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HIGHLIGHTS

» Activity patterns for individuals are modeled using a heterogeneous Markov chain, calibrated with time-use data.

» The residential demand model allows reconstructing power consumption of a single or an aggregate group of households.
» A rigorous statistical validation framework has been developed to validate the proposed model.

» The residential demand model can serve as a tool to evaluate the effects of different technologies.

» The simulated residential demand loads show highly realistic patterns.
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This paper presents a model to simulate the electricity demand of a single household consisting of multi-
ple individuals. The total consumption is divided into four main categories, namely cold appliances, heat-
ing, ventilation, and air conditioning, lighting, and energy consumed by household members’ activities.
The first three components are modeled using engineering physically-based models, while the activity

patterns of individuals are modeled using a heterogeneous Markov chain. Using data collected by the
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U.S. Bureau of Labor Statistics, a case study for an average American household is developed. The data
are used to conduct an in-sample validation of the modeled activities and a rigorous statistical validation
of the predicted electricity demand against metered data is provided. The results show highly realistic
patterns that capture annual and diurnal variations, load fluctuations, and diversity between household
configuration, location, and size.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This era of fossil fuel dependency and concern about green-
house gas emissions has increased interest in the use of policy
and technology solutions to reduce and shift energy use. The resi-
dential sector accounted for about 22% of total primary energy con-
sumption in the US in 2009, indicating that there are major
potential gains from implementing such solutions in residential
settings [1]. The potential energy, cost, and emissions savings of
such policies and technologies can be investigated by modeling
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their impacts on residential energy demand and the resulting
interactions between this demand and the power grid, renewable
generation, energy storage, and plug-in electric vehicles.

Two general classes of techniques are available to model resi-
dential power demand: top-down and bottom-up models [2].
Top-down models use estimates of total residential sector energy
consumption, together with other pertinent macro variables, to
attribute energy consumption to characteristics of the housing sec-
tor. This class of models can be compared to econometric models,
which require little detail of the actual consumption process. These
models treat the residential sector as an energy sink and regress or
apply factors that affect consumption to determine trends [2-5].
Depending on availability, the input data required to develop these
models can include the structural characteristics of the dwellings,
occupants and their behavior, appliances’ characteristics, historical
energy consumption, weather conditions, and macro-economic
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indicators. Stochastic predictors, based on time-series approach,
such as auto regressive moving average methods, are also used
to forecast home energy consumption [6-8].

Bottom-up models, on the other hand, identify the contribution
of each end-use towards the aggregate energy consumption of the
residential sector [9-11]. Bottom-up approaches refine the model-
ing of energy consumption, allowing the simulation of the effects
of technology improvements and policy decisions. These models
calculate the energy consumption of an individual or group of
households and extrapolate the results to a region or nation. This
aggregate result is generally accomplished by using a weight for
each modeled house or group of houses based on its representation
of the sector [2]. Moreover, the bottom-up approach has the capa-
bility of determining total energy consumption of the residential
sector without relying on historical data. Common input data to
bottom-up models include dwelling characteristics (e.g., size and
layout, building materials, and appliances’ characteristics), weath-
er conditions, household occupant behavior and related use of
appliances, lighting use, and characteristics of heating, ventilation,
and air conditioning (HVAC) systems. This high level of detail rep-
resents the strength of bottom-up models, providing the ability to
model the impact of different technology options and allowing the
implementation of energy optimization techniques. On the other
hand, the use of such detailed information, in particular regarding
household members’ behavior, introduces great model complexity.
The input data requirements are typically greater than that of top-
down models.

A number of works propose using bottom-up techniques to
model residential energy use. In 1994 Capasso et al. [9] propose
a model for evaluating the impact of demand side management
on residential customers. A Monte Carlo method is used to capture
the relationship between residential demand and the psychological
and behavioral factors typical of the household occupants. Richard-
son et al. [10] introduce a Markov-chain technique to generate syn-
thetic active occupancy patterns, based upon survey data of
people’s time-use in the United Kingdom. The stochastic model
maps occupant activity to appliance use, creating highly-resolved
synthetic demand data. The same authors also include a lighting
model, which accounts for natural daylight [12]. Widén et al.
[11,13] follow a similar approach to relate residential power de-
mand to occupancy profiles. The model is calibrated and validated
against relatively small time-use and electricity consumption data-
sets collected in Sweden. The authors show that realistic demand
patterns can be generated from these activity sequences.

In this work a highly-resolved bottom-up approach is devel-
oped to model residential energy demand in the United States.
The model is calibrated to simulate an average household in the
US and household members’ behaviors are simulated by using a
Markov process calibrated using time-use data collected in the
2003-2009 American Time Use Survey (ATUS).! The proposed mod-
el differs from existing bottom-up techniques in four important
ways. One is that HVAC use and demand are modeled with much
greater detail using an engineering physically-based approach. The
second is that a large-scale time survey dataset is used to calibrate
the behavioral model—existing approaches rely on much smaller
datasets. Third, some of the parameters of the model, which are dif-
ficult to estimate, are calibrated using actual metered residential
electricity data. Finally, rigorous statistical tests are used to validate
the model by comparing estimated demand profiles generated by
the model against metered residential electricity demand data. In
this way the stochastic features of the modeled residential demand
profiles are validated.

! The ATUS data are publicly available for download at http://www.bls.gov/tus/
home.htm.

This model can be used as a tool to simulate the status quo of the
residential sector and, ultimately, evaluate the impact of energy
policies and different technology adoption and deployment scenar-
ios on energy use, cost, and emissions. The proposed model can
also be used as an input to detailed power system simulations,
for instance determining the impacts of diurnal load patterns and
renewable uncertainty and variability on day-ahead and real-time
unit commitment, dispatch, and power flows. High model resolu-
tion is needed to make the model suitable to be used for such anal-
ysis. This framework allows consumers to compare costs and
benefits with different load schedules and enables energy consum-
ers to participate actively in energy markets. It can also help utili-
ties evaluate the use of price signals as a means of shaping the
electricity load in order to reduce production costs and make de-
mand more flexible to facilitate the integration of renewable en-
ergy sources. Moreover, the proposed model can be used as an
input to long-term capacity planning and expansion studies.
Depending on the specific end application, the model may be used
to generate a load profile for an individual household, or the load
profiles of multiple buildings may be aggregated to simulate the
load of a broader system.

2. Model structure

The aim of the proposed model is to generate the electricity de-
mand profile of a residential household. Residential demand pro-
files are, by nature, variable and depend on multiple physical
factors, such as weather, temperature, and dwelling characteristics
but also on the behavior of household members. Thus the modeled
demand depends on physical properties and the location of the
dwelling and on the number and typology of individuals living in
the household. Because the model is intended to generate a typical
residential demand profile, individual behavior is modeled
stochastically.

The total electricity power demand of a dwelling, W, is com-
puted as:

W= Wcold + WHVAC + Wact + Wlight + Wfix

where W is the total electric power demand, expressed in W; Weo
represents the power used by cold appliances, such as refrigerators
and freezers; Wyyac is the electric power used by the HVAC system
to maintain the desired thermal comfort in the house; W, is the
electricity use directly related to activities of the household mem-
bers, i.e., cooking or use of dishwasher, etc.; W,,-gm is the electric
power consumption due to lighting; and Wy, is a constant time-
invariant term that represents ubiquitous electric consumption,
i.e., lights that are always on and appliances’ stand-by power.

Each of these terms includes power losses due to system ineffi-
ciencies, as well as thermal dissipation and electrical losses. The
power consumption categories present different dependencies,
which determine the underlying structure of the modeling ap-
proach used. W, depends only on the size and number of the cold
appliances in the house—the effect of external temperature and
individuals opening the cold appliances’ doors are neglected.
Wivac depends on the physical characteristics of the HVAC system
installed, the thermal comfort required by the occupants, proper-
ties of the thermal envelope of the dwelling, and on weather con-
ditions that the household has to withstand. W depends on the
behavior of the household members and on activity to power con-
version factors, namely the wattage of appliances used when
energy-intensive activities are conducted. Wlight depends on the
amount of natural lighting available and building occupancy. This
is captured using different lighting power conversion parameters
during the day and night.
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The lighting power conversion parameters and W, are difficult
to assess, and are computed using a linear regression model
against actual metered data provided by American Electric Power
(AEP). Detailed models for the cold appliance, HVAC systems, and
lighting demand components are available in the literature [14-
16].

The model is flexible in design, allowing for energy consump-
tion to be modeled at any time resolution desired by the user.
The case study presented in Section 3 uses a 10-min time step to
model electricity demand. Moreover, the HVAC model uses a 1-s
time resolution to capture the thermal dynamic evolution of the
air inside the building. The data against which the model is vali-
dated reports electricity consumption at hourly time steps. Thus,
the simulated 10-min consumption profiles and the 1-s HVAC con-
sumption are aggregated to arrive at hourly values, which can be
compared to the metered data.

2.1. Cold appliance energy consumption

Recent estimates place the average nominal power rating of a
refrigerator at about 725 W.2 Moreover, the total yearly electricity
consumed by cold appliances in a typical American dwelling was
estimated to be 14.9% of total residential electricity consumption
in 2010. The U.S. Department of Energy’s Energy Information Admin-
istration reports annual per-household electricity consumption of
11,496 kWh in 2010.2 These values imply 1,713 kWh of annual
per-household cold appliance energy consumption. Assuming that
a refrigerator is an on/off device that always operates at its nominal
power when on, the average operating time can be estimated by
dividing annual energy consumption by nominal power as:

_1713kWh
? = 70.725 kW

Cold appliance consumption is simulated using a Bernoulli dis-
tribution, with the success probability fixed so the expected on
time of the appliance is 2363 hours every year. Assuming that
the use is evenly distributed during the year, this implies that a
typical cold appliance works 27% of the time. Since the model is
implemented using a 10-min time step this translates into a cold
appliance running for five random 10-min intervals every 3 hours.
This would yield daily energy consumption of about 4.83 kWh.
Fig. 1 shows an example of the resulting power profile over a 1-
day period.

=2363 h.

2.2. HVAC energy consumption

Space conditioning end-use includes heating, ventilation, and
air conditioning and represents the most significant residential en-
ergy consumption in the United States. The main purpose of an
HVAC system is to maintain indoor air quality through adequate
ventilation with filtration and provide thermal comfort [14]. Over
70% of residential buildings in the US use central forced-air distri-
bution systems for heating and air-conditioning purposes [17]. The
model proposed in this work uses an approach based on overall
thermal resistance theory to simulate the behavior of a typical
air-based HVAC system [18]. A control volume analysis, based on
fundamental principles of thermodynamics and heat transfer is

2 The U.S. Department of Energy publishes statistics regarding the energy use of the
average US appliance stock at http://www.energysavers.gov/your_home/appliances/
index.cfm/mytopic=10050. A value of 725 W was reported as of February 2012.

3 The U.S. Energy Information Administration periodically publishes the Residential
Energy Consumption Survey (RECS), a national area-probability sample survey that
collects residential energy-related data, available at http://www.eia.gov/consump-
tion/residential/index.cfm.
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Fig. 1. Simulated power consumption of a cold appliance during a one-day period.

performed for the volume including solely the air present in the
house, as illustrated in Fig. 2.
The thermal dynamic evolution of the air is given by:

T, . T,—-T.
manE = Myvac - Cp(Thvac — Ta) — T’ (1)

where the variables are defined: m, as the air mass inside the con-
trol volume (kg); ¢, as the air specific heat (kJ/kg K); T, as the air
temperature inside the control volume (°C); riyyac as the HVAC
air flow rate (kg/s); Ry as the equivalent thermal resistance of
the household envelope (K/W); Tyyac as the HVAC supply air tem-
perature (°C); and T, as the environment temperature (°C).

R0 is computed as:

1 1\
Rtot B <ho 'Awall * Rwall * hi 'Awall>

)]
hu 'Awind wind hi 'Awind '

where h, and h; are the outside and inside convective coefficients,
respectively. Ayq and Aying are the surface of walls and windows
in contact with the environment, respectively. These surfaces are
normal to the direction of heat transfer. Rying and Ry are the ther-
mal resistances of the windows and walls, respectively. Values of
these parameters are reported in Table 2.

The first term on the right hand side of Eq. (1) represents the en-
ergy supplied by the HVAC system, namely the energy carried by
the air leaving the HVAC system and entering the household at
temperature Tyyac. The second term represents the heat transfer
between the household, at temperature T,, and the environment,
at temperature T,..

Eq. (1) can be analytically solved to obtain the dynamic evolu-
tion of the temperature of the air inside the household as:

To = [To — Ale ™" + A,

where
Toe 4 Mvac Thvac

A= Ro v my

— Mot —,

Muvac Cp R,
Mq-Cp
3 1

1 Muvac- G + gy

= et
T Mg - Cp

and Ty represents the initial condition.

The HVAC model requires several assumptions regarding the
physical characteristics of the system, including the size of the
ducts, fans, and thermal machines. Ductwork sizes are determined
by minimizing the net present installation and operating cost [18].
The ducts and fans are sized such that the maximum air flow rate
matches the worst winter and summer conditions for the location
of the building being modeled (values chosen for these conditions
and other HVAC design parameters described below are reported
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Fig. 2. Schematic of the control volume used in HVAC analysis.

Table 1

Available air flow rates and furnace sizes for residential systems and resulting temperature of the air [°C] from the furnace [1].

Input capacity (kBTU/h)

45 50 60 70 75 80 90 100 115 120 125 140
Air flow (¢fm)
800 50 53 59 66
1200 40 42 47 51 53 55 59 64
1600 43 45 47 50 53 58 59 61
2000 44 47 50 52 53 57

in Table 2). Once the air flow rate is chosen among the most com-
mon available options for residential systems, the furnace neces-
sary to match the worst winter condition is selected.

The selection of both air flow rate and the nominal power of the
furnace lead to a fixed value of the temperature of the air entering
the household that, depending on the specific system chosen, var-
ies from 40 to 66 °C. The possible air flow rate and furnace size
combinations, as well as the returning air temperature from the
HVAC system, for commercially available systems are reported in
Table 1. Since cooling machines are more scalable than furnaces
and a greater variety of models is available on the market, it is as-
sumed that the temperature of the air from HVAC during the sum-
mer is constant and equal to 13 °C [18].

The model determines whether each day modeled is a heating
or cooling day. This is meant to replicate the decision made by
the occupant to switch one of the two HVAC systems on. A simple
but realistic control strategy is implemented based on a relay that
allows a tolerance of 1 °C around the desired temperature, which is
set to 21.1 °C (70 °F).

HVAC energy consumption is divided into two components: the
power consumed by the fans to circulate the air, Wf,m, and the
power absorbed by the HVAC equipment. The former can be com-
puted as:

 Iitgvac - AP
Wfan — HVAC tot ,
nfan * Nmotor

where the total pressure drop, APy, is defined to equal Pyqic + p%z.
Pgaric is the static pressure drop, p is the air density, and v is the air

4 The values in the table are given in imperial units, since these units are used in
the design and marketing of HVAC systems in the US.

velocity. In this work vis assumed to equal 4 m/s [18], the midpoint
of the range of suggested values to avoid noise. 7 and Hmoror are
the efficiencies of the fan and motor, respectively, and the product
Hfanfmotor 1S assumed to equal 0.15 [19].

The HVAC equipment energy consumption differs depending on
whether the system is in cooling or heating mode. In heating oper-
ation, the energy required to maintain the desired thermal condi-
tion in the household, namely the power required to generate
the necessary heat, can be obtained using two approaches: tradi-
tional furnace heating or an all-electric HVAC system. In the former
case, the primary power required, Epyimary, can be computed as:

E _ Mnyac - ¢ - (Trvac — Ta)
primary = )
”fumace

where #pmace the efficiency of the furnace, which is assumed to
equal 0.85.

This power is directly obtained via combustion of fuels (e.g. nat-
ural gas, fuel oil, or kerosene). In such a case Epr,-ma,y does not con-
tribute to the building’s electricity load, which is represented
solely by the power consumed to circulate the air, namely me,.
Alternatively the heat can be obtained using an all-electric system.
In this second case the heat is converted into an electric load by
means of a coefficient of performance, COP. Thus the primary en-
ergy required, Epr,-mmy. equals the electricity consumption, Whean-,.g,
which is computed as:

: . fitgvac - Cp - (Thvac — T,
Eprimary = W heating = R 1p T (Cg}/)AC )
Note that COP is defined as the thermal energy added to the

house per unit of electric energy absorbed by the HVAC system,
or as:
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Fig. 3. (a) Simulated temperature evolution and (b) resulting HVAC electricity consumption in a typical household on 9 May, 2010 in the Indiana/Michigan area.

Table 2

Parameter values used in the proposed HVAC model
Parameter Value Unit
Household size 223 m?
Ryan (R-15) 2.64 m? K/W
Ruwindow (single-pane) 0.183 m? K/W
h; 5 W/m? K
ho 30 W/m? K
WWR (windows-to-wall ratio) 17% (=)
’7furnace 0.85 (_)
Nfan * Hmotor 0.15 (—)
Ptatic 135 Pa
v 4 m/s
SHR 0.7 (=)
cop 2.5 (=)
Desired temperature 21.1 °C
HVAC summer air temperature 13 °C
HVAC winter air temperature 50 °C
Hottest environment temperature 38 °C
Coldest environment temperature -30 °C

cop = FER

3.412

where EER represents the energy efficiency ratio, the value of which
is typically labeled on HVAC equipment sold in the US. EER repre-
sents the cooling output, measured in BTU, divided by the total elec-
tric energy input, measured in watt-hours, during the cooling
season.

Fig. 3 shows the evolution of the air temperature in the control
volume and the environment temperature on 9 May, 2010 in the
Indiana/Michigan area. For the purpose of this simulation, actual
historical environment temperature data are used. This figure also
reports the resulting total hourly electric energy consumed by the
HVAC system. This is shown for both an HVAC system coupled with
a furnace and for an all-electric HVAC system. Table 2 summarizes
the HVAC system parameters used. For an HVAC system coupled
with a furnace, the total simulated electricity consumption for
the day is 0.53 kWh, and 18.2 kWh of heat are added via the com-
bustion of fuel in the furnace. For an all-electric system, the total
simulated electricity consumption for the day is 5.2 kWh.

In summer operation the HVAC system must both cool and re-
duce air humidity. The total energy requirement of this process,
which is proportional to the total enthalpy change, Ah;q, can be

computed using the sensible heat ratio, SHR. This term measures
the ratio between the sensible heat load (e.g. energy used to cool)
and total heat load, and is defined as:

Ahsensible
Ahtotal )

where Ahgensipre 1S the sensible enthalpy change. Typical SHR values,
which range from 0.6 to 0.9 for different locations in the US in dif-
ferent American Society of Heating, Refrigerating, and Air-Condi-
tioning Engineers (ASHRAE) standard years are used [20]. The
cooling power in the summer is then given by:

SHR =

Muyac - Cp - (Tq — Thvac)
SHR - COP

The total electricity consumption during the cooling days can be
obtained by summing Wi, and W giing. In forecasting energy con-
sumption for space conditioning in US residences, some level of re-
gional disaggregation is desirable due to the wide differences in
climate and the associated heating and cooling requirements. In
this approach this geographic variation is captured by the variation
of both the environment temperature and the SHR parameter.

In this work, the air mass of the control volume is computed for
a building with an area of 223 m? (2400 ft?) and a height of 2.44 m
(8 ft). To maintain comfort, a system with an air flow rate capacity
of 0.46 kg/s (800 cfm) coupled with a furnace with a nominal
power of 13.2 kW (45 kBTU/h) is required. This implies a return
air temperature of 50 °C. Table 2 summarizes the HVAC parameters
used. This approach to model HVAC power consumption is pre-
sented by Muratori et al., where the details and a validation against
actual data are provided [21].

Wcuuling =

2.3. Occupant behavior and related electricity use in buildings

Modeling individuals’ behavior is a complex task, due to the sto-
chastic nature of the activities performed. Factors such as the num-
ber of individuals in the household, life habits of each individual,
differences in energy use associated with different activities, daily
and weekly variations in behavior, and load coincidence should all
be captured. This model uses a heterogeneous Markov chain to
model occupant behavior and predict the associated energy con-
sumption. Pandit and Wu [22] use a similar approach to model res-
idential electricity demand and Widén and Wackelgard [11]
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Fig. 4. Random simulation of state transition between two subsequent time periods
[11].

develop a similar model to predict residential demand in Sweden.
As a first step a synthetic activity pattern for each household mem-
ber is generated and then this pattern is converted into W by
using power conversion factors associated with each activity.

All possible activities are classified into nine categories, which
differ in terms of the energy required to perform the activities.
These activities are:

1. Sleeping.

2. No-power activity (e.g. reading).

3. Cleaning (e.g. vacuuming).

4. Laundry.

5. Cooking.

6. Automatic dishwashing.

7. Leisure (e.g. use of the TV, stereo, computer, or videogame
system).

8. Away, working.

9. Away, not working.

The Markov chain model assumes that each household member
is in one of these nine states in every discrete time step. As time
proceeds from ¢ to t + 1 a state transition occurs. These transitions
are governed by transition probabilities, pfdth, which give the prob-
ability of going from state i to state j on a type-d day during hour h.
Diurnal behavior patterns are reproduced by allowing transition
probabilities to vary over the 24 hours, which is represented by
the index h. Similarly, behavior differences between working and
non-working days are captured by allowing the probabilities to
vary between working (d = 1) and non-working days (d = 0). This
approach requires the initial state to be chosen, which is that all
individuals are sleeping at 4 a.m. of the first day simulated. Then
at each time step a uniformly-distributed pseudorandom number,
x, is generated and compared to the cumulative distribution of the
state transition to determine which transition takes place. This is
illustrated in Fig. 4. Because x is in the fifth interval in the example
shown in the figure, this implies that the occupant will transition
to the fifth state.

Input data of the activity-related power consumption model are
the number of household members, the transition probabilities for
each individual, and power conversion factors. The transition prob-
abilities are derived from the ATUS data, and different typical agent
types, such as working males and working females (with different
associated transition probabilities), are modeled. Further data-re-
lated details are discussed in Section 3.

2.4. Lighting energy consumption

Lighting loads represent a large proportion of residential elec-
tricity demand, and also contributes to seasonal and diurnal load
variations [23]. Proper modeling of this component requires loca-
tion, solar irradiance, dwelling orientation, and lighting technology
data. This work assumes that different power consumption levels
during the day and the night are used to light the house when at
least one member is present and doing something other than
sleeping.

Table 3
Summary statistics of ATUS respondents.

Mean age Number of respondents
Working male 43 3649
Working female 43 3978
Non-working male 57 1706
Non-working female 56 3235
Child 16 565
Total population 43 13,133

Sunset and sunrise times are computed based on the date and
coordinates of the building being modeled using an approach
developed by the US Geological Survey.® To estimate the diurnal
and nocturnal lighting power conversion factors, a linear regression
model, which is explained in Section 3.2, is used.

3. Behavioral model calibration and input data
3.1. Time-use data

In order to estimate the transition probability matrices used in
the behavioral Markov chain model, detailed time use records are
required. The ATUS is taken every year from a subsample of partic-
ipants in the Consumer Preferences Survey (CPS) administered by
the U.S. Bureau of Labor Statistics. ATUS is designed to provide
researchers with detailed data on the time allocation of American
adults. Though administered annually, ATUS is not a panel survey.
Each annual survey is based on a different set of participants, and is
therefore strictly longitudinal. ATUS respondents are interviewed
on a randomly selected day about their activities on the previous
day. Each activity is recorded and coded by the interviewer, along
with its duration in minutes, starting at 4 a.m. and lasting until
midnight. Because this survey is administered with the CPS, exten-
sive demographic information is also available about the respon-
dent and others sharing the same household. Moreover, because
the ATUS relies on a stratified sampling technique, each respon-
dent k has a weight, wy, placed on his responses, which represents
the weight of those data relative to the total population.

In this work, respondents are stratified into five agent types:
working and non-working males and females and children. Table 3
summarizes the number and average age of respondents corre-
sponding to each agent type. Working and non-working male
and female respondents are all between the ages of 18 and 85,
whereas children are between the ages of 15 and 17. ATUS data
have been collected uniformly across the year during which the
survey was conducted.

Because people’s behavior changes on an hour-to-hour and day-
to-day basis, the ATUS data are used to estimate the transition
probability matrices, P*", for weekdays (d=1) and weekends
(d=0) and for each hour (h=1,...,24). Given ATUS data from K
respondents corresponding to a single agent type, their activities
are divided into the nine categories enumerated in Section 2.3.
The number of transitions at 1-min intervals between states is
counted, yielding 60 observations per respondent per hour. The
transition probability for that agent type is then calculated as:

dh
pth = Wi -
o= an’
Dok 2iWi
where nfjﬁk is the number of transitions that respondent k makes

from state i to state j during hour h of day d. The resulting transition

5 This software tool, which is implemented in MATLAB, is publicly available for
download at http://woodshole.er.usgs.gov/operations/sea-mat/air_sea-html/
index.html.
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Fig. 5. 95% confidence intervals for working males during holidays for the nine different activities.
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compared to 3854 working males present in the ATUS data. The
figure shows that the behavior of the ATUS respondents is within
the confidence interval for most (95.3%) of the simulated hours.
The vertical scale differs between the nine activities, reflecting dif-
ferent relative frequencies at which the activities are performed.
Fig. 6 shows the simulated behavior pattern for a working male
during a 3-working-day period. The simulated individual works an
average of 10 hours and sleeps approximately 7.5 hours per day,
which is a reasonable activity pattern. Moreover, the times of
working and sleeping are broadly consistent with typical human
behavior. Two of the high-power activities, laundry and cooking,
are not performed by this agent during these three days. These
activities are more commonly observed on weekends and for other
agent types, such as non-working females. The total power con-
sumed for activities in the household, W, is computed by sum-
ming the power demand of each individual living in the household.

Time [Hours]

Fig. 6. Simulated behavior pattern for a working male during a 3-working-day
period.

3.2. Power conversion parameters

Table 4 lists the power conversion parameters used to convert
activity patterns into power demands. These are based on the aver-
age wattage of the current American appliance stock.® The laundry
activity is divided into two parts: 30 min washing machine use,

5 Average values reported at http://www.energysavers.gov/your_home/appliances/
index.cfm/mytopic=10050 by the U.S. Department of Energy as of February 2012 are
used.
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Table 4
Power conversion parameters used in behavioral model.

Activity Power consumption (W)
Sleeping 0

No-power activity 0

Cleaning 1250

Laundry 425 + 3400

Cooking 1225

Automatic dishwashing 1800

Leisure 200

Away working 0

Away non-working 0

which uses 425W, followed by 90 min of drying, which uses
3400 W. In addition, the dishwashing activity is assumed to last
for one hour after it is initiated. All of the other activities are as-
sumed to be ‘instantaneous,’ in that the associated power is only
used when the individual is engaged in the activity.

The remaining power conversion parameters, namely lighting
power during day and night and the fixed time-invariant compo-
nent are adjusted according to the household location, size, and
the attitudes of the building occupants toward energy use. In this
work a least-squares linear regression model is used to estimate
these parameters. This is done by estimating these coefficients to
fit modeled consumption data to metered hourly-average per-cus-
tomer electric load data provided by AEP. The AEP data report aver-
age hourly electric loads for two service territories, Indiana/
Michigan and Texas. These regions differ in that Indiana/Michigan
primarily has non-electric heating, whereas Texas is dominated by
all-electric heating systems. The first data set is used to estimate
the conversion parameters and a comparison against both data sets
is reported in the next section. Temperature data, which corre-
spond to the metered consumption data, have been provided by
AEP and are used to estimate HVAC consumption.

The linear regression model has the form:

y=XB+¢,

where y is a vector containing the difference between hourly me-
tered consumption (reported by AEP) and the sum of modeled
HVAC and cold appliance consumption, X is a binary matrix, which
indicates whether each activity is performed during each hour or
not, and is determined by the Markov chain model, g is the vector
of power conversion parameters, and € is the vector containing
the random error terms. The f’s corresponding to the power conver-
sion factors in Table 4 are fixed to these values. The remaining g val-
ues are estimated using ordinary least-squares.

To run the regression model a simulation including 400 house-
holds is performed. The physical properties of the buildings are
summarized in Table 2. The breakdown of household occupancy is:

37.5%: One working male and one working female.
37.5%: One working male and one non-working female.
12.5%: One single working male.

12.5%: One single working female.

The resulting electricity power factors for lighting and the fixed
component are:

e Day-time lighting power: 270 W.
o Night-time lighting power: 370 W.
o Constant electric consumption, Wg,: 230 W.

These coefficients are estimated based on the proposed cold
appliance, HVAC, and Markov-based activity models and the power
conversion factors given in Table 4.

4. Model validation

In this section a two-step validation methodology is presented.
First, the model output is compared against the dataset used for
the calibration (Indiana/Michigan) to verify that the simulated re-
sults have the same statistical features as the metered data. Sec-
ond, the model is used to simulate power demand for a different
region (Texas) and its output is compared with metered residential
demand data from that region. Since the Texas dataset is not used
for model calibration, this provides an out-of-sample model valida-
tion. Fig. 7 is a scatterplot showing hourly modeled residential
electricity demand against metered demand for AEP’s Indiana/
Michigan service territory, which is the dataset used for model cal-
ibration. The figure shows a linear relationship between the mod-
eled and metered data. Simulated data for the Indiana/Michigan
region fit the actual data with an R? of 0.5107.

A non-parametric Mann-Whitney U test is performed to assess
whether the distributions of two samples of independent observa-
tions are equal [25]. The test verifies if one of two samples tends to
have larger values than the other, namely checking that there is a
symmetry between populations with respect to probability of ran-
dom drawing of a larger observation.

The test is unable to reject the null hypothesis at the 99% con-
fidence (the p-value is 0.0965), suggesting that the modeled and
metered data have the same underlying distribution. Moreover,
the difference of the means of the two samples is very small
(1118 W and 1122 W for the metered and modeled datasets,
respectively). The difference of the standard deviations of the
two datasets is larger (403 W for the metered as opposed to
425 W for the modeled data). Therefore, a Levene/Brown-Forsythe
test is performed to determine if the variances are statistically sig-
nificantly different [26]. Again, the test does not detect signifi-
cantly different variances at 99% confidence level (the p-value is
0.024).

The model is further validated by comparing simulated and me-
tered demand data for Texas. Fig. 8 shows modeled per-household
electric power consumption for an average household in Texas and
the corresponding AEP data.

The figure shows that the model, when fed with typical average
data, is able to replicate the trend of the actual metered data. Sim-
ulated data for the Texas region fit the actual data with an R? of
0.5952. The figure shows that the model captures diurnal load pat-
terns as well as seasonal variations in demand. Residential loads in
the winter are rarely greater than 1.5 kW in the Indiana/Michigan
area whereas demands above 2.5 kW are seen in Texas. This re-
flects the greater use of all-electric heating systems in Texas, the
greater electricity consumption of which is captured by the HVAC
model. Summer loads in Texas also tend to show greater peaks and
span a greater number of months, showing the effect of the war-
mer and longer cooling period. A Mann-Whitney U test is again
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Fig. 7. Scatterplot of hourly modeled and metered residential electricity demand in
AEP Indiana/Michigan service territory.
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Fig. 8. Daily per-household modeled electricity consumption and AEP data for
Texas.

unable to reject the null hypothesis that the distributions of the
modeled and metered data for Texas are equal at the 99% confi-
dence level (the p-value is 0.1376). In this second case the metered
and modeled datasets present a greater difference in means,
1519 W and 1503 W, respectively. Moreover, the difference of
the standard deviations of the two datasets is larger compared to
the calibration case (609 W for the metered as opposed to 625 W
for the modeled data). A Levene/Brown-Forsythe test does show
differences in the standard deviations, but the difference is below
3% and likely due to intrinsic differences in the residential power
usage of the two regions. Such a difference in the variance of sim-
ulated and metered data is in line with what is reported in the lit-
erature. Specifically, Widén and Wackelgard [11] report descriptive
statistics for the end-use-specific power demand of 14 modeled
households and corresponding measurements. Their model gives
means and standard deviations that differ from the metered data
by 1.8% and 3.2%, respectively. Bartusch et al. [27] provide further
discussion of the variance of annual electricity consumption in sin-
gle-family homes as well as the impact of household features and
building properties in Sweden.

5. Conclusions

This work proposes a model to simulate residential electricity
consumption. The model is able to simulate the power demand
of a household consisting of multiple individuals, considering cold
appliances, HVAC, lighting, and activity-related power consump-
tion. Activity patterns for individuals are modeled using a hetero-
geneous Markov chain, calibrated with real data collected by the
U.S. Bureau of Labor Statistics. Using an in-sample validation the
simulated activity patterns are shown to replicate the underlying
behavioral data, demonstrating the validity of this approach. Using
power conversion factors it is possible to reconstruct power con-
sumption of a single or an aggregate group of households with de-
sired characteristics and composition. A rigorous statistical
framework is used to validate the modeled electricity demand
against metered data provided by AEP. The results show reason-
able demand patterns that capture annual and diurnal variations,
load fluctuations, and diversity between household configuration,
location, and size. The model generates electricity demand profiles
with the same statistical features as residential metered data.

The effects of different technologies can be analyzed by varying
the appropriate model parameters. For instance, a more efficient
HVAC system can be modeled by adjusting the COP and the poten-
tial savings of high-efficiency lighting can be captured by adjusting
the lighting conversion parameters. Modeling of this nature is use-
ful as it can guide policy decisions regarding the residential stock,
both old and new. By quantifying the consumption and predicting
the impact or savings due to retrofits and new materials and tech-
nologies, decisions can be made to support energy supply, retrofit

and technology adoption incentives, building codes, or even demo-
lition and re-construction. This modeling technique can also be
coupled with long-term investment models to determine how en-
ergy-saving technologies would be adopted by consumers and the
impact of policy and other decisions on such adoption.
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