


where ηc and ηt are the collector and turbine efficiency, g is the gravitational acceleration, I is the solar
irradiation, and T∞ is the ambient temperature. The power, P , scales with the collector area, πR2

c and
chimney height, Ht. The geometric dimensions of the Manzanares plant (1:1 scale) are provided in Tab. 1.

To investigate the flow physics of the radial SCPP collector flow a scientifically instrumented 1:30 scale
model of the Manzanares plant was designed and built by H. Fasel and co-workers at the Aerospace and
Mechanical Engineering Department at the University of Arizona.5 The dimensions of the scaled plant
(“model”) are also included in Tab. 1.

Collector radius Collector height Chimney height Chimney diameter

Manzanares (1:1 scale) 122m 2m 198m 10m

Model (1:30 scale) 4.07m 0.067m 6.6m 0.33m

Table 1. Geometric dimensions of full-size and model SCPP.

Numerical investigations of the time-dependent and transient (diurnal cycle) nature of the flow inside the
SCPP have been carried out by numerous researchers. Reynolds-averaged Navier-Stokes (RANS) calculations
have been performed by Pastohr et al.6 Ming et al.7 established an analytical model for the collector to
investigate the effect of various parameters on the differential (between chimney inlet and ambient) pressure as
well as the power and plant efficiency and compared the results with data obtained from RANS calculations.
Later Ming et al.8 carried out RANS calculations with a standard k-ǫ turbulence model to analyze a SCPP
with energy storage layers. Ming et al.8 also performed RANS calculations for investigating the effect of
crosswind on the SCPP system performance.9 The effect of solar irradiation and turbine pressure drop on
the power output for the Manzanares SCPP was investigated by Xu et al.10 To the authors best knowledge
none of the previous research has addressed hydrodynamic instabilities of the collector flow that may lead
to large-scale coherent structures which may have a profound effect on the collector efficiency.

Channel flows with wall-normal temperature gradient and gravitational field are known as Rayleigh-
Bénard-Poiseuille (RBP) flows. The radial flow under the collector may thus be referred to as a radial RBP
flow. Because the ground is heated and the buoyancy force opposes the gravitational acceleration the flow
can exhibit buoyancy driven instability. The relevant dimensionless numbers are the Reynolds number,

Re =
ub2h

ν
, (2)

with bulk velocity, ub, channel height, h, and kinematic viscosity, ν, the Rayleigh number,

Ra =
gh3γ∆T

να
, (3)

with gravitational acceleration, g, volumetric thermal expansion coefficient, γ, temperature difference, ∆T ,
and thermal diffusivity, α, and the Prandtl number,

Pr =
ν

α
. (4)

Gage and Reid11 carried out a comprehensive linear stability theory (LST) analysis of the plane RBP
flow in a two-dimensional (2-D) channel. Neutral curves were obtained for two different instability modes.
For Re > Rec=5,400 and Ra < Rac=1,708, a viscous instability was discovered leading to the amplification
of Tollmien-Schlichting (T-S) waves. For this regime, 2-D waves were found to grow faster than three-
dimensional (3-D) oblique waves. The resulting flow structures, after the disturbance amplitudes have
saturated, are referred to as transverse rolls.

For Re < Rec and Ra > Rac, three-dimensional longitudinal waves were found to be amplified and the
resulting flow structures are referred to as longitudinal rolls. For this regime, the 3-D disturbances were
found to grow faster than the 2-D disturbances. The Gage and Reid findings were validated by numerous
experiments12 and simulations.13 The nonlinear interaction of longitudinal and transverse rolls was analyzed
by Fujimura and Kelly.14 Longitudinal rolls must be expected below the critical Reynolds number for the
viscous instability as long as the Rayleigh number, aspect ratio, and background noise level are high enough
and nonlinear effects are not significant.

The lateral confinement (spanwise extent) of channels of engineering interest is always limited. For chan-
nels with a width-to-height ratio of less than five, transverse convection rolls were observed for Reynolds
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numbers below the critical Reynolds number for the T-S instability (e.g., Luijkx et al.15). A stability analysis
by Nicolas et al.16 showed that “lateral confinement” stabilized the flow with respect to longitudinal rolls
(increasing the critical Rayleigh number for longitudinal rolls beyond 1,708). A transition from “convective”
to “absolute” instability was discovered for the transverse rolls by Lücke and Kamps.17 Carriére and Monke-
witz18 showed that longitudinal rolls never become “absolutely” unstable. The mode reaching zero-group
velocity always corresponds to transverse rolls.

The understanding of the flow physics and especially the inherent primary instabilities of the radial RBP
flow in the collector is of great importance as it provides the critical parameters that determine if and when
flow structures form. While the plane RBP flow has been investigated in great detail, research on inward
radial channel flow with convection is sparse. Van Santen et al.19,20 considered the strongly decelerated
outward radial flow between two horizontal plates. Direct numerical simulations (DNS) and experiments
were employed for investigating the formation of transverse (axisymmetric) and longitudinal rolls resulting
from the onset of buoyancy-driven instability.19,20 An interesting outcome was that transverse rolls are
favored in radial channel flow at very low Reynolds numbers when the Rayleigh number is above critical.
This is quite surprising since it is in contradiction to the plane channel flow results by Gage and Reid.11

Although some of the extensive research for plane RBP flows may carry over to radial channel flows
with convection, differences must be expected, since for the inward radial flow, the circumference and hence
the channel aspect ratio decreases in the streamwise direction. As a result the flow is strongly accelerated
(which usually has a stabilizing effect) and the velocity profile changes in the streamwise direction which
introduces non-parallel effects. Fasel et al.21 carried out RANS calculations for various scales to validate
the scaling laws.1 Meng et al.22 performed an implicit large eddy simulation (ILES) for a 1:33 scale model
of the Manzanares SCPP. The mean flow was found to be consistent with the mean flow of an earlier RANS
calculation by Fasel et al. for the same scale.21 The ILES revealed longitudinal rolls that arise likely as a
result of a buoyancy-driven instability.

The present paper constitutes a continuation of the earlier research by Fasel and co-workers.5,21,22 A
new highly accurate compact finite difference computational fluid dynamics (CFD) code was developed for
investigating the temporal stability of RBP flows. The new code as well as an existing finite volume code
were employed for square channel flow simulations and the stability behavior of both 2-D and 3-D waves was
compared with the neutral curves by Gage and Reid.11 Secondly, collector flow simulations are proposed as
a low-cost alternative to entire 3-D simulations of the 1:30 scale SCPP at the University of Arizona.5

II. Methodology

A. Governing Equations

The compressible Navier-Stokes equations in conservative form can be written in vector form,

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= H , (5)

with state vector,

Q =















ρ

ρu

ρv

ρw

ρe















, (6)

and flux vectors,

E =















ρu

ρu2 + p − τxx

ρuv − τxy

ρuw − τxz

u(ρe + p) − uτxx − vτxy − wτxz + qx















, (7)
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F =















ρv

ρvu − τxy

ρv2 + p − τyy

ρvw − τyz

v(ρe + p) − uτxy − vτyy − wτyz + qy















, (8)

and

G =















ρw

ρwu − τxz

ρwv − τyz

ρw2 + p − τzz

w(ρe + p) − uτxz − vτyz − wτzz + qz















. (9)

Here, u, v, and w are the velocities in the x, y, and z direction, ρ is the density, p is the static pressure, and
T is the temperature. The total energy is e = ǫ + 1/2(u2 + v2 + w2), where ǫ = cvT is the internal energy.
The source term vector,

H =















0
∂p
∂x

g(ρref − ρ)

0

u ∂p
∂x

+ vg(ρref − ρ)















, (10)

contains a ∂p/∂x term that compensates for the streamwise pressure drop resulting from the viscous losses
(only for the temporal simulations), and a buoyancy term, g(ρref − ρ) (Boussinesq approximation), with
gravitational acceleration, g = 9.81m/s2. The shear stress tensor components are,

τxx = µ
2

3

(

2
∂u

∂x
−

∂v

∂y
−

∂w

∂z

)

(11)

τyy = µ
2

3

(

2
∂v

∂y
−

∂u

∂x
−

∂w

∂z

)

(12)

τzz = µ
2

3

(

2
∂w

∂z
−

∂u

∂x
−

∂v

∂y

)

(13)

τxy = µ

(

∂u

∂y
+

∂v

∂x

)

(14)

τxz = µ

(

∂u

∂z
+

∂w

∂x

)

(15)

τyz = µ

(

∂v

∂z
+

∂w

∂y

)

, (16)

with dynamic viscosity, µ, and the heat flux vector components are,

qx = −k
∂T

∂x
(17)

qy = −k
∂T

∂y
(18)

qz = −k
∂T

∂z
, (19)

with thermal conductivity, k. The set of equations is closed by the ideal gas equation,

p = ρRT, (20)

with gas constant, R.
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B. Discretization

Two in-house developed computational fluid dynamics (CFD) codes were employed for solving the governing
equations: An established versatile finite-volume code and a newly developed customized highly-accurate
compact finite difference code. All simulations were performed either on a local work station or on the
XSEDE23 high performance computing (HPC) system Comet.

1. Finite Volume Code

As a reference, simulations were carried out with a finite volume code by Gross and Fasel.24 The convective
terms were computed with a ninth-order-accurate upwind scheme. The viscous terms were discretized with
fourth-order accuracy. A second-order accurate implicit Adams-Moulton method was employed for time
integration. The resulting system of equations was solved iteratively. In this paper, this method is referred
to as “old code”.

2. Compact Finite Difference Code

A new highly accurate Navier-Stokes code was developed specifically for the simulation of temporal RBP
flows. The code employs fourth-order-accurate compact finite differences in the wall-normal direction,

u′

i−1 + 4u′

i + u′

i+1 =
3ui+1 − 3ui−1

∆η
(21)

u′′

i−1 + 10u′′

i + u′′

i+1 =
12ui+1 − 24ui + 12ui−1

∆η2
, (22)

where the primes indicate derivatives in computational space (coordinate, η, with ∆η = 1). The resulting
tridiagonal systems of equations are solved with the Thomas algorithm. Derivatives in the streamwise (x-
coordinate) and spanwise (z-coordinate) direction are calculated in Fourier space. The forward and backward
Fourier transforms are computed out with fast Fourier transform (FFT) subroutines by Sorensen et al.25,26

A coordinate transformation is employed in the wall-normal direction (grid line index, j; coordinate in
computational space, η=j; ∆η = 1) that clusters grid points near the walls. A total of J grid points are
distributed in the wall-normal direction,

yj =

[

tan−1(jc − f1)

f2
+ 1

]

×
h

2
, (23)

where h is the channel height, c is a user specified constant, f1 = Jc/2, and f2 = tan−1(f1). The first and
second derivatives of the computational coordinate with respect to the physical coordinate are,

∂η

∂y
= 2

f2

ch

{

1 + tan2

[(

2y

h
− 1

)

f2

]}

(24)

∂2η

∂y2
= 4

f2

h

∂η

∂y
tan

[(

2y

h
− 1

)

f2

]

. (25)

The derivatives in physical space can then be obtained from

∂u

∂y
= u′

∂η

∂y
(26)

∂2u

∂y2
= u′′

(

∂η

∂y

)2

+ u′
∂2η

∂y2
. (27)

By bringing the flux derivatives to the right-hand-side, the governing equations can be written as,

∂Q

∂t
= R =

(

H −
∂E

∂x
−

∂F

∂y
−

∂G

∂z

)

. (28)
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A fourth-order-accurate explicit low-storage Runge-Kutta method is employed for time integration,27

Q1 = Qn +
∆t

2
R(Qn) (29)

Q2 = Qn +
∆t

2
R(Q1)

Q1 ⇐ Q1 + 2Q2 (30)

Q2 = Qn + ∆tR(Q2)

Q1 ⇐
1

2
(−Qn + Q1 + Q2) (31)

Qn+1 = Q1 +
∆t

6
R(Q2) . (32)

Here, n and n + 1 are the old and new time step.
The velocities at the top and bottom wall are zero. Assuming steady wall-tangential flow (∂ρv/∂t = 0

and ∂/∂x = 0), the wall-normal momentum equation at the walls simplifies to

∂p

∂y
= g(1 − ρ) . (33)

When the pressure differential is discretized with a one-sided third-order accurate finite difference stencil,
the wall pressure becomes,

p0 =
6g ∂y

∂η
+ 18p1 − 9p2 + 2p3

11 + 6g
RT0

∂y
∂η

. (34)

C. Channel Flow Relationships

The hydraulic diameter for a 2-D channel flow (height h and span b) is defined as

Dh =
4b × h

2(b + h)
. (35)

For a channel with infinite width or span (b → ∞), Dh = 2h. The bulk velocity is defined as

ub =
1

h

∫

u dy . (36)

From the x-momentum equation for a laminar 2-D channel flow,

νuyy =
1

ρ

∂p

∂x
, (37)

the velocity profile can be found by integration,

u =
1

2ρν

∂p

∂x

(

y2 − hy
)

. (38)

The maximum velocity is obtained at the channel half-height,

umax = −
h2

8ρν

∂p

∂x
. (39)

The velocity profile expressed in terms of the maximum velocity is

u = 4umax

[

y

h
−

(y

h

)2
]

. (40)

From this the bulk velocity for the laminar profile can be obtained,

ub =
2

3
umax . (41)
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The skin-friction coefficient for the laminar 2-D channel flow can be computed from the near-wall gradient
of the velocity profile,

∂u

∂y
= 4umax

(

1

h
− 2

y

h2

)

. (42)

At the wall,
∂u

∂y
= 4

umax

h
, (43)

and the skin-friction coefficient based on the bulk velocity becomes,

cf =
ρν ∂u

∂y

1
2ρu2

b

= 12
ν

ubh
. (44)

The Darcy friction factor f is defined as

∂p

∂x
= −

1

2
ρu2

b

f

Dh

. (45)

From a control volume analysis in the streamwise direction for the 2-D channel flow,

hb
∂p

∂x
dx + τ2bdx = 0 , (46)

the skin friction can be obtained,

τ = −
h

2

∂p

∂x
. (47)

Making use of the friction factor,

τ =
h

2

1

2
ρu2

b

f

Dh

=
f

8
ρu2

b , (48)

is obtained which is valid for both laminar and turbulent channel flow. With this the skin-friction coefficient
becomes

cf =
τ

1
2ρu2

b

=
f

4
. (49)

D. Non-Dimensionalization

The governing equations were made dimensionless with a reference velocity, vref , a reference length scale,
Lref , a reference temperature, Tref , and a reference density, ρref . Pressure was made dimensionless with
ρrefv2

ref .

1. Square Channel Flow Simulations

Several laminar square channel flow simulations were performed for code validation purposes. The Reynolds
number based on bulk velocity and hydraulic diameter is

Re =
ub2h

ν
. (50)

Gage and Reid11 based their Reynolds number on the maximum velocity and the channel half height,

ReGR =
umax

h
2

ν
. (51)

Using the expression for the bulk velocity, the Reynolds number for a laminar 2-D channel flow becomes

Re =
4

3

umaxh

ν
=

8

3
ReGR . (52)

For the present simulations the bulk velocity was taken as reference velocity, vref = ub, and the channel
half-height was taken as reference length, Lref = h/2. The resulting reference Reynolds number is

Reref =
vrefLref

ν
=

ub
h
2

ν
=

1

4
Re . (53)
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For laminar flow cf = 24/Re and therefore f = 96/Re = 24/Reref . The negative pressure gradient made
dimensionless with the reference length, Lref = h/2, and the bulk velocity is

−
∂p

∂x

h
2

ρu2
b

=
f

8
=

dp

dx
. (54)

For the square channel flow simulations this expression is added as a source term to the right-hand-side of
the streamwise momentum equation to maintain a constant bulk velocity.

The Rayleigh number is defined as

Ra =
γh3g∆T

να
, (55)

where γ = 1/Tav with Tav = (Thot + Tcold)/2 is the thermal expansion coefficient for a perfect gas, ∆T =
Thot −Tcold, is the temperature difference between the bottom and top wall, and α is the thermal diffusivity.
The Prandtl number is defined as

Pr =
ν

α
. (56)

The Rayleigh number can be written as

Ra = Re2

∆T
Tav

(

h
Lref

)3 (

g
Lref

v2

ref

)

Pr
, (57)

where gLref/v2
ref is the dimensionless gravitational acceleration. The bottom and top wall temperatures

were 350K and 300K, respectively. The latter was also chosen as reference (and ambient) temperature. In
accordance with Gage and Reid11 the Prandtl number was set to 1 and the reference Mach number was set
to 0.3.

2. Simulation of Entire SCPP Model

An earlier simulation by Meng et al.22 for the 1:30 scale model of the Manzanares plant at the Uni-
versity of Arizona5 was continued. Different from the approach chosen for the square channel flow sim-
ulations, the governing equations were made dimensionless with the chimney diameter, d = 0.02646m, a
reference velocity of 0.3473m/s, the density at the chimney outflow, and the temperature of the upper
cooler collector surface, T=300K, which was identical to the ambient temperature. The reference Reynolds
number is Re = ρrefv∞d/µref = 57, 790. For the chosen non-dimensionalization a Rayleigh number of
Ra = gd3∆T/(ανrefTav) = 1.391×106, and a non-dimensional gravitational acceleration of gd/v2

ref = 0.2438
are obtained. The reference Prandtl and Mach number were 0.72 and 0.001.

3. Collector Simulations

To cut down on the computational expense of the full SCPP simulations, simulations of the collector only
were carried out as well. For the collector simulations, length scales were made dimensionless with the
collector half height, h = 6.604 × 10−4m, velocities were made dimensionless with the collector inflow
velocity, 17.37m/s, and the temperature was made dimensionless with the temperature of the collector top
surface, T=300K (which matched the ambient temperature). The reference Reynolds and Rayleigh number
were Re = vrefLref/νref = 721.1 and Ra = gL3

ref∆T/(ανrefTav) = 23.87 × 106 and the dimensionless

gravitational acceleration was gLref/v2
ref = 2.686. The reference Mach number was set to 0.05 and the

Prandtl number was 0.72.

E. Computational Domain

Computational grids for the simulations of the square channel flow, the entire SCPP, and the collector are
shown in Figs. 1-3. For the square channel flow simulations the analytical grid function (Eq. 23) with
c=0.2 was employed in the wall-normal direction and the streamwise and spanwise grid extent were varied.
For the simulation of the entire SCPP the two-domain computational grid by Meng et al.22 was used. The
azimuthal grid opening angle is 15deg for the collector domain and 45deg for the chimney and center cone
domain. A wedge shaped grid with 15deg grid opening angle was generated for the collector simulations (no
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a) b)

Figure 1. (a) Typical computational domain boundaries and (b) details of mesh for square channel flow
simulations.

a) b)

Figure 2. (a) Computational domain boundaries and (b) details of mesh for entire SCPP simulation.

a) b)

Figure 3. (a) Computational domain boundaries and (b) details of mesh for collector simulations.

chimney). Grid points were clustered near the lower and upper wall. The number of cells in the streamwise,
wall-normal, and azimuthal direction and the near-wall grid resolution in wall units for the entire SCPP and
the collector flow simulations are presented in Tab. 2.
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Case Number of cells Near wall grid resolution

Entire SCPP simulation Collector 512 × 64 × 33 ∆x+
max = 76,∆y+

max = 0.54,∆z+
max = 26

Chimney 433 × 64 × 99 ∆x+
max = 120,∆y+

max = 1.6,∆z+
max = 10

Collector simulation 256 × 64 × 32 ∆x+
max = 32,∆y+

max = 1.6,∆z+
max = 44

Table 2. Number of cells and near-wall grid resolution in wall units.

F. Boundary Conditions

For all simulations the top (collector cover) and bottom wall (ground) temperature were set to 300K and
350K, respectively. The ambient temperature was set to 300K. No slip and no penetration boundary condi-
tions were enforced at all walls.

1. Square channel flow simulation

Periodicity conditions were employed in the streamwise and spanwise directions.

2. Entire SCPP and Collector Simulation

At the collector inlet a parabolic velocity profile and a constant temperature of 300K were prescribed and the
static pressure was extrapolated from inside the computational domain (assuming a zero pressure gradient
in the streamwise direction). A characteristics-based boundary condition28 was employed at the outflow
boundary (chimney or collector outflow depending on simulation). Flow periodicity was enforced in the
azimuthal direction.

III. Results

A. Square Channel Flow Simulations

Square channel flow simulations were performed for cross-validating the two Navier-Stokes codes (old and
new code). Different Reynolds and Rayleigh number combinations close to the 2-D and 3-D neutral loops in
the Gage and Reid11 stability diagram were considered. The relevant parameters for the different investigated
unstable and stable cases are listed in Tab. 3 and plotted with the Gage and Reid11 neutral curves in Fig. 4. In
Fig. 4, λ denotes the wave angle. For Re > Rec = 5, 400 and Ra < Rac = 1, 708 2-D waves (λ=0deg) are most
unstable; For Ra > Rac = 1, 708 and Re < Rec = 5, 400 3-D waves (λ=90deg) are most unstable. Of course,
in 2-D simulations the 3-D waves are artificially suppressed. For the 2-D simulations (Re < Rec) disturbance
growth is expected if

√
Ra is above the λ=0deg neutral curve; For the 3-D simulations, disturbance growth

is expected if
√

Ra is above the λ=90deg neutral curve. The cases were chosen such the flow is either (1)
stable, (2) unstable w.r.t. 3-D waves but stable w.r.t. 2-D waves, and (3) unstable w.r.t. both 2-D and 3-D
waves.

The old and new code were cross-validated for a reference Reynolds number of 100 (cases 1-4). Important
for the cross-validation is an accurate match of the baseflow profiles. Figure 5 confirms that the baseflow
profiles are in good agreement. The slight asymmetry of the velocity profiles is caused by the temperature
gradient which results in a minor variation of the viscosity in the wall-normal direction. The pressure and
density profiles are consistent with ∂p/∂y = g(1 − ρ).

Because the wall-normal velocity component is zero for steady channel flow, it can be used to track the
growth or decay of disturbances. Therefore, the wall-normal velocity at the mid-channel height was taken
as disturbance velocity, v′. In linear stability theory a wave ansatz,

v′ = V (y)ei(αx+βz−ωt) , (58)

is made for the disturbances. Here, α=αr+iαi is the streamwise wavenumber, β=βr+iβi is the spanwise
wavenumber, and ω=ωr+iωi is the frequency. For the present temporal simulations the disturbances grow
in time and thus αi = βi = 0 and ωi is the temporal growth rate. The streamwise and spanwise wavenumber
are related to the streamwise and spanwise wavelength via αr = 2π/λx and βr = 2π/λz. The frequency is
related to the period via ωr = 2π/T . For the present simulations, the mode amplitude was either directly
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Figure 4. Present unstable and stable square channel flow simulations (symbols) and neutral curves by Gage
and Reid.11

Dimensions Re
√

Ra Code L or Z

Case 1 2-D 100 100 Old L=2

Case 2 2-D 100 100 New L=2

Case 3 2-D 100 300 Old L=2

Case 4 2-D 100 300 New L=2

Case 5 3-D 100 100 Old Z=2

Case 6 3-D 100 100 New Z=2

Case 7 3-D 100 300 Old Z=2

Case 8 3-D 100 300 New Z=2

Case 9 2-D 100 30 New L=12

Case 10 2-D 30 30 New L=12

Case 11 2-D 30 50 New L=12

Case 12 2-D 30 100 New L=12

Case 13 3-D 100 30 New Z=12

Case 14 3-D 30 30 New Z=12

Case 15 3-D 30 50 New Z=12

Case 16 3-D 30 100 New Z=12

Table 3. Parameters for 2-D and 3-D square channel flow simulations.

provided by the code (new code) or computed using Fourier transforms (old code). Modes are denoted
by their streamwise, l, and spanwise, k, mode numbers which are related to the streamwise and spanwise
wavelengths via λx = L/l and λz = Z/k. The streamwise and spanwise domain extents, L and Z, are
equivalent to the streamwise and spanwise fundamental wavelengths. Gage and Reid11 do not report the
wavenumber of the most unstable 3-D modes. Ostrach and Kamotani29 state that the spanwise wavelength
of the most unstable longitudinal waves is roughly two times the channel height.

The disturbance amplitudes for the 2-D validation cases are provided in Fig. 6a. The streamwise mode
l=1 grows exponentially (linear growth) until saturation for cases 3 & 4. Identical growth rates are obtained
with the old and new code. For the stable cases (1 & 2) the disturbance amplitudes decay. The k=1 mode
amplitudes for the 3-D validation cases (5-8) are plotted in Fig. 6b. Since both

√
Ra = 100 and

√
Ra = 300

are above
√

Rac =
√

1, 708 = 41.3, temporal growth must be expected for both cases. This is in fact the case.
As for the 2-D validation cases, good agreement of the growth rates for the results obtained with the old and
new code is observed. The growth rates for

√
Ra = 300 are larger than for

√
Ra = 100 which indicates a
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Figure 5. Velocity, pressure, density, and temperature profiles for cases 1-4.

a) b)

Figure 6. Time evolution of Fourier modes of wall normal disturbance velocity at mid-channel height for a)
2-D cases (case 1-4) and b) 3-D cases (case 5-8).

stronger instability. The results in Fig. 6 also illustrate the high accuracy of the new compact finite difference
code. The round-off error is much lower than for the old code and, as a result, the disturbance amplitudes
grow from much lower levels.

Eight additional square channel flow simulations (four 2-D cases, 9, 10, 11 & 12, and four 3-D cases, 13,
14, 15 & 16) were performed with the new code (Tab. 3). The fundamental wavelengths in the streamwise
and spanwise direction was L=Z=12. Fourier modes of the wall-normal velocity for the 2-D cases are plotted
in Fig. 7. For the same Reynolds number (Re=30), case 12 (

√
Ra=100) is unstable while cases 10 (

√
Ra=30)

& 11 (
√

Ra=50) are stable. Case 9 (Re=100 and
√

Ra=30) is also stable. For case 12, mode l=3 is most
unstable and experiences the largest growth rate. Modes l=4, 2, and 5 are also growing. Possibly as the result
of nonlinear interactions, mode 6 (and later other modes) starts to grow as soon as the mode 3 amplitude
reaches approximately 3×10−8. For the stable cases (9, 10 and 11) all mode amplitudes decay exponentially
in time.

The reference Reynolds number for the 3-D simulations was Re=30 for cases 14, 15 & 16 and Re=100
for case 13. The square root of the Rayleigh number was

√
Ra=50 and 100 for cases 15 & 16, respectively,

which is above the critical Rayleigh number (
√

Rac=41.3) and
√

Ra=30 for cases 13 & 14. Since the neutral
curve for λ=90deg is crossed as the Rayleigh number is increased, disturbance growth must be expected for
cases 15 & 16. The present results indicate linear growth for cases 15 and 16 (Fig. 8) and exponential decay
for cases 13 and 14 (Fig. 9).

For case 15 (unstable 3-D case) mode k=3 which has a spanwise wavelength of 4 (identical to one-third
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a) b)

c) d)

Figure 7. Fourier modes of wall-normal disturbance velocity at mid-channel height for case a) 9, b) 10, c) 11,
and d) 12.

a) b)

Figure 8. Fourier modes of wall-normal disturbance velocity at mid-channel height for case a) 15 and b) 16.

of the domain width) is experiencing the strongest amplification (Fig. 8a). This result is in agreement with
Ostrach and Kamotani29 who reported a wavelength of two times the channel height. Modes 4 and 2 are also
unstable. As mode 3 reaches an amplitude of approximately 10−8, mode 6 begins to grow probably as a result
of nonlinear interactions. For traveling waves the phase speeds have to match up (phase synchronization) for
resonance to occur. Modes 3 & 6 are both steady waves and this criterion is therefore satisfied. As the mode
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Figure 9. Fourier modes of wall-normal disturbance velocity at mid-channel height for case 14.

amplitudes saturate, six longitudinal convection rolls appear that are aligned in the streamwise direction
(Fig. 10a). Shown are iso-surfaces of the Q-criterion flooded by the velocity magnitude. The Q-criterion,30

Q =
1

2
(Wi,jWi,j − Si,jSi,j) , (59)

is used to identify vortical flow structures. Here,

Si,j =
1

2
(ui,j + uj,i) , (60)

is the strain rate tensor and

Wi,j =
1

2
(ui,j − uj,i) , (61)

is the rotation rate tensor. The temperature iso-contours in Fig. 10b illustrate how the longitudinal rolls
transport hot air from the bottom surface (350K) to the top surface (300K). Interestingly, for the other
unstable case (case 16) mode 4 is slightly more amplified than mode 3 (Fig. 8b). Contrary to Ostrach and
Kamotani29 the wavelength of the most unstable mode (k=4) is found to be 3 (1.5 times the channel height).

a) b)

Figure 10. Case 15: a) Iso-surfaces of Q=0.01 flooded by velocity magnitude and b) temperature iso-contours
in x=const. plane.

B. Simulation of Entire SCPP and Collector Simulations

The collector and the chimney are the two main components of SCPPs. An earlier implicit large eddy
simulation (ILES) by Meng et al.22 of the SCPP experiment at the University of Arizona5 was continued.
The reference Mach number for the simulation is very small (M=0.001) which limits the computational
time step since the Courant-Friedrichs-Lewy (CFL) number scales with the inverse of the Mach number
(for M=0.001, the acoustic waves are 1,000 faster than the reference velocity). This makes the simulation
computationally expensive. It was estimated that 80,000 time steps are required for one “flow-through time”
(i.e., time that it takes for one fluid particle to travel from the collector inlet to the chimney outlet).
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Since the focus of the present investigations is on the collector, it was decided to carry out new simulations
for the collector only. By disregarding the chimney in the simulations, the computational expense is reduced.
In addition, the reference Mach number was raised to M=0.05 to allow for a larger time step which shortens
the simulation turnaround times.

The circumferential area in the collector scales with 2πrh where h is the collector height and r is the
radius measured from the center of the collector. Thus, for incompressible flow (ρ=const.) the velocity inside
the collector varies according to v ∝ 1/r (radial continuity equation) and as a result the Reynolds number
increases hyperbolically as the chimney inlet is approached. The collector exit Mach number for the present
collector simulation (reference Mach number M=0.05) is approximately 0.21. Since M=0.3 is commonly
considered the limit for incompressible flow, this outflow Mach number was considered acceptable.

Figure 11. Pressure inside collector for collector simulation.

In Fig. 11 the static pressure inside the collector is plotted versus the radial coordinate (r=0 is at the
center of the collector). The pressure extracted from the simulation (“CFD”) is compared with the pressure
computed from the velocity, v2, and temperature, T2, inside the collector. For low Mach number flows
Bernoulli’s equation may be invoked,

p1 +
1

2
ρv2

1 = p2 +
1

2
ρv2

2 . (62)

Here, v1 and p1 are the conditions at the collector inflow. The present CFD result (“CFD”) and the pressure,
p2(v2), computed from Bernoulli’s equation (“Bernoulli’s Equation”) are in reasonable agreement (Fig. 11).

Assuming a constant total enthalpy (strictly speaking, this is not the case since the walls are not adiabatic
and the flow is not inviscid), the temperature, T2, can be computed from the velocity, v2, via

cpT1 +
v2
1

2
= cpT2 +

v2
2

2
, (63)

where cp = 1/[(γ − 1)M2] is the specific heat at constant pressure, and M and γ are the reference Mach
number and ratio of specific heats, respectively. Assuming isentropic flow (which is an approximation that
neglects both physical and numerical diffusion), the pressure, p2, (“Isentropic Flow Equation” in Fig. 11)
can then be obtained from,

p1

p2
=

(

T1

T2

)

γ
γ−1

. (64)

The agreement with the static pressure from the simulation (“CFD”) is again reasonable (Fig. 11).
The pressure drop towards the collector outlet is very small (≈ 2% of the inflow static pressure, Fig. 11).

The pressure drop in the collector is balanced by the pressure difference created by the chimney effect and
the pressure difference across the turbines. The pressure difference (inlet to outlet) for a chimney of height
H can be obtained from the chimney formula,

∆p = g(ρa − ρi)H , (65)
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a) b)

Figure 12. a) Reynolds number and b) square root of Rayleigh number for collector simulations.

where ρa and ρi are the ambient and chimney inlet density, respectively. This pressure difference is driving
the collector flow.

In Fig. 12 the local Reynolds number, Re, and square root of the Rayleigh number,
√

Ra, based on
the maximum local radial velocity and the collector half height (same reference velocity and length scale
as in Gage and Reid11) are plotted versus the radial coordinate. Because the radial velocity increases in
the streamwise direction, the Reynolds number increases from about 700 (collector inflow, r=125) to about
2,700 at the collector outflow (r=25).

Figure 13. Reynolds and Rayleigh number distributions for present simulations overlaid on neutral curves by
Gage and Reid.11

In Fig. 13 the Reynolds number, Re, and square root of the Rayleigh number,
√

Ra, for the present
simulations (simulation of entire SCPP and collector simulations) are compared with the neutral curves by
Gage and Reid.11 The Reynolds number for the simulations is slightly below the critical Reynolds number
for the viscous instability (Re < Rec=5,400). The Rayleigh number, on the other hand, is far above the
critical Rayleigh number for buoyancy driven instability (Ra > Rac = 1, 708). Since the λ=0deg waves are
the most unstable waves, longitudinal rolls must be expected.

Two collector simulations were carried out. For the first simulation, disturbances were growing from
machine round-off (“natural” undisturbed flow). In the experiment the collector roof is supported by screws
which introduce steady streamwise disturbances at the collector inlet. Wind loads acting on the collector
roof may result in minute structural vibrations which might introduce unsteady disturbances at the inflow.
Therefore, for the second simulation, a steady and an unsteady disturbance,

v′ = v′steady + v′unsteady , (66)
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were introduced (“forced” case) via wall-normal blowing and suction with velocity, v′, on the collector bottom
wall for r1 = 123.9 > r > r2 = 116.0. The steady disturbances had an amplitude of A=0.1 and an azimuthal
mode number of eight,

v′steady = Af(r) sin

(

2π
8ϕ

15deg

)

, (67)

where ϕ is the azimuthal coordinate. The amplitude for the unsteady disturbances was A=0.1,

v′unsteady = Af(r) sin(2πt) , (68)

where t is time. The disturbance amplitude was varied in the streamwise direction according to,

f(r) =

{

5.0625(1 + x)3
[

3(1 + x)2 − 7(1 + x) + 4
]

x < 0

−5.0625(1 − x)3
[

3(1 − x)2 − 7(1 − x) + 4
]

x > 0
(69)

with x = −1 + 2(r − r1)/(r2 − r1).

Figure 14. Instantaneous iso-surfaces of Q=0.1 flooded by velocity magnitude (simulation of entire SCPP).

An instantaneous flow visualization for the simulation of the entire SCPP is provided in Fig. 14. The
flow visualization reveals transverse rolls near the collector inlet and longitudinal rolls about half way into
the collector. Instantaneous flow visualizations for the collector simulations are provided in Fig. 15. Eight

a) b)

Figure 15. Instantaneous Q iso-surfaces flooded by velocity magnitude (collector simulations). a) “natural”
undisturbed flow (Q=0.00001) and b) disturbed flow (Q=0.02).

longitudinal rolls (per 15deg segment) appear downstream of the inflow for both collector simulations (“nat-
ural” and “forced” case). The unsteady disturbances for the “forced” case appear to get damped in the
streamwise direction which was expected because Re < Rec = 5, 400. However, about two thirds into the
collector unsteady flow structures reappear. It may be speculated that the primary 3-D disturbances have
saturated and that a secondary instability occurs. This will be investigated in the future.
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Figure 16. Instantaneous azimuthal Fourier modes of wall normal velocity for simulation of entire SCPP.

Since the Rayleigh number is above Rac = 1, 708, azimuthal 3-D disturbances (wave angle, λ=90deg)
must be expected. Therefore, azimuthal Fourier transforms of the instantaneous wall-normal velocity at
the mid collector height were performed to analyze the streamwise growth of the 3-D waves. Different
from the square-channel flow simulations (temporal stability analysis), the instability waves in the collector
simulation are growing in the downstream direction (spatial stability analysis). Azimuthal Fourier modes
for the simulation of the entire SCPP are shown in Fig. 16. Initially (near the inflow) modes k=5 & 6 have
the largest amplitudes. Further into the collector modes 3 & 4 are dominant and finally near the collector
outflow mode 2 attains an appreciable amplitude. Based solely on the flow visualization in Fig. 14 this
behavior may be interpreted as “vortex merging”.

a) b)

Figure 17. Instantaneous azimuthal Fourier modes of wall-normal velocity for collector simulation a) “natural”
case and b) “forced” case.

For the undisturbed (“natural”) collector simulation, spanwise mode k=8 is amplified first and grows
approximately exponentially (“linear” growth) up to r ≈ 80 (Fig. 17a). Modes 1-7 are also growing but
their amplitudes are about one order of magnitude lower than for mode 8. The amplitudes of modes 4 &
6 are slightly larger than the amplitudes of modes 1-3, 5, and 7. It may be argued that modes 4 & 6 are
unstable. Alternatively, it may be argued that the mode 8 amplitude is already large enough to result in
nonlinear interactions. For r < 80 mode 8 decays and mode 6 and later mode 4 become dominant (largest
mode amplitudes). Based on the flow visualization (Fig. 15a) this behavior may be interpreted as “vortex
merging”. Near r≈35 the amplitude of mode 2 is almost as large as the amplitude of mode 4.

Because mode 8 experiences the strongest amplification for the “natural” case, it was introduced at the
collector inflow for the “forced” case. For the “forced” case an adjustment of the mode 8 amplitude over
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the forcing slot is observed for 116 < r < 124. Downstream of the disturbance slot mode 8 is growing
exponentially. Because of the higher initial amplitude mode 8 is saturating earlier (r ≈ 105) than for the
“natural” case. For r≈55 mode 4 is dominant and for r≈40 mode 3 is dominant. Overall, for r > 70 the
disturbance amplitudes are much higher than for the “natural” case.

IV. Conclusions

The radial Rayleigh-Bénard-Poiseuille (RBP) flow inside the collector of solar chimney power plants
(SCPPs) may be subject to buoyancy driven and viscous instabilities. Modal growth may lead to longitu-
dinal or transverse rolls that could greatly enhance the wall-normal momentum and heat transfer and thus
have a profound effect on the collector performance. Information about the stability of the collector flow
may be gained from linear stability theory (LST) analyses (e.g., Gage and Reid11) or from local stability
simulations such as proposed here. For the stability simulations, first a base flow profile is computed and
then disturbances with very small “linear” amplitudes are introduced. Square channel flow stability simula-
tions were carried out with an existing versatile but “noisier” finite-volume code and with a newly developed
problem-specific “clean” compact finite difference code. The results from the stability simulations agree well
with each other and with the Gage and Reid11 LST results.

The finite-volume code was also employed for investigating the radial flow inside the collector of a 1:30
scale model of the Manzanares SCPP which has been erected on the roof of the Aerospace and Mechanical
Engineering Department at the University of Arizona.5 Simulations were carried out for the full SCPP
(collector and chimney) and for the collector only. It was determined that the Reynolds number, Re, inside
the collector remains below the critical Reynolds number for viscous instability to occur (Rec = 5, 400). The
Rayleigh number, however, is far larger than the critical Rayleigh number for buoyancy driven instability
(Rac = 1, 708) and longitudinal rolls appear. The present collector simulations indicate that the flow
inside the collector is subject to a buoyancy-driven convective instability. Therefore, the inflow disturbance
amplitudes have a strong influence on the onset and character of the nonlinear interactions. Based on
a Fourier analysis of the disturbances and instantaneous flow visualizations it is suggested that “vortex
merging” may occur in the streamwise direction. A similar finding was made earlier by Meng et al.22

Despite the fact that the Reynolds number remains below the critical Reynolds number, unsteady flow
structures appear as the outflow is approached which may indicate the presence of a secondary instability.

Much remains to be done. The new compact finite difference code will be developed further to allow for
stability investigations of radial RBP flows. Stability investigations will be carried out for the conditions of
the 1:30 scale experiment at the University of Arizona5 to allow for a direct comparison with the experiment
and with the finite-volume code simulations. The data obtained from the collector simulations will be Fourier
transformed in time and analyzed w.r.t. the unsteady flow structures. The measurements at the University of
Arizona will provide information about the inflow disturbances which were found to have a deciding impact
on the flow structures inside the collector.
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