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Abstract Closure temperature is important to many
diffusion-related problems involving cooling. The classic
model of Dodson and its modifications for cooling petro-
logical systems are formulated at constant pressure. Many
petrologic processes involve changes in both temperature
and pressure. The effect of changing pressure on diffusional
loss in cooling petrological systems has not been consid-
ered in Dodson’s model. During upwelling, the decompres-
sion rate is related to the cooling rate through the slope of
the upwelling path. Simple analytical expressions for the
average or mean closure temperature and closure pressure
in cooling-upwelling mono-mineralic and bi-mineralic
systems are obtained by noting that both temperature and
pressure decrease as a function of time along the upwelling
path. These pressure-adjusted equations are nearly identi-
cal to closure temperature equations for isobaric cases if
one replaces the activation energy and pre-exponential fac-
tor for diffusion in the isobaric formulations by the path-
dependent activation energy and pre-exponential factor.
The latter also depend on the slope of the upwelling path.
The competing effects between pressure and temperature
on diffusion during upwelling result in reductions in the
effective activation enthalpy for diffusion and exchange
enthalpy for partitioning, which in turn leads to systematic
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deviations in closure temperatures from cases of constant
pressure. For systems with large activation volume for dif-
fusion, it may be possible to deduce upwelling path and
upwelling rate from closure temperatures and closure pres-
sures of selected elements. Examples of closure tempera-
ture and closure pressure for REE diffusion in garnet and
clinopyroxene and in garnet—clinopyroxene aggregates are
presented and discussed in the context of the minor’s rule
and the REE-in-garnet—clinopyroxene thermobarometer.
Closure temperatures for middle-to-heavy REE in garnet—
clinopyroxene aggregates are controlled primarily by diffu-
sion in clinopyroxene unless the modal abundance of gar-
net is very small or the effective grain size of clinopyroxene
is considerably smaller than that of garnet.

Keywords Closure temperature - Closure pressure -
Closure path - Upwelling path - Cooling - Upwelling -
Cooling rate - Upwelling rate - Diffusion - REE diffusion -
Garnet - Clinopyroxene - Dodson’s equation - REE-in-
garnet—clinopyroxene thermobarometer

Introduction

Closure temperature is an important concept to diffu-
sional loss in minerals that experienced cooling (Dodson
1973, 1976, 1986; Albarede 1995; Lasaga 1998; Ganguly
and Tirone 1999, 2001; Zhang 2008). It is defined as the
lower temperature limit at which the element of interest
effectively ceases diffusive exchange with its surrounding
medium during cooling. According to Dodson (1973), clo-
sure temperature for an element in a mineral grain depends
on diffusion parameters of the element and decreases with
the decrease of the product of cooling rate and the square
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of effective diffusion radius (d,). It is given by Dodson’s
equation

DORT?
& =G+In—2—=, (1)
RT, ASd;

where T, is the average or mean closure temperature; G is
the average of the closure function, depending on geometry
of the mineral; E, and Dg are the activation energy and pre-
exponential factor for diffusion of the element of interest in
mineral A; § is the absolute value of cooling rate at the clo-
sure temperature; and R is the gas constant. Equation (1a)
can also be written in terms of the diffusion coefficient
evaluated at the closure temperature, D¢, viz.,

Eys 4 G
R_TCZD_E = exp(G), (1b)
where terms on the left hand side of Eq. (1b) represent a
measure of diffusion time relative to cooling time at the
closure temperature. The geometry function, G, in Dod-
son’s equation was modified by Ganguly and Tirone (1999,
2001) to include the “memory effect” that arises from situa-
tions when diffusion has not affected the center of the crys-
tal (i.e., cases of fast cooling and large grain size). Powell
and White (1995) and Liang (2015) generalized Dodson’s
equation to bi-mineralic systems. Cherniak and Watson
(2007), Gardés and Montel (2009) and Watson and Cher-
niak (2013) expanded Dodson’s equation to more general
heating—cooling scenarios.

Many petrologic processes involve changes in both
temperature (7) and pressure (P). Consider the thermal
history of a mantle parcel M, in P-T space in Fig. 1. Ini-
tially M| was on geotherm H, (time=¢,). Between time ¢,
and t,, M, was slowly brought to shallower depth along
P-T path M,-N to geotherm H,. Changes in tempera-
ture and pressure would result in redistribution of major
and trace elements among minerals in parcel N. If the
upwelling rate is slow compared to major element diffu-
sion rates in minerals, the major elements in minerals in
parcel N will be homogeneous and their abundances can
be used to calculate equilibrium temperature and pressure
at N which are independent of its thermal history, i.e., we
cannot tell whether N comes from M, or M, in Fig. 1. If
the upwelling rate is faster compared to diffusion rates
of certain slow-diffusing cations in the minerals, such as
REE in pyroxene or garnet, it may be possible to deduce
at least part of the thermal history of N by teasing out
temperature, pressure, and rate information encapsulated
by the slow diffusing cations in the minerals. For exam-
ple, temperatures and pressures derived from the abun-
dance and distribution of REE in minerals originated
from M, and M, may correspond to points Q; and Q, in
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Fig.1 Schematic diagram illustrating two upwelling paths (M,-N
and M,—N) in P-T space. Upwelling ends at point N. Q, and Q, are
closure temperatures and closure pressures of a slow diffusing trace
element along the two paths, respectively

Fig. 1, while the major element-derived temperatures and
pressures are at point N. The direction between N and Q,,
(m=1 or 2) maybe related to upwelling trajectory in P-T
space (arrows in Fig. 1), while differences in temperature
and pressure between N and Q,, may tell us something
about the rate or duration of cooling and decompression
associated with upwelling.

The effect of changing pressure on diffusional loss or
gain in a cooling petrological system has not been con-
sidered in Dodson’s model. Within the framework of
Dodson’s formulation, one can include the pressure effect
by considering the general Arrhenius equation for diffu-
sion, viz.,

RT @

DA(T,P) = D exp (—M>,
where V, is the activation volume for diffusion of an ele-
ment in mineral A. The numerator in the Arrhenius equa-
tion defines an activation enthalpy for diffusion, i.e.,
H, = E, + PV,. It is tempting to add the pressure effect
to Dodson’s equation by replacing the activation (inter-
nal) energy E, in Eq. (la) with the activation enthalpy
H, defined above. Unfortunately, the resultant equation
is incomplete in this more general case, as both tempera-
ture and pressure in Eq. (2) are functions of time during
upwelling.

The chief objective of this study is to quantify the
effect of pressure on closure temperature of a trace ele-
ment in mono-mineralic and bi-mineralic systems that
experienced both cooling and decompression. As will
be shown below, the generalized Dodson’s equation

also depends on upwelling path (i.e., M,—N or M,—N in
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Fig. 1) or upwelling rate (dP/dfr) of the cooling petro-
logical system under consideration. For a given closure
temperature, there is a corresponding closure pressure.
The closure path defined by the closure temperatures and
closure pressures follows the upwelling trajectory of the
mantle parcel in P-T space. For systems with large acti-
vation volume for diffusion, it may be possible to deduce
upwelling path and upwelling rate from closure tempera-
tures and closure pressures of selected elements of differ-
ent mobility.

Closure temperature and closure pressure
along a P-T—t path

We consider diffusional loss of a trace element in a mineral
that moves along the upwelling path M,—N in Fig. 1 with
a prescribed rate. Similar to the diffusional loss problem
of Dodson (1973), we assume that (1) diffusion in mineral
is isotropic; (2) grain growth and phase transformation are
negligible during cooling and decompression; and (3) sur-
rounding medium is effectively an infinite sink or source
for the element of interest in the mineral. To include the
pressure effect, we first conduct an order of magnitude
analysis of diffusional loss by comparing cooling time and
diffusive re-equilibration time for the trace element in the
mineral following a procedure similar to those of Dodson
(1976) and Albarede (1995). In a later section (“Gener-
alization”), we also outline a more rigorous proof of the
results described below.

The cooling time constant (z) is an important concept
in closure temperature formulation. According to Dodson
(1973), it is defined as the time it takes to decrease the dif-
fusion coefficient D, for the element of interest in mineral
A by a factor of e or 63%, viz.,

-1
T=_<dlnDA> ’ 3)

dt

where ¢ is time. For an upwelling parcel such as point Q,;
moving along path M,—N in Fig. 1, both its pressure and
temperature vary as a function of time. From Eq. (2), we
have

dinD,  d <EA+PVA> _E,+PVidT V4 dP

. dr RT RT> dt RT dt’
4)

Since P and T follow path M,—N, the decompression rate
(dP/dr) is related to the cooling rate (d7/df) through the
slope of the upwelling path in P-T space (dP/dT), viz.,
ar_(dry dr
& \ar ) ar’ )

where the subscript ‘u-p’ stands for ‘upwelling path’ and
is used here to emphasize the path-dependent nature of dP/
dT. Hence the cooling time constant is path-dependent and

given by
RT?

) {EA+ P- (:—';)pT] VA}S, ©)

where § = —dT /dt is the cooling rate at a given P and T.
All else being equal, the cooling time constant is larger for
an upwelling parcel moving along a steeper path than along
a shallower path in P-T space (cf. paths M|—N and M,—N in
Fig. 1).

The characteristic diffusion time (fp) for an element in
mineral A is given by the simple expression

3pd>
Ip= D
A

@)

where f is a constant, depending on mineral shape and
boundary condition; d, is the effective grain radius. The
mineral is effectively closed to diffusional loss to its sur-
rounding when the cooling time is shorter than the diffu-
sion time (Dodson 1976; Albarede 1995; Liang 2015). At
closure temperature 7, Eqs. (6) and (7) differ by a constant
factor A', viz.,

b RIS
D¢ 3 ’ 8
ﬁ{EA+[PC—<g—1;> TC]VA}S (82)
u-p

where Dj is diffusion coefficient at the closure temperature
T, and closure pressure P,,

E +P,V,
RT, )

c

)

Dy = Djjexp <— (8b)

Equation (8a) is the same as Dodson’s equation for
the mean or grain averaged closure temperature (Eq. 1b)
when the average of the geometry function G=In(A"3p)
and V, = 0 or dP/dT=0. According to Dodson (1986), the
mean values of G are 4.0066 for sphere, 3.29506 for cylin-
der, and 2.15821 for plane sheet.

The closure temperature and closure pressure in Eq. (8a)
are related to each other through the upwelling path. For
purpose of demonstration, here we consider a linear path of
the form (e.g., M,—N in Fig. 1),

dpP
Pc = Pref + <5>u—p(TC - Tref)’ (8C)

where P,,,and T,,,are the pressure and temperature at a ref-

erence point along the linear upwelling path. Without loss
of generality, we use the pressure and temperature at point

@ Springer
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N (Py and Ty) in Fig. 1 in the formulations below. Substi-
tuting Eq. (8c) into Eq. (8a), we have a generalized expres-
sion for the mean closure temperature of a trace element in
the cooling-upwelling mono-mineralic system,

H®s &3 G
- = eXp ) (93)
RT2 D¢

where HX’p is a path-dependent activation enthalpy for dif-
fusion in mineral A,

H'P = E, + [PN - (d—T>u_pTN] Vs, (9b)

D, which is the diffusion coefficient evaluated at 7, and
P, can also be written as

H.?
DC _ DO,U-P _ A
AT TA exp RT ’ (9C)

where Dg’u'p is a path-dependent pre-experiential factor for
diffusion,

V

D" = DY exp [_?f‘ (% )p] : (9d)

For the linear upwelling path considered here, the sec-
ond term on the right-hand side of Eq. (9b) is independent
of the choice of the reference pressure and temperature so
long as they are on the upwelling path. For example, one
can use temperatures and pressures derived from major
element-based thermobarometers to represent T, and Py in
Eq. (9b). Given Ty and Pj, cooling rate, and slope of the
upwelling path, the closure temperature can be solved from
Eq. (9a) numerically using standard method. The closure
pressure is given by Eq. (8c).

Discussion
Comparison with Dodson’s model

Equation (9a) has the same form as Dodson’s equation
(cf. Eq. 1b) if one replaces the activation energy and pre-
exponential factor for diffusion in Dodson’s equation by the
path-dependent activation enthalpy (Eq. 9b) and pre-expe-
riential factor (Eq. 9d). Equation (9a) reduces to Dodson’s
equation (Eq. 1b) in the absence of upwelling (i.e., when
dP/dT=0 in Egs. 9b-9d) or when diffusion in mineral A is
insensitive to pressure (i.e., V, = 0).

Few studies focus on effect of pressure on cation dif-
fusion in minerals. Published tracer diffusion data (see
reviews in Béjina et al. 2003; Chakraborty 2010) sug-
gest activation energies are positive and vary from less
than 1x107® m*mol (weak pressure dependence) to

@ Springer

20%x 107 m3/mol (strong pressure dependence). The
exception is an earlier study by Sneeringer et al. (1984)
in which they reported negative activation energies for Sr
diffusion in diopside. Cherniak and Watson (2012) meas-
ured He diffusion in olivine at 0.1 MPa and 2.7 GPa and
could not detect any change in measured diffusivity with
pressure. Van Orman et al. (2001) measured Ce and Yb
diffusion in diopside at pressures of 0.1 MPa to 2.5 GPa
and reported activation volumes of 10.2+3.2x 107® and
9.5+2.0x107® m*mol, respectively. There are some
uncertainties in quantifying pressure-dependent REE dif-
fusion in garnet. Bloch et al. (2015) measured Lu diffu-
sion coefficient in natural almandine and spessartine over
a range of P, T, and oxygen fugacity, and reported an
activation volume of 10.6 + 1.02 x 107% m*/mol. Based on
laboratory measured diffusion coefficients of REE and Y
in grossular at 0.1 MPa (Cherniak 2005) and pyrope at
2.8 GPa (Van Orman et al. 2002b) and stranded diffusion
profiles in natural garnets (modeled at 0.53 GPa), Carlson
(2012) obtained a general Arrhenius expression for REE
diffusion in garnet over a range of P, T, oxygen fugacity,
and garnet composition. He found an activation volume
for REE diffusion in garnet of 20.75+0.66x 107° m?/
mol. Including the newer data from Bloch et al. (2015) in
a rigorous statistical analysis of REE diffusion in garnet,
Chu and Ague (2015a) did not find a decrease in the esti-
mated activation volume for REE diffusion in garnet (Chu
personal communication, 2016). The uncertainties in the
activation volume may be due, in part, to the limited

1 4100 1 3100 1 2100 1080 (°C)
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Fig. 2 Diffusion coefficients of Ce in garnet (red lines) and diopside
(blue lines) at constant pressures of 1 and 4 GPa and along a linear
upwelling path with a slope of 5 MPa/K. Diffusion parameters for
diopside and garnet are from Van Orman et al. (2002a) and Carlson
(2012), respectively
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number of high-pressure experiments for REE diffusion
in garnet: 6 at 2.8 GPa (Van Orman et al. 2002b), 1 at
1.9 GPa and 1 at 3.4 GPa (Bloch et al. 2015), different
garnets used in the experiments, and/or method in retriev-
ing diffusion coefficients. In spite of the uncertainties in
the activation volume, pressure has a moderate-to-strong
effect on REE diffusion in garnet and diopside. This is
illustrated in Fig. 2.

In general, diffusion coefficients increase with the increase
of temperature and the decrease of pressure. Hence there is a
competing effect between temperature and pressure on cation
diffusion in minerals along a geotherm (e.g., Holzapfel et al.
2007; Watson and Baxter 2007). Figure 2 compares diffu-
sion coefficients of Ce in diopside and garnet at two selected
pressures (1 and 4 GPa, dashed lines) and along an upwelling
path that passes through 1400°C and 4 GPa with a slope of
5 MPa/K (solid lines). Diffusion coefficients were calculated
using parameters reported in Van Orman et al. (2002a) for
diopside and Carlson (2012) for garnet. At 1300°C, diffu-
sivities of Ce in diopside and garnet at 1 GPa are one and two
orders of magnitude of the respective values at 4 GPa (one
order of magnitude if an activation volume of 10x 107% m?/
mol is used for garnet). These differences become even larger
at lower temperatures (Fig. 2). In the case of upwelling, the
relatively large and positive activation energies for REE diffu-
sion in diopside and garnet work against the dominant effect
of decreasing temperature, resulting in a reduction in the
apparent activation enthalpy for diffusion, i.e.,

dp
EA+PVA=EA+PrerA+(ﬁ)u_p(T_Tref)VA’ (10)

where the first two terms on the right-hand side of Eq. (10)
is the activation energy at the reference pressure, P, For
the case of P, = 4 GPa and T, = 1400°C, the last term
in Eq. (10) is negative. Hence the steeper the upwelling
trajectory in P-T space, the larger the activation enthalpy
reduction and the lesser the decrease of the diffusivi-
ties with falling temperature will be. Interestingly, if we
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Fig. 4 Closure paths defined by the closure temperatures and closure
pressures of Ce in garnet (red symbols) and diopside (blue symbols)
for a range of effective grain sizes (20 data points for each case, same
as those used in Fig. 3). Minerals with larger grain size and smaller
diffusivity are closed at higher temperatures and pressures
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Fig. 3 Variations of closure temperatures of Ce in garnet (a, b) and
diopside (c) as a function of effective diffusion radius at a cooling rate
of 100°C/Myr along two upwelling paths (solid lines). For compari-
son, closure temperatures at constant pressures of 1 and 4 GPa are
also shown as dashed lines. Diffusion parameters for diopside are

Grain Size (mm)

Grain Size (mm)

from Van Orman et al. (2002a). Diffusion parameters for garnet in a
are from Carlson (2012). Diffusion parameters for Ce in garnet in b
are assumed to be the same as those for Lu in garnet from Bloch et al.
(2015)
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double the slope of upwelling path for the case in Fig. 2
(dP/dT=10 MPa/K), diffusivity of Ce in garnet becomes
almost independent of temperature.

Figure 3a—c displays closure temperatures of Ce in
garnet and diopside as a function of effective diffusion
radius for a cooling rate of 100°C/Myr and two choices
of upwelling paths (Fig. 4) calculated using Eq. (9a) and
diffusion parameters listed in Van Orman et al. (2002a),
Carlson (2012), and Bloch et al. (2015). For comparison,
closure temperatures calculated using Dodson’s equa-
tion (Eq. 1b) at constant pressures of 1 and 4 GPa are also
shown (dashed lines). For a given grain size, closure tem-
peratures at a constant pressure of 4 GPa are considerably
higher than those at 1 GPa, by more than 200 (or 100) °C
for garnet and 70-100°C for diopside. This is due mainly
to the difference in activation volume for diffusion between
the two minerals (the differences in slope between the two
minerals in Fig. 3 for the isobaric cases are due to the dif-
ference in activation energy between garnet and diopside).
Figure 3a, b also highlights the importance of activation
volume for diffusion: a reduction of activation volume by
half results in a decrease in the isobaric closure tempera-
ture by ~100°C for REE in garnet (~50°C for diopside,
supplementary Fig. Sla and S1b). The closure temperature
is practically independent of pressure when the activation
volume for diffusion is <1x107® m*/mol (supplementary
Fig. Slc and S1d).

Equations (9a-9d) indicate that closure temperature
depends on cooling and decompression path. During
upwelling, the competing effects of pressure and tem-
perature on diffusion drive closure temperature along the
upwelling path. Since larger grains close at higher tem-
peratures, their closure pressures are also high, which
results in higher apparent activation enthalpy for diffusion
at the closure and hence the larger slope in the plot of clo-
sure temperature vs. effective grain size. This is illustrated
in Fig. 3 for two choices of upwelling paths. The closure
temperatures approach and even exceed Dodson’s 4 GPa
curve for large enough grain size, but converge and pass
below Dodson’s 1 GPa curve for smaller grain size with
reduced slopes in these diagrams. For a given cooling rate,
the steeper the slope of the upwelling path (dP/dT), the
faster the upwelling rate is (Eq. 5), and the higher the clo-
sure temperature will be (cf. blue and red lines in Fig. 3).
For minerals with larger activation volume for diffusion,
their closure temperatures are more sensitive to upwelling
path (cf. Fig. 3a, b and supplementary Fig. Sla—1c). Hence
effect of pressure on closure temperature is significant
when the activation volume for diffusion is large and the
slope of upwelling path is steep.

Figure 4 displays closure temperatures and closure
pressures for the four upwelling cases considered in
Fig. 3a, c. Although garnet and diopside are closed to

@ Springer

diffusional loss at different temperatures and pressures
for a given grain size and upwelling slope (cf. Fig. 3a,
c), closure temperatures and closure pressures for the two
minerals follow the upwelling paths for the same geo-
thermal gradient via Equation (8c). Here for purpose of
demonstration, we choose P,,,= 1 GPa and 7,,, = 800 °C.
Figure 4 also shows that closure temperatures and closure
pressures for a mineral with different grain size fall along
the upwelling path. This is an important feature of diffu-
sional loss along an upwelling path and has been indepen-
dently verified by numerical solutions of diffusion equa-
tions under similar settings (Yao 2015). Hence it may
be possible to deduce upwelling trajectory of a group of
petrologically related igneous and metamorphic rocks by
comparing their closure temperatures and closure pres-
sures for fine-grained and coarse-grained samples.

Finally, we note that closure temperature depends on
the product of cooling rate and grain size squared (5d°)
in all the closure temperature equations. Hence examples
presented in Figs. 3, 4, 5, 6 and 7 (and supplementary fig-
ures) for a constant cooling rate of 100 °C/Myr can also
be rescaled to other cooling rates by adjusting the effec-
tive grain size in the equations accordingly. Furthermore,
diffusivities of REE in diopside and garnet vary system-
atically with their ionic radii (Van Orman et al. 2001;
Carlson 2012). Hence observations derived from diffu-
sive behavior of Ce are also applicable to other REE in
the two minerals, as we will further illustrate in the next
section.
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Fig. 5 Variations of garnet—clinopyroxene REE partition coefficients
along two P-T paths. Arrhenius parameters are listed in supplemen-
tary Table S1
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Fig. 6 Variations of closure temperatures of Ce (a), Dy (b), and Yb
(c) in three garnet+ clinopyroxene aggregates as a function of effec-
tive diffusion radius along two upwelling paths at a cooling rate of
100 °C/Myr. For comparison, closure temperatures of the respective
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elements in garnet (dashed lines) and clinopyroxene (Cpx, dashed
line with small circles) along the same upwelling path are also
shown. Diffusion parameters for clinopyroxene and garnet are from
Van Orman et al. (2002a) and Carlson (2012), respectively

Fig. 7 Variations of closure 1500
temperatures of selected REE in
a 50% garnet+ 50% clinopyrox-
ene aggregate as a function of
effective diffusion radius (a) and
trivalent REE ionic radius (b)
along an upwelling path (dP/
dT=5 MPa/K) at a cooling rate
of 100 °C/Myr. For comparison,
closure temperatures of Ce, Dy,
and Yb for the 1% garnet+99%
clinopyroxene aggregate are
shown as red dashed lines in a.
Diffusion parameters for clino- 1000 -
pyroxene and garnet are from i
Van Orman et al. (2002a) and
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Generalization

To highlight the role of pressure in diffusional loss dur-
ing upwelling, we used a simple order of magnitude
analysis to identify key parameters controlling closure
temperature and closure pressure in cooling-upwelling
mono-mineralic systems. This simple method leads to an
equation that differs from Dodson’s closure temperature
expression by a constant factor. To constrain the constant,
solutions of the diffusion equations are needed. Here we
show that the path-dependent Egs. (9a-9d) for closure
temperature and closure pressure can indeed be derived
from a more rigorous analysis of the diffusion equations
for the case of linear upwelling path (Fig. 1).

0.95 1 1.05 11 115 1.2
lonic Radius (A)

Without loss of generality, we consider diffusional loss of
an element in a spherical mineral grain of radius d. In axial
symmetric coordinate, the diffusion equation and boundary
conditions for the element of interest in the mineral (concen-
tration C,) take on the usual expressions,

aC, *’C, 20C,

A _D/(T,P it

5 = DT, )( =+t ) (11a)
Cy(d, 1) = CY(T, P), (11b)
aC,

A =0,

| (11c)
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where Cg (T, P) is the concentration on the mineral surface.
The temperature- and pressure-dependent diffusion coef-
ficient, D,(T; P), is given by the Arrhenius equation for
diffusion (Eq. 2). When T and P are functions of time, the
diffusion coefficient varies with time. Equations (11a—11c)
can be simplified by introducing a new time variable u
(Dodson 1973),

t

u=/DA[T(t’),P(t’)]dt'. 12)
0

At a constant pressure, P=P,, and a prescribed cool-
ing rate, Dodson (1973) obtained an analytical solution
to Egs. (11a-11c) and used the solution to construct an
expression for closure temperature (e.g., Eq. 1). Since
diffusion rate generally decreases with increasing pres-
sure, one can, in principle, define a closure pressure P, at
a constant temperate, 7=1T,, and a prescribed compres-
sion rate following the procedures outlined in Dodson
(1973, 1976).

When both 7 and P vary with time, the closure tem-
perature and closure pressure are related to each other
through the closure time along the P-T-t path experi-
enced by the mineral. During upwelling, the pressure of
the parcel is related to its temperature through the linear
expression,

dpP
P=P,+ (d_T>u.p(T_T’ef)' (13)

Substituting Eq. 13 into the pressure- and temperature-
dependent Arrhenius equation (Eq. 2), we have a pres-
sure-free Arrhenius expression for diffusivity of an ele-
ment in mineral A along the upwelling path,

u-p
0,u-p HA
DA(T) :DA exp _ﬁ ,

where D?\’u'p and H;’p are shorthand notations for the path-
dependent pre-exponential factor and activation enthalpy
for diffusion:

) Vi /dP
Oup _ 0 A
D —DAe"P[T(ﬁ)U.J’

, dp
u-p _
H'? =E, + [P,ef - (ﬁ)u_pT,ef] v,

Given Egs. (14a—14c), one can solve the diffusion
equation with time-dependent diffusion coefficient (e.g.,
Egs. 11a-11c) following steps outlined in Dodson (1973)
and obtain the path-dependent closure temperature equa-
tion (Eq. 9a) for upwelling along the linear P-T path
described by Eq. (13). Since Eq. (14a) is the only change

(14a)

(14b)

(14c)
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needed to account for upwelling and the upwelling rate is
related to geothermal gradient via Eq. (5), we can make
the following general statement regarding closure tem-
perature equations for cooling petrological systems:

To include linear upwelling in a Dodson-type closure
temperature equation, one simply replaces the pre-
exponential factor and activation energy for diffusion
in the original isobaric equation by the path-dependent
exponential factor and activation energy for diffusion
while keeping the other terms unchanged in the original
equation.

The generalized closure temperature equation of Ganguly
and Tirone (1999, 2001) for systems with arbitrarily small
amount of diffusion, for example, now takes on the form,

H  H”  RD,(T))T*x)

A A A\T0) "¢
— = ————— + G(x) + g(), 15
RT(x)  RT, H,P3d; @t a3

where T.(x) is the closure temperature profile; x is the dis-
tance measured from the center of the grain; D, (To) is the
diffusion coefficient evaluated at the peak temperature and
pressure (7, and P,), i.e., at the onset of upwelling; G(x)
and g(x) are spatial-dependent closure function and mem-
ory function, respectively. Expressions and averaged values
of G(x) and g(x) can be found in Dodson (1986) and Gan-
guly and Tirone (1999, 2001). Following the basic idea of
Dodson (1973), Cherniak and Watson (2007) and Gardés
and Montel (2009) considered diffusive “opening” during
heating, and Watson and Cherniak (2013) provided general
equations for both heating alone and thermal pulses. Their
resultant expressions for diffusive opening at constant pres-
sure can also be generalized to include compression or sub-
duction along a linear path in P-T space using the substitu-
tions outlined above.

Powell and White (1995) and Liang (2015) presented
algebraic equations for closure temperature in cooling bi-
mineralic systems that have not been affected by open sys-
tem mass transfer processes. Here the closure temperature
is referred to the temperature at which the trace element of
interest is effectively ceased diffusive exchange between
the two minerals in a closed system. In addition to diffu-
sion parameters, closure temperature in cooling bi-miner-
alic systems depends on partition coefficient of the element
between the two minerals as well as their relative propor-
tions. For a trace element, its pressure- and temperature-
dependent mineral-mineral partition coefficient, k,p, takes
on the general form,

16)

0 E,+ PV,
kAB(T,P)=kABexp -,

RT

where E,, V,, and kgB are the exchange energy, exchange
volume, and pre-exponential factor for the partitioning of
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the trace element between mineral A and mineral B. For
a linear upwelling path, the pressure in Eq. (16) can be
replaced by temperature via Equation (13), viz.,

H"?P
_ 70u-p k
fan() = Ky " exp <_ RT >

(17a)
. Vi(dP
0, k
kyn” = kY, exp [_E<ﬁ)u—p:|’ (17b)
- dp
H'? = E, + [pref - <d_T>u.pT’ff] V. (17c)

An algebraic equation for the mean closure tempera-
ture and closure pressure of a trace element in bi-mineralic
systems that experience cooling and decompression along
a linear P-T path is presented in the Appendix 1 (Eq. 18)
along with a brief description. This equation is reduced
to Eq. (9a) for mineral A when the volume fraction of A
is very small and the abundance of the element of interest
in A is much smaller than that in B (i.e., when mineral B
serves as an effectively infinite sink or source for the ele-
ment of interest in the bi-mineralic system).

As an illustrated example, we consider mean closure
temperatures and closure pressures of REE in cooling-
upwelling bi-mineralic systems consisting of garnet and
clinopyroxene, that is, the temperatures and pressures
at which diffusive exchanges of REE between garnet and
clinopyroxene are effectively stopped in the closed system.
Partitioning of REE between garnet and clinopyroxene
depends on temperature, pressure and mineral major ele-
ment compositions (Sun and Liang 2014). For comparison,
here we consider two garnet—clinopyroxene pairs: one from
a diamond eclogite (sample JDE22 in Smart et al. 2009)
and the other from a garnet peridotite (sample Pra33 in
Bjerg et al. 2009). For simplicity, we use the parameterized
lattice strain model of Sun and Liang (2014) to calculate
REE partition coefficients as a function of P and T while
keeping major element compositions of the minerals fixed.
In a more realistic scenario, major element compositions of
coexisting garnet and clinopyroxene also change as a func-
tion of temperature and pressure. Table S1 in supplemen-
tary material listed the partitioning parameters for the two
samples. The exchange energies (E,) vary systematically as
a function of ionic radius, 78-80 kJ/mol for La, 30-32 kJ/
mol for Gd, and —0.4 to —2.6 kJ/mol for Lu, while the
exchange volume (V,) is nearly constant with an average
value of 3.2 x 10~ m*mol. Figure 5 displays selected REE
partition coefficients between garnet and clinopyroxene
along the 5 MPa/K P-T path shown in Fig. 4 for the eclog-
ite (a similar figure for the garnet peridotite is presented
in supplementary Figure S2). In both cases, La and Ce are
moderately to highly incompatible, while Sm to Lu are

compatible to highly compatible in garnet relative to clino-
pyroxene. The competing effect of decreasing temperature
and pressure along the upwelling path gradually elevates
garnet/clinopyroxene REE partition coefficients (cf. solid
and dashed lines in Fig. 5 and Fig. S2), resulting in nega-
tive apparent exchange energies for Er, Yb and Lu parti-
tioning along the geotherm (i.e., positive slopes in these
figures). These have interesting implications for diffusive
re-equilibration of REE between garnet and clinopyroxene.

Figure 6a—c displays closure temperatures of Ce, Dy
and Yb in garnet+clinopyroxene aggregates as a func-
tion of effective diffusion radius for three choices of
garnet:clinopyroxene volume proportions (50:50, 10:90
and 1:99), a cooling rate of 100°C/Myr and an upwelling
gradient dP/dT=5 MPa/K. Figure 7a, b compares closure
temperatures of selected REE as functions of ionic radius
and effective grain sizes. For purpose of illustration, we
set the grain size of garnet the same as that of clinopy-
roxene (dgyme; = depy) and used the diffusion parameters
from Carlson (2012) for garnet. Four interesting observa-
tions can be readily made from Figs. 6 and 7. First, clo-
sure temperatures of REE in the cooling-upwelling gar-
net+ clinopyroxene aggregates are bracketed by the closure
temperatures of REE in garnet and clinopyroxene along
the same P-T path (red dashed lines in Fig. 6) and clo-
sure temperatures along a cooling-upwelling path are dif-
ferent from those at a constant pressure (not shown but cf.
Figs. 3, 6a). These are common features for diffusive redis-
tribution of trace element in bi-mineralic systems that are
closed to mass exchange with their surrounding. Second,
for garnet+ clinopyroxene aggregates with more than 5%
garnet, closure temperatures of middle to heavy REE are
determined primarily by those in clinopyroxene (Fig. 6b,
¢). Third, closure temperatures of La and Ce are sensitive
to garnet:clinopyroxene proportions, especially for sys-
tems with less than 50% garnet (Figs. 6a, 7a). And finally,
except for systems with very large grain size (dgyme; = depx
>8 mm), closure temperatures of La are lower than closure
temperatures of Ce and Nd, while closure temperatures
of Nd are nearly identical to those of Ce (Fig. 7a, b). In
supplementary material, we present diagrams similar to
Figs. 5, 6 and 7 for garnet and clinopyroxene in a garnet
peridotite calculated using major element compositions
reported in Bjerg et al. (2009, their sample Pra33, Fig-
ures S2-S4) and for garnet and clinopyroxene in the eclog-
ite sample but with the activation volume for REE diffusion
in garnet reduced by half (Figures S5, S6). The four obser-
vations described above appear to be common features
shared by eclogites and garnet peridotites, insensitive to
the choice of activation volume for REE diffusion in garnet
(i.e.,20x 107 vs. 10x 10~® m*/mol). These shared features
originate from diffusive and partitioning behaviors of REE
in garnet and clinopyroxene.
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The systematic variations in closure temperature illus-
trated in Figs. 6 and 7 (and supplementary Figures S3—-S6)
can be understood in terms of the minor’s rule for diffusive
re-equilibration in bi-mineralic systems: the mineral that
contains a lesser amount of the trace element of interest in
the closed system contributes more to the overall diffusive
time and hence the closure temperature in the bi-mineralic
system (Liang 2014, 2015). The middle-to-heavy REE
are highly compatible in garnet relative to clinopyrox-
ene, whereas La and Ce are highly incompatible in gar-
net (Figs. 5, S2). With considerably higher abundances of
middle-to-heavy REE, garnet serves effectively as a very
large reservoir for these REE in the garnet—clinopyroxene
system, leaving clinopyroxene as the “minor phase” that
controls the time scale of diffusion for the middle-to-heavy
REE in the bi-mineralic system. Since diffusion of REE in
clinopyroxene depends strongly on their ionic radii (Van
Orman et al. 2001, 2002a), this also explains the ionic size-
dependent behavior of the closure temperatures for the case
of 50% garnet+50% clinopyroxene shown in Fig. 7 (and
Figs. S4, S6). Garnet is important to middle-to-heavy REE
when its volume fraction is very small (<1%). In contrast,
La and Ce budgets in garnet+ clinopyroxene aggregates
are controlled mainly by clinopyroxene (Fig. 5) except
when the clinopyroxene volume fraction is very small. This
explains the more prominent role of garnet in determining
their closure temperatures in bi-mineral eclogites with less
than 50% garnet. In fact, garnet exerts such a strong con-
trol on the diffusive re-equilibration time scale of La in the
garnet +clinopyroxene aggregates, closures temperatures
of La are weighted more towards the closure temperatures
of La in garnet, which explains the lower values of the La
closure temperatures in Fig. 7 (and Figs. S4, S6).

Nonlinear upwelling path in P-T space

For algebraic simplicity, we considered linear upwelling
path in P-T space in our analysis of the pressure effect.
P-T-t paths of natural samples are more complicated
even for cases involving simple exhumation (e.g., Grase-
mann et al. 1998; Guillot et al. 2009). Yao (2015) con-
ducted numerical simulations of diffusive re-equilibration
of REE between garnet and clinopyroxene during cooling
and decompression along parabolic paths in P-T space.
She showed that the numerically derived closure tem-
peratures and closure pressures, calculated from closure
times defined by Dodson (1973, 1976), follow the para-
bolic P-T trajectory in a manner similar to that shown in
Fig. 4. In Appendix 2, we present equations for the mean
closure temperature and closure pressure along two nonlin-
ear upwelling paths: (a) P=£T), where f(T) is an arbitrary
function of temperature; and (b) T=c,P+c,P*, where ¢,
and c, are constants.

@ Springer

Summary and further discussion

Pressure may play an important role during diffusional loss
along an upwelling path. Dodson’s equation and Dodson-
type closure temperature equations for cooling mono-min-
eralic and bi-mineralic systems are generalized to include
the pressure effect by noting that the pressure is related to
the temperature through the upwelling path in P-T space.
For the linear path considered in this study, the resultant
closure temperature equations have the same algebraic form
as the Dodson-type equations at constant pressure except
the diffusion and mineral-mineral partitioning parameters
in the generalized equations are path-dependent and can
be quantified by considering the slope of the upwelling
path. During upwelling, the competing effect of pressure
and temperature gives rise to reductions in the apparent
activation energy and exchange energy for diffusion and
partitioning, which result in systematic deviations in clo-
sure temperatures from their isobaric values. For typical
activation energies of 300-500 kJ/mol for cation diffusion
in minerals, the effect of pressure is important when the
activation volume is >5x 10~® m*/mol. This includes REE
diffusion in garnet and diopside (Van Orman et al. 2001,
2002a; Carlson 2012; Bloch et al. 2015), and divalent cat-
ion diffusion in garnet and olivine (e.g., Chakraborty and
Ganguly 1992; Freer and Edwards 1999; Holzapfel et al.
2007; Chu and Ague 2015b). The effect of pressure is espe-
cially important when the upwelling rate is high and the
slope of upwelling path is large. At present, few data are
available for the activation volume and exchange volume of
geochemically important elements in minerals of petrologic
importance. Results from the present study demonstrate the
usefulness of such data in unraveling thermal and tectonic
history of igneous and metamorphic rocks.

For a given closure temperature, there is a correspond-
ing closure pressure on the upwelling path. An element that
has a higher closure temperature in a mineral assemblage
(due to larger grain size or/and slower diffusion) also has
a higher closure pressure. For a given element, its closure
temperatures and closure pressures in a suite of tectonically
related rocks of variable texture (e.g., fine and coarse grain
sizes) and composition may be related to each other through
the upwelling path. For an uplifted rock that has not been
affected by open system processes after its formation, clo-
sure temperatures and closure pressures of cations of dif-
ferent mobility and compatibility in its constituent miner-
als define a P-T trajectory that also follows the upwelling
path. This conclusion also applies to nonlinear upwelling
paths. Hence it may be possible to deduce at least part of
upwelling trajectory of igneous and metamorphics rocks by
comparing their closure temperatures and closure pressures
in P-T space. As an example, we compare temperatures
and pressures of two garnet peridotites calculated using the
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Fig. 8 Upwelling trajectories defined by temperatures and pres-
sures recorded in major elements and REE in coexisting garnet and
pyroxenes in two garnetites in garnet peridotites from Otrgy, western
Norway. The major element-derived temperatures and pressures are
calculated using the thermobarometers of Brey and Kohler (1990,
points N; and N,), while REE-based temperatures and pressures are
calculated using the REE-in-garnet—clinopyroxene thermobarometer
of Sun and Liang (2015, points, Q; and Q,). Lines with arrows mark
possible upwelling paths. Major element and REE compositions are
from Spengler et al. (2006)

REE-in-garnet—clinopyroxene thermobarometer of Sun and
Liang (2015) and major element-based thermobarometers
that have been widely used in the literature in Fig. 8.
Through numerical simulations of diffusive re-equilibra-
tion of REE between garnet and clinopyroxene during cool-
ing and decompression along parabolic paths in P-T space,
Yao (2015) showed that the apparent temperatures and
pressures calculated using the grain-scale averaged REE
concentrations in garnet and clinopyroxene and the REE-
in-garnet—clinopyroxene thermobarometer are equivalent
to the average closure temperatures and closure pressures
of REE calculated according to the definition of Dodson
(1973, 1976) in the garnet + clinopyroxene aggregates. Fig-
ure 8 displays the average closure temperatures and closure
pressures of REE for two majoritic garnets with pyrox-
ene exsolutions from Otrgy, western Norway (points Q,;
and Q,, major and trace element data from Spengler et al.
2006). Also shown are temperatures and pressures calcu-
lated using the two-pyroxene thermometer and the Al-in-
orthopyroxene barometer of Brey and Kohler (1990, points
N, and N,). Based on the presence of oriented intracrystal-
line pyroxenes exsolved from garnet, depleted light REE
patterns in garnet and exsolved pyroxenes, and Nd mineral
cooling age, Spengler et al. (2006) deduced the thermal
and tectonic history of the Otrgy peridotites that involves
decompressional melting of transition zone mantle in the
Archaean, followed by either nearly isobaric cooling at
the base of the lithosphere till Proterozoic (their Model 1)

or a more complicated history that involves subduction or
delamination followed by buoyancy-driven upwelling to
the base of the lithosphere (their Model 2). In both mod-
els, cooling and decompression resulted in closure of the
Sm-Nd isotopic system. The closure temperatures and
closure pressures deduced from the REE-in-garnet—clino-
pyroxene thermobarometer (points Q; and Q, in Fig. 8)
may correspond to the 1.4 Ga “Nd mineral cooling time”
reported in Spengler et al. (2006). The major element-based
temperatures and pressures (points N, and N, in Fig. 8)
correspond to further cooling during decompression until
Phanerozoic (stage D in their Fig. 3). Hence the vectors
0, — N, and Q, — N, in Fig. 8 may be interpreted as part
of the upwelling trajectories recorded by the two garnet
peridotites. This is consistent with the model of Spengler
et al. (2006, stages C and D in their Fig. 3). With detailed
thermodynamic modeling of mineral stabilities and diffu-
sion modeling of major element and REE zoning patterns
in garnet and pyroxene following P-T-t paths, it may be
possible to deduce cooling and upwelling rates experienced
by these rocks (e.g., Miiller et al. 2015; Yao 2015).
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Appendix 1: Closure temperature and closure
pressure for cooling-upwelling bi-mineralic
systems

The analysis outlined in the main text can be easily
extended to bi-mineralic systems that experience both
cooling and decompression. Here we consider diffusive
exchange of a trace element in a cooling-upwelling bi-
mineralic aggregate in a representative elementary vol-
ume or REV along a P-T—¢ path (Fig. 1). The bi-mineralic
aggregate consists of minerals A and B of average half
sizes or radii d, and dy and volume fractions ¢, and @,
respectively, in the REV. In addition to the three assump-
tions for the mono-mineralic systems, we assume that (4)
the two minerals are in local equilibrium at their interfaces;
and (5) grain boundary diffusion is much faster than vol-
ume diffusion in the two minerals so that mass exchanges
freely along grain boundaries among minerals within the
REV (e.g., Eiler et al. 1992). Assumption (4) allows us to
relate concentrations of a trace element at the surface of
the two minerals through a mineral-mineral partition coef-
ficient, k5 (Eqs. 14a—14c). Expression for the tempera-
ture- and pressure-dependent diffusion coefficient for the
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trace element of interest in mineral B is the same as that
for mineral A, i.e., by replacing subscript A in Eq. (2) with
subscript B.

An algebraic equation for the mean closure tempera-
ture in cooling bi-mineralic systems at a constant pressure
was derived by comparing cooling time constant and dif-
fusive re-equilibration time (Liang 2015). Following the
procedure of Liang (2015) and that outlined in the section
“Generalization”, we obtain an algebraic expression for the
mean closure temperature in cooling and upwelling bi-min-
eralic systems,

u-p &35 ¢ pou-pdas
bpHy "o + PakipHy 5o L Pebaki,
c 2 2
(BakS, + ) RT, (¢pakS, + by) RT.?
& &\
= ~ ¢ |3 =exp(6),
DA DB

(18)
where G is the geometry function of Dodson (1973). The
path-dependent enthalpies for diffusion and mineral-min-
eral partitioning take on the general form

H:ln-p =E,+ [Pref - (j_f“)u-pTref] Vy, m= A, B, ork.

19)

The cooling rate 3, diffusion coefficients (D} and Dp)

and partition coefficient (k3 ;) in Eq. (18) are evaluated at

the closure temperature 7, and closure pressure P, using

expressions similar to Eq. (9¢). As in mono-mineralic sys-

tems, the closure pressure is related to closure temperature
through the upwelling path, i.e., Eq. (8c).

Appendix 2: Nonlinear upwelling paths

For diffusional loss along a nonlinear upwelling path, the
pressure and temperature are also related to each other
through the upwelling path in P-T space. We can make
proper substitutions following methods similar to those
outlined in this study. Here we consider two cases for cool-
ing and upwelling mono-mineralic systems. Expressions
for bi-mineralic systems can be easily obtained with refer-
ence to Eq. (18).

Case (a). P=f(T). Replacing pressure by temperature in
the Arrhenius equation, we have an equation for the mean
closure temperature,

daf ,
{EA " [f(T°) ar T=TcT“] Va }S dy (20)
RT? ITZ = exp(G),
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RT 21

[_ Ey +f(Tc)VA]

—C )
where the slope of the upwelling path dP/dT=df/dT is
evaluated at the closure temperature.

Case (b). T=c,P+c,P*. This expression is related to
steady-state heat conduction and geotherms of the litho-
sphere (e.g., Pollack and Chapman 1977) and was used
in Yao (2015) in her study of the closure temperatures of
REE in garnet—clinopyroxene aggregates. Here it is more
convenient to calculate closure pressure (P,) by consider-
ing the decompression rate. Replacing temperature by pres-
sure in the Arrhenius equation, we have an equation for the
mean closure pressure

[(Ex + PV )(c) +2¢,P) — (¢, P + e, PV, it &2

— =exp(0),
R(c,P + c,P2)’ DY
(22)
E,+P.V
D¢ =D%e Al cA f
A= Pa P [ R(e, P + ¢,P?) 23)

where &t = dP/dt is the decompression rate and related to
cooling rate through Eq. (5). The mean closure temperature
is related to the mean closure pressure through the para-
bolic geotherm.
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