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" Activity patterns for individuals are modeled using a heterogeneous Markov chain, calibrated with time-use data.

" The residential demand model allows reconstructing power consumption of a single or an aggregate group of households.

" A rigorous statistical validation framework has been developed to validate the proposed model.

" The residential demand model can serve as a tool to evaluate the effects of different technologies.

" The simulated residential demand loads show highly realistic patterns.

a r t i c l e i n f o

Article history:

Received 1 March 2012

Received in revised form 12 February 2013

Accepted 20 February 2013

Available online 28 March 2013

Keywords:

Energy demand modeling

Household power demand

Occupant behavior

Residential electricity use

Heterogeneous Markov chain

HVAC modeling

a b s t r a c t

This paper presents a model to simulate the electricity demand of a single household consisting of multi-

ple individuals. The total consumption is divided into four main categories, namely cold appliances, heat-

ing, ventilation, and air conditioning, lighting, and energy consumed by household members’ activities.

The first three components are modeled using engineering physically-based models, while the activity

patterns of individuals are modeled using a heterogeneous Markov chain. Using data collected by the

U.S. Bureau of Labor Statistics, a case study for an average American household is developed. The data

are used to conduct an in-sample validation of the modeled activities and a rigorous statistical validation

of the predicted electricity demand against metered data is provided. The results show highly realistic

patterns that capture annual and diurnal variations, load fluctuations, and diversity between household

configuration, location, and size.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This era of fossil fuel dependency and concern about green-

house gas emissions has increased interest in the use of policy

and technology solutions to reduce and shift energy use. The resi-

dential sector accounted for about 22% of total primary energy con-

sumption in the US in 2009, indicating that there are major

potential gains from implementing such solutions in residential

settings [1]. The potential energy, cost, and emissions savings of

such policies and technologies can be investigated by modeling

their impacts on residential energy demand and the resulting

interactions between this demand and the power grid, renewable

generation, energy storage, and plug-in electric vehicles.

Two general classes of techniques are available to model resi-

dential power demand: top-down and bottom-up models [2].

Top-down models use estimates of total residential sector energy

consumption, together with other pertinent macro variables, to

attribute energy consumption to characteristics of the housing sec-

tor. This class of models can be compared to econometric models,

which require little detail of the actual consumption process. These

models treat the residential sector as an energy sink and regress or

apply factors that affect consumption to determine trends [2–5].

Depending on availability, the input data required to develop these

models can include the structural characteristics of the dwellings,

occupants and their behavior, appliances’ characteristics, historical

energy consumption, weather conditions, and macro-economic
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indicators. Stochastic predictors, based on time-series approach,

such as auto regressive moving average methods, are also used

to forecast home energy consumption [6–8].

Bottom-up models, on the other hand, identify the contribution

of each end-use towards the aggregate energy consumption of the

residential sector [9–11]. Bottom-up approaches refine the model-

ing of energy consumption, allowing the simulation of the effects

of technology improvements and policy decisions. These models

calculate the energy consumption of an individual or group of

households and extrapolate the results to a region or nation. This

aggregate result is generally accomplished by using a weight for

each modeled house or group of houses based on its representation

of the sector [2]. Moreover, the bottom-up approach has the capa-

bility of determining total energy consumption of the residential

sector without relying on historical data. Common input data to

bottom-up models include dwelling characteristics (e.g., size and

layout, building materials, and appliances’ characteristics), weath-

er conditions, household occupant behavior and related use of

appliances, lighting use, and characteristics of heating, ventilation,

and air conditioning (HVAC) systems. This high level of detail rep-

resents the strength of bottom-up models, providing the ability to

model the impact of different technology options and allowing the

implementation of energy optimization techniques. On the other

hand, the use of such detailed information, in particular regarding

household members’ behavior, introduces great model complexity.

The input data requirements are typically greater than that of top-

down models.

A number of works propose using bottom-up techniques to

model residential energy use. In 1994 Capasso et al. [9] propose

a model for evaluating the impact of demand side management

on residential customers. A Monte Carlo method is used to capture

the relationship between residential demand and the psychological

and behavioral factors typical of the household occupants. Richard-

son et al. [10] introduce a Markov-chain technique to generate syn-

thetic active occupancy patterns, based upon survey data of

people’s time-use in the United Kingdom. The stochastic model

maps occupant activity to appliance use, creating highly-resolved

synthetic demand data. The same authors also include a lighting

model, which accounts for natural daylight [12]. Widén et al.

[11,13] follow a similar approach to relate residential power de-

mand to occupancy profiles. The model is calibrated and validated

against relatively small time-use and electricity consumption data-

sets collected in Sweden. The authors show that realistic demand

patterns can be generated from these activity sequences.

In this work a highly-resolved bottom-up approach is devel-

oped to model residential energy demand in the United States.

The model is calibrated to simulate an average household in the

US and household members’ behaviors are simulated by using a

Markov process calibrated using time-use data collected in the

2003–2009 American Time Use Survey (ATUS).1 The proposed mod-

el differs from existing bottom-up techniques in four important

ways. One is that HVAC use and demand are modeled with much

greater detail using an engineering physically-based approach. The

second is that a large-scale time survey dataset is used to calibrate

the behavioral model—existing approaches rely on much smaller

datasets. Third, some of the parameters of the model, which are dif-

ficult to estimate, are calibrated using actual metered residential

electricity data. Finally, rigorous statistical tests are used to validate

the model by comparing estimated demand profiles generated by

the model against metered residential electricity demand data. In

this way the stochastic features of the modeled residential demand

profiles are validated.

This model can be used as a tool to simulate the status quo of the

residential sector and, ultimately, evaluate the impact of energy

policies and different technology adoption and deployment scenar-

ios on energy use, cost, and emissions. The proposed model can

also be used as an input to detailed power system simulations,

for instance determining the impacts of diurnal load patterns and

renewable uncertainty and variability on day-ahead and real-time

unit commitment, dispatch, and power flows. High model resolu-

tion is needed to make the model suitable to be used for such anal-

ysis. This framework allows consumers to compare costs and

benefits with different load schedules and enables energy consum-

ers to participate actively in energy markets. It can also help utili-

ties evaluate the use of price signals as a means of shaping the

electricity load in order to reduce production costs and make de-

mand more flexible to facilitate the integration of renewable en-

ergy sources. Moreover, the proposed model can be used as an

input to long-term capacity planning and expansion studies.

Depending on the specific end application, the model may be used

to generate a load profile for an individual household, or the load

profiles of multiple buildings may be aggregated to simulate the

load of a broader system.

2. Model structure

The aim of the proposed model is to generate the electricity de-

mand profile of a residential household. Residential demand pro-

files are, by nature, variable and depend on multiple physical

factors, such as weather, temperature, and dwelling characteristics

but also on the behavior of household members. Thus the modeled

demand depends on physical properties and the location of the

dwelling and on the number and typology of individuals living in

the household. Because the model is intended to generate a typical

residential demand profile, individual behavior is modeled

stochastically.

The total electricity power demand of a dwelling, _W , is com-

puted as:

_W ¼ _Wcold þ _WHVAC þ _Wact þ _W light þ _W fix

where _W is the total electric power demand, expressed in W; _Wcold

represents the power used by cold appliances, such as refrigerators

and freezers; _WHVAC is the electric power used by the HVAC system

to maintain the desired thermal comfort in the house; _Wact is the

electricity use directly related to activities of the household mem-

bers, i.e., cooking or use of dishwasher, etc.; _W light is the electric

power consumption due to lighting; and _W fix is a constant time-

invariant term that represents ubiquitous electric consumption,

i.e., lights that are always on and appliances’ stand-by power.

Each of these terms includes power losses due to system ineffi-

ciencies, as well as thermal dissipation and electrical losses. The

power consumption categories present different dependencies,

which determine the underlying structure of the modeling ap-

proach used. _Wcold depends only on the size and number of the cold

appliances in the house—the effect of external temperature and

individuals opening the cold appliances’ doors are neglected.
_WHVAC depends on the physical characteristics of the HVAC system

installed, the thermal comfort required by the occupants, proper-

ties of the thermal envelope of the dwelling, and on weather con-

ditions that the household has to withstand. _Wact depends on the

behavior of the household members and on activity to power con-

version factors, namely the wattage of appliances used when

energy-intensive activities are conducted. _W light depends on the

amount of natural lighting available and building occupancy. This

is captured using different lighting power conversion parameters

during the day and night.

1 The ATUS data are publicly available for download at http://www.bls.gov/tus/

home.htm.
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The lighting power conversion parameters and _W fix are difficult

to assess, and are computed using a linear regression model

against actual metered data provided by American Electric Power

(AEP). Detailed models for the cold appliance, HVAC systems, and

lighting demand components are available in the literature [14–

16].

The model is flexible in design, allowing for energy consump-

tion to be modeled at any time resolution desired by the user.

The case study presented in Section 3 uses a 10-min time step to

model electricity demand. Moreover, the HVAC model uses a 1-s

time resolution to capture the thermal dynamic evolution of the

air inside the building. The data against which the model is vali-

dated reports electricity consumption at hourly time steps. Thus,

the simulated 10-min consumption profiles and the 1-s HVAC con-

sumption are aggregated to arrive at hourly values, which can be

compared to the metered data.

2.1. Cold appliance energy consumption

Recent estimates place the average nominal power rating of a

refrigerator at about 725W.2 Moreover, the total yearly electricity

consumed by cold appliances in a typical American dwelling was

estimated to be 14.9% of total residential electricity consumption

in 2010. The U.S. Department of Energy’s Energy Information Admin-

istration reports annual per-household electricity consumption of

11,496 kWh in 2010.3 These values imply 1,713 kWh of annual

per-household cold appliance energy consumption. Assuming that

a refrigerator is an on/off device that always operates at its nominal

power when on, the average operating time can be estimated by

dividing annual energy consumption by nominal power as:

top ¼
1713 kW h

0:725 kW
¼ 2363 h:

Cold appliance consumption is simulated using a Bernoulli dis-

tribution, with the success probability fixed so the expected on

time of the appliance is 2363 hours every year. Assuming that

the use is evenly distributed during the year, this implies that a

typical cold appliance works 27% of the time. Since the model is

implemented using a 10-min time step this translates into a cold

appliance running for five random 10-min intervals every 3 hours.

This would yield daily energy consumption of about 4.83 kWh.

Fig. 1 shows an example of the resulting power profile over a 1-

day period.

2.2. HVAC energy consumption

Space conditioning end-use includes heating, ventilation, and

air conditioning and represents the most significant residential en-

ergy consumption in the United States. The main purpose of an

HVAC system is to maintain indoor air quality through adequate

ventilation with filtration and provide thermal comfort [14]. Over

70% of residential buildings in the US use central forced-air distri-

bution systems for heating and air-conditioning purposes [17]. The

model proposed in this work uses an approach based on overall

thermal resistance theory to simulate the behavior of a typical

air-based HVAC system [18]. A control volume analysis, based on

fundamental principles of thermodynamics and heat transfer is

performed for the volume including solely the air present in the

house, as illustrated in Fig. 2.

The thermal dynamic evolution of the air is given by:

macp
dTa

dt
¼ _mHVAC � cpðTHVAC � TaÞ �

Ta � T1

Rtot

; ð1Þ

where the variables are defined: ma as the air mass inside the con-

trol volume (kg); cp as the air specific heat (kJ/kg K); Ta as the air

temperature inside the control volume (�C); _mHVAC as the HVAC

air flow rate (kg/s); Rtot as the equivalent thermal resistance of

the household envelope (K/W); THVAC as the HVAC supply air tem-

perature (�C); and T1 as the environment temperature (�C).

Rtot is computed as:

Rtot ¼
1

ho � Awall

þ Rwall þ
1

hi � Awall

� ��1
"

þ
1

ho � Awind

þ Rwind þ
1

hi � Awind

� ��1
#�1

;

where ho and hi are the outside and inside convective coefficients,

respectively. Awall and Awind are the surface of walls and windows

in contact with the environment, respectively. These surfaces are

normal to the direction of heat transfer. Rwind and Rwall are the ther-

mal resistances of the windows and walls, respectively. Values of

these parameters are reported in Table 2.

The first term on the right hand side of Eq. (1) represents the en-

ergy supplied by the HVAC system, namely the energy carried by

the air leaving the HVAC system and entering the household at

temperature THVAC. The second term represents the heat transfer

between the household, at temperature Ta, and the environment,

at temperature T1.

Eq. (1) can be analytically solved to obtain the dynamic evolu-

tion of the temperature of the air inside the household as:

Ta ¼ ½T0 � A�e�t=s þ A;

where

A ¼
T1
Rtot

þ
_mHVAC �THVAC

ma

_mHVAC �cpþ
1

Rtot

ma �cp

;

1

s
¼

_mHVAC � cp þ
1

Rtot

ma � cp
;

and T0 represents the initial condition.

The HVAC model requires several assumptions regarding the

physical characteristics of the system, including the size of the

ducts, fans, and thermal machines. Ductwork sizes are determined

by minimizing the net present installation and operating cost [18].

The ducts and fans are sized such that the maximum air flow rate

matches the worst winter and summer conditions for the location

of the building being modeled (values chosen for these conditions

and other HVAC design parameters described below are reported
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Fig. 1. Simulated power consumption of a cold appliance during a one-day period.

2 The U.S. Department of Energy publishes statistics regarding the energy use of the

average US appliance stock at http://www.energysavers.gov/your_home/appliances/

index.cfm/mytopic=10050. A value of 725 W was reported as of February 2012.
3 The U.S. Energy Information Administration periodically publishes the Residential

Energy Consumption Survey (RECS), a national area-probability sample survey that

collects residential energy-related data, available at http://www.eia.gov/consump-

tion/residential/index.cfm.
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in Table 2). Once the air flow rate is chosen among the most com-

mon available options for residential systems, the furnace neces-

sary to match the worst winter condition is selected.

The selection of both air flow rate and the nominal power of the

furnace lead to a fixed value of the temperature of the air entering

the household that, depending on the specific system chosen, var-

ies from 40 to 66 �C. The possible air flow rate and furnace size

combinations, as well as the returning air temperature from the

HVAC system, for commercially available systems are reported in

Table 1.4 Since cooling machines are more scalable than furnaces

and a greater variety of models is available on the market, it is as-

sumed that the temperature of the air from HVAC during the sum-

mer is constant and equal to 13 �C [18].

The model determines whether each day modeled is a heating

or cooling day. This is meant to replicate the decision made by

the occupant to switch one of the two HVAC systems on. A simple

but realistic control strategy is implemented based on a relay that

allows a tolerance of 1 �C around the desired temperature, which is

set to 21.1 �C (70 �F).

HVAC energy consumption is divided into two components: the

power consumed by the fans to circulate the air, _W fan, and the

power absorbed by the HVAC equipment. The former can be com-

puted as:

_W fan ¼
_mHVAC � DPtot

gfan � gmotor

;

where the total pressure drop, DPtot, is defined to equal Pstatic þ q v
2

2
.

Pstatic is the static pressure drop, q is the air density, and v is the air

velocity. In this work v is assumed to equal 4 m/s [18], the midpoint

of the range of suggested values to avoid noise. gfan and gmotor are

the efficiencies of the fan and motor, respectively, and the product

gfangmotor is assumed to equal 0.15 [19].

The HVAC equipment energy consumption differs depending on

whether the system is in cooling or heating mode. In heating oper-

ation, the energy required to maintain the desired thermal condi-

tion in the household, namely the power required to generate

the necessary heat, can be obtained using two approaches: tradi-

tional furnace heating or an all-electric HVAC system. In the former

case, the primary power required, Ėprimary, can be computed as:

_Eprimary ¼
_mHVAC � cp � ðTHVAC � TaÞ

gfurnace

;

where gfurnace the efficiency of the furnace, which is assumed to

equal 0.85.

This power is directly obtained via combustion of fuels (e.g. nat-

ural gas, fuel oil, or kerosene). In such a case _Eprimary does not con-

tribute to the building’s electricity load, which is represented

solely by the power consumed to circulate the air, namely _W fan.

Alternatively the heat can be obtained using an all-electric system.

In this second case the heat is converted into an electric load by

means of a coefficient of performance, COP. Thus the primary en-

ergy required, _Eprimary, equals the electricity consumption, _Wheating ,

which is computed as:

_Eprimary ¼ _Wheating ¼
_mHVAC � cp � ðTHVAC � TaÞ

1þ COP
:

Note that COP is defined as the thermal energy added to the

house per unit of electric energy absorbed by the HVAC system,

or as:

Fig. 2. Schematic of the control volume used in HVAC analysis.

Table 1

Available air flow rates and furnace sizes for residential systems and resulting temperature of the air [�C] from the furnace [1].

Input capacity (kBTU/h)

45 50 60 70 75 80 90 100 115 120 125 140

Air flow (cfm)

800 50 53 59 66

1200 40 42 47 51 53 55 59 64

1600 43 45 47 50 53 58 59 61

2000 44 47 50 52 53 57

4 The values in the table are given in imperial units, since these units are used in

the design and marketing of HVAC systems in the US.
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COP ¼
EER

3:412
;

where EER represents the energy efficiency ratio, the value of which

is typically labeled on HVAC equipment sold in the US. EER repre-

sents the cooling output, measured in BTU, divided by the total elec-

tric energy input, measured in watt-hours, during the cooling

season.

Fig. 3 shows the evolution of the air temperature in the control

volume and the environment temperature on 9 May, 2010 in the

Indiana/Michigan area. For the purpose of this simulation, actual

historical environment temperature data are used. This figure also

reports the resulting total hourly electric energy consumed by the

HVAC system. This is shown for both an HVAC system coupled with

a furnace and for an all-electric HVAC system. Table 2 summarizes

the HVAC system parameters used. For an HVAC system coupled

with a furnace, the total simulated electricity consumption for

the day is 0.53 kWh, and 18.2 kWh of heat are added via the com-

bustion of fuel in the furnace. For an all-electric system, the total

simulated electricity consumption for the day is 5.2 kWh.

In summer operation the HVAC system must both cool and re-

duce air humidity. The total energy requirement of this process,

which is proportional to the total enthalpy change, Dhtotal, can be

computed using the sensible heat ratio, SHR. This term measures

the ratio between the sensible heat load (e.g. energy used to cool)

and total heat load, and is defined as:

SHR ¼
Dhsensible

Dhtotal

;

where Dhsensible is the sensible enthalpy change. Typical SHR values,

which range from 0.6 to 0.9 for different locations in the US in dif-

ferent American Society of Heating, Refrigerating, and Air-Condi-

tioning Engineers (ASHRAE) standard years are used [20]. The

cooling power in the summer is then given by:

_Wcooling ¼
_mHVAC � cp � ðTa � THVACÞ

SHR � COP
:

The total electricity consumption during the cooling days can be

obtained by summing _W fan and _Wcooling . In forecasting energy con-

sumption for space conditioning in US residences, some level of re-

gional disaggregation is desirable due to the wide differences in

climate and the associated heating and cooling requirements. In

this approach this geographic variation is captured by the variation

of both the environment temperature and the SHR parameter.

In this work, the air mass of the control volume is computed for

a building with an area of 223 m2 (2400 ft2) and a height of 2.44 m

(8 ft). To maintain comfort, a system with an air flow rate capacity

of 0.46 kg/s (800 cfm) coupled with a furnace with a nominal

power of 13.2 kW (45 kBTU/h) is required. This implies a return

air temperature of 50 �C. Table 2 summarizes the HVAC parameters

used. This approach to model HVAC power consumption is pre-

sented by Muratori et al., where the details and a validation against

actual data are provided [21].

2.3. Occupant behavior and related electricity use in buildings

Modeling individuals’ behavior is a complex task, due to the sto-

chastic nature of the activities performed. Factors such as the num-

ber of individuals in the household, life habits of each individual,

differences in energy use associated with different activities, daily

and weekly variations in behavior, and load coincidence should all

be captured. This model uses a heterogeneous Markov chain to

model occupant behavior and predict the associated energy con-

sumption. Pandit and Wu [22] use a similar approach to model res-

idential electricity demand and Widén and Wäckelga�rd [11]
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Fig. 3. (a) Simulated temperature evolution and (b) resulting HVAC electricity consumption in a typical household on 9 May, 2010 in the Indiana/Michigan area.

Table 2

Parameter values used in the proposed HVAC model

Parameter Value Unit

Household size 223 m2

Rwall (R-15) 2.64 m2 K/W

Rwindow (single-pane) 0.183 m2 K/W

hi 5 W/m2 K

ho 30 W/m2 K

WWR (windows-to-wall ratio) 17% (–)

gfurnace 0.85 (–)

gfan � gmotor 0.15 (–)

Pstatic 135 Pa

v 4 m/s

SHR 0.7 (–)

COP 2.5 (–)

Desired temperature 21.1 �C

HVAC summer air temperature 13 �C

HVAC winter air temperature 50 �C

Hottest environment temperature 38 �C

Coldest environment temperature �30 �C
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develop a similar model to predict residential demand in Sweden.

As a first step a synthetic activity pattern for each household mem-

ber is generated and then this pattern is converted into _Wact by

using power conversion factors associated with each activity.

All possible activities are classified into nine categories, which

differ in terms of the energy required to perform the activities.

These activities are:

1. Sleeping.

2. No-power activity (e.g. reading).

3. Cleaning (e.g. vacuuming).

4. Laundry.

5. Cooking.

6. Automatic dishwashing.

7. Leisure (e.g. use of the TV, stereo, computer, or videogame

system).

8. Away, working.

9. Away, not working.

The Markov chain model assumes that each household member

is in one of these nine states in every discrete time step. As time

proceeds from t to t + 1 a state transition occurs. These transitions

are governed by transition probabilities, pd;h
i;j , which give the prob-

ability of going from state i to state j on a type-d day during hour h.

Diurnal behavior patterns are reproduced by allowing transition

probabilities to vary over the 24 hours, which is represented by

the index h. Similarly, behavior differences between working and

non-working days are captured by allowing the probabilities to

vary between working (d = 1) and non-working days (d = 0). This

approach requires the initial state to be chosen, which is that all

individuals are sleeping at 4 a.m. of the first day simulated. Then

at each time step a uniformly-distributed pseudorandom number,

x, is generated and compared to the cumulative distribution of the

state transition to determine which transition takes place. This is

illustrated in Fig. 4. Because x is in the fifth interval in the example

shown in the figure, this implies that the occupant will transition

to the fifth state.

Input data of the activity-related power consumption model are

the number of household members, the transition probabilities for

each individual, and power conversion factors. The transition prob-

abilities are derived from the ATUS data, and different typical agent

types, such as working males and working females (with different

associated transition probabilities), are modeled. Further data-re-

lated details are discussed in Section 3.

2.4. Lighting energy consumption

Lighting loads represent a large proportion of residential elec-

tricity demand, and also contributes to seasonal and diurnal load

variations [23]. Proper modeling of this component requires loca-

tion, solar irradiance, dwelling orientation, and lighting technology

data. This work assumes that different power consumption levels

during the day and the night are used to light the house when at

least one member is present and doing something other than

sleeping.

Sunset and sunrise times are computed based on the date and

coordinates of the building being modeled using an approach

developed by the US Geological Survey.5 To estimate the diurnal

and nocturnal lighting power conversion factors, a linear regression

model, which is explained in Section 3.2, is used.

3. Behavioral model calibration and input data

3.1. Time-use data

In order to estimate the transition probability matrices used in

the behavioral Markov chain model, detailed time use records are

required. The ATUS is taken every year from a subsample of partic-

ipants in the Consumer Preferences Survey (CPS) administered by

the U.S. Bureau of Labor Statistics. ATUS is designed to provide

researchers with detailed data on the time allocation of American

adults. Though administered annually, ATUS is not a panel survey.

Each annual survey is based on a different set of participants, and is

therefore strictly longitudinal. ATUS respondents are interviewed

on a randomly selected day about their activities on the previous

day. Each activity is recorded and coded by the interviewer, along

with its duration in minutes, starting at 4 a.m. and lasting until

midnight. Because this survey is administered with the CPS, exten-

sive demographic information is also available about the respon-

dent and others sharing the same household. Moreover, because

the ATUS relies on a stratified sampling technique, each respon-

dent k has a weight, wk, placed on his responses, which represents

the weight of those data relative to the total population.

In this work, respondents are stratified into five agent types:

working and non-working males and females and children. Table 3

summarizes the number and average age of respondents corre-

sponding to each agent type. Working and non-working male

and female respondents are all between the ages of 18 and 85,

whereas children are between the ages of 15 and 17. ATUS data

have been collected uniformly across the year during which the

survey was conducted.

Because people’s behavior changes on an hour-to-hour and day-

to-day basis, the ATUS data are used to estimate the transition

probability matrices, Pd,h, for weekdays (d = 1) and weekends

(d = 0) and for each hour (h = 1, . . . , 24). Given ATUS data from K

respondents corresponding to a single agent type, their activities

are divided into the nine categories enumerated in Section 2.3.

The number of transitions at 1-min intervals between states is

counted, yielding 60 observations per respondent per hour. The

transition probability for that agent type is then calculated as:

pd;h
i;j ¼

wk � n
d;h
i;j;k

P

k

P

iwk � n
d;h
i;j;k

;

where nd;h
i;j;k is the number of transitions that respondent k makes

from state i to state j during hour h of day d. The resulting transition

Fig. 4. Random simulation of state transition between two subsequent time periods

[11].

Table 3

Summary statistics of ATUS respondents.

Mean age Number of respondents

Working male 43 3649

Working female 43 3978

Non-working male 57 1706

Non-working female 56 3235

Child 16 565

Total population 43 13,133

5 This software tool, which is implemented in MATLAB, is publicly available for

download at http://woodshole.er.usgs.gov/operations/sea-mat/air_sea-html/

index.html.
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matrices represent the probability of transitioning from one state to

another at 1-min time intervals. Since the case study presented in

this work uses a 10-min time step, the transition probability matri-

ces are raised to the 6th power. Each row is then scaled to sum to

one, to account for the limitations of numerical precision. This gives

transition probabilities from one state to another at 10-min time

intervals.

An in-sample validation of the activity pattern generator is done

by comparing the modeled behavior to the underlying ATUS data

used to determine the transition probabilities. Muratori et al. pres-

ent a graphical comparison of the underlying ATUS data to a sim-

ulation of 1000 individuals over 1000 days, showing a good fit

between the two datasets [24]. A 95% confidence interval for the

simulated activity patterns for each of the nine different activities

can be generated by performing a sufficiently large number of sim-

ulations. Fig. 5 reports 95% confidence intervals created by simulat-

ing 40 people for 100 days for a total of 4000 person-days

compared to 3854 working males present in the ATUS data. The

figure shows that the behavior of the ATUS respondents is within

the confidence interval for most (95.3%) of the simulated hours.

The vertical scale differs between the nine activities, reflecting dif-

ferent relative frequencies at which the activities are performed.

Fig. 6 shows the simulated behavior pattern for a working male

during a 3-working-day period. The simulated individual works an

average of 10 hours and sleeps approximately 7.5 hours per day,

which is a reasonable activity pattern. Moreover, the times of

working and sleeping are broadly consistent with typical human

behavior. Two of the high-power activities, laundry and cooking,

are not performed by this agent during these three days. These

activities are more commonly observed on weekends and for other

agent types, such as non-working females. The total power con-

sumed for activities in the household, _Wact , is computed by sum-

ming the power demand of each individual living in the household.

3.2. Power conversion parameters

Table 4 lists the power conversion parameters used to convert

activity patterns into power demands. These are based on the aver-

age wattage of the current American appliance stock.6 The laundry

activity is divided into two parts: 30 min washing machine use,
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Fig. 5. 95% confidence intervals for working males during holidays for the nine different activities.
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Fig. 6. Simulated behavior pattern for a working male during a 3-working-day

period.

6 Average values reported at http://www.energysavers.gov/your_home/appliances/

index.cfm/mytopic=10050 by the U.S. Department of Energy as of February 2012 are

used.
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which uses 425 W, followed by 90 min of drying, which uses

3400 W. In addition, the dishwashing activity is assumed to last

for one hour after it is initiated. All of the other activities are as-

sumed to be ‘instantaneous,’ in that the associated power is only

used when the individual is engaged in the activity.

The remaining power conversion parameters, namely lighting

power during day and night and the fixed time-invariant compo-

nent are adjusted according to the household location, size, and

the attitudes of the building occupants toward energy use. In this

work a least-squares linear regression model is used to estimate

these parameters. This is done by estimating these coefficients to

fit modeled consumption data to metered hourly-average per-cus-

tomer electric load data provided by AEP. The AEP data report aver-

age hourly electric loads for two service territories, Indiana/

Michigan and Texas. These regions differ in that Indiana/Michigan

primarily has non-electric heating, whereas Texas is dominated by

all-electric heating systems. The first data set is used to estimate

the conversion parameters and a comparison against both data sets

is reported in the next section. Temperature data, which corre-

spond to the metered consumption data, have been provided by

AEP and are used to estimate HVAC consumption.

The linear regression model has the form:

y ¼ Xbþ �;

where y is a vector containing the difference between hourly me-

tered consumption (reported by AEP) and the sum of modeled

HVAC and cold appliance consumption, X is a binary matrix, which

indicates whether each activity is performed during each hour or

not, and is determined by the Markov chain model, b is the vector

of power conversion parameters, and � is the vector containing

the random error terms. The b’s corresponding to the power conver-

sion factors in Table 4 are fixed to these values. The remaining b val-

ues are estimated using ordinary least-squares.

To run the regression model a simulation including 400 house-

holds is performed. The physical properties of the buildings are

summarized in Table 2. The breakdown of household occupancy is:

� 37.5%: One working male and one working female.

� 37.5%: One working male and one non-working female.

� 12.5%: One single working male.

� 12.5%: One single working female.

The resulting electricity power factors for lighting and the fixed

component are:

� Day-time lighting power: 270 W.

� Night-time lighting power: 370 W.

� Constant electric consumption, _W fix: 230 W.

These coefficients are estimated based on the proposed cold

appliance, HVAC, and Markov-based activity models and the power

conversion factors given in Table 4.

4. Model validation

In this section a two-step validation methodology is presented.

First, the model output is compared against the dataset used for

the calibration (Indiana/Michigan) to verify that the simulated re-

sults have the same statistical features as the metered data. Sec-

ond, the model is used to simulate power demand for a different

region (Texas) and its output is compared with metered residential

demand data from that region. Since the Texas dataset is not used

for model calibration, this provides an out-of-sample model valida-

tion. Fig. 7 is a scatterplot showing hourly modeled residential

electricity demand against metered demand for AEP’s Indiana/

Michigan service territory, which is the dataset used for model cal-

ibration. The figure shows a linear relationship between the mod-

eled and metered data. Simulated data for the Indiana/Michigan

region fit the actual data with an R2 of 0.5107.

A non-parametric Mann–Whitney U test is performed to assess

whether the distributions of two samples of independent observa-

tions are equal [25]. The test verifies if one of two samples tends to

have larger values than the other, namely checking that there is a

symmetry between populations with respect to probability of ran-

dom drawing of a larger observation.

The test is unable to reject the null hypothesis at the 99% con-

fidence (the p-value is 0.0965), suggesting that the modeled and

metered data have the same underlying distribution. Moreover,

the difference of the means of the two samples is very small

(1118W and 1122W for the metered and modeled datasets,

respectively). The difference of the standard deviations of the

two datasets is larger (403 W for the metered as opposed to

425W for the modeled data). Therefore, a Levene/Brown–Forsythe

test is performed to determine if the variances are statistically sig-

nificantly different [26]. Again, the test does not detect signifi-

cantly different variances at 99% confidence level (the p-value is

0.024).

The model is further validated by comparing simulated and me-

tered demand data for Texas. Fig. 8 shows modeled per-household

electric power consumption for an average household in Texas and

the corresponding AEP data.

The figure shows that the model, when fed with typical average

data, is able to replicate the trend of the actual metered data. Sim-

ulated data for the Texas region fit the actual data with an R2 of

0.5952. The figure shows that the model captures diurnal load pat-

terns as well as seasonal variations in demand. Residential loads in

the winter are rarely greater than 1.5 kW in the Indiana/Michigan

area whereas demands above 2.5 kW are seen in Texas. This re-

flects the greater use of all-electric heating systems in Texas, the

greater electricity consumption of which is captured by the HVAC

model. Summer loads in Texas also tend to show greater peaks and

span a greater number of months, showing the effect of the war-

mer and longer cooling period. A Mann–Whitney U test is again

Table 4

Power conversion parameters used in behavioral model.

Activity Power consumption (W)

Sleeping 0

No-power activity 0

Cleaning 1250

Laundry 425 + 3400

Cooking 1225

Automatic dishwashing 1800

Leisure 200

Away working 0

Away non-working 0
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Fig. 7. Scatterplot of hourly modeled and metered residential electricity demand in

AEP Indiana/Michigan service territory.
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unable to reject the null hypothesis that the distributions of the

modeled and metered data for Texas are equal at the 99% confi-

dence level (the p-value is 0.1376). In this second case the metered

and modeled datasets present a greater difference in means,

1519W and 1503W, respectively. Moreover, the difference of

the standard deviations of the two datasets is larger compared to

the calibration case (609 W for the metered as opposed to 625W

for the modeled data). A Levene/Brown–Forsythe test does show

differences in the standard deviations, but the difference is below

3% and likely due to intrinsic differences in the residential power

usage of the two regions. Such a difference in the variance of sim-

ulated and metered data is in line with what is reported in the lit-

erature. Specifically, Widén andWäckelga�rd [11] report descriptive

statistics for the end-use-specific power demand of 14 modeled

households and corresponding measurements. Their model gives

means and standard deviations that differ from the metered data

by 1.8% and 3.2%, respectively. Bartusch et al. [27] provide further

discussion of the variance of annual electricity consumption in sin-

gle-family homes as well as the impact of household features and

building properties in Sweden.

5. Conclusions

This work proposes a model to simulate residential electricity

consumption. The model is able to simulate the power demand

of a household consisting of multiple individuals, considering cold

appliances, HVAC, lighting, and activity-related power consump-

tion. Activity patterns for individuals are modeled using a hetero-

geneous Markov chain, calibrated with real data collected by the

U.S. Bureau of Labor Statistics. Using an in-sample validation the

simulated activity patterns are shown to replicate the underlying

behavioral data, demonstrating the validity of this approach. Using

power conversion factors it is possible to reconstruct power con-

sumption of a single or an aggregate group of households with de-

sired characteristics and composition. A rigorous statistical

framework is used to validate the modeled electricity demand

against metered data provided by AEP. The results show reason-

able demand patterns that capture annual and diurnal variations,

load fluctuations, and diversity between household configuration,

location, and size. The model generates electricity demand profiles

with the same statistical features as residential metered data.

The effects of different technologies can be analyzed by varying

the appropriate model parameters. For instance, a more efficient

HVAC system can be modeled by adjusting the COP and the poten-

tial savings of high-efficiency lighting can be captured by adjusting

the lighting conversion parameters. Modeling of this nature is use-

ful as it can guide policy decisions regarding the residential stock,

both old and new. By quantifying the consumption and predicting

the impact or savings due to retrofits and new materials and tech-

nologies, decisions can be made to support energy supply, retrofit

and technology adoption incentives, building codes, or even demo-

lition and re-construction. This modeling technique can also be

coupled with long-term investment models to determine how en-

ergy-saving technologies would be adopted by consumers and the

impact of policy and other decisions on such adoption.
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