
Vol.:(0123456789)1 3

Contrib Mineral Petrol (2017) 172:8 
DOI 10.1007/s00410-016-1327-8

ORIGINAL PAPER

Effect of pressure on closure temperature of a trace element 
in cooling petrological systems

Yan Liang1   

Received: 25 August 2016 / Accepted: 22 December 2016 / Published online: 25 January 2017 
© Springer-Verlag Berlin Heidelberg 2017

deviations in closure temperatures from cases of constant 
pressure. For systems with large activation volume for dif-
fusion, it may be possible to deduce upwelling path and 
upwelling rate from closure temperatures and closure pres-
sures of selected elements. Examples of closure tempera-
ture and closure pressure for REE diffusion in garnet and 
clinopyroxene and in garnet–clinopyroxene aggregates are 
presented and discussed in the context of the minor’s rule 
and the REE-in-garnet–clinopyroxene thermobarometer. 
Closure temperatures for middle-to-heavy REE in garnet–
clinopyroxene aggregates are controlled primarily by diffu-
sion in clinopyroxene unless the modal abundance of gar-
net is very small or the effective grain size of clinopyroxene 
is considerably smaller than that of garnet.

Keywords  Closure temperature · Closure pressure · 
Closure path · Upwelling path · Cooling · Upwelling · 
Cooling rate · Upwelling rate · Diffusion · REE diffusion · 
Garnet · Clinopyroxene · Dodson’s equation · REE-in-
garnet–clinopyroxene thermobarometer

Introduction

Closure temperature is an important concept to diffu-
sional loss in minerals that experienced cooling (Dodson 
1973, 1976, 1986; Albarède 1995; Lasaga 1998; Ganguly 
and Tirone 1999, 2001; Zhang 2008). It is defined as the 
lower temperature limit at which the element of interest 
effectively ceases diffusive exchange with its surrounding 
medium during cooling. According to Dodson (1973), clo-
sure temperature for an element in a mineral grain depends 
on diffusion parameters of the element and decreases with 
the decrease of the product of cooling rate and the square 

Abstract  Closure temperature is important to many 
diffusion-related problems involving cooling. The classic 
model of Dodson and its modifications for cooling petro-
logical systems are formulated at constant pressure. Many 
petrologic processes involve changes in both temperature 
and pressure. The effect of changing pressure on diffusional 
loss in cooling petrological systems has not been consid-
ered in Dodson’s model. During upwelling, the decompres-
sion rate is related to the cooling rate through the slope of 
the upwelling path. Simple analytical expressions for the 
average or mean closure temperature and closure pressure 
in cooling-upwelling mono-mineralic and bi-mineralic 
systems are obtained by noting that both temperature and 
pressure decrease as a function of time along the upwelling 
path. These pressure-adjusted equations are nearly identi-
cal to closure temperature equations for isobaric cases if 
one replaces the activation energy and pre-exponential fac-
tor for diffusion in the isobaric formulations by the path-
dependent activation energy and pre-exponential factor. 
The latter also depend on the slope of the upwelling path. 
The competing effects between pressure and temperature 
on diffusion during upwelling result in reductions in the 
effective activation enthalpy for diffusion and exchange 
enthalpy for partitioning, which in turn leads to systematic 
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of effective diffusion radius (dA). It is given by Dodson’s 
equation

where Tc is the average or mean closure temperature; G is 
the average of the closure function, depending on geometry 
of the mineral; EA and D0

A
 are the activation energy and pre-

exponential factor for diffusion of the element of interest in 
mineral A; ṡ is the absolute value of cooling rate at the clo-
sure temperature; and R is the gas constant. Equation (1a) 
can also be written in terms of the diffusion coefficient 
evaluated at the closure temperature, Dc

A
, viz.,

where terms on the left hand side of Eq.  (1b) represent a 
measure of diffusion time relative to cooling time at the 
closure temperature. The geometry function, G, in Dod-
son’s equation was modified by Ganguly and Tirone (1999, 
2001) to include the “memory effect” that arises from situa-
tions when diffusion has not affected the center of the crys-
tal (i.e., cases of fast cooling and large grain size). Powell 
and White (1995) and Liang (2015) generalized Dodson’s 
equation to bi-mineralic systems. Cherniak and Watson 
(2007), Gardés and Montel (2009) and Watson and Cher-
niak (2013) expanded Dodson’s equation to more general 
heating–cooling scenarios.

Many petrologic processes involve changes in both 
temperature (T) and pressure (P). Consider the thermal 
history of a mantle parcel M1 in P–T space in Fig. 1. Ini-
tially M1 was on geotherm H1 (time = t1). Between time t1 
and t2, M1 was slowly brought to shallower depth along 
P–T path M1–N to geotherm H2. Changes in tempera-
ture and pressure would result in redistribution of major 
and trace elements among minerals in parcel N. If the 
upwelling rate is slow compared to major element diffu-
sion rates in minerals, the major elements in minerals in 
parcel N will be homogeneous and their abundances can 
be used to calculate equilibrium temperature and pressure 
at N which are independent of its thermal history, i.e., we 
cannot tell whether N comes from M1 or M2 in Fig. 1. If 
the upwelling rate is faster compared to diffusion rates 
of certain slow-diffusing cations in the minerals, such as 
REE in pyroxene or garnet, it may be possible to deduce 
at least part of the thermal history of N by teasing out 
temperature, pressure, and rate information encapsulated 
by the slow diffusing cations in the minerals. For exam-
ple, temperatures and pressures derived from the abun-
dance and distribution of REE in minerals originated 
from M1 and M2 may correspond to points Q1 and Q2 in 

(1a)
EA

RTc
= G + ln

D0
A
RT2

c

EAṡd
2
A

,

(1b)
EAṡ

RT2
c

d2
A

Dc
A

= exp(G),

Fig. 1, while the major element-derived temperatures and 
pressures are at point N. The direction between N and Qm 
(m = 1 or 2) maybe related to upwelling trajectory in P–T 
space (arrows in Fig. 1), while differences in temperature 
and pressure between N and Qm may tell us something 
about the rate or duration of cooling and decompression 
associated with upwelling.

The effect of changing pressure on diffusional loss or 
gain in a cooling petrological system has not been con-
sidered in Dodson’s model. Within the framework of 
Dodson’s formulation, one can include the pressure effect 
by considering the general Arrhenius equation for diffu-
sion, viz.,

where VA is the activation volume for diffusion of an ele-
ment in mineral A. The numerator in the Arrhenius equa-
tion defines an activation enthalpy for diffusion, i.e., 
HA = EA + PVA. It is tempting to add the pressure effect 
to Dodson’s equation by replacing the activation (inter-
nal) energy EA in Eq.  (1a) with the activation enthalpy 
HA defined above. Unfortunately, the resultant equation 
is incomplete in this more general case, as both tempera-
ture and pressure in Eq.  (2) are functions of time during 
upwelling.

The chief objective of this study is to quantify the 
effect of pressure on closure temperature of a trace ele-
ment in mono-mineralic and bi-mineralic systems that 
experienced both cooling and decompression. As will 
be shown below, the generalized Dodson’s equation 
also depends on upwelling path (i.e., M1–N or M2–N in 

(2)DA(T ,P) = D0
A
exp

(

−
EA + PVA

RT

)

,
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Fig. 1   Schematic diagram illustrating two upwelling paths (M1–N 
and M2–N) in P–T space. Upwelling ends at point N. Q1 and Q2 are 
closure temperatures and closure pressures of a slow diffusing trace 
element along the two paths, respectively
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Fig.  1) or upwelling rate (dP/dt) of the cooling petro-
logical system under consideration. For a given closure 
temperature, there is a corresponding closure pressure. 
The closure path defined by the closure temperatures and 
closure pressures follows the upwelling trajectory of the 
mantle parcel in P–T space. For systems with large acti-
vation volume for diffusion, it may be possible to deduce 
upwelling path and upwelling rate from closure tempera-
tures and closure pressures of selected elements of differ-
ent mobility.

Closure temperature and closure pressure 
along a P–T–t path

We consider diffusional loss of a trace element in a mineral 
that moves along the upwelling path M1–N in Fig. 1 with 
a prescribed rate. Similar to the diffusional loss problem 
of Dodson (1973), we assume that (1) diffusion in mineral 
is isotropic; (2) grain growth and phase transformation are 
negligible during cooling and decompression; and (3) sur-
rounding medium is effectively an infinite sink or source 
for the element of interest in the mineral. To include the 
pressure effect, we first conduct an order of magnitude 
analysis of diffusional loss by comparing cooling time and 
diffusive re-equilibration time for the trace element in the 
mineral following a procedure similar to those of Dodson 
(1976) and Albarède (1995). In a later section (“Gener-
alization”), we also outline a more rigorous proof of the 
results described below.

The cooling time constant (τ) is an important concept 
in closure temperature formulation. According to Dodson 
(1973), it is defined as the time it takes to decrease the dif-
fusion coefficient DA for the element of interest in mineral 
A by a factor of e or 63%, viz.,

where t is time. For an upwelling parcel such as point Q1 
moving along path M1–N in Fig.  1, both its pressure and 
temperature vary as a function of time. From Eq.  (2), we 
have

Since P and T follow path M1–N, the decompression rate 
(dP/dt) is related to the cooling rate (dT/dt) through the 
slope of the upwelling path in P–T space (dP/dT), viz.,

(3)� = −

(
d lnDA

dt

)−1

,

(4)

d lnDA

dt
= −

d

dt

(
EA + PVA

RT

)

=
EA + PVA

RT2

dT

dt
−

VA

RT

dP

dt
.

(5)
dP

dt
=
(
dP

dT

)

u-p

dT

dt
,

where the subscript ‘u-p’ stands for ‘upwelling path’ and 
is used here to emphasize the path-dependent nature of dP/
dT. Hence the cooling time constant is path-dependent and 
given by

where ṡ = −dT∕dt is the cooling rate at a given P and T. 
All else being equal, the cooling time constant is larger for 
an upwelling parcel moving along a steeper path than along 
a shallower path in P–T space (cf. paths M1–N and M2–N in 
Fig. 1).

The characteristic diffusion time (tD) for an element in 
mineral A is given by the simple expression

where β is a constant, depending on mineral shape and 
boundary condition; dA is the effective grain radius. The 
mineral is effectively closed to diffusional loss to its sur-
rounding when the cooling time is shorter than the diffu-
sion time (Dodson 1976; Albarède 1995; Liang 2015). At 
closure temperature Tc, Eqs. (6) and (7) differ by a constant 
factor A′, viz.,

where Dc
A
 is diffusion coefficient at the closure temperature 

Tc and closure pressure Pc,

Equation  (8a) is the same as Dodson’s equation for 
the mean or grain averaged closure temperature (Eq.  1b) 
when the average of the geometry function G = ln(A′/3β) 
and VA = 0 or dP/dT = 0. According to Dodson (1986), the 
mean values of G are 4.0066 for sphere, 3.29506 for cylin-
der, and 2.15821 for plane sheet.

The closure temperature and closure pressure in Eq. (8a) 
are related to each other through the upwelling path. For 
purpose of demonstration, here we consider a linear path of 
the form (e.g., M1–N in Fig. 1),

where Pref and Tref are the pressure and temperature at a ref-
erence point along the linear upwelling path. Without loss 
of generality, we use the pressure and temperature at point 

(6)
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.
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N (PN and TN) in Fig. 1 in the formulations below. Substi-
tuting Eq. (8c) into Eq. (8a), we have a generalized expres-
sion for the mean closure temperature of a trace element in 
the cooling-upwelling mono-mineralic system,

where Hu-p

A
 is a path-dependent activation enthalpy for dif-

fusion in mineral A,

Dc
A
, which is the diffusion coefficient evaluated at Tc and 

Pc, can also be written as

where D0,u-p

A
 is a path-dependent pre-experiential factor for 

diffusion,

For the linear upwelling path considered here, the sec-
ond term on the right-hand side of Eq. (9b) is independent 
of the choice of the reference pressure and temperature so 
long as they are on the upwelling path. For example, one 
can use temperatures and pressures derived from major 
element-based thermobarometers to represent TN and PN in 
Eq.  (9b). Given TN and PN, cooling rate, and slope of the 
upwelling path, the closure temperature can be solved from 
Eq.  (9a) numerically using standard method. The closure 
pressure is given by Eq. (8c).

Discussion

Comparison with Dodson’s model

Equation  (9a) has the same form as Dodson’s equation 
(cf. Eq. 1b) if one replaces the activation energy and pre-
exponential factor for diffusion in Dodson’s equation by the 
path-dependent activation enthalpy (Eq. 9b) and pre-expe-
riential factor (Eq. 9d). Equation (9a) reduces to Dodson’s 
equation (Eq.  1b) in the absence of upwelling (i.e., when 
dP/dT = 0 in Eqs. 9b–9d) or when diffusion in mineral A is 
insensitive to pressure (i.e., VA = 0).

Few studies focus on effect of pressure on cation dif-
fusion in minerals. Published tracer diffusion data (see 
reviews in Béjina et  al. 2003; Chakraborty 2010) sug-
gest activation energies are positive and vary from less 
than 1 × 10−6  m3/mol (weak pressure dependence) to 

(9a)
H

u-p

A
ṡ

RT2
c

d2
A

Dc
A

= exp(G),

(9b)H
u-p

A
= EA +

[

PN −
(
dP

dT

)

u-p
TN

]

VA,

(9c)Dc
A
= D

0,u-p

A
exp

(

−
H

u-p

A

RTc

)

,

(9d)D
0,u-p

A
= D0

A
exp

[

−
VA

R

(
dP

dT

)

u-p

]

.

20 × 10−6  m3/mol (strong pressure dependence). The 
exception is an earlier study by Sneeringer et  al. (1984) 
in which they reported negative activation energies for Sr 
diffusion in diopside. Cherniak and Watson (2012) meas-
ured He diffusion in olivine at 0.1 MPa and 2.7 GPa and 
could not detect any change in measured diffusivity with 
pressure. Van Orman et  al. (2001) measured Ce and Yb 
diffusion in diopside at pressures of 0.1 MPa to 2.5 GPa 
and reported activation volumes of 10.2 ± 3.2 × 10−6 and 
9.5 ± 2.0 × 10−6  m3/mol, respectively. There are some 
uncertainties in quantifying pressure-dependent REE dif-
fusion in garnet. Bloch et  al. (2015) measured Lu diffu-
sion coefficient in natural almandine and spessartine over 
a range of P, T, and oxygen fugacity, and reported an 
activation volume of 10.6 ± 1.02 × 10−6 m3/mol. Based on 
laboratory measured diffusion coefficients of REE and Y 
in grossular at 0.1  MPa (Cherniak 2005) and pyrope at 
2.8 GPa (Van Orman et al. 2002b) and stranded diffusion 
profiles in natural garnets (modeled at 0.53 GPa), Carlson 
(2012) obtained a general Arrhenius expression for REE 
diffusion in garnet over a range of P, T, oxygen fugacity, 
and garnet composition. He found an activation volume 
for REE diffusion in garnet of 20.75 ± 0.66 × 10−6  m3/
mol. Including the newer data from Bloch et al. (2015) in 
a rigorous statistical analysis of REE diffusion in garnet, 
Chu and Ague (2015a) did not find a decrease in the esti-
mated activation volume for REE diffusion in garnet (Chu 
personal communication, 2016). The uncertainties in the 
activation volume may be due, in part, to the limited 
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Fig. 2   Diffusion coefficients of Ce in garnet (red lines) and diopside 
(blue lines) at constant pressures of 1 and 4 GPa and along a linear 
upwelling path with a slope of 5  MPa/K. Diffusion parameters for 
diopside and garnet are from Van Orman et al. (2002a) and Carlson 
(2012), respectively
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number of high-pressure experiments for REE diffusion 
in garnet: 6 at 2.8  GPa (Van Orman et  al. 2002b), 1 at 
1.9  GPa and 1 at 3.4 GPa (Bloch et  al. 2015), different 
garnets used in the experiments, and/or method in retriev-
ing diffusion coefficients. In spite of the uncertainties in 
the activation volume, pressure has a moderate-to-strong 
effect on REE diffusion in garnet and diopside. This is 
illustrated in Fig. 2.

In general, diffusion coefficients increase with the increase 
of temperature and the decrease of pressure. Hence there is a 
competing effect between temperature and pressure on cation 
diffusion in minerals along a geotherm (e.g., Holzapfel et al. 
2007; Watson and Baxter 2007). Figure  2 compares diffu-
sion coefficients of Ce in diopside and garnet at two selected 
pressures (1 and 4 GPa, dashed lines) and along an upwelling 
path that passes through 1400 °C and 4 GPa with a slope of 
5 MPa/K (solid lines). Diffusion coefficients were calculated 
using parameters reported in Van Orman et  al. (2002a) for 
diopside and Carlson (2012) for garnet. At 1300 °C, diffu-
sivities of Ce in diopside and garnet at 1 GPa are one and two 
orders of magnitude of the respective values at 4 GPa (one 
order of magnitude if an activation volume of 10 × 10−6 m3/
mol is used for garnet). These differences become even larger 
at lower temperatures (Fig. 2). In the case of upwelling, the 
relatively large and positive activation energies for REE diffu-
sion in diopside and garnet work against the dominant effect 
of decreasing temperature, resulting in a reduction in the 
apparent activation enthalpy for diffusion, i.e.,

(10)EA + PVA = EA + Pref VA +
(
dP

dT

)

u-p

(
T − Tref

)
VA,

where the first two terms on the right-hand side of Eq. (10) 
is the activation energy at the reference pressure, Pref. For 
the case of Pref = 4 GPa and Tref = 1400 °C, the last term 
in Eq.  (10) is negative. Hence the steeper the upwelling 
trajectory in P–T space, the larger the activation enthalpy 
reduction and the lesser the decrease of the diffusivi-
ties with falling temperature will be. Interestingly, if we 
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double the slope of upwelling path for the case in Fig.  2 
(dP/dT = 10  MPa/K), diffusivity of Ce in garnet becomes 
almost independent of temperature.

Figure  3a–c displays closure temperatures of Ce in 
garnet and diopside as a function of effective diffusion 
radius for a cooling rate of 100 °C/Myr and two choices 
of upwelling paths (Fig.  4) calculated using Eq.  (9a) and 
diffusion parameters listed in Van Orman et  al. (2002a), 
Carlson (2012), and Bloch et  al. (2015). For comparison, 
closure temperatures calculated using Dodson’s equa-
tion (Eq. 1b) at constant pressures of 1 and 4 GPa are also 
shown (dashed lines). For a given grain size, closure tem-
peratures at a constant pressure of 4 GPa are considerably 
higher than those at 1 GPa, by more than 200 (or 100) °C 
for garnet and 70–100 °C for diopside. This is due mainly 
to the difference in activation volume for diffusion between 
the two minerals (the differences in slope between the two 
minerals in Fig. 3 for the isobaric cases are due to the dif-
ference in activation energy between garnet and diopside). 
Figure  3a, b also highlights the importance of activation 
volume for diffusion: a reduction of activation volume by 
half results in a decrease in the isobaric closure tempera-
ture by ~100 °C for REE in garnet (~50 °C for diopside, 
supplementary Fig. S1a and S1b). The closure temperature 
is practically independent of pressure when the activation 
volume for diffusion is ≤1 × 10−6  m3/mol (supplementary 
Fig. S1c and S1d).

Equations  (9a–9d) indicate that closure temperature 
depends on cooling and decompression path. During 
upwelling, the competing effects of pressure and tem-
perature on diffusion drive closure temperature along the 
upwelling path. Since larger grains close at higher tem-
peratures, their closure pressures are also high, which 
results in higher apparent activation enthalpy for diffusion 
at the closure and hence the larger slope in the plot of clo-
sure temperature vs. effective grain size. This is illustrated 
in Fig.  3 for two choices of upwelling paths. The closure 
temperatures approach and even exceed Dodson’s 4  GPa 
curve for large enough grain size, but converge and pass 
below Dodson’s 1  GPa curve for smaller grain size with 
reduced slopes in these diagrams. For a given cooling rate, 
the steeper the slope of the upwelling path (dP/dT), the 
faster the upwelling rate is (Eq. 5), and the higher the clo-
sure temperature will be (cf. blue and red lines in Fig. 3). 
For minerals with larger activation volume for diffusion, 
their closure temperatures are more sensitive to upwelling 
path (cf. Fig. 3a, b and supplementary Fig. S1a–1c). Hence 
effect of pressure on closure temperature is significant 
when the activation volume for diffusion is large and the 
slope of upwelling path is steep.

Figure  4 displays closure temperatures and closure 
pressures for the four upwelling cases considered in 
Fig.  3a, c. Although garnet and diopside are closed to 

diffusional loss at different temperatures and pressures 
for a given grain size and upwelling slope (cf. Fig.  3a, 
c), closure temperatures and closure pressures for the two 
minerals follow the upwelling paths for the same geo-
thermal gradient via Equation  (8c). Here for purpose of 
demonstration, we choose Pref = 1 GPa and Tref = 800 °C. 
Figure 4 also shows that closure temperatures and closure 
pressures for a mineral with different grain size fall along 
the upwelling path. This is an important feature of diffu-
sional loss along an upwelling path and has been indepen-
dently verified by numerical solutions of diffusion equa-
tions under similar settings (Yao 2015). Hence it may 
be possible to deduce upwelling trajectory of a group of 
petrologically related igneous and metamorphic rocks by 
comparing their closure temperatures and closure pres-
sures for fine-grained and coarse-grained samples.

Finally, we note that closure temperature depends on 
the product of cooling rate and grain size squared (ṡd2) 
in all the closure temperature equations. Hence examples 
presented in Figs. 3, 4, 5, 6 and 7 (and supplementary fig-
ures) for a constant cooling rate of 100 °C/Myr can also 
be rescaled to other cooling rates by adjusting the effec-
tive grain size in the equations accordingly. Furthermore, 
diffusivities of REE in diopside and garnet vary system-
atically with their ionic radii (Van Orman et  al. 2001; 
Carlson 2012). Hence observations derived from diffu-
sive behavior of Ce are also applicable to other REE in 
the two minerals, as we will further illustrate in the next 
section.
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Fig. 5   Variations of garnet–clinopyroxene REE partition coefficients 
along two P–T paths. Arrhenius parameters are listed in supplemen-
tary Table S1
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Generalization

To highlight the role of pressure in diffusional loss dur-
ing upwelling, we used a simple order of magnitude 
analysis to identify key parameters controlling closure 
temperature and closure pressure in cooling-upwelling 
mono-mineralic systems. This simple method leads to an 
equation that differs from Dodson’s closure temperature 
expression by a constant factor. To constrain the constant, 
solutions of the diffusion equations are needed. Here we 
show that the path-dependent Eqs.  (9a–9d) for closure 
temperature and closure pressure can indeed be derived 
from a more rigorous analysis of the diffusion equations 
for the case of linear upwelling path (Fig. 1).

Without loss of generality, we consider diffusional loss of 
an element in a spherical mineral grain of radius d. In axial 
symmetric coordinate, the diffusion equation and boundary 
conditions for the element of interest in the mineral (concen-
tration CA) take on the usual expressions,

(11a)
�CA

�t
= DA(T ,P)

(
�2CA

�r2
+

2

r

�CA

�r

)

,

(11b)CA(d, t) = C0
A
(T ,P),

(11c)
�CA

�r
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Fig. 7   Variations of closure 
temperatures of selected REE in 
a 50% garnet + 50% clinopyrox-
ene aggregate as a function of 
effective diffusion radius (a) and 
trivalent REE ionic radius (b) 
along an upwelling path (dP/
dT = 5 MPa/K) at a cooling rate 
of 100 °C/Myr. For comparison, 
closure temperatures of Ce, Dy, 
and Yb for the 1% garnet + 99% 
clinopyroxene aggregate are 
shown as red dashed lines in a. 
Diffusion parameters for clino-
pyroxene and garnet are from 
Van Orman et al. (2002a) and 
Carlson (2012), respectively
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where C0
A
(T ,P) is the concentration on the mineral surface. 

The temperature- and pressure-dependent diffusion coef-
ficient, DA(T, P), is given by the Arrhenius equation for 
diffusion (Eq. 2). When T and P are functions of time, the 
diffusion coefficient varies with time. Equations (11a–11c) 
can be simplified by introducing a new time variable u 
(Dodson 1973),

At a constant pressure, P = P0, and a prescribed cool-
ing rate, Dodson (1973) obtained an analytical solution 
to Eqs.  (11a–11c) and used the solution to construct an 
expression for closure temperature (e.g., Eq.  1). Since 
diffusion rate generally decreases with increasing pres-
sure, one can, in principle, define a closure pressure Pc at 
a constant temperate, T = T0, and a prescribed compres-
sion rate following the procedures outlined in Dodson 
(1973, 1976).

When both T and P vary with time, the closure tem-
perature and closure pressure are related to each other 
through the closure time along the P–T–t path experi-
enced by the mineral. During upwelling, the pressure of 
the parcel is related to its temperature through the linear 
expression,

Substituting Eq. 13 into the pressure- and temperature-
dependent Arrhenius equation (Eq.  2), we have a pres-
sure-free Arrhenius expression for diffusivity of an ele-
ment in mineral A along the upwelling path,

where D0,u-p

A
 and Hu-p

A
 are shorthand notations for the path-

dependent pre-exponential factor and activation enthalpy 
for diffusion:

Given Eqs.  (14a–14c), one can solve the diffusion 
equation with time-dependent diffusion coefficient (e.g., 
Eqs. 11a–11c) following steps outlined in Dodson (1973) 
and obtain the path-dependent closure temperature equa-
tion (Eq.  9a) for upwelling along the linear P–T path 
described by Eq. (13). Since Eq. (14a) is the only change 

(12)u =

t

∫
0

DA[T(t
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(
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needed to account for upwelling and the upwelling rate is 
related to geothermal gradient via Eq.  (5), we can make 
the following general statement regarding closure tem-
perature equations for cooling petrological systems:

To include linear upwelling in a Dodson-type closure 
temperature equation, one simply replaces the pre-
exponential factor and activation energy for diffusion 
in the original isobaric equation by the path-dependent 
exponential factor and activation energy for diffusion 
while keeping the other terms unchanged in the original 
equation.

The generalized closure temperature equation of Ganguly 
and Tirone (1999, 2001) for systems with arbitrarily small 
amount of diffusion, for example, now takes on the form,

where Tc(x) is the closure temperature profile; x is the dis-
tance measured from the center of the grain; DA

(
T0
)
 is the 

diffusion coefficient evaluated at the peak temperature and 
pressure (T0 and P0), i.e., at the onset of upwelling; G(x) 
and g(x) are spatial-dependent closure function and mem-
ory function, respectively. Expressions and averaged values 
of G(x) and g(x) can be found in Dodson (1986) and Gan-
guly and Tirone (1999, 2001). Following the basic idea of 
Dodson (1973), Cherniak and Watson (2007) and Gardés 
and Montel (2009) considered diffusive “opening” during 
heating, and Watson and Cherniak (2013) provided general 
equations for both heating alone and thermal pulses. Their 
resultant expressions for diffusive opening at constant pres-
sure can also be generalized to include compression or sub-
duction along a linear path in P–T space using the substitu-
tions outlined above.

Powell and White (1995) and Liang (2015) presented 
algebraic equations for closure temperature in cooling bi-
mineralic systems that have not been affected by open sys-
tem mass transfer processes. Here the closure temperature 
is referred to the temperature at which the trace element of 
interest is effectively ceased diffusive exchange between 
the two minerals in a closed system. In addition to diffu-
sion parameters, closure temperature in cooling bi-miner-
alic systems depends on partition coefficient of the element 
between the two minerals as well as their relative propor-
tions. For a trace element, its pressure- and temperature-
dependent mineral–mineral partition coefficient, kAB, takes 
on the general form,

where Ek, Vk, and k0
AB

 are the exchange energy, exchange 
volume, and pre-exponential factor for the partitioning of 

(15)
H

u-p
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H
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RDA

(
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T2
c
(x)

H
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the trace element between mineral A and mineral B. For 
a linear upwelling path, the pressure in Eq.  (16) can be 
replaced by temperature via Equation (13), viz.,

An algebraic equation for the mean closure tempera-
ture and closure pressure of a trace element in bi-mineralic 
systems that experience cooling and decompression along 
a linear P–T path is presented in the Appendix 1 (Eq. 18) 
along with a brief description. This equation is reduced 
to Eq.  (9a) for mineral A when the volume fraction of A 
is very small and the abundance of the element of interest 
in A is much smaller than that in B (i.e., when mineral B 
serves as an effectively infinite sink or source for the ele-
ment of interest in the bi-mineralic system).

As an illustrated example, we consider mean closure 
temperatures and closure pressures of REE in cooling-
upwelling bi-mineralic systems consisting of garnet and 
clinopyroxene, that is, the temperatures and pressures 
at which diffusive exchanges of REE between garnet and 
clinopyroxene are effectively stopped in the closed system. 
Partitioning of REE between garnet and clinopyroxene 
depends on temperature, pressure and mineral major ele-
ment compositions (Sun and Liang 2014). For comparison, 
here we consider two garnet–clinopyroxene pairs: one from 
a diamond eclogite (sample JDE22 in Smart et  al. 2009) 
and the other from a garnet peridotite (sample Pra33 in 
Bjerg et al. 2009). For simplicity, we use the parameterized 
lattice strain model of Sun and Liang (2014) to calculate 
REE partition coefficients as a function of P and T while 
keeping major element compositions of the minerals fixed. 
In a more realistic scenario, major element compositions of 
coexisting garnet and clinopyroxene also change as a func-
tion of temperature and pressure. Table S1 in supplemen-
tary material listed the partitioning parameters for the two 
samples. The exchange energies (Ek) vary systematically as 
a function of ionic radius, 78–80 kJ/mol for La, 30–32 kJ/
mol for Gd, and −0.4 to −2.6  kJ/mol for Lu, while the 
exchange volume (Vk) is nearly constant with an average 
value of 3.2 × 10−6 m3/mol. Figure 5 displays selected REE 
partition coefficients between garnet and clinopyroxene 
along the 5 MPa/K P–T path shown in Fig. 4 for the eclog-
ite (a similar figure for the garnet peridotite is presented 
in supplementary Figure S2). In both cases, La and Ce are 
moderately to highly incompatible, while Sm to Lu are 

(17a)kAB(T) = k
0,u-p
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exp
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−
H

u-p

k

RT
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,

(17b)k
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compatible to highly compatible in garnet relative to clino-
pyroxene. The competing effect of decreasing temperature 
and pressure along the upwelling path gradually elevates 
garnet/clinopyroxene REE partition coefficients (cf. solid 
and dashed lines in Fig. 5 and Fig. S2), resulting in nega-
tive apparent exchange energies for Er, Yb and Lu parti-
tioning along the geotherm (i.e., positive slopes in these 
figures). These have interesting implications for diffusive 
re-equilibration of REE between garnet and clinopyroxene.

Figure  6a–c displays closure temperatures of Ce, Dy 
and Yb in garnet + clinopyroxene aggregates as a func-
tion of effective diffusion radius for three choices of 
garnet:clinopyroxene volume proportions (50:50, 10:90 
and 1:99), a cooling rate of 100 °C/Myr and an upwelling 
gradient dP/dT = 5 MPa/K. Figure 7a, b compares closure 
temperatures of selected REE as functions of ionic radius 
and effective grain sizes. For purpose of illustration, we 
set the grain size of garnet the same as that of clinopy-
roxene (dgarnet  =  dcpx) and used the diffusion parameters 
from Carlson (2012) for garnet. Four interesting observa-
tions can be readily made from Figs.  6 and 7. First, clo-
sure temperatures of REE in the cooling-upwelling gar-
net + clinopyroxene aggregates are bracketed by the closure 
temperatures of REE in garnet and clinopyroxene along 
the same P–T path (red dashed lines in Fig.  6) and clo-
sure temperatures along a cooling-upwelling path are dif-
ferent from those at a constant pressure (not shown but cf. 
Figs. 3, 6a). These are common features for diffusive redis-
tribution of trace element in bi-mineralic systems that are 
closed to mass exchange with their surrounding. Second, 
for garnet + clinopyroxene aggregates with more than 5% 
garnet, closure temperatures of middle to heavy REE are 
determined primarily by those in clinopyroxene (Fig.  6b, 
c). Third, closure temperatures of La and Ce are sensitive 
to garnet:clinopyroxene proportions, especially for sys-
tems with less than 50% garnet (Figs. 6a, 7a). And finally, 
except for systems with very large grain size (dgarnet = dcpx 
>8 mm), closure temperatures of La are lower than closure 
temperatures of Ce and Nd, while closure temperatures 
of Nd are nearly identical to those of Ce (Fig.  7a, b). In 
supplementary material, we present diagrams similar to 
Figs.  5, 6 and 7 for garnet and clinopyroxene in a garnet 
peridotite calculated using major element compositions 
reported in Bjerg et  al. (2009, their sample Pra33, Fig-
ures S2–S4) and for garnet and clinopyroxene in the eclog-
ite sample but with the activation volume for REE diffusion 
in garnet reduced by half (Figures S5, S6). The four obser-
vations described above appear to be common features 
shared by eclogites and garnet peridotites, insensitive to 
the choice of activation volume for REE diffusion in garnet 
(i.e., 20 × 10−6 vs. 10 × 10−6 m3/mol). These shared features 
originate from diffusive and partitioning behaviors of REE 
in garnet and clinopyroxene.
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The systematic variations in closure temperature illus-
trated in Figs. 6 and 7 (and supplementary Figures S3–S6) 
can be understood in terms of the minor’s rule for diffusive 
re-equilibration in bi-mineralic systems: the mineral that 
contains a lesser amount of the trace element of interest in 
the closed system contributes more to the overall diffusive 
time and hence the closure temperature in the bi-mineralic 
system (Liang 2014, 2015). The middle-to-heavy REE 
are highly compatible in garnet relative to clinopyrox-
ene, whereas La and Ce are highly incompatible in gar-
net (Figs. 5, S2). With considerably higher abundances of 
middle-to-heavy REE, garnet serves effectively as a very 
large reservoir for these REE in the garnet–clinopyroxene 
system, leaving clinopyroxene as the “minor phase” that 
controls the time scale of diffusion for the middle-to-heavy 
REE in the bi-mineralic system. Since diffusion of REE in 
clinopyroxene depends strongly on their ionic radii (Van 
Orman et al. 2001, 2002a), this also explains the ionic size-
dependent behavior of the closure temperatures for the case 
of 50% garnet + 50% clinopyroxene shown in Fig.  7 (and 
Figs. S4, S6). Garnet is important to middle-to-heavy REE 
when its volume fraction is very small (<1%). In contrast, 
La and Ce budgets in garnet + clinopyroxene aggregates 
are controlled mainly by clinopyroxene (Fig.  5) except 
when the clinopyroxene volume fraction is very small. This 
explains the more prominent role of garnet in determining 
their closure temperatures in bi-mineral eclogites with less 
than 50% garnet. In fact, garnet exerts such a strong con-
trol on the diffusive re-equilibration time scale of La in the 
garnet + clinopyroxene aggregates, closures temperatures 
of La are weighted more towards the closure temperatures 
of La in garnet, which explains the lower values of the La 
closure temperatures in Fig. 7 (and Figs. S4, S6).

Nonlinear upwelling path in P–T space

For algebraic simplicity, we considered linear upwelling 
path in P–T space in our analysis of the pressure effect. 
P–T–t paths of natural samples are more complicated 
even for cases involving simple exhumation (e.g., Grase-
mann et  al. 1998; Guillot et  al. 2009). Yao (2015) con-
ducted numerical simulations of diffusive re-equilibration 
of REE between garnet and clinopyroxene during cooling 
and decompression along parabolic paths in P–T space. 
She showed that the numerically derived closure tem-
peratures and closure pressures, calculated from closure 
times defined by Dodson (1973, 1976), follow the para-
bolic P–T trajectory in a manner similar to that shown in 
Fig. 4. In Appendix 2, we present equations for the mean 
closure temperature and closure pressure along two nonlin-
ear upwelling paths: (a) P = f(T), where f(T) is an arbitrary 
function of temperature; and (b) T = c1P + c2P2, where c1 
and c2 are constants.

Summary and further discussion

Pressure may play an important role during diffusional loss 
along an upwelling path. Dodson’s equation and Dodson-
type closure temperature equations for cooling mono-min-
eralic and bi-mineralic systems are generalized to include 
the pressure effect by noting that the pressure is related to 
the temperature through the upwelling path in P–T space. 
For the linear path considered in this study, the resultant 
closure temperature equations have the same algebraic form 
as the Dodson-type equations at constant pressure except 
the diffusion and mineral–mineral partitioning parameters 
in the generalized equations are path-dependent and can 
be quantified by considering the slope of the upwelling 
path. During upwelling, the competing effect of pressure 
and temperature gives rise to reductions in the apparent 
activation energy and exchange energy for diffusion and 
partitioning, which result in systematic deviations in clo-
sure temperatures from their isobaric values. For typical 
activation energies of 300–500 kJ/mol for cation diffusion 
in minerals, the effect of pressure is important when the 
activation volume is ≥5 × 10−6 m3/mol. This includes REE 
diffusion in garnet and diopside (Van Orman et  al. 2001, 
2002a; Carlson 2012; Bloch et al. 2015), and divalent cat-
ion diffusion in garnet and olivine (e.g., Chakraborty and 
Ganguly 1992; Freer and Edwards 1999; Holzapfel et  al. 
2007; Chu and Ague 2015b). The effect of pressure is espe-
cially important when the upwelling rate is high and the 
slope of upwelling path is large. At present, few data are 
available for the activation volume and exchange volume of 
geochemically important elements in minerals of petrologic 
importance. Results from the present study demonstrate the 
usefulness of such data in unraveling thermal and tectonic 
history of igneous and metamorphic rocks.

For a given closure temperature, there is a correspond-
ing closure pressure on the upwelling path. An element that 
has a higher closure temperature in a mineral assemblage 
(due to larger grain size or/and slower diffusion) also has 
a higher closure pressure. For a given element, its closure 
temperatures and closure pressures in a suite of tectonically 
related rocks of variable texture (e.g., fine and coarse grain 
sizes) and composition may be related to each other through 
the upwelling path. For an uplifted rock that has not been 
affected by open system processes after its formation, clo-
sure temperatures and closure pressures of cations of dif-
ferent mobility and compatibility in its constituent miner-
als define a P–T trajectory that also follows the upwelling 
path. This conclusion also applies to nonlinear upwelling 
paths. Hence it may be possible to deduce at least part of 
upwelling trajectory of igneous and metamorphics rocks by 
comparing their closure temperatures and closure pressures 
in P–T space. As an example, we compare temperatures 
and pressures of two garnet peridotites calculated using the 



Contrib Mineral Petrol (2017) 172:8	

1 3

Page 11 of 13  8

REE-in-garnet–clinopyroxene thermobarometer of Sun and 
Liang (2015) and major element-based thermobarometers 
that have been widely used in the literature in Fig. 8.

Through numerical simulations of diffusive re-equilibra-
tion of REE between garnet and clinopyroxene during cool-
ing and decompression along parabolic paths in P–T space, 
Yao (2015) showed that the apparent temperatures and 
pressures calculated using the grain-scale averaged REE 
concentrations in garnet and clinopyroxene and the REE-
in-garnet–clinopyroxene thermobarometer are equivalent 
to the average closure temperatures and closure pressures 
of REE calculated according to the definition of Dodson 
(1973, 1976) in the garnet + clinopyroxene aggregates. Fig-
ure 8 displays the average closure temperatures and closure 
pressures of REE for two majoritic garnets with pyrox-
ene exsolutions from Otrøy, western Norway (points Q1 
and Q2, major and trace element data from Spengler et al. 
2006). Also shown are temperatures and pressures calcu-
lated using the two-pyroxene thermometer and the Al-in-
orthopyroxene barometer of Brey and Köhler (1990, points 
N1 and N2). Based on the presence of oriented intracrystal-
line pyroxenes exsolved from garnet, depleted light REE 
patterns in garnet and exsolved pyroxenes, and Nd mineral 
cooling age, Spengler et  al. (2006) deduced the thermal 
and tectonic history of the Otrøy peridotites that involves 
decompressional melting of transition zone mantle in the 
Archaean, followed by either nearly isobaric cooling at 
the base of the lithosphere till Proterozoic (their Model 1) 

or a more complicated history that involves subduction or 
delamination followed by buoyancy-driven upwelling to 
the base of the lithosphere (their Model 2). In both mod-
els, cooling and decompression resulted in closure of the 
Sm–Nd isotopic system. The closure temperatures and 
closure pressures deduced from the REE-in-garnet–clino-
pyroxene thermobarometer (points Q1 and Q2 in Fig.  8) 
may correspond to the 1.4 Ga “Nd mineral cooling time” 
reported in Spengler et al. (2006). The major element-based 
temperatures and pressures (points N1 and N2 in Fig.  8) 
correspond to further cooling during decompression until 
Phanerozoic (stage D in their Fig.  3). Hence the vectors 
Q1 → N1 and Q2 → N2 in Fig. 8 may be interpreted as part 
of the upwelling trajectories recorded by the two garnet 
peridotites. This is consistent with the model of Spengler 
et al. (2006, stages C and D in their Fig. 3). With detailed 
thermodynamic modeling of mineral stabilities and diffu-
sion modeling of major element and REE zoning patterns 
in garnet and pyroxene following P–T–t paths, it may be 
possible to deduce cooling and upwelling rates experienced 
by these rocks (e.g., Müller et al. 2015; Yao 2015).
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Appendix 1: Closure temperature and closure 
pressure for cooling‑upwelling bi‑mineralic 
systems

The analysis outlined in the main text can be easily 
extended to bi-mineralic systems that experience both 
cooling and decompression. Here we consider diffusive 
exchange of a trace element in a cooling-upwelling bi-
mineralic aggregate in a representative elementary vol-
ume or REV along a P–T–t path (Fig. 1). The bi-mineralic 
aggregate consists of minerals A and B of average half 
sizes or radii dA and dB and volume fractions φA and φB, 
respectively, in the REV. In addition to the three assump-
tions for the mono-mineralic systems, we assume that (4) 
the two minerals are in local equilibrium at their interfaces; 
and (5) grain boundary diffusion is much faster than vol-
ume diffusion in the two minerals so that mass exchanges 
freely along grain boundaries among minerals within the 
REV (e.g., Eiler et al. 1992). Assumption (4) allows us to 
relate concentrations of a trace element at the surface of 
the two minerals through a mineral–mineral partition coef-
ficient, kAB (Eqs.  14a–14c). Expression for the tempera-
ture- and pressure-dependent diffusion coefficient for the 
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Fig. 8   Upwelling trajectories defined by temperatures and pres-
sures recorded in major elements and REE in coexisting garnet and 
pyroxenes in two garnetites in garnet peridotites from Otrøy, western 
Norway. The major element-derived temperatures and pressures are 
calculated using the thermobarometers of Brey and Köhler (1990, 
points N1 and N2), while REE-based temperatures and pressures are 
calculated using the REE-in-garnet–clinopyroxene thermobarometer 
of Sun and Liang (2015, points, Q1 and Q2). Lines with arrows mark 
possible upwelling paths. Major element and REE compositions are 
from Spengler et al. (2006)
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trace element of interest in mineral B is the same as that 
for mineral A, i.e., by replacing subscript A in Eq. (2) with 
subscript B.

An algebraic equation for the mean closure tempera-
ture in cooling bi-mineralic systems at a constant pressure 
was derived by comparing cooling time constant and dif-
fusive re-equilibration time (Liang 2015). Following the 
procedure of Liang (2015) and that outlined in the section 
“Generalization”, we obtain an algebraic expression for the 
mean closure temperature in cooling and upwelling bi-min-
eralic systems,

where G is the geometry function of Dodson (1973). The 
path-dependent enthalpies for diffusion and mineral–min-
eral partitioning take on the general form

The cooling rate ṡ, diffusion coefficients (Dc
A
 and Dc

B
) 

and partition coefficient (kc
AB

) in Eq.  (18) are evaluated at 
the closure temperature Tc and closure pressure Pc using 
expressions similar to Eq. (9c). As in mono-mineralic sys-
tems, the closure pressure is related to closure temperature 
through the upwelling path, i.e., Eq. (8c).

Appendix 2: Nonlinear upwelling paths

For diffusional loss along a nonlinear upwelling path, the 
pressure and temperature are also related to each other 
through the upwelling path in P–T space. We can make 
proper substitutions following methods similar to those 
outlined in this study. Here we consider two cases for cool-
ing and upwelling mono-mineralic systems. Expressions 
for bi-mineralic systems can be easily obtained with refer-
ence to Eq. (18).

Case (a). P = f(T). Replacing pressure by temperature in 
the Arrhenius equation, we have an equation for the mean 
closure temperature,

(18)

𝜙
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2
A
ṡ

D
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A

+ 𝜙
A
k
c
AB
H

u-p
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2
B
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D
c
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𝜙
A
k
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)
RT

c

2
+

𝜙
B
𝜙
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AB
H

u-p

k

(
𝜙
A
k
c
AB

+ 𝜙
B

)2
RTc

2

(
d
2
A

D
c
A

−
d
2
B

D
c
B

)

ṡ = exp(G),

(19)

Hu-p
m

= Em +

[

Pref −
(
dP

dT

)

u-p
Tref

]

Vm, m = A, B, or k.

(20)

{

EA +

[

f
(
Tc
)
−

df

dT

|||T=Tc
Tc

]

VA

}

ṡ

RT2
c

d2
A

Dc
A

= exp(G),

where the slope of the upwelling path dP/dT = df/dT is 
evaluated at the closure temperature.

Case (b). T = c1P + c2P2. This expression is related to 
steady-state heat conduction and geotherms of the litho-
sphere (e.g., Pollack and Chapman 1977) and was used 
in Yao (2015) in her study of the closure temperatures of 
REE in garnet–clinopyroxene aggregates. Here it is more 
convenient to calculate closure pressure (Pc) by consider-
ing the decompression rate. Replacing temperature by pres-
sure in the Arrhenius equation, we have an equation for the 
mean closure pressure

where u̇ = dP∕dt is the decompression rate and related to 
cooling rate through Eq. (5). The mean closure temperature 
is related to the mean closure pressure through the para-
bolic geotherm.
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