130 —0.430
Day Hour 4 —1.980 —95.400 —1.990 -1.070 Day Hour 4 —1.230 —52.400 —1.280 —0.485
Week Hour 1 0.808 36.000 0.761 0.408 Week Hour 1 0.457 18.100 0.427 0.162
Week Hour 2 —0.497 —10.800 —0.438 -0.235 Week Hour 2 0.016 0.306 —0.058 —0.022
Week Hour 3 0.834 33.600 0.762 0.408 Week Hour 3 0.545 19.500 0.501 0.190
Week Hour 4 —-0.470 —14.300 —-0.428 —0.230 Week Hour 4 —0.103 —2.790 —0.140 —0.053
Month 1 —0.006 —0.162 —0.012 —0.006 Month 1 0.009 0.210 —0.005 —0.002
Month 2 —0.002 —-0.035 —0.008 —0.005 Month 2 0.020 0.324 0.059 0.022
Month 3 0.006 0.217 —0.037 —0.020 Month 3 0.038 1.140 0.035 0.013
Month 4 —0.001 —0.030 —0.002 —0.001 Month 4 0.001 0.051 0.072 0.027
Y200 0.037 0.874 0.009 0.004 Y2006 0.010 0216 -0.041 -0.012
Y2007 —0.007 -0.172 0.007 0.003 Y2007 —0.033 -0.707 —0.005 —0.002
Y2008 0.001 0.031 —0.001 0.000 Y2008 —0.051 -1.110 -0.074 —0.021
HOL -0.184 -2.210 —0.063 -0.033 HOL —0.361 —3.350 -0.141 —0.037
SAT 1.240 13.900 0.942 0.433 SAT 0.700 4.900 0.437 0.142
SUN 0.393 4.400 0.463 0.213 SUN —0.431 —3.070 —0.394 —0.128
£r1 35.700 0.000 &1 34.300 13.000
o 8.750 19.200 €2 5.340 2.030
£r-3 1.300 4.700 €3 —0.161 —0.061
£t-144 20.100 0.697 £t-144 18.900 7.150
£t-145 13.700 10.800 £r-145 12.100 4.590
£t-168 30.500 7.360 £t-168 18.800 7.130

Table 3 Table 5

Regression estimates for short-term models in Equations (1) and (2) for Ohio. Regression estimates for short-term models in Equations (1) and (2) for Virginia.

Regression R? 's are 0.389 and 0.433, respectively. Model (1) has a DW statistic of Regression R? 's are 0.544 and 0.726, respectively. Model (1) has a DW statistic of

1.848. 1.123.

Equation (1) Equation (2) Equation (1) Equation (2)

Variable Coefficient t-value Coefficient t-value Variable Coefficient t-value Coefficient t-value
Constant 0.221 2.300 0.195 10.600 Constant 0.177 3.210 0.176 20.800
HD 0.002 0.290 0.003 0.013 HD 0.003 0.509 0.001 0.008
CD 0.003 0.111 0.005 0.001 CD —0.010 —0.687 -0.017 —0.012
HD? 0.000 —1.080 0.000 -0.019 HD? 0.000 —1.890 0.000 —-0.029
cD? 0.000 —0.229 —0.001 —0.002 cD? 0.001 0.519 0.001 0.009
Day Hour 1 4.300 128.000 4310 1.120 Day Hour 1 3.290 173.000 3.300 1.860
Day Hour 2 -1.590 —47.300 —-1.590 -0.413 Day Hour 2 —0.766 —40.200 -0.767 -0.433
Day Hour 3 —0.864 —25.700 —0.868 —0.225 Day Hour 3 —0.788 —41.400 —0.793 —0.447
Day Hour 4 —1.690 —50.100 —-1.690 —0.437 Day Hour 4 —1.640 —86.300 —1.640 —0.928
Week Hour 1 0.595 16.400 0.568 0.147 Week Hour 1 0.508 24.700 0.475 0.268
Week Hour 2 —0.206 -2.770 —0.203 —-0.053 Week Hour 2 —0.008 -0.192 0.020 0.012
Week Hour 3 0.688 17.100 0.647 0.168 Week Hour 3 0.524 23.100 0.473 0.266
Week Hour 4 -0.218 —4.100 -0.211 —0.055 Week Hour 4 —0.071 —2.360 —0.038 —0.021
Month 1 0.086 1.670 0.075 0.019 Month 1 0.021 0.728 0.002 0.001
Month 2 0.070 1.060 0.053 0.014 Month 2 0.030 0.793 —0.001 —0.001
Month 3 0.092 2.280 0.076 0.020 Month 3 0.038 1.590 0.028 0.015
Month 4 -0.027 —0.790 -0.027 —0.007 Month 4 0.014 0.742 —0.044 -0.024
Y2006 ~0.196 -2.880 -0.188 -0.037 Y2006 ~0.062 -1.600 -0.041 -0.017
Y2007 —0.140 —2.060 —0.138 —0.027 Y2007 —0.057 —1.470 —0.010 —0.004
Y2008 —0.148 —2.200 -0.144 —0.028 Y2008 -0.014 —0.359 —0.003 —0.001
HOL -0.119 -0.772 —0.007 —0.001 HOL —0.260 —2.970 —0.237 —0.092
SAT 0.892 4.330 0.670 0.149 SAT 0.592 5.080 0.397 0.192
SUN -0.179 —0.888 —0.188 —0.042 SUN —0.223 -1.950 —0.153 —0.074
&1 1.060 0.275 &1 29.500 16.700
&2 5.480 1.420 £r_2 5.520 3.110
£r-3 —0.102 —0.026 €3 —1.500 —0.844
£r-144 12.800 3.330 £t-144 20.300 11.400
145 4.130 1.070 €145 15.600 8.820

£r-168 15.400 4.000 £r—168 30.100 17.000
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Table 6
MAPE of models (1) and (2) for one year of out-of-sample data used in the model
validation process.

State Equation (1) Equation (2)
Michigan 4326 3.744
Ohio 4.031 3.870
Texas 3.638 3.443
Virginia 4,508 3.725

the day and hour of the week are also significant. These terms
together are capable of capturing most of the trend on an hour-to-
hour basis; however, variables representing the year-to-year
growth are also important, which in part necessitates models for
longer time scales for forecasts to be accurate. The weather-related
terms—heating and cooling degrees and their squared terms—are
most significant for Texas.

Relative summer temperatures in Texas are higher than in the
other three states, which may explain the increased importance.
Other potential predictors, such as an indicator for daylight savings
time and a set of Fourier terms for seasons of the year are found to
be insignificant. The remaining variables are used to maintain the
same model structure for all four data sets, despite varying levels of
significance.

As discussed in the previous section, a second formulation is
developed, motivated by the low DW statistics indicating positive
residual autocorrelation in (1). With the inclusion of autoregressive
residual terms in Equation (2), some changes in the results are
observed. Coefficients of some of the original variables change in
magnitude and significance, but relative size and direction remain
the same for most. In all cases, the constant term remains or
increases in significance. The additional autoregressive terms are
significant as well. The hour of day, holiday, Saturday, and Sunday
terms remain large in relative magnitude. In all cases the R?
improves from (1) to (2), especially for Virginia and Texas.

Values in Tables 2—5 are estimated using four of the five years of
available data, with the remaining observations excluded to use for
out-of-sample validation. To check the fitness of the models, we
compare the actual observations to the forecasted values for this
final year. A common measurement of this deviation is mean
absolute percentage error (MAPE), which measures the difference
between actual and predicted values averaged over the time
horizon. MAPE is given by:

Q-Q;

T

Yo

where Q; represents the actual value at time t and @r is the cor-
responding predicted value. Table 6 details these results for both
formulations of the short-run model, where T = 8760. The inclusion
of autoregressive error terms improves the forecasts significantly,
and our MAPE values are comparable to values reported in the
literature.

The results of the long-term model of aggregate annual demand
are reported in Table 7. We only estimate the long-term model for
the four states for which we have data to fit the short-term

(7)

model. Nevertheless, the long-term model could be estimated for
other states, since the required data are publicly available. Coeffi-
cients from the regression are the first value of each column and
state, and the associated t-values are reported in parentheses. In
general, changes in GSP and the price of electricity are the most
significant factors in determining changes in quantity demanded.
On the other hand the time trend, the final regressor, is less
significant. As the data have been made stationary, it is logical that
little time-varying trend remains. Our R? values are in line with the
long-run models estimated by Engle et al. [9]. Although a model
with absolute levels (as opposed to percent differences) of annual
aggregate demand yields higher R? values, the use of such non-
stationary data yield inconsistent coefficient estimates and
spurious regression results [13].

3.2. Load predictions: the effects of growth and price elasticity

Fig. 4 summarizes how diurnal load patterns change over the
long-term when interannual growth rates are applied. It shows
a one-week load pattern in June during a base year of 2009,
computed using model (2). It also shows the load pattern during
the same week in 2014, with growth rates derived from model (3)
applied using Equation (4). This load pattern assumes 2.6% and 3.5%
annual GSP and electricity price growth, respectively, based on
a linear fit to historical data as illustrated in Fig. 3. For purposes of
comparative statics, the figure also shows load profiles for the same
week in 2014 with different rates of macroeconomic growth. One of
the load patterns considers a case in which the economy experi-
ences high growth during the five years, with an annual GSP
growth rate of 8%. The other load pattern assumes annual electricity
price increases of 5%.

Because the diurnal load data used to estimate the short-term
diurnal model represents only a small subset of all commercial
and industrial customers in each of the four states, the diurnal load
profiles generated by model (2) are scaled to represent aggregate
statewide consumption. This is done by comparing the total
quantity demand in 2009 in the short-run data sets to aggregate
statewide consumption reported by the EIA. If we let A, denote
aggregate annual statewide consumption and Q; the hourly
consumption of the customer subset in the diurnal data, the scaling
factor for the year is given by:

Ay
28760

For instance, the hourly quantity demand by the subset of
commercial and industrial customers in Ohio in 2009 is approxi-
mately 15% of the total statewide consumption, thus the outputs of
model (2) are scaled by a factor of 6.667 to forecast statewide
commercial and industrial consumption. This scaling factor is
applied to all of the hourly loads generated by the short-term
model, and is included in Fig. 4 and all subsequent figures.

Although the days shown in Fig. 4 represent different calendar
days of the month in the years 2009 and 2014, they represent the
same days of the first week of June. In the base case with long-run
average macroeconomic growth rates, natural gas price increases

(8)

y

Table 7

Regression estimates for long-term model in Equation (3). t-values for each coefficient are reported in parentheses.
State Constant GSP P NGP POP T R? DW
Michigan 0.008 (0.157) 0.736 (2.434) —0.223 (-0.814) 0.101 (1.151) —2.155 (—0.536) —0.002 (—0.551) 0.556 2.28
Ohio —0.029 (—0.599) 0.763 (1.330) —0.698 (—1.516) 0.046 (0.957) —0.699 (-0.161) 0.002 (0.728) 0.615 1.41
Texas 0.001 (0.027) 0.281 (1.448) —0.014 (-0.136) 0.015 (0.447) 0.275 (0.298) —0.000 (—0.242) 0.278 2.37
Virginia 0.105 (1.701) —1.377 (—1.444) —0.730 (—2.046) 0.211 (2.529) -1.133 (-0.512) 0.002 (0.898) 0.420 231
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Fig. 4. Modeled diurnal demand of entire commercial and industrial sector in Ohio
during the first week of June in 2009 and 2014.

and GSP growth increase electricity consumption. However, there
are increases in electricity prices as well, causing a net decrease in
consumption relative to 2009. Population growth in Ohio is also
forecasted to decline, further reducing demand. This results in
a 295 MW reduction in the maximum peak during the week
between 2009 and 2014. When electricity prices increase 5%
annually, this negative impact dominates the other macroeconomic
changes, with further declines in consumption levels. On the other
hand, high GSP growth results in increasing quantities demanded.

In addition to modeling the diurnal load profile, we also explore
the effects of short-run inter-hourly price changes on demand. This
is done using own- and cross-price elasticities of demand, which
describe how consumers’ electricity demand changes due to price
changes during different hours of the day. For instance, if the price
during the middle of the afternoon, which tends to be a peak
demand period, is higher relative to the price during other hours of
the day, an industrial consumer may move production and asso-
ciated electricity demand away from this period. A utility sched-
uling generators can use this information to create a price structure
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Fig. 5. Modeled diurnal demand of entire commercial and industrial sector in Ohio
between 8 am of 3 February, 2009 and 6 pm of 4 February, 2009.

which minimizes costs by shifting some demand away from the
peak. Given our prediction of the entire diurnal load profile, we can
utilize hourly elasticity estimates to capture such effects. Taylor
et al. [12] report estimated own- and cross-price elasticities of
demand between each pair of hour within a day. Many customers
do not face complex tariff structure with hourly prices, thus our
analysis uses these elasticities to estimate the effects of simpler
pricing schemes.

Fig. 5 shows the results of applying these elasticities over a 35-h
period in February under three different pricing schemes. The first
is a standard time-invariant tariff, with the price of energy being
uniform across all hours. The loads in this case are not affected
when the elasticities are applied using Equation (5), since all of the
hourly price changes are zero. The second case considers a two-tier
price structure in which prices between 9 am and 6 pm are 12.5%
higher than the price in the time-invariant tariff and prices in the
remaining hours are 12.5% lower. The third case considers a more
complex multi-tiered price structure. From 8 pm to 6 am, prices are
20% lower than the baseline price in the time-invariant tariff, from
7 to 8 am prices are 12.5% lower than the baseline, from 11 am to 5
pm prices are 12.5% higher than the baseline, and in the remaining
hours prices are 6.25% above the baseline. Both of these price tariffs
result in shifting of demand away from high-price hours toward
lower-price hours and a flattening of the load profile. The multi-
tiered tariff yields a 20% reduction in the peak quantity deman-
ded and an overall consumption decrease of 2% relative to the time-
invariant tariff.

4. Conclusion

In this paper we develop a model to represent the level of
electricity demand in commercial and industrial sectors as
a combination of short-term and long-term trends. The short-term
model, which is based on weather and calendar data, can predict
diurnal load profiles within a year with 95% accuracy in out-of-
sample forecast validation. We employ Fourier series of varying
periodicities to capture the effects of different seasonalities. This
model is of a percent difference autoregressive form. Incorporating
forecasts of weather variables, instead of historical averages, and
evaluating how forecasts change is of future interest, as well as
investigating the impact of other weather conditions, such as
humidity, wind speed, and ambient sunlight.

In addition, a second model of aggregate electricity demand
levels measures interannual growth rates based on population, GSP,
and price changes. In combination, these allow for fine-grain fore-
casts into the future. Presently, the model assumes, when shifting
the diurnal predictions by this interannual growth rate, that the
change affects all hours uniformly. Whether or not peak and off-peak
loads do indeed grow at equal rates in the long-term is a topic
worthy of further investigation. Finally, changes in quantity
demanded are observed when different pricing policies are enacted
based on measurements of commercial and industrial customers’
hourly own- and cross-price elasticity of demand. Peak loads are
found to shift up to 20% with only a modest change in relative prices.

The models are calibrated, validated, and demonstrated based
on four states for which we have hourly data to fit the short-term
model. Results from each of these states, in terms of model fit
and predictive ability, are similar. Thus, the model seems applicable
for a variety of underlying data sets. The same techniques could be
used to forecast and model electricity demands in other states or
countries, if similar data are available. The results of this model can
be a useful input for long-term generation, transmission, and
distribution capacity planning done by utilities and system opera-
tors. Utilities, system operators, and policy makers may also be
interested in using this model to study the effects of different
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pricing tariffs on electricity demand and ancillary impacts associ-
ated with that energy use.
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