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Abstract—We propose a multistage multiscale linear stochastic
model to optimize electricity generation, storage, and transmis-
sion investments over a long planning horizon. The multiscale
structure captures ‘large-scale’ uncertainties, such as investment
and fuel-cost changes and long-run demand-growth rates, and
‘small-scale’ uncertainties, such as hour-to-hour demand and
renewable-availability uncertainty. The model also includes a
detailed treatment of operating periods so that the effect of
dispatch decisions on long-term investments are captured.

The proposed model can be large in size. The progressive
hedging algorithm is applied to decompose the model by scenario,
greatly reducing computation times. We also derive bounds on
the optimal objective-function value, to assess solution quality.
We use a case study based on the state of Texas to demonstrate
the model and show the benefits of its detailed representation of
the operating periods in making investment decisions.

Index Terms—Power system planning, stochastic optimization,
decomposition, progressive hedging algorithm

I. INTRODUCTION

LECTRICITY demand growth, generator retirements,

and technology advances make it necessary to expand
generation and transmission capacity. These investments are
capital intensive, time consuming, and long-lasting. Moreover,
generation and transmission investment is subject to consid-
erable short- and long-run uncertainty. Changes in fuel or
investment costs can make a seemingly prudent generation
technology uneconomic. Uncertain demand-growth rates can
affect how much capacity a given system needs. Short-run
variability in demand, wind, and solar production can also
affect an optimal generation mix.

This paper proposes a centralized planning model to assist a
central planner, utility, policy maker, or regulator in optimizing
these types of investments. The model is multistage, multi-
scale, and stochastic, making investment decisions at different
points in time with consideration of future uncertainties and
investments. The model also includes a detailed representation
of operating periods between investments. This allows the
effects of short-run uncertainties (e.g., real-time wind, solar,
and demand variability) on investments to be captured. The
model is multiscale in two senses, which are described further
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in Section III where the model structure and formulation
are given. First, we capture different scales of uncertainties
that affect planning decisions in different ways. Secondly, we
capture decisions that occur on different scales (i.e., relatively
coarse time scales for planning decisions, as opposed to fine
temporal scales for operating decisions).

With all of these factors being represented, the model can
be large in scale and take excessive computation time to
be solved. To address the tractability issue, the progressive
hedging algorithm (PHA) is implemented to decompose the
model per scenario. We demonstrate the use of the model
with a case study based on the state of Texas. We compare
the solutions obtained from the model using the PHA to those
obtained from solving the undecomposed problem (in terms
of the objective-function value and investments made). We
find that the two sets of investments and their costs are very
similar, showing the accuracy of using the PHA to decompose
and solve the model. We explore the impact of the penalty
coefficient used in the PHA on model performance. We show
that using higher coefficient values decreases computation
time, with some tradeoff in solution quality. We also show how
the detailed representation of the operating periods affects the
optimal generation mix.

The remainder of this paper is organized as follows. Sec-
tion II reviews the existing literature on investment planning
and further highlights the contribution of our proposed model.
Section III details the structure and mathematical formulation
of our model. Section IV discusses the PHA algorithm and
how we assess the quality of solutions given by the algorithm.
Sections V and VI introduce our case study data and results,
respectively. Section VII concludes.

II. LITERATURE REVIEW

Two different approaches are typically applied to power
system investment problems: centralized and market-based
frameworks [1]. The former considers capacity investment
from the perspective of the whole system, typically mini-
mizing cost or maximizing social welfare [2]—[5]. The latter
tackles the problem of a market participant, such as a profit-
maximizing generating firm [6].

Short et al. [3] develop a deterministic cost-minimization
model for the deployment of generation technologies and
transmission infrastructure throughout the United States, look-
ing forty years into the future. Their work includes a de-
tailed treatment of conventional and renewable generation
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technologies, transmission lines, energy storage, and policy
parameters, and has high spatial resolution. On the other
hand, their work uses a small set of time slices to represent
system-operation costs. Mills and Wiser [4] consider the effect
of renewable penetration on investments by using a long-
run optimization model that considers both investment and
dispatch decisions. Dominguez et al. [5] develop a stochastic
optimization model to explore how current electric power
systems can be transformed into renewable-dominated designs
at minimal cost. Lépez et al. [2] propose a mixed-integer
nonlinear model for generation and transmission expansion
that captures risk preferences.

Bilevel approaches are commonly used for modeling in-
vestments from the perspective of market participants [6]—
[8]. Such approaches allow the representation of a sequential
decision-making process in which investments are made before
operational decisions. Thus, they are useful when market
competition is modeled. This can be contrasted to single-level
models, in which all decisions are made simultaneously. Two
popular types of bilevel models are mathematical programs
with equilibrium constraints and equilibrium problem with
equilibrium constraints. The former is suited to modeling
capacity expansion decisions made by a single investor, while
the latter is suited to modeling multiple firms simultaneously.
Wogrin [8] develops bilevel models of generation companies
making investment decisions in a highly competitive market.
She concludes that models with bilevel structures can provide
better results than single-level ones. Chuang et al. [9] formu-
late a generation-expansion problem as a single-level Cournot
model. Roh et al. [10] propose a stochastic generation and
transmission expansion model that considers uncertainties.

Investment planning is usually affected by many factors that
are uncertain, such as demand increases, policy changes, and
technology advances. Stochastic optimization, as a framework
for modeling optimization problems that involve uncertainty,
constitutes a useful tool for capturing the impacts of such
uncertainties [2], [5]-[8], [10]. A number of works model
capacity investment as two-stage or multistage stochastic opti-
mization problems [10]-[17]. However, none of these include
the detailed multiscale representation of uncertainties that we
propose in our model. Munoz and Watson [18] apply the
PHA to a multistage investment model. However, their work
does not capture the same level of detail in representing
operating decisions that our model does. Instead, they assume
that the hourly economic dispatch models are independent
and do not capture intertemporal ramping or energy storage-
related constraints. Zou et al. [19] develop a nested decompo-
sition algorithm, which is similar to the concept of stochastic
dual dynamic programming [20], which may prove to be a
promising technique to solve multistage stochastic investment
models.

Our work makes several contributions to this existing lit-
erature on investment planning. Our model optimizes both
generation and transmission investment from the perspective
of a central planner. The multiscale framework that we adopt
allows us to capture both large- and small-scale uncertainties.
Moreover, our detailed representation of the operating periods
between investment periods allows the effects of intertemporal
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constraints, such as generator ramping and energy storage
state of charge, to be captured in investment decisions. Many
existing models use simplified representations of operating
periods that are not serially coupled. Our work also proposes
the use of PHA as an algorithm to efficiently obtain solutions
to the resulting model with bounds on solution quality.

III. CAPACITY-EXPANSION MODEL

Fig. 1 summarizes the overall structure of our proposed
capacity-expansion model. The model structure consists of
multiple investment periods (denoted by circles in the figure),
each of which is followed by a series of operating periods
(denoted by squares in the figure). Thus, our model considers
an investment stage as consisting of an initial investment
decision, followed by operating decisions for the intervening
operating periods before the next investment decision is made.
The investment and operating decisions are structured in a tree,
where the branches correspond to different scenarios of the
underlying scenario tree representing uncertainties.

investment
period 1

investment
period 2

investment o
period 3

Fig. 1. Structure of capacity-expansion model

Our model is multistage in the sense that investments can be
made at multiple points in time (i.e., the circles in Fig. 1). The
model is multiscale in terms of how decisions and uncertainties
are modeled. Investment decisions are modeled at a relatively
coarse time scale (e.g., annually or decennially). Conversely,
operating decisions are modeled at a relatively fine time scale
(e.g., hourly or subhourly).

Uncertainties are similarly modeled at different scales. The
branches of the scenario tree in Fig. 1 capture large-scale
uncertainties that occur on similar temporal scales to the
investment decisions. Examples of these can include major
policy changes (e.g., a carbon tax or renewable portfolio stan-
dard), fuel cost changes, technology development, or long-run
demand-growth rates. Finer-scale uncertainties (e.g., seasonal,
diurnal, and hourly demand, wind, and solar patterns) are
captured through the different deterministic operating periods
between investment decisions.

The reason for this disparate representation of large- and
small-scale uncertainties is because they affect investment
decisions differently. Large-scale uncertainties have a direct
and explicit impact on investment decisions. For instance, if
prices of some generating fuels may rise or the investment
costs of some generation technologies may fall in the future,
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such uncertainties should be directly taken into account when Cd i inv%:stmenlt cost of buildin'g technology n in
making investment decisions. As such, large-scale uncertain- region r in investment period ¢ of scenario w
ties are explicitly represented in the scenario tree. Conversely [$/MW]" ) ]

diurnal or seasonal uncertainty and variability in the real-time ~Lw.ridh  region 77’3 load in hour h of day d of investment
availability of renewable generators has a more muted effect p?n(’d i of scenario w [MW].

on investment decisions. The effect of these uncertainties is 7 discount rate.

primarily on the extent to which flexibility is needed in the On ramping fact(?r of technology n [p.u.].

power system. Such impacts can be captured in a more implicit '/ energy capacity of storage [hours of storage].
manner via different operating periods (which in our work are ¢ roundtrip efficiency of energy storage [p.u.].

taken to be representative days modeled at hourly intervals),
that represent a wide variety of weather conditions.

In practice, these operating periods may be a weighted
subset of hours, days, or weeks chosen by Monte Carlo simu-
lation, importance sampling, clustering, or other techniques.
Our model structure is agnostic to the temporal resolution
of the operating periods. We assume in our mathematical
formulation, however, that the operating periods are represen-
tative days of the intervening time between investment periods
that are modeled at an hourly time resolution. The use of
representative days in modeling the operating periods allows
for intertemporal constraints, such as state-of-charge balance
for energy storage and generator ramping, to be captured in
the model.

A. Model Notation

We begin by defining the following model notation.
1) Sets and Set-Related Parameters:

N set of generation technologies.

R set of regions.

TP set of operating days between investment peri-
ods.

TH number of operating hours in each representa-
tive day.

T! set of investment periods.

1! number of years between investment periods.

Q set of scenarios.

Wi set of scenarios that are indistinguishable from

scenario w when making investment decisions
in investment period q.
2) Parameters:

An lifetime of technology n [investment periods].

By, maximum capacity of technology n that can be
built in region r in investment period ¢ [MW].

Cf i cost of retiring technology n in region 7 in
investment period 4 of scenario w [$/MW].

G . . . .
i generation cost of technology n in region r in
investment period 4 of scenario w [$/MWHh].
ck. . investment cost of building transmission be-
tween regions  and 7’ in investment period i
of scenario w [$/MW].

Cf)”n ria maintenance cost of technology n in region r
that is @ investment periods old in investment
period ¢ of scenario w [$/MW].

Cf i investment cost of storage in region r in invest-
ment period i of scenario w [$/MW].

cv cost of unserved load [$/MWh].

T probability of scenario w.

@w,n,rid,n  capacity factor of technology n in region r
in hour A of day d of investment period ¢ of
scenario w [p.u.].

Yia weight on representative day d of investment

period ¢ [days].
3) Decision Variables:
kE capacity of technology n in region r with age a

w,n,r, Z a
that is economically retired in investment pe-
riod ¢ of scenario w [MW].

G . . . .

i total capacity of technology n in region r with
age a at the end of investment period ¢ of
scenario w [MW].

£)T7T,7i capacity added to transmission link between
regions r and 7’ in investment period ¢ of
scenario w [MW].

S . . . . .

o1 capacity of storage installed in region r in
investment period ¢ of scenario w [MW].

K. vector denoting all scenario-w investment vari-
ables (i.e., k’s) of investment period 4.

qg,r,i, dh hour-h power charged into storage in region r
on day d of investment period ¢ of scenario w
[MW].

qﬁ ridh hf)ur—h power discharg.ed from storage in re-
gion 7 on day d of investment period i of
scenario w [MW].

qf)nmi’d’h hour-h production from technology n in re-
gion r on day d of investment period ¢ of
scenario w [MW].

quL),r,r’,i,d,h net power flow on link from region r to 7’
in hour h of day d of investment period ¢ of
scenario w [MW].

qf)ni’d’h hour-h ending state of charge of storage in
region r on day d of investment period i of
scenario w [MW].

qg_’m-_’ dh hour-% unserved load in region 7 on day d of

investment period ¢ of scenario w [MW].

B. Model Formulation

Our model is formulated as:

: (e 14
manWWZW ! Z Cwnrz w,n,r,i,1 (1)
weN ieT! neN,reR
n_l
E G
+Ow,n,r,i' kwnrzA + E kwnrza

+2.C

reR

w,T,8 wrz+ Z Tzdz

deTP

wnrzqwnrzdh
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4
L
Z w,n,T,i,a wnrla Z Owrr’kwrrz
rr'€R
rr’
+ Z Tl d Z C Qw ,yi,d,h
reR,deTP
s.t. kwn”1<Bn”, Yw,n,r, i (2)

G G
kwnrzaikwnrlflafl kwnrz l,a—1> (3)

Yw,n,r,i>2,a > 2
Kw,i 2 07 vwal (4)
Kw,i = Kw’,ia Vo.), iawl € W (5)

G D C U
Z Qw,n,r,i,d,h + qw,r,i,d,h - qw,r,i,d,h + qw,r,i,d,h (6)
neN
L L _
+ Z (qw,r’,r,i,d,h - qw,r,r’,i,d,h) - Lw,r,i,d,h,

r'€R

r/ #r

Yw,n,r,i,d, h

A,
0<anrzdh—(bwnTlthkwnrza? (7)
a=1
Yw,n,r,i,d, h

G
- 5 kanrza = qwnrzdh qw,n,r,i,d,h—l (8)

<6, kan”a, Yw,n,r,i,d,h

_ZkWTTZ—qwrr zdh<zkw7‘r i’ (9)

i <i <1

Yw,r, v #ri,d,h

S S D C
4y ridh = Qo,ridh—1 — Qw,rid,h + qu,r,i,d,h7 (10)
Yw,r,i,d,h > 2
1 .
Criao =50 D Ko Yworid (11)
' <i
qwrldTH_ WZ w,T,1) Vw,r,z',d (12)
i’ <1
0 < q(ir,i,d,h < 772 ki,r,ia Vw,r,i, d7 h (13)
i/ <1
0<qwr1dh’qwr1dh<zkwrw (14)
/SZ
VYw,r, i,d, h
0<qY 5an < Logidn, Ywo,nridh (15)

Objective function (1) minimizes expected discounted cost
over the planning horizon. The objective function includes
seven cost components. The first, C“f .y wn” 1, 1s the
cost of investing in new generating capacity. New generating
capacity that is added in investment period ¢ is, by definition,
a = 1 investment periods old at the end of investment period ¢,
which is why new capacity is given by kw il

The second is the cost of retiring generating capacity (e.g.,
cleanup and reactor dismantling for a nuclear unit). The
model allows for two types of retirements. The first is due
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to age, once a technology has reached its fixed operating
life. Technology n is assumed to have an operating life of
A,, investment periods. The other is economic retirement,
meaning that the model chooses to retire a technology before
it operating life, for instance due to changes in operating and
maintenance costs of one technology relative to another.

The third is the cost of adding energy storage to the
system. The fourth is generator operating costs. Operating
costs for each hour of each representative day are added
together and multiplied by, Y; 4, which is the weight placed
on each operating day. The fifth cost is generator maintenance
costs, which are allowed to vary with age. This can represent
technologies becoming more costly to maintain as they age.
The sixth is the cost of adding capacity to transmission links
between the regions of the power system modeled. We use
a pipeline model of the transmission system, as opposed to
a load-flow model. The seventh is the cost of unserved load,
which may occur if available generating capacity is insufficient
(or insufficiently flexible) to meet load in a particular operating
period.

We use a pipeline model of the transmission system because
a load-flow model would require the use of binary variables to
represent transmission investments. Transmission investments
with a load-flow model must be represented as being ‘lumpy,’
because adding new transmission lines impacts transmission
flows on other elements in the network. Using a pipeline
model does not provide a perfect representation of load flows.
However, Ahlhaus and Stursberg [21] suggest a method of
modeling transmission investments using a pipeline model that
provides precision that is comparable to a load-flow model.
Thus, our model can be easily extended using their method,
which would yield improved accuracy at a reduced computa-
tional cost (compared to employing a load-flow model).

Objective function (1) could also include other costs that we
do not model. As an example, energy storage and transmis-
sion could have retirement, maintenance, and operating costs.
Storage operating costs could be a means of more accurately
capturing hybrid technologies, such as diabatic compressed air
energy storage, which require an input fuel [22]. Our analysis
focuses on bulk energy storage technologies, such as pumped
hydroelectric storage, which is not a hybrid technology.

The model has two types of constraints. Constraints (2)—
(5) pertain to the investment whereas constraints (6)—(15)
pertain to the operating periods. Constraints (2) imposes limits
on generation technology investments, for instance due to
land restrictions, resource availability, or policy restrictions.
Constraints (3) define the amount of generating capacity of dif-
ferent ages in each investment period as the previous amount
of capacity less retirements. Constraints (4) impose non-
negativity on the investment variables. Constraints (5) are the
non-anticipativity constraints, which impose the structure of
the scenario tree on the decisions. This is done by ensuring that
decisions made in each investment period are not dependent on
future scenario realizations. For instance, in the scenario-tree
depicted in Fig. 1, the period-1 investment decisions would
have to be the same across all of the scenarios. However, the
period-2 investments of the scenarios emanating from the left-
hand side of the scenario tree could be different from those of
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the scenarios emanating from the right-hand side of the tree.

Constraints (6) impose load-balance in each operating pe-
riod. Constraints (7) and (8) impose capacity and ramping lim-
its on generators. The capacity limits are defined based on total
installed capacity available multiplied by a capacity factor. The
capacity factor can capture hour-to-hour variability in wind,
solar, and other renewable availability. The ramping limit is
assumed to be a multiple of the installed capacity, with higher
values of 9,, denoting a more flexible generating technology.
Constraints (9) impose transmission-capacity limits.

Constraints (10)—(14) pertain to the operation of energy
storage. Constraints (10) define the ending state of charge of
storage in each hour. Constraints (11) and (12) force each
storage device to begin and end each day with a 50% state of
charge. This is a heuristic technique to attach carryover value
to stored energy from one day to the next [23]. Constraints (13)
and (14) impose energy and power limits on storage. The
energy capacity of storage is measured by the number of hours
of full power output [24].

Constraints (10)—(14) do not account for cycle-life degra-
dation of energy storage, which may be an important consid-
eration for some technologies. One could modify the energy
or power capacities of the storage device to include a linear
degradation term that depends on total aggregate MWh of
energy that has been ‘cycled’ through the storage technology
in previous operating periods [25].

Constraints (15) limit the amount of unserved energy in
each operating period to be no greater than demand. Explicit
non-anticipativity constraints on the operating decisions are
not needed, as non-anticipativity constraints on the investment
decisions will enforce non-anticipativity of the operating de-
cisions.

IV. PROGRESSIVE HEDGING ALGORITHM

Depending on the number of investment and operating
periods and scenarios included in it, our proposed capacity-
expansion model can be large in scale and computationally
intractable. We apply the PHA [26], which is an augmented
Lagrangian method, to decompose the problem per scenario
by relaxing non-anticipativity constraints (5) and penalizing
constraint violations in the objective function.

PHA can be used to obtain a feasible solution to the original
problem, which also provides an upper bound on the optimal
objective-function value. Gade et al. [27] derive a lower bound
on the optimal objective-function value for a two-stage mixed-
integer stochastic optimization problem. We extend their proof
to a multistage stochastic problem, allowing us to assess the
quality of solutions generated by the PHA.

We first outline the PHA for a general multistage stochastic
optimization problem in Section IV-A. We then give the lower-
bound result in Section IV-B.

A. Progressive Hedging Algorithm for Multistage Stochastic
Optimization Problems

We begin by giving the following generic scenario-based
formulation of a multistage stochastic optimization problem.
To do so we first define the following additional notation (sets,

parameters, and variables that are not defined have the same

definitions as in Section III-A):
I number of stages.

T i stage-i decision of scenario w.
A generic multistage stochastic optimization problem can
then be formulated as:

I
. T
min E ME Yy iTuw,i

(16)
weQ  i=1
S.t. Mw,lxw,l = Kuw,1, Yw € Q (17)
My, i%wi = Kw,i — w,iTw,i—1, (18)
VweQi=2,...,1
Toi>0, YweQi=1,..1I (19)
Twi =T iy, VweQi=1,.... [, €. (20)

Objective-function (16) minimizes expected cost, with v, ;
denoting stage-i¢ cost coefficients under scenario w. Con-
straints (17) and (18) impose structural constraints on the
decisions with M, ;, Ky s, and p,, ; being matrices of coef-
ficients and vectors of constants of appropriate dimensions.
Constraints (19) and (20), respectively, impose non-negativity
and non-anticipativity.

To outline the PHA, we next define for each scenario, w €
Q:

Xw = {.I'i,i = 1, .. .,I|Mw71$w71 = Kw71,

My iTwi = Kaw,i — Hw,iTw,i—1,Tw,; > 0}, (21)

as the scenario-w feasible set. PHA decomposes problem (16)—
(20) by dualizing non-anticipativity constraints (20).

To give the relaxed problem, we first define A}, as
the Lagrange-multiplier vector associated with the ‘non-
anticipativity constraint on z,, ;. The superscript, v, on the
multiplier vector corresponds to the iteration counter of the
PHA. We also define:

PORERE
v WEwD;

w,t Z T ’

w'€w;

=2

(22)

where IZ/,i is the value of z.; in the vth iteration of the
PHA as the probability-weighted average of the x.- ;’s that
should be equal to z,, ; per non-anticipativity constraints (20).
The v superscript on &, ; denotes that this is the value of the
average in the vth iteration of the PHA. The relaxed problem
is given by:

I
. T v T
min: 37 7, 37 (Vs + 08,

(23)
weN i=1
+ Bl = at P )
stz € Xy, YweQi=1,...,1 (24)

Objective function (23) includes two penalty terms. The first,
)\Zﬂ-—rxw_,i, is a standard Lagrange-multiplier term. The other
penalizes the value of z,, ; deviating from z, ;. The coefficient
p > 0 determines how much to penalize the deviation of the

scenario solution from this average.
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Algorithm 1 outlines the steps of the PHA. The penalty
coefficient and convergence tolerance are input in step 1.
Step 2 initializes the iteration counter and Lagrange-multiplier
vectors. In Steps 3-5 each scenario subproblem is solved with-
out the penalty terms (i.e., minimizing objective function (16)
of the original problem). These starting values of z,, ; are used
to initialize the Lagrange-multiplier vectors in Steps 7 and 8
by first updating z; and then the multiplier vectors themselves.

Algorithm 1 Progressive Hedging Algorithm
1: input: p, €
initialization: v < 0, )\57
for w € Q) do
xg, ; < argmin (16) s.t. (24)
end for ’
repeat
.’2‘;} — Zw'ewi Fw/$5/7i/ Zw/ewi o Vi=1,...,1
A = N p(al, — 88 ) VweQi=1,...,1
vé—v+1 ’
xZ,i < argmin (23) s.t. (24)
Pl < evweQi=1,...,1

S 0VweQi=1,...,1

B A A

—_
= O

: until ||xf” —

Steps 6-11 are the main iterative loop. Steps 7 and 8 update
the Lagrange multipliers based on the most recent values of
Tw,i. Step 9 updates the iteration counter, and Step 10 re-
solves the relaxed problem with the updated multipliers. This
loop repeats until each non-anticipativity constraint is satisfied
within the specified convergence tolerance.

B. Lower Bound for Progressive Hedging Algorithm

We can derive a lower bound on the optimal objective-
function value of a multistage stochastic optimization problem
solved using PHA from the Lagrange multipliers on the non-
anticipativity constraints. To do so, we let z* denote the opti-
mal objective-function value of problem (16)—-(20) and let x7, ;
denote a corresponding set of optimal decision policies. We
assume that problem (16)—(20) is bounded and feasible. Thus,
we have that —oo < 2* < 400 and z},; € X, # 0, Vw € Q.

We first prove the following lemma.

Lemma 1: In each iteration of Algorithm 1, the following
condition holds:

)DL DI

weN i=1

(25)

Proof: We can show this by induction. For v = 0 we

have A} ; = p- (), ; — &) ;). Thus, Vw € Qi =1,...,1, we
have that:
Z Trw}\i},i = p Z Tw (‘TB) i ‘%g,l) (26)
weN weN

(28)

By induction on the Lagrange-multiplier update in Step 8 of
Algorithm 1 we can show that (25) holds for all remaining
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iterations of the PHA. This is because the best possible lower

bound obtained using dual prices is as tight as the lower bound

obtained using the dual decomposition method [27]. |
We next define:

I
gw()\g) - mEXrqul,ngEQ {Z (w;}iixw,i + )\Z7iwa,i) } 7 (29)

i=1
and:
EO) = > mubu(AY), (30)
we
and prove the following theorem establishing the bound.
Theorem 1: Z(\V) < z*,Vu.
Proof: From the definition of &, (\) and z, ; we have:
I
)2 (Wit Te) 6D

Combining this with the definition of Z(A) and Lemma 1 we

then have:
EN) = Y mebl(\) (32)
wEeN
< Zmz(ww w AL Tel) 63)
wes =1
= ZmeM Tl (34)
wes =1
+ Z ﬂ-wz)\wl w 3
weN i=1
I
= > me > Wlal, (35)
wes =1
= 2" (36)
proving the result. |

V. CASE STUDY DATA

We apply our proposed capacity-expansion model to a
numerical case study based on the state of Texas [28]. The state
is modeled as consisting of three regions (west, east, and south
Texas) that are connected by three transmission corridors. The
case study begins in the year 2010 and the model has between
four and six investment periods that occur at ten-year intervals
(i.e., we conduct a sensitivity analysis in which the number of
investment periods is changed).

We model five generic generation technologies: wind, so-
lar, nuclear-powered, and natural gas- and coal-fired units.
A generic energy storage technology is also modeled. The
‘large-scale’ uncertainties, which are explicitly modeled in the
scenario tree, are changes in investment costs and generating-
fuel prices. Scenarios around these parameters are generated
from values reported in the United States Energy Information
Administration’s 2014 Annual Energy Outlook [29] and other
sources [30].

Table I summarizes the ranges of percentage decreases
(relative to the 2010 levels) in wind and solar investment
costs represented in the scenarios. These cost decreases mostly
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represent the effects of technology improvement. Table II
summarizes the ranges of percentage increases (relative to
the 2010 levels) in operating costs of coal- and natural
gas-fired generators. These scenarios reflect the impacts of
changing fuel supply and demand and can also capture policy
impacts (e.g., carbon policies on operating costs of fossil
fuels).

TABLE I
RANGE OF INVESTMENT-COST DECREASES [% RELATIVE TO 2010
LEVELS] IN DIFFERENT SCENARIOS

Year
Technology 2020 2030 2040
Wind 5-10 1020 15-30
Solar 5-10 1020 15-30
TABLE II

RANGE OF OPERATING-COST INCREASES [% RELATIVE TO 2010
LEVELS] IN DIFFERENT SCENARIOS

Year
Technology 2020 2030 2040
Coal 0-3 1-7 3-28
Natural Gas  0-5 1-18  3-54

The base case, in which there are four investment periods,
has a scenario tree with 27 = 128 scenarios. Retirement
and maintenance costs, ramping capabilities, and technology
lifetimes are obtained from the same sources as the other cost
data. Renewable resource limits, for instance associated with
land use, are obtained from Lopez et al. [31]. We assume no
resource limits on other technologies.

The operating periods between successive investment peri-
ods consist of 30 representative days that are selected from the
10 intervening years using a hierarchical clustering technique
[28]. The clustering technique also provides the weights for
each modeled day. Our numerical testing indicates that 30 rep-
resentative days provides a sufficiently rich set of operating
conditions to represent demand, wind, and solar conditions
well and provide investment decisions that are very similar
to using the full set of operating days [28]. Conversely, using
fewer representative operating days may result in solutions that
give a similar objective-function value to using the full set of
operating days, but vastly different investment levels.

Weather conditions, which drive solar and wind availability
and demand patterns, are simulated using a time series ap-
proach [32]. Electricity demand patterns are modeled using
Monte Carlo simulation [33] and time series techniques [34].
We assume a 7% discount rate and a load-curtailment cost of
$5000/MWh. The model is implemented in Java and solved
using cplex version 12.6 on a system with a 3.10 GHz Intel
Core 17-3770S processor and 8 GB of memory.

VI. CASE STUDY RESULTS

We conduct four analyses with our case study. First we com-
pare the solutions obtained from and the computation times
of solving the full undecomposed capacity-expansion model
and the model decomposed using PHA. Next we examine the
convergence of the PHA and the role of the penalty parameter

(i.e., the value of p) in computation time and solution quality.
Third we examine how model size affects solution times.
Finally, we examine how the inclusion of generator ramping
constraints in the operating periods affects optimal investment
decisions.

A. Solution Time and Quality of Progressive Hedging Algo-
rithm

Table III summarizes the performance of the PHA in
solving instances of the capacity-expansion model with four
investment periods and with either one or three representative
operating days between successive investment periods. A
termination criterion of € = 10000 is used in the PHA. This
performance is compared to solving the full undecomposed
model. We solve instances with one or three operating days
because larger instances of the undecomposed problem cannot
be solved directly using cplex.

TABLE III
PERFORMANCE OF PROGRESSIVE HEDGING ALGORITHM WITH
DIFFERENT NUMBER OF DAYS IN OPERATING STAGE

Number of Operating Days
3

1
Number of Variables 511488 1396224
Number of Constraints 809002 2301994
Undecomposed Problem
CPU Time [s] 370 17503
Objective [$ billion] 554.34 761.77
Decomposed Problem
CPU Time [s] 271 3026
Upper Bound [$ billion]  557.39 762.56
Lower Bound [$ billion]  551.99 760.27
Optimality Gap [%] 0.97 0.30

The numbers of variables and constraints nearly triple if
there are three operating days (relative to one day). With one
day, the model is relatively small and the undecomposed model
can be easily solved. Thus, decomposing this model using
PHA does not afford much benefit in terms of computation
time. However, with three operating days, applying PHA
reduces the computation time by close to 96% while obtaining
a 0.3% optimality gap on the objective-function value.

Figs. 2 and 3 summarize the optimal investments determined
by the full and decomposed model in the most likely scenario
of the scenario tree. The investment decisions given by the
solutions are very similar. The maximum absolute differences
in total investment capacities of the different technologies
between the two sets of solutions is 12% and 6% with one and
three operating days being modeled, respectively. Moreover,
there is a less than 1% difference in total capacity (of all
technologies) added between the two sets of solutions. More
capacity is built when three operating days are modeled,
because the operating days capture more load, wind, and solar
variability than one day does.

Figs. 2 and 3 contrast investment levels obtained from using
the PHA to those given by solving the full undecomposed
model. These figures do not compare investment levels when
using a subset of representative operating days to the invest-
ment levels obtained when modeling the full set of days. Our
numerical testing [28] suggests that about 30 representative
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Fig. 2. Optimal investments from solving the full and decomposed model in
most likely scenario with one representative operating day between successive
investment periods.
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Fig. 3. Optimal investments from solving the full and decomposed model
in most likely scenario with three representative operating days between
successive investment periods.

operating days is needed to obtain investment levels that are
similar to those given by a model that uses all 365 days of
the year. Using three representative operating days can result
in investment levels that are, on average, 65% different from
the investment levels given by the full set of operating days.

B. Sensitivity of Progressive Hedging Algorithm to p

Large values of p accelerate the convergence of PHA while
smaller values tend to improve the quality of the solution found
[35]. To investigate the impact of p on PHA solutions, a four-
stage model with three operating days between successive in-
vestment periods is solved. Four different values of p are tested
with the same termination criteria of ¢ = 10000. Table IV
summarizes the corresponding computation times and solution
quality. As the value of p increases, fewer iterations and less
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time are required to achieve the termination criteria. However,
these time savings come with a larger final optimality gap.
The number of iterations and computation time nearly double
when a value of p = 2000 is compared to p = 100. In all four
cases, the average time per iteration is roughly the same.

TABLE IV
COMPUTATION TIME AND SOLUTION QUALITY OF PROGRESSIVE
HEDGING ALGORITHM WITH DIFFERENT VALUES OF p

Objective-Function

CPU Number of  Bound [$ billion] Optimality
P Time [s]  Iterations Upper Lower Gap [%]
100 3262 38 761.83  761.68 0.02
500 2167 26 762.07  761.33 0.10
1000 1798 23 762.56  760.20 0.31
2000 1564 19 763.30  755.63 1.02

Fig. 4 shows the convergence of the upper and lower
bounds throughout the iterations of the PHA with different
values of p. This figure shows the progress beginning from
iteration 10, because the bounds make the scales of the vertical
axis extremely large if the figure begins from the first iteration.
The figure shows that larger values of p results in the PHA
converging faster (i.e., the algorithm terminates after fewer
iterations). However, the lower bounds and optimality gaps
tend to be worse with higher values of p.

Objective-Function Upper
and Lower Bounds [$ billion]

740 . . . . .
10 15 20 25 30 35 40

Iteration Number

-

Fig. 4. Objective-function upper and lower bounds throughout iterations o
the progressive hedging algorithm with different values of p.

C. Model Size

We next examine the effect of changing the size of the
capacity-expansion model, by increasing the number of in-
vestment periods, on the performance of the PHA. Table V
summarizes the size of models (i.e., number of scenarios,
variables, and constraints) with four, five, and six investment
periods and 30 representative operating days giving the op-
erating periods between successive investment periods. The
table also summarizes the computation time and quality of
the solution found by the PHA.

All three cases involve solving massive models with mil-
lions of variables and constraints. The solution times in the
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TABLE V
COMPUTATION TIME AND SOLUTION QUALITY OF PROGRESSIVE
HEDGING ALGORITHM WITH DIFFERENT NUMBER OF INVESTMENT
PERIODS

Number of Investment Periods

4 5 6
Number of Scenarios 128 512 2048
Number of Variables [million] 13.34 66.70 320.16
Number of Constraints [million]  22.45 112.28 538.97
CPU Time [s] 21901 291139 1236442

Number of PHA TIterations 15 26 19

Upper Bound [$ billion] 758.45  883.76 1004.89
Lower Bound [$ billion] 757.60  878.02 992.44
Optimality Gap [%] 0.1 0.6 1.2

three cases are around six hours, three days, and more than
one week, respectively. Although these solution times are quite
long, they are reasonable for an investment model, which
may only need to be solved a handful of times to determine
investments on an annual basis.

Fig. 5 summarizes the optimal investments in the most likely
scenario of the scenario tree with four investment periods.
Wind and solar are added to the system in later periods when
their investment costs become low relative to conventional
technologies. The model also opts to economically retire about
3.8 GW of natural gas-fired generation (representing about
10% of installed capacity) in the final investment period before
the lifetime of the plants is reached. This is done because
lower-cost wind and solar are able to replace the natural gas-
fired generation.

180 ‘
I \Vind
I Solar
160 | I Coal 1
[ Nuclear
140 | | 1 Natural Gas ]
"1 Energy Storage
=3 120 | [ Transmission |
O}
>
‘c 100
5]
Q
©
O 80
<
©
E 60
(%]
9]
>
£ 40
20
0
1 2 3 4
Investment Period
Fig. 5. Optimal investments in most likely scenario with four investment

periods and 30 representative operating days between successive investment
periods.

D. Effect of Generator Ramping Constraints

Our final analysis examines the effect of having generator
ramping constraints in the operating periods on investment
decisions. The inclusion of ramping constraints is allowed by
us using representative days (as opposed to hours or time
slices) in the operating periods of the capacity-expansion

model. Fig. 6 summarizes the optimal investments in the
most likely scenario of the scenario tree with four investment
periods and the generator ramping constraints in the operat-
ing periods of 30 representative days. Contrasting this with
Fig. 5 shows that the model builds considerably more nuclear-
powered and less natural gas-fired, wind, and solar generation
if ramping constraints are ignored. This is because nuclear has
a relatively low operating cost and if ramping constraints are
neglected its operational inflexibility does not limit its use to
handle ramps in the net load profile. Indeed, without ramping
constraints the model economically retires about 20 GW of
natural gas-fired capacity in investment periods 2—4, as more
nuclear capacity is built. The model also builds less energy
storage without ramping constraints. Finally, we note that total
installed capacity is lower if ramping constraints are neglected.
This means that about 30% of the capacity that the model
builds is needed to provide sufficient ramping capability to
the system.
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Fig. 6. Optimal investments in most likely scenario with four investment

periods, 30 representative operating days between successive investment
periods, and ramping constraints relaxed in operating periods.

VII. CONCLUSIONS

This paper presents a multistage, multiscale stochastic
investment planning model to assist generators, regulators,
policy makers, and others to plan and study power system
investments over the long run. Large-scale uncertainties, such
as cost changes and demand-growth rates, are captured ex-
plicitly through a scenario tree. Fine-scale demand, wind,
and solar variability are represented via different deterministic
representative days in the operating periods between succes-
sive investment periods. The use of operating days allows
important intertemporal constraints, such as energy storage
state-of-charge-balance and generator ramping, to be modeled.

Our multiscale approach to representing decisions and un-
certainties allows us to capture many operating and investment
periods. For instance, the model developed by Short et al. [3]
represents operations between successive investment epochs
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using 17 timeslices. Our model, conversely, represents oper-
ations using 30 x 24 = 720 representative operating hours
between investment periods. Indeed, our model and the PHA
are capable of tractably including more than 30 representative
operating days between investment periods. However, our
numerical testing suggests that 30 days provides sufficient
granularity around small-scale uncertainties for the purposes
of investment planning [28].

The other benefit of our multiscale representation is that it
allows us to capture both large- and small-scale uncertainties.
Most other works use a relatively coarse representation of
all uncertainties, meaning that they do not achieve the same
fidelity that our model does. On the other hand, a model that
fully represents all uncertainties on the same fine scale would
be computationally intractable. Thus, our approach provides a
good balance between model fidelity and tractability.

The resulting model is large and can be effectively solved
using the PHA. The PHA decomposes the problem by sce-
nario and solves each scenario problem, making the problem
tractable. The existence of a lower bound for the PHA is
shown, allowing solution quality to be assessed.

The performances of the model and PHA are demonstrated
through a numerical case study. We find that the decomposed
model chooses investments that very closely match those given
by the full model. We also investigate the importance of the
p parameter in the performance of the PHA. Larger values
considerably reduce solution times, but at the cost of larger
optimality gaps. We explore the effects of increasing the size
of the investment model and scenario tree. Problems with hun-
dreds of millions of variables and constraints can be effectively
solved using the PHA. We also conduct other numerical testing
(beyond that presented in this paper) to examine the effects of
other parameters on the performance of the model and PHA
[28]. This includes analyses of different load, wind, and solar
profiles (corresponding to other geographic regions outside
Texas) and different operating and investment costs. The model
and PHA show the same performance in these cases as those
summarized in Section VI for the case study presented in this
paper. We do not include the results of these cases, for reasons
of brevity, and instead refer interested readers to the work of
Liu [28] for further details.

Our multiscale modeling approach and use of the PHA
allow us to solve models that are substantively different in
their level of detail in representing decisions and uncertainties
compared to other works in the literature [2], [5], [12]-[18].
Thus, our model cannot be directly compared to these works
because of the different focus in model detail.
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