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Abstract

Markov chain Monte Carlo (MCMC) simulation is a powerful statistical method in solving inverse problems that arise
from a wide range of applications. In Earth sciences applications of MCMC simulations are primarily in the field of geo-
physics. The purpose of this study is to introduce MCMC methods to geochemical inverse problems related to trace element
fractionation during mantle melting. MCMC methods have several advantages over least squares methods in deciphering
melting processes from trace element abundances in basalts and mantle rocks. Here we use an MCMC method to invert
for extent of melting, fraction of melt present during melting, and extent of chemical disequilibrium between the melt and
residual solid from REE abundances in clinopyroxene in abyssal peridotites from Mid-Atlantic Ridge, Central Indian Ridge,
Southwest Indian Ridge, Lena Trough, and American-Antarctic Ridge. We consider two melting models: one with exact ana-
lytical solution and the other without. We solve the latter numerically in a chain of melting models according to the Metro-
polis–Hastings algorithm. The probability distribution of inverted melting parameters depends on assumptions of the physical
model, knowledge of mantle source composition, and constraints from the REE data. Results fromMCMC inversion are con-
sistent with and provide more reliable uncertainty estimates than results based on nonlinear least squares inversion. We show
that chemical disequilibrium is likely to play an important role in fractionating LREE in residual peridotites during partial
melting beneath mid-ocean ridge spreading centers. MCMC simulation is well suited for more complicated but physically
more realistic melting problems that do not have analytical solutions.
� 2017 Elsevier Ltd. All rights reserved.

Keywords: Markov chain Monte Carlo; Disequilibrium; Fractional melting; Dynamic melting; Abyssal peridotite; Rare earth element;
Diffusion; Clinopyroxene; Geochemical inverse problem
1. INTRODUCTION

The abundance and distribution of trace elements in
primitive basalts and residual peridotites are important to
understanding mantle source compositions and mantle
melting processes. During partial melting, abundances of
trace elements in interstitial melt and residual solid are
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redistributed or fractionated in accordance with their
solid-melt partition coefficients, extent of melting, and style
of melt extraction. Interpretations of trace element data,
therefore, depend critically on melting models, melting
parameters, and mantle source composition. Simple melting
models that have frequently been used in the interpretation
of trace element data in basalts and residual peridotites
include batch melting, incremental batch melting, fractional
melting, and dynamic melting models (e.g., Albarède, 1995;
Shaw, 2006; Zou, 2007). A common feature of these simple
melting models is that they all have explicit analytical solu-
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tions relating melt and residual solid compositions to the
degree of melting experienced by the solid. In more compli-
cated but physically more realistic melting models, such as
double porosity melting models and disequilibrium melting
models (Qin, 1992; Iwamori, 1993a,b, 1994; Lundstrom,
2000; Ozawa, 2001; Jull et al., 2002; Van Orman et al.,
2002; Liang and Parmentier, 2010; Liang and Peng,
2010), there are no analytical solutions to the mass conser-
vation equations governing the fractionation of a trace ele-
ment in the partial melt and residual solid, except a few
special cases. Numerical methods are used to solve the gov-
erning equations (Richter, 1986; Jull et al., 2002;
Spiegelman and Kelemen, 2003).

Interpretations of basalt and peridotite trace element
data typically follow one of two approaches or methods
(Allegre and Minster, 1978): forward method and inverse
method. In the forward approach, one calculates trace ele-
ment abundances in the melt and residual solid or mineral
(often clinopyroxene) for a range of melting parameters
(e.g., 0–20% melting, 0–2% trapped melt in the dynamic
melting model) using several melting models for a group
of trace elements in question (e.g., REE and HFSE).
Results from the forward calculation are then compared
with measured trace element data on a spider diagram, ele-
ment vs. element diagrams (e.g., Ti vs. Zr), element vs. ele-
ment ratio diagrams (e.g., Sm/Yb vs. Yb), or element ratio
vs. element ratio diagrams (e.g., Ti/Zr vs. Sm/Yb). The
model is deemed acceptable or successful if part or all of
the observed trace element data in samples included in
the study can be explained or bracketed by those predicted
by the forward model calculations. If the melting model
fails to explain part of the observed data (e.g., LREE
enrichment in residual clinopyroxene), additional processes
such as late-stage melt impregnation or mantle metasoma-
tism are invoked and further tested. Such forward modeling
followed by direct comparison with measured data has been
widely used in the interpretation of trace element data from
primitive basalts and residual peridotites (e.g., Langmuir
et al., 1977, 2006; McKenzie, 1985; Johnson et al., 1990;
Kelemen et al., 1997; Niu and Hékinian, 1997; Shimizu,
1998; Lundstrom, 2000; Hellebrand et al., 2002; Jull
et al., 2002; Van Orman et al., 2002; Spiegelman and
Kelemen, 2003; Niu, 2004; Kelley et al., 2006; Liang and
Parmentier, 2010; Brunelli et al., 2006, 2014).

In the inverse approach, the melting parameters are
extracted from measured trace element data through least
squares analysis (Allegre and Minster, 1978; Minster and
Allegre, 1978; Hofmann and Feigenson, 1983; McKenzie
and O’Nions, 1991; Albarède, 1995; Zou, 2007). Here one
minimizes a Chi-square defined by the measured trace ele-
ment concentrations and those predicted by the melting
model and weighted by data quality. Early applications of
the inverse method to mantle melting follow the strategies
outlined in Minster and Allegre (1978) and Hofmann and
Feigenson (1983). Given the relatively poor knowledge of
mineral-melt partition coefficients, melting reaction, and
mantle composition and mineralogy at the time, these early
studies used the batch melting model and incompatible
trace element ratios and abundances in basalts to invert
for bulk solid-melt partition coefficients and mantle miner-
alogy (Feigenson et al., 1983; Hofmann and Feigenson,
1983; Ormerod et al., 1991; Feigenson and Carr, 1993).
McKenzie and coworkers (McKenzie and O’Nions, 1991,
1995, 1998; Watson and McKenzie, 1991; White et al.,
1992; Watson, 1993; Tainton and McKenzie, 1994;
McKenzie et al., 2004) applied Backus and Gilbert
(1968)’s optimization technique (for a summary see
Parker, 1977) to invert melt fraction and distribution in a
melting column from REE abundances in basalts. In a
more restricted case in which the melting model has explicit
analytical expression, the nonlinear least squares method
(also called the linearized least squares method, abbreviated
as ‘‘LS” hereafter, Tarantola, 2005) is very useful in invert-
ing all model parameters simultaneously. There are only a
few mantle melting studies that took the nonlinear least
squares approach. Liang and Peng (2010) used the nonlin-
ear least squares method and a steady-state double porosity
model to invert the degree of melting and the extent of melt
extraction from REE and Y abundances in residual
clinopyroxene from the Central Indian Ridge (data
reported by Hellebrand et al., 2002). LREE abundances
in half of the sample set are too high to be consistent with
the steady-state model. Liang and Liu (2016) further exam-
ined this problem using a disequilibrium perfect fractional
melting model. They showed that a small extent of chemical
disequilibrium, due to slow diffusion of LREE in clinopy-
roxene, can explain the elevated LREE abundances in
residual clinopyroxenes in the abyssal peridotites. They also
noted a positive correlation between the degree of melting
and the extent of chemical disequilibrium and attributed
it to an increase in melting rate and a decrease in REE dif-
fusion rate along the melting path. However, given the non-
linear nature of the melting problem and the simplified
melting model used, it is not clear if this is a robust obser-
vation for decompressional melting along a melting column
when additional melting parameters are considered. For
example, in a more general case of dynamic melting, a small
fraction of melt is retained in the melting column, which
may affect the interpretation of other melting parameters
through nonlinear trade-offs among the melting parame-
ters. Although it is straightforward to develop a disequilib-
rium dynamic melting model by relaxing model
assumptions, the governing mass conservation equations
are nonlinear and do not have explicit analytical solutions
(e.g., Liang, 2003), which limits application of the nonlinear
least squares inversion method. If more complicated melt-
ing models are used to interpret trace element data, robust
inversion methods are needed.

The purpose of this study is twofold: (1) to introduce
Markov chain Monte Carlo (MCMC) methods to geo-
chemical inverse problems related to trace element fraction-
ation during mantle melting, and (2) to further test the
robustness of the positive correlation between the degree
of melting and the extent of chemical disequilibrium noted
earlier. Conservation equations for trace element fractiona-
tion during concurrent melting, melt migration and melt-
rock interaction generally do not have analytical solutions
and hence cannot be easily solved using least squares inver-
sion methods. MCMC methods are a class of powerful sta-
tistical tools for solving inverse problems that arise from a
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wide range of applications, such as physics, chemistry, com-
putational biology, computer science, financial engineering,
among others (Robert and Casella, 2004; Liu, 2008). In
Earth sciences, applications of MCMC methods are pri-
marily in the field of geophysics (Sambridge and
Mosegaard, 2002). MCMC methods have several advan-
tages over the least squares methods in inverting melting
parameters from trace element abundances in basalts and
mantle rocks. First, MCMC methods can handle any model
or equation that has no explicit analytical solution. Second,
MCMC methods can take advantage of prior knowledge of
the system in question (e.g., based on previous studies, we
know mantle melting is near fractional) and further
improve the estimation of model parameters based on
new observations in hand, an important feature that non-
linear least squares inversion methods do not have. Third,
MCMC algorithms can handle multiple local minima in
nonlinear inverse problems that may pose a challenge to
nonlinear least squares analysis. Finally, MCMC simula-
tions can provide insights into uncertainties of model
parameters with nonlinear trade-off.

The remaining part of this paper is organized as follows.
In Section 2, we outline the procedure of a widely used
MCMC method that is based on the Metropolis–Hastings
algorithm. In Section 3, we use two melting models and
abyssal peridotite data from Central Indian Ridge to high-
light the advantages of the MCMC method: a disequilib-
rium fractional melting model that has an explicit
analytical solution, and a more general model of disequilib-
rium dynamic melting that has no analytical solution. In
Sections 4 and 5, we use the MCMC method and the dise-
quilibrium dynamic melting model to invert melting param-
eters from REE and Y abundances in clinopyroxene in
abyssal peridotites from four additional ridge systems:
Mid-Atlantic Ridge, Southwest Indian Ridge, Lena
Trough, and American-Antarctic Ridge. We show that a
robust positive correlation between the degree of melting
and the extent of disequilibrium for REE in clinopyroxene
exists in abyssal peridotites from Southwest Indian Ridge
and Central Indian Ridge and discuss our results in the con-
text of adiabatic mantle melting. Finally in Section 6, we
outline potential applications of MCMC methods to more
general cases of mantle melting.

2. MARKOV CHAIN MONTE CARLO METHOD

Markov chain Monte Carlo method was first introduced
by Metropolis et al. (1953) to study macroscopic equilib-
rium of interacting molecules in statistical mechanics. The
Metropolis algorithm was extended by Hastings (1970)
for more general cases. The MCMC method uses the poste-
rior distribution to estimate the probability of model
parameters given data as constraints. Here posterior distri-
bution is the distribution of unknown model parameters
based on the observed data. By randomly generating trial
models and accepting or rejecting the trial model in accor-
dance with a transition probability, the Metropolis–Hast-
ings algorithm produces a chain of models whose
distribution converges to posterior distribution, i.e., the
desired parameters that reproduce the observed data.
2.1. The estimate of model parameters: posterior distribution

To estimate a model parameter is to determine the prob-
ability distribution of the model parameter (i.e., their best-
estimated values and associate uncertainties) given data as
constraints. For example, REE abundances in an abyssal
peridotite may suggest that 10% melting is more likely to
explain the observed REE data than 5% melting. In other
words, the degree of melting (F) has a higher probability
at 10% than at 5%. There exists a posterior distribution that
specifies the probability of F within a range of values. There
are two ways to describe posterior distribution: (1) a prob-
ability density function characterized by a finite number of
parameters, and (2) a sample set consisting of a large num-
ber of model parameters belonging to the posterior distri-
bution. The nonlinear least squares method utilizes the
former with a normal distribution (characterized by two
parameters: the mean and the standard deviation), whereas
MCMC methods resort to the latter which is more general.
The mean and standard deviation of the sample of model
parameters acquired by MCMC methods are consistent
with the nonlinear least squares method if the posterior dis-
tribution is a normal distribution.

Let m be a vector of model parameters. For the case of
disequilibrium fractional melting model used in Section 3.2,
m = (F, e), where e is a measure of chemical disequilibrium
defined in the next section. Let C be the data or concentra-
tion vector with each component Ci as the concentration of
element i. In Bayesian statistics, the posterior probability of
a model, p(m|C), is proportional to the product of the data-
independent prior probability of this model, hðmÞ, and the
likelihood of the model in observing the data, L(C|m)
(Grandis et al., 1999; Sambridge and Mosegaard, 2002;
Robert and Casella, 2004; Tarantola, 2005; Korenaga and
Karato, 2008), viz.,

pðmjCÞ ¼ A � LðCjmÞ � hðmÞ; ð1ÞZ
m

pðmjCÞdm ¼ 1; ð2Þ

where the bold letters are vectors; A is a constant which
forces p(m|C) to satisfy Eq. (2). (Since we will only use
ratios of p(m|C) in MCMC simulations, the constant A will
be set as 1). In terms of notation, the vertical bar ‘‘|” stands
for a conditional probability. For example, p(m|C) reads the
probability of m given the observation C. (Symbols used in
this study are listed in Table 1.) Eq. (2) is the cumulative
probability condition where the integral of the probability
of m given the observation C over all m must be one. The
prior distribution of model h(m) reflects the understanding
of the model before analyzing the data. In the simple cases
considered in the next section where only the bounds of
each model parameter are known, the prior probability h
(m) is constant within a model space restricted by those
bounds. We set h(m) = 1. The likelihood of observing C

given model parameter m is a function of the misfit or
Chi-squares, v2(C, m),

LðdjmÞ ¼ exp � v2ðC;mÞ
2

� �
; ð3Þ



Table 1
List of key symbols.

Symbol Description

C, Ci C is an array of observed multiple trace element concentrations, Ci

Cf Concentration of a trace element in the instantaneous melt
C0

s Concentration of the bulk solid at the onset of melting
d Mineral grain size
d0 Reference grain size, 1.5 mm
D Diffusivity of the element of interest in the mineral
DLa;DREE Diffusivity of La or REE in the mineral
F Degree of melting experienced by the bulk solid
F LS � rLS The estimate of F and uncertainty obtained using the nonlinear least squares method
F MP

þrþ�r� The most probable estimate of FMP and asymmetric uncertainties rþ and r�
F mean � r The average and standard deviation of all accepted F from MCMC simulations
f p Degree of melting at the onset of dynamic melting, defined in Eq. (15)
k; kcpx Bulk solid-melt or cpx-melt partition coefficient
k0 Bulk solid-melt partition coefficient at the onset of melting
kp Bulk solid-melt partition coefficient for the melting reaction
LðCjmÞ Likelihood of observing C given the model, m, defined in Eq. (3)
m A vector of model parameters
pðmjCÞ Posterior probability of a model, m, given observation C, defined in Eq. (1)
R The mineral-melt exchange rate constant, defined in Eq. (7)
T p Potential temperature
V f ; V s Velocity of the melt or the solid
V sp Spreading rate
V 0 Reference spreading rate, 30 mm/yr
z Vertical coordinate, measured from the base of the melting column
a The ratio between the melt and solid mass or mass flux ratio, Eq. (12)
hðmÞ The data-independent prior probability of the model, m
e Element specific disequilibrium parameter, Eq. (5) and Eq. (16)
eLa; eREE Disequilibrium parameter for La or REE
e0Tp e averaged along a melting path (Tp) with reference grain size and spreading rate
/f Porosity
C Melting rate of the bulk solid
qf ; qs Density of the melt or the solid
v2ðC;mÞ Chi-square of observation C given the model, m
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v2ðC;mÞ ¼
X
i

logðCpredict
i ðmÞÞ � logðCiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dC0
i

C0
i

� �2

þ dCi

Ci

� �2
r

0
BB@

1
CCA

2

; ð4Þ

where Cpredict
i ðmÞ is the concentration of element i predicted

by model parameter m (e.g., we can calculate Cpredict
i ðmÞ as

the prediction of disequilibrium fractional melting model
using Eq. (6) or a more general model such as

Eqs. (9)–(11) below); C0
i is the concentration of element i

in the mantle source; dC0
i is the variation in the concentra-

tion of element i in the mantle source; dCi is the uncertainty
in the measured concentration of element i. Here for
purpose of demonstration, we assume that the relative

source variation dC0
i =C

0
i dominates the relative uncertainty

of measurement dCi=Ci. The posterior probability is greater
if the Chi-square is smaller, i.e. the model fitting the data
with smaller overall residue is more probable.

2.2. Implementation of MCMC through the Metropolis–

Hastings algorithm

To obtain the posterior distribution defined by
Eqs. (1)–(4), we carry out MCMC simulations using the
Metropolis–Hastings algorithm that consists of the follow-
ing steps (Hastings, 1970; Sambridge and Mosegaard, 2002;
Robert and Casella, 2004; Liu, 2008):

Step 1. Start from any model m0. Calculate predicted
observation Cpredict(m0). Calculate the likelihood
function L(m0|C) according to Eqs. (3) and (4).

Step 2. Suppose mk is the current model (if this step fol-
lows Step 1, k = 0). Choose a temporary model
mtemp randomly. Calculate predicted observation
Cpredict(mtemp). Calculate the likelihood function
L(mtemp|C) according to Eqs. (3) and (4).
� if the ratio p(mtemp|C) /p(mk|C) > 1, accept

mtemp as mk+1.
� else, generate a uniformly distributed random

number, t, between 0 and 1.
o if p(mtemp|C)/p(mk|C) > t or the iteration of

Step 2 has reached a pre-defined maximum
number (2000 in this study), accept mtemp as
mk+1.

o else, go to Step 2.
Step 3. Continue to Step 2 until a sufficient number of
accepted models are produced.
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The set of accepted models converges to the posterior
distribution after sufficient numbers of models are col-
lected. However, the exact number can only be determined
empirically. In this study, we use the Metropolis–Hastings
algorithm to acquire a sample set consisting of at least
1000 accepted models. There are alternative algorithms to
implement MCMC simulations (Robert and Casella,
2004; Liu, 2008). For example, ‘‘Gibbs Sampling”, which,
in its basic form is a special case of the Metropolis–Hast-
ings algorithm, is more desirable for models with a large
number of parameters. Korenaga and Karato (2008)
recently used the Gibbs sampling to analyze experimental
data on olivine rheology.

The result of MCMC simulations following the proce-
dure outlined in the preceding section is a set of accepted
models (m0, m1, . . ., mn) representing the posterior distribu-
tion of model parameters, e.g., F and e in the case of dise-
quilibrium fractional melting. Among these models, there is
one model called ‘‘the most probable model” whose proba-
bility in reproducing the observed data is the greatest, des-
ignated as mMP = (FMP, eMP) or (FMP, eMP, aMP) for the
two melting models considered in the next section. In gen-
eral, the probability distribution of F is not normal or sym-
metric. To facilitate comparison with normal distribution,
we use r� and r+ as lower and upper standard deviation
of F. The probability that an F randomly chosen from
(F0, F1, . . ., Fn, where Fi belongs to mi) falls into the interval
[FMP � r�, FMP + r+] is 68%. The procedure for finding r�
and r+ is presented in Appendix A. For convenience, we
use the notation F MP

þrþ
�r� to describe the most probable

model of F with non-normal posterior distribution. We
use this notation for all parameters in the model. In the spe-
cial case of normal distribution, r� = r+. We recover the
mean and standard deviation of F, viz., Fmean ± r.

As for the nonlinear least squares method, the estimate
of a model parameter, say F, has a symmetric form because
the method implicitly assumes a normal distribution of F
characterized by the mean (FLS) and the standard deviation
(rLS). Since the nonlinear least squares method proceeds
through iteration to find FLS which fits the data with the
smallest overall residue, FLS is expected to be the same as
FMP if the iteration converges. The standard deviation
obtained by the nonlinear least squares method does not
have to be the same as r� or r+ unless the posterior distri-
bution is normal. We will compare results in these three for-
mats (F MP

þrþ
�r� , Fmean ± r, and FLS ± rLS) in a case study in

Section 3.2.

3. CASE STUDIES

3.1. Data and source composition

To demonstrate the advantages of the MCMC method,
we consider REE and Y abundances in clinopyroxene (cpx)
in abyssal peridotites from several mid-ocean ridges. To
focus on melting history, we consider residual lherzolites
and harzburgites that show no obvious signs of mantle
metasomatism or late stage melt refertilization (i.e., pres-
ence of interstitial plagioclase, cross-cutting veins or amphi-
bole; LREE enrichment in cpx; high TiO2 (>1 wt%) in
spinel, Warren, 2016; see Section 5.3 for additional discus-
sion). We further choose samples with at least 8 reported
trace elements (REE and Y) in cpx. This procedure leads
to a data set of 135 samples (Table 2, data from Johnson
et al., 1990; Hellebrand et al., 2002; Salters and Dick,
2002; Hellebrand and Snow, 2003; Brunelli et al., 2006;
Brunelli and Seyler, 2010; Lassiter et al., 2014; Mallick
et al., 2014). Following Liang and Liu (2016), we exclude
La in our data if the chondrite-normalized ratio (La/Ce)N
is too high to be explained by a melting model alone. The
melting history of each sample is recorded by multiple
incompatible trace element abundances in cpx. Concentra-
tions of the selected trace elements in cpx will be regarded
as a data vector C in MCMC simulations as described in
Section 2. We recognize that trace element and isotope
compositions of mantle sources beneath mid-ocean ridge
spreading centers vary among different ridge systems. For
simplicity, we consider melting of the depleted MORB
mantle or DMM (Workman and Hart, 2005) in the spinel
peridotite field. Liang and Peng (2008) examined the role
of garnet field melting and concluded that it is not needed
to explain the observed REE patterns in cpx in abyssal peri-
dotites from the Central Indian Ridge (Hellebrand et al.,
2002). We consider two disequilibrium melting models:
one with an analytical solution and the other without.
The former allows us to compare with results from direct
nonlinear least squares inversion (Liang and Liu, 2016).
The latter melting model is more general as it has one addi-
tional model parameter. Our goal in this section is to
demonstrate the procedure and advantage of MCMC
method through two case studies of a subset of data from
the Central Indian Ridge. In Section 4, we further expand
case study two by considering trace element data from
other mid-ocean ridge systems listed in Table 2.

3.2. Case study one: melting model with an explicit analytical

solution

Disequilibrium melting happens when diffusion in resid-
ual minerals for a trace element of interest cannot keep up
with melting of the minerals. It can be characterized by a
disequilibrium parameter e which is defined as the ratio of
melting rate relative to chemical exchange rate,

e ¼ C
qsð1� /f ÞR

; ð5Þ

where C and qs are the melting rate and density of the bulk
solid, respectively; /f is the porosity; and R is the exchange
rate constant. During disequilibrium fractional melting, the
concentration of a trace element in residual cpx, CðmÞ, var-
ies as a function of F and e, and is given by the simple
expression (Liang and Liu, 2016),

CðmÞ ¼ C0
s

kcpx
k0

1� eþ kp
eþ k0

F
� �1�kp

kpþe

; ð6Þ

where C0
s is the concentration of the trace element in the

mantle source; k0 is the bulk partition coefficient at the
onset of melting; kp is the bulk partition coefficient



Table 2
List of sample locations and sources.

Sample location Number of
samples

Data sources

Southwest Indian Ridge (SWIR) 35 Salters and Dick (2002); Warren (2007); Seyler et al. (2011);
Mallick et al. (2014)

Lena Trough (LT) at Arctic Ridge 25 Hellebrand and Snow (2003), Lassiter et al. (2014)
American-Antarctic Ridge (AAR) 9 Johnson et al. (1990)
Vema Lithospheric Section (VLS) at Mid-Atlantic Ridge 35 Brunelli et al. (2006)
Kane FZ & St. Paul FZ (KSP) at Mid-Atlantic Ridge 9 Brunelli and Seyler (2010), Mallick et al. (2014)
Central Indian Ridge (CIR) 22 Hellebrand et al. (2002)

Fig. 1. Comparison between observed (circles) and model derived
(lines) REE + Y patterns in residual clinopyroxene in spinel
lherzolite. The observed data are from an abyssal peridotite from
the Central Indian Ridge (Hellebrand et al., 2002, their sample
ANTP126-2). Individual lines are calculated using the disequilib-
rium fractional melting model (Eq. (6)) through MCMC simula-
tions. Concentrations in clinopyroxene are normalized by CI
chondrite (Anders and Grevesse, 1989).
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calculated according to melting reaction; and kcpx is the
cpx-melt partition coefficient. Eq. (6) reduces to the familiar
equilibrium non-modal perfect fractional melting model
when e = 0. For diffusion in solid limited mass transfer,
the exchange rate constant R is inversely proportional to
the diffusion time scale in the mineral. For spherical grain
of radius d, R is given by (e.g., Navon and Stolper, 1987;
Bodinier et al., 1990),

R ¼ 15D

d2
; ð7Þ

where D is the diffusivity of the element of interest in the
mineral.

A key assumption used to derive Eq. (6) is that the
mineral-melt exchange rate constants are the same for all
the minerals. For modeling REE fractionation during dise-
quilibrium melting of spinel peridotite, Liang and Liu
(2016) demonstrated that it is reasonable to use REE diffu-
sion coefficients in cpx to calculate R. Since the disequilib-
rium parameter of a REE (eREE) is inversely proportional to
its diffusion coefficient (Eqs. (5) and (7)), it is convenient to
scale eREE for REE and Y to that of La (designated as eLa
hereafter) according to their diffusion coefficients in cpx
(diffusivity data from Van Orman et al., 2002), viz.,

eREE ¼ DLa

DREE
eLa: ð8Þ

Liang and Liu (2016) used Eqs. (6) and (8) and a nonlin-
ear least squares method to invert for F and eLa from REE
and Y abundances in cpx in 22 abyssal peridotites from the
Central Indian Ridge (CIR, Hellebrand et al., 2002). To
compare with their results and to test the new inversion
method, here we conduct MCMC simulations for the 22
samples from CIR using the same mineral-melt partition
coefficients, diffusion coefficients, melting reaction, and
starting mantle composition as in their study. For short-
hand notation, we set e = eLa hereafter. Hence, the model
in MCMC simulations has two unknown parameters:
degree of melting and extent of disequilibrium for La in
cpx, designated as m = (F, e).

We choose the prior distribution as a uniform distribu-
tion in a two-dimensional model space. In other words,
any m = (F, e) in the model space has the same prior prob-
ability. The bound for F is less than the degree of melting
when cpx is exhausted (F < 18%, Baker and Stolper,
1994). The bound for e is [0, 0.05] according to previous
inversion results (Liang and Liu, 2016). Fig. 1 displays
results of 6231 MCMC simulations for sample ANTP126-
2 following the steps outlined in Section 2.2. Here the
observed data are shown as yellow circles and each gray line
represents an REE pattern calculated using accepted m

from MCMC simulations. Those REE patterns predicted
by models within the asymmetric confidence interval
([FMP � r�, FMP + r+] and [eMP � r�, eMP + r+]) define
a region enclosing the data (Fig. 1). The prediction with
the most probable model is the best fit to the data (red line
in Fig. 1). Figs. 2a and 2b display marginal distributions of
F and e, respectively. The marginal distribution of e is
skewed: rþ of e is larger than r� of e. The normal distribu-
tion derived from nonlinear least squares inversion is mark-
edly narrower than the accepted models from MCMC
simulations in the histogram. The discrepancy between
sample mean and the most probable model also indicates
asymmetry of posterior distribution of e. In a plot of e vs.
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F, accepted models scatter around a near elliptical figure
centered at the most probable model (Fig. 3). Positive
trade-off between F and e is demonstrated by the NE-SW
trend of the accepted models. The ranges of asymmetric
uncertainty estimate (rþ and r�) are larger than or compa-
rable to the 68% confidence ellipse for normal distribution.
Figures similar to Figs. 1–3 for the 22 CIR samples are pre-
sented in Supplementary Fig. S1. For a few samples, the
uncertainty range characterized by rþ and r� is greater
than the range of 95% confidence ellipse derived from direct
nonlinear least squares inversion (samples ANTP87-5,
ANTP87-9, ANTP89-2, ANTP89-5, ANTP89-8, and
ANTP89-15). The nonlinear least squares method cannot
describe asymmetric probability distribution of e and may
lead to underestimate of uncertainty.

The most probable model derived from MCMC simula-
tions is not necessarily a good fit to the data. The most
probable model still cannot fit sample CIRCE93-7 which
exhibits a ‘‘hump shape” REE pattern. Here the probability
of the most probable model is effectively zero
(p = 1 � 10�14 according to Eqs. (1)–(4)), which means that
the melting model (Eq. (6)) cannot explain this sample. A
more general model involving refertilization by a small
amount of melt produced in the lower part of the melting
column, as suggested by Hellebrand et al. (2002), can
explain the observed REE data. To avoid samples affected
by refertilization and other post-melting processes (dis-
cussed in Section 5.3), any sample that has the probability
less than 1 � 10�4 for the most probable model is excluded
in this case study.

For all samples, the model estimates from nonlinear
least squares inversion are consistent with those derived
from the most probable model (Fig. 4). But the means of
accepted models show systematic deviation from the most
probable model and the nonlinear least squares results
(Fig. 4). For FMP > 15%, Fmean is smaller than FMP and
FLS, whereas for FMP < 15%, emean is greater than eMP

and eLS. Since the model represents the most probable
physical condition given the data constraint, we
recommend using FMP over Fmean. For later discussion,
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the estimate of the model parameter will be presented in the
asymmetric form, F MP

þrþ
�r� and eMP

þrþ�r� .

3.3. Case study two: melting model without explicit analytical

solution

The preceding example demonstrates the procedure of
MCMCmethod and its advantage in estimating meaningful
uncertainties for model parameters. In this section, we show
another important advantage of MCMC method using a
disequilibrium dynamic melting model that does not have
an explicit analytical solution. Nonlinear least squares
inversion of such a problem is challenging, if not impossi-
ble. Here we show that MCMC simulation is well suited
for this class of inverse problems.

The dynamic or continuous melting model has been
widely used to study trace element fractionation during
mantle melting (e.g., Langmuir et al., 1977; McKenzie,
1985; Zou, 1998; Shaw, 2000). Here we consider a more
general case of dynamic melting by allowing chemical dise-
quilibrium between residual minerals and interstitial melt.
In nondimensional form, the governing mass conservation
equations for a trace element in the interstitial melt (Cf)
and residual solid (Cs) are given by two coupled ordinary
differential equations (a derivation is presented in Appendix
B). In terms of the degree of melting, we have

ð1� F Þea dCf

dF
¼ eðCp

s � Cf Þ þ ðCs � kCf Þ; ð9Þ

ð1� F Þe dCs

dF
¼ �eðCp

s � CsÞ � ðCs � kCf Þ; ð10Þ

ð1� F Þe dC
j
s

dz
¼ �ðC j

s � kjCf Þ; ð11Þ

a ¼ qf/f V f

qsð1� /f ÞV s
; ð12Þ
where e is defined by Eq. (5); a is the mass flux ratio
between the melt and the residual solid; Cp

s is the concentra-
tion of bulk solid calculated according to melting reaction
(Eq. (B5) in Appendix B); k is the bulk partition coefficient
(Eq. (B6)); Vf is the velocity of the melt; and Vs is the
upwelling velocity of the solid matrix. To be consistent with
equilibrium dynamic melting models of Zou (1998) and
Shaw (2000), we assume that dynamic melting starts at
F = fp before which melting takes place as equilibrium
batch melting. Hence the initial melt and solid composi-
tions at F = fp are

Cf ¼ C0
s

k0 þ ð1� kP Þf p

; ð13Þ

Cs ¼ C0
s

k0 þ ð1� kP Þf p

k0 � kP f p

1� f p

; ð14Þ

where fp is related to a through the simple expression
(Shaw, 2000),

f p ¼
a

1þ a
: ð15Þ

The disequilibrium dynamic melting model has three
parameters (F, e, a). It recovers the equilibrium dynamic
melting when e = 0, the disequilibrium perfect fractional
melting when a = 0. For an incompatible trace element,
its concentration in residue at a given F increases with a
or e (Liang and Liu, 2016). Since there is no explicit analyt-
ical solution to Eqs. (9)–(11), here we invert the melting
parameters through MCMC simulations. Our observations
include REE and Y abundances in cpx in the 22 abyssal
peridotites from CIR. We solve Eqs. (9)–(11) numerically
using the third-order Runge Kutta method (Shu and
Osher, 1988), starting from the initial conditions prescribed
by Eqs. (13) and (14).
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The prior bounds for model parameters are
fp < F < 0.18, 0.0002 < e < 0.05, and 0.0005 < a < 0.04.
The upper bound for F and e are the same as in case study
one. The lower bound for F is the onset of dynamic melting
(Eq. (15)). The upper bound for a is equivalent to a scenario
in which there is 2% porosity and the melt percolates two
times faster than the solid. The non-zero lower bounds
for e and a are for the consideration of numerical stability
in solving Eqs. (9)–(11). These upper and lower bounds
are conservative with respect to the most probable models.

Fig. 5 shows results of MCMC simulations for three
samples: one with effectively zero a (ANTP126-2), one with
effectively zero e (ANTP89-1), and one with intermediate a
and e (sample CIRCE93-4). These model parameters are
not from normal distributions. Fig. 6 displays the asymmet-
ric marginal distributions of F, e, and a for sample
ANTP126-2. The most probable model deviates from the
peak of marginal distribution as a result of 3D to 1D
projection. This is further illustrated in Fig. 7 for the three
samples displayed in Fig. 5. Even when projected on F–e
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and e–a planes, accepted models as points of m = (F, e, a)
clearly display nonlinear trade-offs. There is a broad nega-
tive correlation between e and a in Figs. 7b, 7e and 7h. The
distribution near the origin on the e–a plane is considerably
sparser than the region where a and e are greater than 0.01
(Fig. 7b). Thus, equilibrium fractional melting is unlikely
for sample ANTP126-2. Further, the e–a correlation is
not characterized by an ellipse expected in a bimodal nor-
mal distribution. The probability distribution is denser near
the e axis than near the a axis (Fig. 7b). The most probable
model has small a and relatively large e, which is clearly
shown in Fig. 7c. Therefore, sample ANTP126-2 is better
represented by a model that is closer to disequilibrium frac-
tional melting than equilibrium dynamic melting. (The con-
verse is true for sample 89–1.) Figs. 7d–7f are from a model
with both e and a greater than 0.01, an intermediate case
that cannot be represented by known analytical solutions
(i.e., disequilibrium factional melting model (a = 0, e > 0)
or equilibrium dynamic melting model (e = 0, a > 0)). The
estimate of e in case study one only considers the a = 0
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plane in F–e–a space. Because there exist trade-offs between
e and a, case study one would overestimate e. The trade-off
between the extent of disequilibrium and the extent of
incomplete melt extraction has been noted in previous stud-
ies (Qin, 1992; Iwamori, 1993a,b; Van Orman et al., 2002).
The preceding examples demonstrate that with MCMC
simulations it is possible to target the most probable com-
bination of e and a for an individual sample. Similar figures
summarizing MCMC simulations for all the samples
included in this study are presented in Supplementary
Fig. S2. Melting parameters from the most probable model
are summarized in Supplementary Table S1.
Fig. 8 compares results from case studies one and two
for the CIR samples. In general, e estimated in case study
two (unfilled circles) are smaller, especially for those sam-
ples with F less than 13%. This is largely due to the negative
trade-off between e and a in the disequilibrium dynamic
melting model, i.e., the product ea in Eq. (9). The lower val-
ues of e in the disequilibrium dynamic melting model are
compensated by a which is absent in the disequilibrium per-
fect fractional melting model. (For the same reason, values
of a derived from the equilibrium dynamic melting model
would be higher than values obtained from the disequilib-
rium dynamic melting model.) Therefore, values of e
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derived from the more general melting model in case study
two are more reliable than values derived from the disequi-
librium fractional melting model in case study one and the
equilibrium dynamic melting model.

4. APPLICATION TO ABYSSAL PERIDOTITES

FROM OTHER SELECTED MID-OCEAN RIDGE

SYSTEMS

One of the major motivations for our MCMC study is
the positive correlation between F and e derived from non-
linear least squares inversion of REE and Y abundances in
cpx in abyssal peridotites from CIR using the disequilib-
rium fractional melting model (Liang and Liu, 2016). This
positive correlation is further confirmed in the present study
through the application of the more general disequilibrium
dynamic melting model (Figs. 8 and 9d). An interesting
question is if similar correlation between F and e also exists
in abyssal peridotites from other mid-ocean ridge systems.
In this section, we expand case study two to include peri-
dotites from the Vema Lithospheric Section (VLS, 35 sam-
ples, Brunelli et al., 2006), Kane Fracture Zone and Saint
Paul Fracture Zone (KSP, 9 samples, Brunelli and Seyler,
2010; Mallick et al., 2014) at the Mid-Atlantic Ridge, the
South West Indian Ridge (SWIR, 35 samples, Salters and
Dick, 2002; Warren, 2007; Seyler et al., 2011; Mallick
et al., 2014), Lena Trough at the Arctic Ocean (LT, 25 sam-
ples, Hellebrand and Snow, 2003; Lassiter et al., 2014), and
the American-Antarctica Ridge (AAR, 9 samples, Johnson
et al., 1990). The spreading rates of SWIR, LT, and AAR
(<20 mm/yr) are slower than CIR (30–51 mm/yr), while
the spreading rates of VLS and KSP at Mid-Atlantic Ridge
(25–31 mm/yr) are at the lower end of CIR (Argus and
Gordon, 1991; DeMets et al., 2010).

Supplementary Table S1 summarizes results from
MCMC simulations based on the disequilibrium dynamic
melting model (Eqs. (9)–(15)). Supplementary Fig. S2 pre-
sent MCMC simulations of individual samples. Similar to
case study one, samples with poor fit are excluded accord-
ing to a threshold probability. As a result of this filtering,
thirty-four out of 135 samples are disqualified. REE abun-
dances in these samples are likely affected by secondary
processes such as melt refertilization (see Section 5.3 for
additional discussion). As a precaution, we exclude these
samples in the interpretation of the disequilibrium dynamic
melting model. If we only consider the most probable
model, samples from all mid-ocean ridge systems consid-
ered in this study except two from SWIR (samples
EDUL-6B-1-3 and EDUL-23-2–8 from Seyler et al., 2011)
show a positive correlation between F and e for La,
although the range of variation differs among localities
(Fig. 9). The lower bound of e for these two samples still
lie on the trend of the rest of 25 samples from SWIR
(magenta squares in Fig. 9a). A model on the F–e trend still
produces an acceptable fit (Figs. 9 and S2). Samples from
SWIR and CIR show strong positive trends even when
uncertainties are considered (Fig. 9a and d).

5. DISCUSSION

5.1. The positive correlation between F and e

We have demonstrated in the preceding sections that the
positive correlations between F and e for La in cpx in abys-
sal peridotites is a robust feature of mantle melting beneath
mid-ocean ridge spreading centers. The disequilibrium
parameter e is defined as the ratio of the melting rate to
the solid-melt diffusive exchange rate for La in cpx (Eq.
(5)). The melting rate is proportional to solid upwelling rate
(Vs) and melt productivity (dF/dz) along the melting col-
umn. The diffusive exchange rate is inversely proportional
to the time scale of La diffusion in cpx (Eq. (8)). Liang
and Liu (2016) presented a simple equation relating e to
these parameters for a steady-state melting column, viz.,

eLa ¼ V sd
2

15ð1� F ÞDLa

dF
dz

; ð16Þ

where DLa is the diffusivity of the trace element of interest
(La) in cpx. In the calculation below, we take Vs as half
of the local spreading rate (Argus and Gordon, 1991;
DeMets et al., 2010). The disequilibrium parameter e is very
sensitive to cpx grain size (Eq. (16)). There are considerable
uncertainties in cpx grain size and its size distribution in the
starting mantle. Since our goal here is to understand the
positive correlation between F and e, we compare melting
models with the same cpx grain size at the onset of melting
(d = 1.5 mm). Furthermore, we assume that the average
grain size of cpx decreases in proportion to cpx volume
reduction during melting.

Asimow et al. (1997, 2001) demonstrated that one can
use the thermodynamic model MELTS to calculate melt
productivity along a melting column. Fig. 10 displays



0 0.05 0.1 0.15 0.2
0

0.01

0.02

0.03

0.04

0.05

0 0.05 0.1 0.15 0.2

0 0.05 0.1 0.15 0.2

0 0.05 0.1 0.15 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06 0.06

0.06 0.06

F

ε La

FF

F

ε La

ε La
ε La

SWIR (N=27)

CIR (N=16)

0

0.01

0.02

0.03

0.04

0.05

VLS (N=33)
KSP (N=5)

0

0.01

0.02

0.03

0.04

0.05

LT (N=14)
AAR (N=6)(a) (b)

(c) (d)

Fig. 9. Plots of inverted F and the disequilibrium parameter eLa for samples from selected ridges (see Table 2 for data source). The arrows and
magenta squares in (a) suggest models closer to the main trend can explain these two samples. (The REE pattern derived from the on-trend
model can be found in Supplementary Fig. S2). Samples from SWIR and CIR show robust positive trends. N is the number of samples from a
given ridge system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

B. Liu, Y. Liang /Geochimica et Cosmochimica Acta 203 (2017) 216–234 227
calculated disequilibrium parameters for La (eLa) along
three melting paths using pMELTS (Ghiorso et al., 2002;
Smith and Asimow, 2005) for anhydrous melting of a
DMM source (Workman and Hart, 2005). The calculated
eLa is smaller for higher potential temperature as a result
of strong temperature dependent diffusivity. The disequilib-
rium parameter eLa varies by one order of magnitude over
the range of potential temperatures considered (1280–
1340 �C). The increase of eLa at lower F is due to increasing
melt productivity and decreasing diffusion rate, while the
decrease of eLa at higher F is due to grain size reduction
of cpx during melting. The latter is not well constrained.
In a more realistic case where cpx has a range of grain size
in the starting mantle, it is possible that smaller cpx grains
will be preferentially consumed earlier during melting than
larger grains. Hence the decrease in predicted eLa along a
given mantle adiabat may be less than that shown in
Fig. 10 for uniform cpx grain size distribution at higher
degrees of melting (e.g., F > 14%). In case study two, we
assume eLa to be constant along the melting column. Thus
the inverted e should be regarded as an average value
during disequilibrium melting. For comparison, we also
calculate the average of eLa at a given F as the arithmetic
mean of eLa from the onset of melting to F. Fig. 10 shows
that the average eLa (dashed lines) increases but lags behind
the instantaneous eLa at lower F. As F further increases, the
average eLa levels off. In spite of uncertainties in cpx grain
size, grain size variation and distribution, the positive
correlations between the inverted e and F shown in
Figs. 9a–9d are consistent with the predicted correlation
between eLa and F at a given mantle potential temperature
(Fig. 10).

5.2. Variation of e at a given F

There are considerable variations of e for La at a given F

among samples from the same ridge segments and between
samples from different ridges (Fig. 9). Possible factors
responsible for the observed variations of eLa at a given F

include, but are not limited to (see Section 5.3 below), grain
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size variation among segments, grain size distribution in a
single segment, upwelling rate, and potential temperature.
In the following discussion, ‘‘variation in e” refers to ‘‘vari-
ations of e at a given F” unless stated otherwise. We first
consider variations of e among different ridge segments by
normalizing inverted data shown in Fig. 9 with respect to
the upwelling rate.

According to Eq. (16), eLa is proportional to local
upwelling rate (and hence spreading rate). Thus the
inverted e from ridges of different spreading rate are not
directly comparable. To facilitate comparison, we renor-
malize e from different ridges to a common or reference
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Fig. 11. Plots of inverted degree of melting F (panel a) and normalized
spreading rate. eLa increases with initial grain size (d) and decreases with p
represents the average over the interval of spreading rate.
spreading rate V0 (=30 mm/yr). The results are shown in
Fig. 10. If the variation in e is due to upwelling rate alone,
Fig. 10 would plot all scaled inversion results on the same
trend. But this is not the case. High e and low F is common
for samples from ridges with ultra-slow spreading rate
(SWIR, LT, and AAR), while ridges with intermediate
spreading rate (CIR) show lower e and higher F. Two data
sets from the slow spreading Mid-Atlantic Ridge (VLS and
KSP) plot between CIR and ultra-slow spreading ridges.
This is further illustrated in Fig. 11b where samples with
large e/F ratios are from ultra-slow spreading ridges
(SWIR, LT, AAR), while samples with small e/F ratios
are from intermediate-slow spreading ridges (CIR).

Different local F–e trends suggest factors other than
upwelling rate contribute to the bulk of the variation in e.
In general, e/F increases with grain size and decreases with
potential temperature. A reduction of potential tempera-
ture from 1310 �C to 1280 �C can explain the threefold vari-
ation in e at a given F (Fig. 10). If the average e/F is due to
potential temperature while the scatter is due to grain size
variation, the negative trend of e/F vs. spreading rate in
Fig. 11 could be understood in terms of a positive correla-
tion between the spreading rate and the potential tempera-
ture. Interestingly, the average degree of melting in each bin
of spreading rate is positively correlated with spreading rate
(Fig. 11a). This positive correlation between F and spread-
ing rate has been attributed to deeper final melting depth at
slower spreading ridge as a result of strong conductive cool-
ing compared to adiabatic upwelling (Brown and White,
1994; Niu and Hékinian, 1997). Results from the present
study suggest that 7% more melting of CIR compared to
SWIR (Fig. 11a) at faster spreading ridges could also be
partly due to deeper initial melting depth as a result of
the 30 �C higher potential temperature.

A reduction of potential temperature from 1310 �C to
1280 �C can explain the observed difference in e between
SWIR and CIR (Figs. 9 and 10). Such variations in potential
temperature agree with the ranges of potential temperature
inferred from independent studies (Niu and O’Hara, 2008;
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grain size (±r) for each case obtained by bootstrap resampling is
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Dalton et al., 2014). Many abyssal peridotite samples are
from fracture zones. In Marie Celeste Fracture Zone in
CIR, threefold difference of e exists within 10 km

(ANTP89-5: eMP ¼ 0:006þ0:006
�0:004, and ANTP87-9:

eMP ¼ 0:021þ0:006
�0:005). Along the Vema Lithospheric Section at

Mid-Atlantic Ridge, the most probable e appears to vary
randomly between 0.0002 and 0.03 (Fig. 12), although the
uncertainty does not exclude a constant e. Such local varia-
tion of e could, in part, be attributed to temperature pertur-
bation associated with transform fault (Morgan and
Forsyth, 1988; Roland et al., 2010). If the most probable e
indeed increases 10-fold along this 250 km long fracture
zone, this would require a temperature increase of �60 �C.
The temperature induced variation of e is limited by the
smoothing effect of thermal diffusion. If the observed varia-
tion in e is due to potential temperature alone, the tempera-
ture profile of one sample during melting may be 30 �C
higher than the temperature profile of another sample
10 km away. In a thermal model of transform fault
(Morgan and Forsyth, 1988; Roland et al., 2010), sharp hor-
izontal temperature gradient is difficult to extend to the
depth of initial melting. Therefore temperature can only
account for smooth inter-ridge and along-fault variations
in e.

The disequilibrium parameter eLa is very sensitive to
grain size (Eq. (16)). For the abrupt along-fault variation
in e (Fig. 12), variation or heterogeneity in grain size is a
simple explanation. Unfortunately, clinopyroxene which is
the dominant host for REE in spinel peridotites is almost
exhausted in residual abyssal peridotites (Warren, 2016;
and references therein). If the grain size is extrapolated
back to the source, the uncertainty is expected to increase
further. Here, we provide an estimate of initial grain size
of cpx by attributing the local variation of e at a given F

solely to grain size variation after correction for upwelling
rate. The factor that regresses inverted data to each pre-
dicted melting trend shown in Fig. 10 is proportional to
the grain size squared according to Eq. (16). Thus, the grain
size of the source is derived for each sample at a presumed
potential temperature,
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Fig. 12. Variations of eLa in clinopyroxene along the Vema
Lithospheric Section at Mid-Atlantic Ridge (trace element data
from Brunelli et al., 2006).
d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eLa � V 0=V sp

e0Tp

s
� d0; ð17Þ

where e0Tp is the average eLa calculated along a melting path

with potential temperature Tp and reference grain
size (d0 = 1.5 mm) and reference upwelling rate
(V0 = 15 mm/yr).

Only samples from the VLS at MAR (Brunelli et al.,
2006) and the Marie Celeste TF at CIR (Hellebrand
et al., 2002) are used to estimate the average grain size
because there is a relatively large dataset within a single
transform fault (26 in VLS and 9 in Marie Celeste TF)
where we assume the potential temperature is constant.
Fig. 13 demonstrates that larger grain size is required to
compensate faster diffusion at higher potential temperature.
Given three choices of potential temperature, the average
grain size ranges from 0.56 mm to 2.55 mm at these two
locations. The grain size distribution at these two locations
cannot be discriminated statistically given the same poten-
tial temperature. In other words, there could be no differ-
ence in grain size and potential temperature between these
two locations although the spreading rates between the
two are somewhat different (Marie Celeste TF, 41 mm/yr;
VLS, 28 mm/yr). The average grain size corresponding to
each potential temperature is distinct. The potential tem-
perature or the average grain size could be estimated given
the knowledge of the other.

5.3. Other processes or factors

A number of factors or processes not considered in the
preceding discussion can also affect trace element abun-
dances in residual cpx: (1) source heterogeneity, (2) shallow
level refertilization, and (3) subsolidus reequilibration. In
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Liang and Liu (2016), we assessed the effects of (1) and (2)
using available Nd isotope data from VLS (12 samples).
Fig. 14 includes 7 additional samples from SWIR, Kane
Fracture Zone, and Saint Paul Fracture Zone. There is no
obvious correlation between e and 143Nd/144Nd, suggesting
that mantle source heterogeneity in REE is not an impor-
tant factor controlling the variation of e. It is possible that
source heterogeneities in major element composition (hence
mineral proportion) and cpx grain size also contribute to
the observed variations in e. The former can affect the abso-
lute value of F inverted from the REE data, while the latter
has a strong effect on the interpretation of inverted e (cf. Eq.
(16)). There are considerable uncertainties in both. As a
first application of MCMC inversion of REE data in resid-
ual cpx, our assumption of a DMM initial composition is a
reasonable starting point. The size of cpx grains in peri-
dotite is not uniform. During partial melting, smaller cpx
grains are likely consumed first. Our inverted e is likely
weighed towards larger cpx grains that control the time
scale of diffusive reequilibration between cpx and residual
melt. The roles of mantle source heterogeneity and cpx
grain size distribution are subjects of future investigations.

Shallow level refertilization by small degree melt pro-
duced in the lower part of the melting column has been sug-
gested by Hellebrand et al. (2002) and Brunelli et al. (2006)
to account for elevated LREE patterns in residual cpx in
some abyssal peridotites from CIR and VLS. We note that
refertilization can account for the 34 cpx samples excluded
in this study (for examples see Hellebrand et al., 2002;
Brunelli et al., 2006; Liang and Liu, 2016).

Elevated HREE patterns in residual cpx in abyssal peri-
dotites have often been attributed to garnet field melting.
According to Sun and Liang (2014), HREE in cpx could
be elevated by a factor of 2 during subsolidus exchange with
orthopyroxene in spinel harzburgite at low temperatures. A
correction of HREE to lower values could increase the esti-
mate of F because HREE are more depleted than they
appear. The estimate of e could also increase because there
will be more LREE enrichment relative to HREE (see
Fig. 5 in Liang and Liu, 2016).

6. SUMMARY AND OUTLOOK

The present study is motivated primarily by the positive
correlation between F and e derived from nonlinear least
squares inversion of REE and Y abundances in cpx in abys-
sal peridotites from CIR using the disequilibrium perfect
fractional melting model. To test the robustness of this cor-
relation for melting beneath mid-ocean ridge spreading cen-
ters, we used a more general melting model to better assess
uncertainties of inverted melting parameters. Most physi-
cally more realistic melting models for trace elements do
not have explicit analytical solutions, which poses a consid-
erable challenge to inversion of melting parameters through
nonlinear least squares analysis of REE data in residual
cpx. This led us naturally to the MCMC method. Here
we demonstrated the method of MCMC simulations and
its advantages in studying geochemical inverse problems
through two case studies of disequilibrium mantle melting.
We introduced MCMC method to interpret geochemical
observations as consequences of the model with unknown
physical parameters. We showed that melting parameters
inverted through MCMC simulations are consistent with
those obtained from direct nonlinear least squares inver-
sions. However, the nonlinear least squares method cannot
describe the asymmetric posterior distribution. The uncer-
tainty derived from nonlinear least squares method could
be underestimated compared to the MCMC method.

Reading melting parameters from REE data in cpx in
abyssal peridotites through MCMC simulations of disequi-
librium dynamic melting has led new insights into the melt-
ing processes beneath mid-ocean ridge spreading centers.
We found that the disequilibrium dynamic melting model
(Eqs. (9)–(11)) can explain REE patterns in cpx in 75%
residual abyssal peridotite samples considered in this study
(101 out of 135). The positive correlation between F and eLa
has been confirmed by the disequilibrium dynamic melting
model and additional data from several ultra-slow to inter-
mediate spreading centers around the world. We suggest
that the positive correlation between F and eLa is a natural
consequence of decompressional melting beneath mid-
ocean ridge spreading centers (i.e., a continuous competi-
tion between melting and diffusive exchange between the
minerals and the melt). More isotope and petrological data
are needed to assess the role of mantle source heterogeneity
on the variations of eLa at a given F. The variation in eLa at
a given F is probably not caused by variations in upwelling
velocity or spreading rate alone. The combination of poten-
tial temperature and grain size distribution of cpx can
explain the eLa–F correlations, although additional factors
and processes such as mantle source heterogeneity, shallow
level refertilization, and subsolidus reequilibration may also
contribute to the observed REE patterns in the peridotites.

For the purpose of demonstration, we considered two
simple disequilibrium fractional melting models by assum-
ing constant mineral-melt REE partition coefficients and
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diffusion coefficients, by treating non-modal melting as a
simple melting reaction with constant coefficients, and by
simplifying the physics of melt extraction with a constant
porosity or melt-to-solid mass flux ratio (i.e., the steady-
state dynamic melting model). These assumptions and sim-
plifications, which have been widely used in geochemical
studies of mantle melting, can be relaxed or eliminated
within the framework of MCMC which does not require
explicit analytical solutions for the conservation equations.
This unique feature of MCMC allows us to use self-
consistent melting models to better constrain melting
parameters from trace element abundances in residual min-
erals and basalts in future studies. For example, in a more
realistic scenario of adiabatic mantle melting, one can use a
thermodynamic model to calculate residual mineral propor-
tions and major element compositions along a melting path.
Results from the thermodynamic modeling can be used to
calculate temperature-, pressure- and mineral
composition-dependent mineral-melt REE partition coeffi-
cients and diffusion coefficients based on parameterized lat-
tice strain models for REE partitioning and Arrhenius
relations for REE diffusion in pyroxenes. Furthermore,
for the one-dimensional steady-state problem considered
in this study, it is also straightforward to include the physics
of melt migration as part of the MCMC simulations. The
melt fraction, melt and solid velocities, and melting rate
are related to each other through mass, momentum and
energy conservation equations (e.g., McKenzie, 1984;
Ribe, 1985; Hewitt and Fowler, 2008). One of the advan-
tages of MCMC methods is that we do not have to know
the exact values of porosity and velocity a priori. The
uncertainties in these physical parameters can be circum-
vented by solving forward models with a range of values.
The data automatically converge those parameters to the
most probable values. With ever increasing computing
power and geochemical and geophysical data, it is possible
to study a wide range of physically and chemically realistic
melting problems through MCMC simulations.
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APPENDIX A. PROCEDURE FOR FINDING r� AND

R+ FOR PARAMETER F FROM A SET OF ACCEPTED

MODELS

To determine r� and r+ for parameter F from a set of
accepted models, we follow the steps outlined below. First,
we make the histogram of F with 100 bins. The center of
each bin consists of (Fb1, Fb2,. . ., Fb100). Second, we approx-
imate the histogram of F with a smooth marginal probabil-
ity density of F, pF(F). Third, we sort (Fb1, Fb2,. . ., Fb100) in
ascending order of pF(F) and obtain a set (Fbp1, Fbp2,. . .,
Fbp100). Fourth, we find the smallest index i such that,

X100
j¼i

pF ðF bpjÞ 6 68% �
X100
j¼1

pF ðF bpjÞ: ðA1Þ

The minimum and maximum among (Fbpi, Fbp2,. . .,
Fbp100) are Flower and Fupper respectively. Finally, we obtain
r� and r+ for parameter F as:

r� ¼ F MP � F lower or 0 if F MP < F lower; ðA2Þ
rþ ¼ F upper � F MP or 0 if F MP > F upper; ðA3Þ
where FMP is the F of the most probable model mMP among
(m0, m1,. . ., mn).

APPENDIX B. DERIVATION OF THE

DISEQUILIBRIUM DYNAMIC MELTING MODEL

We consider trace element fractionation during disequi-
librium melting and melt migration in a one-dimensional
steady-state upwelling column in which part of the melt
generated is extracted to nearby channels or conduits. At
steady state, mass conservation equations for a non-
radioactive trace element in the interstitial melt, residual
solid, and a given mineral in the upwelling matrix are
(Liang and Liu, 2016),

qf/f V f
dCf

dz
¼ CðCp

s � Cf Þ þ qsð1� /f Þ
XN
j¼1

wjRjðC j
s � kjCf Þ;

ðB1Þ

qsð1� /f ÞV s
dCs

dz
¼ CðCs � Cp

s Þ

� qsð1� /f Þ
XN
j¼1

wjRjðC j
s � kjCf Þ; ðB2Þ

qsð1� /f ÞV s
dC j

s

dz
¼ �qsð1� /f ÞRjðC j

s � kjCf Þ; ðB3Þ

Cs ¼
XN
j¼1

xjC
j
s ; ðB4Þ

Cp
s ¼

XN
j¼1

pjC
j
s ; ðB5Þ

k ¼
XN
j¼1

wjkj; ðB6Þ

where wj is the weight fraction of mineral j in residual solid;
Rj is the exchange rate constant for the trace element of
interest between mineral j and the melt; kj is the mineral j
and melt partition coefficient for the trace element. Defini-
tions of other symbols are listed in Table 1. The first terms
on the right-hand side (RHS) of Eqs. (B1), (B2) account for
non-modal melting of the solid (the melting term in Eq.
(B3) is cancelled out by mass conservation constraint).
The second terms on the RHS of Eqs. (B1), (B2) are due
to finite rates of mineral-melt mass transfer in the partially
molten system. For simplicity, we neglect diffusion and dis-
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persion in the melt and use linear kinetics to approximate
crystal-melt finite exchange that arises from diffusion in
minerals and/or dissolution-reprecipitation (Navon and
Stolper, 1987; Richter and DePaolo, 1987; Bodinier et al.,
1990; Liang, 2003).

The degree of melting experienced by the solid matrix is
given by the material derivative (Liang and Peng, 2010),

V s
dF
dz

¼ ð1� F ÞC
qsð1� /f Þ

ðB7Þ

where the factor (1 � F) accounts for the fraction of solid
remaining. For the one-dimensional problem considered
here, we can rewrite the mass conservation equations in
terms of the degree of melting via Eq. (B7) using the chain
rule, viz.,

dC
dz

¼ dC
dF

dF
dz

¼ ð1� F ÞC
qsð1� /f ÞV s

dC
dF

ðB8Þ

Substituting Eq. (B8) into Eqs. (B1)–(B3), we have a set
of conservation equations relating concentrations to the
degree of melting experienced by the solid matrix,

qf/f V f

qsð1� /f ÞV s
ð1� F ÞC dCf

dF

¼ CðCp
s � Cf Þ þ qsð1� /f Þ

XN
j¼1

wjRjðC j
s � kjCf Þ; ðB9Þ

ð1� F ÞCdCs

dF
¼ CðCs �Cp

s Þ � qsð1�/f Þ
XN
j¼1

wjRjðCj
s � kjCf Þ;

ðB10Þ

ð1� F ÞC dC j
s

dF
¼ �qsð1� /f ÞRjðC j

s � kjCf Þ; ðB11Þ

For constant melting rate and melt-to-solid mass flux
ratio (i.e., in a case of dynamic melting), Eqs. (B9)–(B11)
can be further simplified by dividing each equation by the
product qsð1� /f ÞR1, viz.,

ae1ð1� F Þ dCf

dF
¼ e1ðCp

s � Cf Þ þ
XN
j¼1

wj
Rj

R1

ðC j
s � kjCf Þ;

ðB12Þ

e1ð1� F Þ dCs

dF
¼ e1ðCs � Cp

s Þ �
XN
j¼1

wj
Rj

R1

ðC j
s � kjCf Þ;

ðB13Þ

e1ð1� F Þ dC
j
s

dF
¼ � Rj

R1

ðC j
s � kjCf Þ; ðB14Þ

where a is the melt-to-solid mass flux ratio (Eq. (12)); e1 is
the disequilibrium parameter defined with respect to the
exchange rate constant for the element of interest in mineral
1,

e1 ¼ C
qsð1� /f ÞR1

: ðB15Þ

When R1 = R2 = . . . = RN = R, Eqs. (B12)-(B14) reduce to
Eqs. (9)–(11) which are the working model in this study.
APPENDIX C. SUPPLEMENTARY DATA

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.gca.2016.12.040.
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