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ABSTRACT

This paper addresses the problem of detecting the presence
of a complex-valued, possibly improper, but unknown signal,
common among two or more sensors (channels) in the pres-
ence of spatially independent, unknown, possibly improper
and colored, noise. Past work on this problem is limited to
signals observed in proper noise. A source of improper noise
is IQ imbalance during down-conversion of bandpass noise to
baseband. A binary hypothesis testing approach is formulated
and a generalized likelihood ratio test (GLRT) is derived us-
ing the power spectral density estimator of an augmented se-
quence. An analytical solution for calculating the test thresh-
old is provided. The results are illustrated via simulations.

Index Terms— Multichannel signal detection; improper
signals; generalized likelihood ratio test (GLRT)

1. INTRODUCTION

We consider the problem of detecting the presence of a
complex-valued, possibly improper, but unknown signal,
common among two or more sensors. The unknown com-
mon signal is observed at multiple sensors in the presence
of unknown, possibly improper and colored, noise that is
independent across sensors.

A zero-mean complex-valued random sequence is called
proper if the cross-correlation function of the sequence with
its complex conjugate (called complementary correlation) is
vanishing [1]. Quite often, algorithms for complex signal
processing in communications and statistical signal process-
ing have been derived assuming that the complex signals
are proper [1, 2]. However, this assumption of propriety
is often not justified. For example, BPSK, offset QPSK,
GMSK and ASK modulation based signals are improper
[1]. Also, in-phase/quadrature-phase (IQ) imbalance during
down-conversion of bandpass signals to baseband can result
in impropriety in both signals and noise [3]. If the underlying
signals are improper, much can be gained in performance if
the information contained in the complementary correlation
is also exploited [1, 4, 5].

A potential application of this problem is in spectrum
sensing for cognitive radio (for other potential applications
see [6]) to decide if the received signal, in addition to noise,
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contains signals from a single or multiple primary users
(PUs). This is formulated as a binary hypothesis testing prob-
lem and is a well-investigated topic [7]. A wide variety of
approaches exist based on differing signal and noise models
[7]1. A widely used model is that of temporally white but
spatially correlated proper complex Gaussian PU signal in
temporally and spatially uncorrelated proper complex Gaus-
sian noise [8]. Temporally colored, proper signals in spatially
uncorrelated but temporally correlated Gaussian noise have
been considered in [9] assuming multiple independent real-
izations (snapshots) and Gaussian PU signals, whereas only
one data realization is needed in [10]. [6] is an extension
of [9]. The model of [11] is limited to temporally white but
spatially correlated improper complex Gaussian PU signal in
temporally and spatially uncorrelated proper complex Gaus-
sian noise whereas [12] allows temporal correlation for both
improper signal and proper noise. Both show improved per-
formance compared to the case where improper signals are
treated as proper.

Relation to Prior Work: The model of [12] is limited to
improper signals in spatially independent proper noise. In this
paper we allow noise to be improper also.

Contributions: A binary hypothesis testing approach is
formulated and GLRT is derived using the power spectral den-
sity (PSD) estimator of an augmented sequence. An asymp-
totic analytical solution for calculating the test threshold is
provided. The results are illustrated via computer simulations.

Notation: Weuse S = 0and S > 0 to denote that
Hermitian S is positive semi-definite and positive definite, re-
spectively. For a square matrix A, |A| and etr(A) denote
the determinant and the exponential of the trace of A, re-
spectively, i.e., etr(A) = exp(tr(A)), B, j:m denotes the
submatrix of the matrix By comprising its rows ¢ through [
and columns j through m, By;; is its ¢jth element, and I is
the identity matrix. The superscripts *, 7" and H denote the
complex conjugate, transpose and the Hermitian (conjugate
transpose) operations, respectively.

2. SYSTEM MODEL

Let p x 1 n(t) denote a zero-mean spatially independent, sta-
tionary, possibly improper, random sequence (noise) and p x 1
s(t) denote a zero-mean stationary, possibly improper random
sequence (signal) which is independent of {n(¢) }. Both noise
and signal may be non-Gaussian. Let H( denote the null hy-
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pothesis that the user is receiving just noise, and #; is the
alternative that signal common to all sensors is also present.
We consider the following binary hypothesis testing problem
for the measurement sequence x(t):

Hol X(t)
H1Z X(t)

n(t), noise only
s(t) + n(t), signal and noise.

(M

We assume that noise is independent across sensors.

A stationary complex zero-mean process {x(t)} of di-
mension p is said to be proper [1] if its matrix complementary
correlation (covariance) function R, (7) vanishes, i.e.,

Roo(r) = B{x(t +7)x" (1)} =0, 7= 0,£1,---, (2)

where x(t) = x,(t) + jx;(t), with x,.(t) and x;(¢) denot-
ing its real and imaginary components, respectively. Define
R..(7) = E{x(t + 7)x(t)}, the conventional matrix cor-
relation function. The PSD S, (f) of {x(¢)} is the Fourier
transform of Ry, (7), Sz (f) = Y00 Ry (r)e 7277,
whereas the complementary PSD (C-PSD) S, (f) of {x(t)}
is S.(f) = 322 Ry.(1)e 727/7. Clearly, for a proper
process, the C-PSD vanishes.

We observe x(¢) fort = 0,1,--- ;N — 1 (/N samples).
Since s(¢) is assumed to be improper, we will exploit both
PSD and C-PSD. Define the augmented complex process
{y(t)} and the real-valued process {z(t)} as

vo=| 2] =20 ] o

We assume that {z(¢)} satisfies Assumption 2.6.1 of [13] so
that some asymptotic results from [13] regarding PSD estima-
tors can be invoked; the time series need not be Gaussian but
its moments of all orders should be finite.

Consider the finite Fourier transform (FFT) d,(f,) of
y(t),t=1,2,--- /N — 1, given by

N—-1
dy(fn) =Y y(t)e 7>m/nt 4)

t=0

where f,, =n/N,n=0,1,--- , N—1. Then the estimator of
the PSD of y (¢) at frequency f,,, based on the Daniell method,
is given by

Suf) = Y (V4 (as)d (fu) O
l=—my

where K = 2my + 1 is the smoothing window size. Based on
[13, Theorem 7.3.3], it is shown in [12] that S, ( f,,) is asymp-
totically (“large” N) distributed as We (2p, K, K~'S,(f))

(denoted as ~) where Wc (2p, K, K~'Sy(f,)) denotes
the complex Wishart distribution of dimension 2p, degrees
of freedom K, and mean value S,(f,), and we exclude
n = 0, N/2 on the right-side of (5). If a random matrix X ~
We (p, K,S(f)), then by [13, Sec. 4.2], E{X} = KS(f),

cov {Xjk,le} = KSjl(f)SZm(f)s and for K > p, the

probability density function (pdf) of X is given by
1 1
I (K) [S()I*
where the pdf (6) is defined for S(f) > 0 and X > 0, and is
otherwise zero, and I',(K) := w#P=D/2TT0_ T(K —j +1)
where I'(n) denotes the (complete) Gamma function I'(z) :=
JoS et dt.
We will confine our attention to the frequency points over

which the spectral estimators are approximately mutually in-
dependent, which for the Daniell method are given by

. _ N _ -1
oo 1)K+”“+1,1s1e§1‘4:{2 i J

fx(X) = IX|E=Petr{-S71(f)X} (6)

N
) %)
Let M :={f : 1 <k < M} denote the set of M frequency
bins as in (7) of interest.
Under H,, the £th component x, () of x(t) is independent
of x,,(t) for £ #m. Let (¢ =1,2,--- ,p)

0) L Sy;ﬂ(f) S £ (L+p) (f) :|
Sy (f)'__[ Sy:(e+pye(f) Sy;é+p)@+p)(f) - W
Then in terms of S, and Sm,
4 _ Sw;M(f) Sw;“(f)
s =| gy eilh ] o

Under H,, all entries in S, (f) are zeros except for those in

Szgf)(f), ¢ =1,2,---,p. Under H;, x(t) is improper with
Sy (f) = 0 with no specific structure. Testing for the pres-
ence of an improper common signal in spatially independent
improper noise is then reformulated as the problem:

Ho : Sym(fe) =0 except for Sg,z)(fk)
6=1,2,--- ,pVf e M )
M1+ Sy(fx) > 0 with no specific structure Vf;, € M.
(10)

We assume that S, (f) > 0 for any f. Otherwise, one can
add artificial proper white Gaussian noise to x(t) to achieve

Sy(f) = 0.

3. PSD-BASED GLRT

In this section we derive the GLRT. We will denote the spec-
tral estimator at the k-th frequency bin f, (see (7)), acquired
from {y(t)}5!, via (5), as Y. We have

Yio & We (29, K, K718, (o) (an

and Y}s are mutually independent for & € [1, M]. The joint
pdf of Yy, for fk € M under Hg is maximized w.r.t. Sg(f)(fk)
for Sl(f) (fr) = Y,(f) where

Yl(f) :: [ Yi.or

Y (e4p)e

Y iso(0+p)

e C?x2, 12
Y s (04p) (¢4p) ] (12)
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Under H;, the joint pdf of Yy, for k € [1, M] is maximized

w.rt. the Hermitian matrix S, (f;) for S,(f) = Yy. Define
Y ={Y, k € M}. Then one gets the GLRT
fy(Yi k€ M[H1,8,(fi) %

L= =7 (13)
Fo(Yik € Mo S (7). € (L) 7,

where the threshold 7 is picked to achieve a pre-specified

probability of false alarm Py, = P{L > 7 |Ho}. This re-

quires pdf of £ under H which is discussed in Sec. 4. Sim-

plifying, one obtains

|Y(£)|K

E
L= knl,ck, Ly = |Y ¢

(14)

Invariance of GLRT: Note that £, is invariant to trans-
formation Y,(f) — A,(f)Y,(f)A,(f)H for any non-singular
Hermitian A,(f) € C?*2, leaving the other entries of Y}, un-
changed. In particular, by choosing A,(f) = VEK(SP (f) 12
for ¢ € [1,p] we can transform any Y}, to Y} such that
Y'Y ~ We (2,K,1) and Yy, ~ We (2p, K, T) under Ho.
Then L is invariant.

4. THRESHOLD SELECTION

We now turn to determination of an asymptotic expansion of
the distribution of £ under H, following [14, 15, 16]. First
we need the following result:

Lemma 1 : Under Hg, forany h =0,1,2,---, E{ﬁ Mo}

IR M k) T KO B) k1)

[LZ DMK = +1) T TP+ h) =+ 1)
(15)

Proof : Using the transformation specified in Sec. 3 to obtain
Y ~ We (2p, K, 1) under H,, we have

|Yk|Kh+K > etr{— Yk}

h —
E{l/ﬁk |H0} - H;}il |Y](f)|Kh ng(K) dYk
B Ty, (K + Kh) (0 —Kh
- It E{IY K, (16)

where Y}, ~ W (2p, K(1 + h),T). Hence Y;C(Z)s (defined
similar to (12)) are independent for ¢ € [1,p] and Y;f(é) ~
We (2, K(1+ h),I). Since (see [18, Theorem 3.8, p. 517)

2
B{Y 015 = (][ /2)Vi) 5"}, a7
m=1

Vi ~ Xg(K(Hh)me) and are independent, and (see [14, p.
101])

E{WT}:W for W ~ x2, (18)
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we obtain V/ € [1, p]
2
o o DK +1—m)
E{|Y;€()\ Kh}: 2H I )
[, T(K(1+h)+1—m)

Now using T',(K) := 7P(P=1/2 [T T(K —j+ 1), (14),
(16) and (19), we get the desired result. [J

In order to exploit Lemma 2 (stated next), we need to es-
tablish that 0 < £~! < 1. Since Y, >~ 0 (hence Y,(f) =0
v0), L1 > 0 follows immediately. By Fischer’s inequal-
ity [17, p. 477], we have [ Y| < [T, [Y\”| which implies
L~ < 1. The following result follows from [14, Sec. 8.2.4],
[15, Sec. 8.5.1]:
Lemma 2 : Consider a random variable W (0 < W < 1)
with the Ath moment (b = 0,1,2,--+)

b vi\ "
BE{w"} =C e,
|

(19)

TT;_ D(ze(1+h) + &)
[ Ty (L +h) +my)

where a and b are integers, C is a constant such that E{W°} =

land > ) _ oy = 2221 y;. Let B,.(h) denote the Bernoulli
polynomial of degree r and order unity. Define

ve= 72[Zk 1516*2] 17y *%(a*b)], p=1-
[Zk 12y ( =&+ ) Zj:1yj_1(7732'_’7j+%)]’
5k—(1— )Tk, € = (1— p)y; and

(=p*! vt 1 (BetEr) b Brii(ej+n;)
Wr = r(r+1) {Ek 1+(;Tkyk - Zj 1 J“(pyj’ A }

Then with x2 denoting a random variable with central chi-
square distribution with n degrees of freedom (as well as the
distribution itself),

P{=2p (W) < z} = P{x} < 2} + w2 [P{x}4s < 2}
—P{x} < 2}] +ws [P{xi16 < 2} — P{x} < 2}]
+{wa [POGss <2} - PG < 2]+

1
58 [POC4s <20 —2P(Cha < 2b + PUG < 2] |

a b
+2_ 0@+ 0y;7) o
k=1 j=1

Comparing (20) with (15), we find the correspondence

1)

a=2Mp, b=2Mp, z, = K,
& = —[(k — 1) mod(2p)] fork =1,2,--- ,a,

yi =K, n; = —[(j — )mod(2)] for j = 1,2, ,b. (22)
Comparing Lemmas 1 and 2, we further have
Br=>0-p)KVk, € =(1-pKVj. (23)

Furthermore, one has E{1/L"|H,} = 1. Thus, Lemma 2 is
applicable with W = 1/L and parameters specified in (22).
Using these values in Lemma 2 and simplifying, one gets

2(p+ 1)

p=1- (24)



za: r+(1/§fk + &) MZ By ( f<+ 1- l),
k=1 k)

2
, (25)
ZBT—H(GJ +77] - Mp Z By ( p)K +1—1)

j=1

(pyj

pE)"

(26)
Therefore, we have

wr :m{ (Z Bria((1 - p)K +1- z))

=1

2
—p <Z Brii((1—p)K 41— z>> } (27)

=1

It then follows from Lemma 2 that
P{2pIn(L) < z|Ho} = P{XE <z} Fws [P{X3+4 <z}
—P{xp < 2}] +ws [P{x4e < 2} — P{x] < 2}]
o [POG4s €21 = PG < 1]+ 508 [P0 4s < 2)

“2P{x; 4 <2} + PG <2} JHOK™®)  (28)
where w,’s are given by (25)-(27), and

M p
=K ([Zln YO - ln(|Yk|))~ (29)

k=1 (=1

Theorem 1 allows us to calculate the test threshold analyti-
cally.

Ha
Theorem 1. The GLRT for (10) is given by 2p In(£) = 7

Ho
where p and In(L£) are given by (24) and (29), respectively.
The threshold 7 is picked to achieve a pre-specified Py, =
1— P{2pIn(L) < 7|Ho} where P{2p In(L) < 7|Ho} is
given by (28) and the various needed parameters are specified
in (24)-(27) e

5. SIMULATION EXAMPLES

First we investigate the efﬁcacy of Theorem 1 in computing
the GLRT threshold for a given Pf,. We consider p anten-
nas (p=2,3 or 4). Let n;(¢), ¢ € [1, p|, denote p independent
zero-mean white proper Gaussian sequences. We generate
n;(t) = arh;(t)®n;(t)+aqhq(t)®n; (t) where a; = af) =
(1 + j1)/v/2, ® denotes convolution, h;(t) = [0.3 1 0.3],
ho(t) = [0.4 1 0.5]. Thus noise n(¢) is spatially indepen-
dent, improper Gaussian. To estimate the PSD of augmented
y(t) for N = 256, we choose m; = 7 leading to K = 15 and
M = 8. In Fig. 1 we compare the actual Py, and design Py,
based on 10,000 runs. It is seen that Theorem 1 is effective in
accurately calculating the threshold value.

Next we show the receiver operating characteristic (ROC)
curves. The noise n(t) is as in the previous example and the

PU signal is given by s(t) = Z?:o h(l)I(t —1) where I(t) is
a scalar BPSK sequence and vector channel h(l) is Rayleigh
fading with 5 taps, equal power delay profile, mutually in-
dependent components. Thus both signal and noise are im-
proper. The probability of detection P, versus false-alarm
rate Py, results for three different SNR values and p = 3,
based on 10,000 runs, is shown in Fig. 2; SNR is defined as
ratio of the sum of signal powers at the p antennas to the sum
of noise powers. In all cases we have N=256, K=15 and
M=8. Tt is seen that performance improves with increasing
SNR. The approach of [12] applied to this problem treats im-
proper noise as signal, e.g., when designed with P, = 0.005,
it detects the improper noise of Fig. 1 (p = 2) with probabil-
ity 0.015; under H the test statistic of [12] is not invariant to
changes in impropriety of noise.

256 samples; 10000 runs; K=‘15; M=8
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Fig. 1: Actual Py, vs. design Pr,, N = 256, K =15, M =8
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Fig. 2: ROC curve, N = 256, K =15, M =8

6. CONCLUSIONS

We investigated a PSD-based method for detection of com-
mon improper signal in improper noise. Our proposed ap-
proach is based on GLRT and it extends the approach of [12]
to improper noise. A source of improper noise/signal is 1Q
imbalance during down-conversion of bandpass noise/signal
to baseband [3]. An analytical method for calculation of the
test threshold was provided and illustrated via simulations.
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