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Abstract—Shannon determined that the zero-error capacity of
a point-to-point channel whose channel p(y|x) has confusability
graph GX|Y is positive if and only if there exist two inputs
that are “non-adjacent”, or “non-confusable”. Equivalently, it is
non-zero if and only if the independence number of GX|Y is
strictly greater than 1. A multi-letter expression for the zero-
error capacity of the channel with confusability graph GX|Y is
known, and is given by the normalized limit as the blocklength
n → ∞ of the maximum independent set of the n-fold strong
product of GX|Y . This is not generally computable with known
methods. In this paper, we look at the zero-error capacity of
four multi-user channels: the relay, the multiple-access (MAC),
the broadcast (BC), and the interference (IC) channels. As a first
step towards finding a multi-letter expression for the capacity of
such channels, we find necessary and sufficient conditions under
which the zero-error capacity is strictly positive.

I. INTRODUCTION AND NOTATION

Mathematically, one can define the zero-error capacity and
the ε-error capacity of a point-to-point channel with inputs
X ∈ X and outputs Y ∈ Y linked through conditional proba-
bility mass functions p(y|x) in a similar fashion. However, the
form of the solutions and analysis differs: while the 0 < ε < 1
error capacity leads itself to a probabilistic analysis and the
single-letter expression for the capacity C of

C = max
p(x)

I(X;Y ) bits/channel use,

the zero-error capacity is a combinatorial problem for which
only a multi-letter expression is known [1]. While a combi-
natorial approach may be taken to derive the ε-error capacity
[2], the reverse is not true; the ε and zero-error are different
beasts [3], [4] [2, Ch. 11].1

A given channel’s zero-error capacity, with stricter con-
straints on the probability of decoding error, is generally
smaller than its ε-error capacity. In fact, the zero-error capacity
of many commonly studied channels is zero – the binary
symmetric channel with cross-over probability p(y = 0|x =
1) = p(y = 1|x = 0) = δ > 0 is the simplest channel
for which the zero-error capacity is zero, but the ε error
capacity is strictly positive as long as δ 6= 1

2 . A natural

1E.g., a discontinuity often happen between ε > 0 to ε = 0 capacity [2,
Ch.11], and unlike in ε-error, Alon [5] disproved Shannon’s conjecture [1]
that the zero-error capacity of independent, parallel channels is the sum of
the zero-error capacities.

question to ask is thus, when is the zero-error capacity of
a channel positive? For the point-to-point channel, this is
well known and will be discussed in Section II. This paper’s
contribution lies in determining conditions under which the
zero-error capacities of the relay, multiple-access, broadcast,
and interference channels are positive. This is to the best of
our knowledge the first study of such conditions for networks,
and acts as a first step towards understanding their zero-error
capacities, which are notoriously difficult open problems [4].
The zero-error capacity of the primitive relay channel was
considered in [6], [7], [8], the zero-error capacity of the binary
adder channel has been a long-standing open problem [9], and
the zero-error capacity of a specific interference channel was
considered in [4], [10]. However, none of these works consider
general channel conditions under which the zero-error capacity
of the network is positive.

We next provide some definitions of graphs and of the zero-
error capacity of a point-to-point channel. We then proceed to
state necessary and sufficient conditions under which the point-
to-point (previously known), the relay, the multiple access, the
broadcast, and the interference channels have non-zero zero-
error capacity. We define the channel models for the multi-user
channels directly in their corresponding sections.

A. Graph theoretic notation.

A graph G(V,E) consists of a set V of vertices or nodes
together with a set E of edges, which are two-element subsets
of V . Two nodes connected by an edge are called adjacent.
We will usually drop the V,E indices in G(V,E).

An independent set of a graph G is a set of vertices, no two
of which are adjacent. Let the independence number α(G) be
the maximum cardinality of all independent sets. A maximum
independent set is an independent set that has α(G) vertices.
One graph can have multiple maximum independent sets.

The strong product G�H of two graphs G and H is defined
as the graph with vertex set V (G�H) = V (G)× V (H), in
which two distinct vertices (g, h) and (g′, h′) are adjacent iff
g is adjacent or equal to g′ in G and h is adjacent or equal to
h′ in H . G�n denotes the strong product of n copies of G.

A confusability graph GX|Y of X given Y , specified by
conditional probability mass functions p(y|x) from discrete
channel input alphabets X to discrete channel output alphabets



Y , is a graph whose vertex set is X and an edge is placed
between vertices x, x′ ∈ X if they may be “confused”, that is,
if ∃y ∈ Y : p(y|x) · p(y|x′) > 0.

B. Zero-error capacity definition.

Consider zero-error communication over a point-to-point
(P2P) channel (X , p(y|x),Y), with inputs X ∈ X connected
to outputs Y ∈ Y through the “channel” modeled as a set
of conditional probability mass functions p(y|x). This was
initially studied by Shannon in 1956 [1]; see [11], [4] for
further zero-error capacity details. Communication takes place
over n channel uses.

In one channel use, the sender transmits an input x ∈ X ,
the receiver receives an output y ∈ Y according to p(y|x) and
from this must determine which x was transmitted with no
error. The largest number of inputs that can be communicated
over one channel use is thus α(GX|Y ), the maximum inde-
pendent set of the confusability graph GX|Y of the channel
described by p(y|x).

If we use the channel n times, with input xn :=
(x1, x2, · · ·xn), outputs yn := (y1, y2, · · · yn) and where
channel output at time i depends only on the channel input at
time i according to p(yi|xi) and no other inputs and outputs,
then α(GXn|Y n) input vectors will be able to be distinguished
with zero error. It is easy to check that the confusability graph
of the channel from Xn to Y n, GXn|Y n is given by the strong
product of n copies of the confusability graph GX|Y , i.e.

GXn|Y n = G�n
X|Y .

We then call

C(GX|Y ) := sup
n

1

n
log
(
α(G�n

X|Y )
)
= lim

n→∞
1

n
log
(
α(G�n

X|Y )
)

(1)
the Shannon capacity C of the channel with confusability
graph GX|Y . This corresponds to the largest number of bits (if
the logarithm is taken to base 2) that may be communicated
without error (per channel use). This limits exists by Fekete’s
lemma and the super-multiplicativity of the strong product
of graphs. We note that sometimes, as done by Lovász [11]
and Alon [12], one defines the Shannon capacity of the
graph G without the logarithm (to represent the number of
distinguishable inputs), and that one may easily transfer results
from one definition into the other.

Equation (1) is a generally uncomputable limiting expres-
sion that may be unsatisfying to some, despite it being quite
intuitive. In short, we understand the form of the capacity,
but it cannot be computed with current technology, except for
special classes such as perfect graphs [13], [14]. The difficulty
in computing (1) lies not only in the NP-hardness of finding
the independence number of a graph, but also in the (possibly)
strange behavior of the sequence of independence numbers for
strong product graphs, say {α(G�n)}∞n=1. How this sequence
behaves is a notoriously difficult open question and attracts
attention in graph theory and combinatorics [15], [16], [17].

II. WHEN IS THE ZERO-ERROR CAPACITY OF A
POINT-TO-POINT CHANNEL POSITIVE?

Consider zero-error communication over a point-to-point
channel (X , p(y|x),Y). An n-shot protocol (n,W, h,X , g) for
communicating over a point-to-point channel without error is
composed of:
• An input message set W .
• An encoding function h :W → X and a codebook X ⊂
Xn. Message w is mapped to codeword x(w) = h(w)
and transmitted over the channel p(y|x).

• A decoding function g : Yn → W that produces an
estimate of the transmitted message w.

In the zero-error communication context, transmitting mes-
sages over a communication system is equivalent to differenti-
ating different codewords from a codebook, which is a subset
of the channel input alphabet, based on the channel output
signals. Rate R = 1

n log ||W|| is achievable if there exists an
n-shot protocol (n,W, h,X , g) for that achieves zero error,
i.e. for which the estimates message equals the true transmitted
message for all messages, regardless of the channel realization
p(y|x) over the n channel uses. The zero-error capacity is the
supremum of all achievable rates (over all blocklengths n).

Shannon showed that the zero-error capacity of the point-
to-point channel (X , p(y|x),Y) is strictly positive if and only
if there exist two channel inputs that are non-adjacent. Two
inputs x, x′ are called non-adjacent if their reachable sets

Y(x) := {y|p(y|x) > 0}, Y(x′) := {y : p(y|x′) > 0} (2)

are disjoint. Equivalently, two inputs are adjacent if their
reachable sets are not disjoint, in which case Massey [18]
prefers calling the inputs confusable. We follow Massey’s
terminology as well. In short then, Shannon showed the
following Theorem:

Theorem 1 (Shannon [1], P2P zero-error capacity posi-
tive). The zero-error capacity of the point-to-point channel
(X , p(y|x),Y) is strictly positive if and only if there exist two
inputs x 6= x′ that are non-confusable, i.e. for which

Y(x) ∩ Y(x′) = ∅.

Since the zero-error capacity of the P2P channel may be
succinctly expressed in terms of its confusability graph GX|Y
as in (1), one might hope that Theorem 1 could be rephrased
as a condition on GX|Y as well. Indeed, by noting that
the graph GX|Y is constructed by placing an edge between
any two inputs that are confusable, and recalling that an
independent set of a graph is a subset of vertices no two of
which share an edge, we can re-phrase Shannon’s theorem as
follows, which we feel is more intuitive. We will present all
subsequent theorems in terms of confusability graphs as well
for uniformity, though we could just as well have formulated
them in terms of the sets Y(x) and their multi-user analogs.

Corollary 2. The zero-error capacity of the point-to-point
channel (X , p(y|x),Y) with confusability graph GX|Y is



strictly positive if and only if

α(GX|Y ) > 1. (3)

Remark 1. Notice that this is a “single-letter” condition in
some sense – i.e. one need not look at multiple channel uses
to determine whether the channel has non-zero capacity. If a
channel’s confusability graph G has independence number of
1, i.e. α(G) = 1, then every vertex must be connected to every
other vertex. Hence G must be a complete graph, or a clique,
which in one channel use is not able to distinguish even 1
bit of information, i.e. has a one-shot zero-error capacity of
0. If G is complete, then every strong product of G is also
complete and hence multiple channel uses will not “resolve”
any ambiguities, i.e. C(G) = 0 even as n→∞.

This single-letter nature of the condition for non-zero capac-
ity is in sharp contrast to the capacity expression in (1), which
is a limiting, multi-letter expression. While the condition in
(3) is computable in polynomial time (just check for an
independent set of size 2), (1) is NP-hard.

However, the two expressions do bear some similarity: the
condition for positive capacity asks whether α(G) > 1 while
the capacity asks for the largest α(G), properly normalized, as
n→∞. It seems both hit on the same concept of confusability
of inputs, at the heart of the zero-error capacity. We now look
for analogous theorems to Corollary 2 for the relay, MAC, BC
and IC channels, with main results highlighted in Fig. 1.

III. WHEN IS THE ZERO-ERROR CAPACITY OF A RELAY
CHANNEL POSITIVE?

A relay channel (X × XR, p(y, yR|x, xR),Y × YR) con-
sists of a source terminal S that wants to communicate a
message W to a destination terminal D aided by a relay
terminal R. We first define the zero-error capacity of this
channel formally, before finding conditions under which it is
non-zero.

An (n,W, h,X , φ1, φ2, · · · , φn, g) protocol for the zero-
error relay channel consists of:

• An input message set W .
• An encoding function h : W → X , mapping messages

to codewords in the codebook X ⊂ Xn.
• Relaying functions φi, i ∈ [1 : n] which at time i assigns

each past received output yi−1R ∈ Yi−1
R a symbol in XR

according to φ:Yi−1
R → XR.

• A decoding function g : Yn → X which leads to an
estimate of the transmitted message w ∈ W

A message rate R := 1
n log ||W|| is said to be achievable

if there exists an (n,W, h,X , φ1, φ2, · · · , φn, g) protocol for
which for the decoded message exactly equals the true sent
message regardless of the channel realizations p(y, yR|x, xR)
over the n channel uses.

For this channel, the condition for non-zero zero-error
capacity boils down to a condition resembling the cut-set

bound. Define the following confusability graphs, both defined
on vertices X × XR, with edges as follows:

GX,XR=xR|Y,YR
: edge between (x, xR) 6= (x′, xR) if

∃(y, yR) : p(y, yR|x, xR) · p(y, yR|x′, xR) > 0

GX,XR|Y : edge between (x, xR) 6= (x′, x′R) if
∃y : p(y|x, xR) · p(y|x′, x′R) > 0,

where we recall that p(y|x, xR) =
∑

yR∈YR
p(y, yR|x, xR).

Theorem 3. The zero-error capacity of the relay channel is
non-zero if and only if

∃xR : α(GX,XR=xR|Y,YR
) > 1 (4)

AND

α(GX,XR|Y ) > 1. (5)

Proof: We show that (4) and (5) are both necessary and
sufficient conditions for a positive zero-error capacity.

First, to show that they are necessary, we need to show that
if the zero-error capacity is positive, then (4) and (5) hold.
We show the equivalent contrapositive, i.e. that if either of the
conditions is not met, that necessarily the zero-error capacity
must be zero.

We notice that the zero-error capacity is upper bounded
by the minimum of the capacities of the channels from S
to (R,D) and from (S,R) to D (the two usual “cuts” used in
the cut-set bound for the relay channel [19]). This follows
from arguments similar to the cut-set bound, but for zero-
error networks, as follows. Say (4) does not hold. Then for all
xR ∈ XR, α(GX,XR=xR|Y,YR

) = 1. This means that even if
the destination D were to be given YR and the input the relay
sent XR = xR at that channel use (which would increase the
capacity of the channel as it could ignore this added knowledge
if it does not help in disambiguating inputs x), that still not
even one bit of information could be conveyed. Hence the
zero-error capacity would be zero. Similar arguments as in
Remark 1 may be used to argue that larger blocklengths will
not change this statement. Similarly, if (5) does not hold, this
means that destination D cannot resolve even two different
(x, xR) pairs. Since resolving a pair of (x, xR) is less stringent
than resolving just x (i.e. it is in general easier to resolve a
pair than a singleton), it is hence not possible to resolve just
x either, and hence the capacity must be 0.

To show that these conditions are also sufficient, we need
to show that if (4) and (5) hold, then the capacity must
be positive. Assume the conditions to be true. Then, in one
channel use, let the source transmit one of the x 6= x′ ∈ X
that form an independent set of size at least 2, and the
relay transmit the dummy xR that satisfies (4) (exist by
presumption). After this channel use, both the source and the
relay may thus agree upon 1 bit of information, as this will
lead to at least 2 distinct (y, yR) pairs. If these two pairs have
different y’s then the destination can distinguish 1 bit by itself
(without the relay) and (5) will also automatically hold. If
these two pairs have time same y they must have different yR’s
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Fig. 1. Channels and main result.

and in this case the relay can distinguish 1 bit. In the second
channel use, the source and relay agree to encode the 1 bit they
agree upon using the two (x, xR) 6= (x′, x′R) pairs that form
an independent set of size at least 2 that satisfies (5) (which
again exist by presumption) and hence are non-confusable at
the destination. After this second channel use then, one bit has
been unambiguously conveyed to the destination, and hence
the capacity is non-zero.

Remark 2. Note that if there exists a dummy x∗R value for
which there exist two inputs x 6= x′ that lead to non-confusable
outputs at the destination D only (regardless of what is
received at the relay’s YR), i.e. {x, x′} forms an independent
sets of GX,XR=x∗

R|Y and hence also of GX,XR=x∗
R|Y,YR

, then
the direct link has non-zero zero-error capacity. In this case,
both conditions (4) and (5) will be satisfied, and the relay need
not be involved in information transmission (it may simply
transmit the dummy x∗R) in order to demonstrate a positive
zero-error capacity.

When going after the zero-error capacity of the relay
channel in fully generality, one may surmise that the graphs
in (4) and (5) will play important roles. This seems to be
true for the zero-error capacity of the primitive relay channel,
which was studied in [6], [7], [8], and for which a necessary
and sufficient condition on the out-of band R-D link capacity
was obtained (and a construction of the optimal “Colour-and-
Forward” relaying scheme needed) to achieve the single-input
multiple-output (cut-set) outer bound. Determining multi-letter
expressions for the zero-error capacity of the relay channel is
the subject of ongoing investigation.

IV. WHEN IS THE ZERO-ERROR CAPACITY OF A
MULTIPLE-ACCESS CHANNEL POSITIVE?

We next consider a multiple access channel
(X1,×X2, p(y|x1, x2),Y) in which two independent
transmitters 1 and 2 wish to send independent messages
W1,W2 to a single destination that wishes to decode both
messages. At each channel use the inputs and outputs are
related through p(y|x1, x2) at that channel use, independent
of the inputs and outputs at other times. For this network, the
ε-error capacity is well known and is equal to the union of

all rate pairs satisfying

R1 ≤ I(X1;Y |X2, Q)

R2 ≤ I(X2;Y |X1, Q)

R1 +R2 ≤ I(X1, X2;Y |Q)

taken over the distributions p(q)p(x1|q)p(x2|q). The zero-error
capacity of the multiple access channel is in general open, with
the binary adder channel being an example of a channel where
the zero-error capacity is strictly [20] smaller than the ε-error
version, and for which the exact zero-error capacity remains
unknown. In this section we do not focus on a particular
channel such as the binary adder channel, but rather seek
conditions under which the zero-error capacity for any MAC
channel is positive.

An (n,W1,W2, h1, h2,X1,X2, g) protocol for the zero-
error MAC consists of:
• Two input message sets W1 and W2.
• Two encoding functions h1 : W1 → X1, h2 : W2 → X2

and two codebooks X1 ⊂ Xn
1 , X2 ⊂ Xn

2 . Messages
w1, w2 are mapped to codewords x1(w1) = h1(w1)
and x2(w2) = h2(w2) and transmitted over the channel
p(y|x1, x2).

• A decoding function g : Yn → W1 ×W2 that produces
estimates of the transmitted messages w1 and w2.

A rate pair (R1 := 1
n log ||W1||, R2 := 1

n log ||W2||) is
achievable if there exists an (n,W1,W2, h1, h2,X1,X2, g)
protocol which achieves zero-error, i.e. for which the estimated
messages are equal to the true messages for all messages,
regardless of the channel realizations p(y|x1, x2) over the n
channel uses. The zero-error capacity region is the union of
all achievable rate pairs.

Based on the previous section, in which the condition for
non-zero zero-error capacity related to being able to find an
independent set of the “cut-set” bound for the relay channel
of cardinality more than 1, for this channel, the condition
α(GX1,X2|Y ) > 1, where GX1,X2|Y is a graph with vertices
X1 ×X2 and

GX1,X2|Y : edge between (x1, x2) 6= (x′1, x
′
2) (6)

if ∃y ∈ Y : p(y|x1, x2) · p(y|x′1, x′2) > 0

is not immediately relevant in determining whether we have
a non-zero zero-error capacity. The main issue is that such a



condition would not capture the distributed nature of the en-
coding process, i.e. that the two transmitters must encode their
messages independently. As an example, let X1 = X2 = {0, 1}
(binary channels). Then the confusability graph GX1,X2|Y
has 4 vertices (0, 0), (0, 1), (1, 0), (1, 1). Consider a possible
confusability graph in Fig. 2, in which α(GX1,X2|Y ) = 2.
Here, one might suspect that the capacity of this MAC
channel is non-zero. However, this is not the case. The two
possible independent sets (both of size 2) are {(0, 0), (1, 1)}
and {(0, 1), (1, 0)}. However, we cannot use these pairs as
codewords since the inputs of the two users are correlated
rather than independent. Since the users cannot coordinate
and jointly decide to transmit only (0, 0) and (1, 1) for the
first independent set (and not the other pairs), we see that
this graph is not relevant for the MAC channel. This is not
surprising – by looking at GX1,X2|Y , we inherently assume
that pairs of (X1, X2) can be sent. However, due to the lack
of coordination between the transmitters in a MAC, a Cartesian
product of a subset of X1 and X2 is more relevant. Indeed, for
this example, while α(GX1,X2|Y ) = 2, α(GX1=x1,X2|Y ) =
α(GX1,X2=x2|Y ) = 1 for all x1, x2 ∈ {0, 1}, and so the zero-
error capacity of this MAC would indeed be zero, as shown
next.

(0,0) (0,1)

(1,0) (1,1)

GX1,X2|Y

Vertices (x1, x2) 2 X1 ⇥ X2

Fig. 2. Example of GX1,X2|Y showing why this is not the correct graph
to consider for the MAC.

The more relevant conditions relate to the following con-
fusability graphs,

GX1=x1,X2|Y : vertices (x1, x2), x2 ∈ X2 for fixed x1
edge between (x1, x2) 6= (x1, x

′
2) if ∃y ∈ Y :

p(y|x1, x2) · p(y|x1, x′2) > 0 (7)

GX1,X2=x2|Y : vertices (x1, x2), x1 ∈ X1 for fixed x2
edge between (x1, x2) 6= (x′1, x2) if ∃y ∈ Y :

p(y|x1, x2) · p(y|x′1, x2) > 0 (8)

Then, we may express the condition for non-zero capacity
region as :

Theorem 4. The zero-error capacity region of the MAC is not
the point (0, 0) if and only if either of the following conditions

hold:

∃x1 ∈ X1 : α(GX1=x1,X2|Y ) > 1 (9)
∃x2 ∈ X2 : α(GX1,X2=x2|Y ) > 1 (10)

Proof: To show that this condition is necessary to achieve
a positive zero-error region, we again look at the contrapositive
statement. Suppose that neither condition holds. Then we
wish to show that the zero-error capacity is necessarily (0, 0).
Consider (9). Since for each x1 ∈ X1, GX1=x1,X2|Y is
complete, no matter what letter (one channel use) or codeword
(multiple channel uses) transmitter 1 sends, all of user 2’s
symbols are confusable. Hence, R2 = 0. Similarly, (10)
implies that R1 = 0.

To show that this condition is sufficient to achieve a positive
zero-error region, set X1 = x1 for the x1 that satisfies
(9). Then, let user 2 transmit the two different x2 values in
the independent set of size at least 2 of GX1=x1,X2|Y , say
x∗2 and x∗∗2 . The receiver will then be able to distinguish
the pairs (x1, x

∗
2) and (x1, x

∗∗
2 ), and hence we can achieve

the rate pair (0, 1) (and hence a region larger than (0, 0)).
Similarly, if the condition in (10) is satisfied, we can achieve
a rate pair of at least (1, 0). If both conditions hold, time
sharing between having transmitter 1 send the x1 in (9) and
transmitter 2 sending the two symbols in the independent set of
GX1=x1,X2|Y , and having transmitter 2 send the x2 in (10) and
transmitter 1 sending the two symbols in the independent set
of GX1,X2=x2|Y will lead to a whole region in which R1 > 0
and R2 > 0.

V. WHEN IS THE ZERO-ERROR CAPACITY OF A
BROADCAST CHANNEL POSITIVE?

We next consider a broadcast channel (X , p(y1, y2|x),Y1×
Y2) in which one transmitter sends 2 independent messages
W1 and W2 to two independent receivers, each of which
desires only one message. At each channel use the inputs
and outputs are related through p(y1, y2|x) at that channel
use, independent of the inputs and outputs at other times. For
this network, the ε-error capacity is still unknown in general,
but known for degraded, semi-deterministic, and Gaussian
channels, among others [19]. In this section we seek conditions
under which the zero-error capacity for any BC channel is
positive.

An (n,W1,W2, h,X , g1, g2) protocol for the broadcast
channel consists of:
• Two input message sets W1 and W2.
• An encoding function h :W1×W2 → X and a codebook
X ⊂ Xn. Messages w1, w2 are mapped to codeword
x = h(w1, w2) which is transmitted over the channel
p(y1, y2|x).

• Two decoding functions g1 : Yn
1 → W1 and g2 : Yn

2 →
W2 which estimate the transmitted messages w1 and w2,
respectively.

Rate pair (R1 := 1
n log ||W1||, R2 := 1

n log ||W2||) is said
to be achievable if there exists an (n,W1,W2, h,X , g1, g2)



protocol for which the estimated messages are equal to the
true messages for all messages, regardless of the channel
realizations p(y1, y2|x) over the n channel uses. The capacity
region is the union of all achievable rate pairs.

Based on the relay channel section, in which the condition
for non-zero zero-error capacity related to being able to find
an independent set of the “cut-set” bound for the relay channel
of cardinality more than 1, for this channel, a similar condition
of α(GX|Y1,Y2

) > 1, where GX|Y1,Y2
is a graph with vertices

X and

GX|Y1,Y2
: edge between x 6= x′ (11)

if ∃(y1, y2) : p(y1, y2|x) · p(y1, y2|x′) > 0

is not sufficient for a non-zero zero-error capacity. The main
issue is that such a condition would not capture the distributed
nature of the decoding process, i.e. that the receivers cannot
cooperate or share their outputs in decoding the messages.
As an example of a channel for which α(GX|Y1,Y2

) > 1 but
clearly no other rate point than (0, 0) can be achieved by the
BC, consider the broadcast channel in Fig. 3 which has binary
inputs and outputs. The channel between X and Y1 is a binary
symmetric channel with cross-over probability p(y = 0|x =
1) = p(y = 1|x = 0) = 1

2 . The channel between X and Y2
is an indicator function which indicates (i.e. outputs Y2 = 1)
when either {x = 0∩y1 = 1} or {x = 1∩y1 = 0} occurs, i.e.
indicates whether the channel between X and Y1 flipped the
sent bit. Here, when given both Y1 and Y2, one can distinguish
whether X = 0 or X = 1 was sent. However, the channels
from X to Y1 and from X to Y2, considered on their own, both
have zero and ε-error capacity equal to 0. Clearly, in the BC,
each receiver only has access to its own decoded signal and
hence GX|Y1

and GX|Y2
are the relevant graphs to consider,

and are defined as:

GX|Y1
: vertices x ∈ X

edge between x 6= x′ if ∃y1 ∈ Y1 :

p(y1|x) · p(y1|x′) > 0 (12)

GX|Y2
: vertices x ∈ X

edge between x 6= x′ if ∃y2 ∈ Y2 :

p(y2|x) · p(y2|x′) > 0, (13)

where p(y1|x) =
∑

y2
p(y1, y2|x) and p(y2|x) =∑

y1
p(y1, y2|x).

Then, we have the following condition for a positive zero-
error capacity region:

Theorem 5. The zero-error capacity region of the BC is not
the point (0, 0) if and only if either of the following conditions
hold:

α(GX|Y1
) > 1 (14)

α(GX|Y2
) > 1 (15)

X

Y1

D1

S

D2

BSC(1/2)

Y2 = (Y1 flipped)

GX|Y1,Y2
GX|Y1

= GX|Y2

0 1 0 1

Fig. 3. Example of GX|Y1,Y2
versus GX|Y1

and GX|Y2
showing why the

former is not the correct graph to consider for the BC.

Proof: To show that this condition is necessary to achieve
a positive zero-error region, we again look at the contrapositive
statement. Suppose that neither condition holds. Then we
wish to show that the zero-error capacity is necessarily (0, 0).
Consider (14) and assume it does not hold. This implies
α(GX|Y1

) = 1, in which case given Y1, not even two X’s can
be distinguished. Thus, as in Theorem 1 and Remark 1, this
implies a rate R1 = 0 no matter what. Similarly for condition
(15) and R2.

To show that this condition is sufficient to achieve a positive
zero-error region, clearly if (14) is satisfied then the rate point
(1, 0) can be achieved by encoding the message W1 into the
two distinguishable X values in the independent set of GX|Y1

of size at least 2 (ignoring W2, i.e. making the function h a
function of w1 ∈ W1 only). Similarly, if (15) is satisfied, the
rate point (0, 1) can be achieved by encoding the message W2

into the two non-confusable X values (ignoring W1). Then one
can time-share between these two points to achieve a region
with positive area.

VI. WHEN IS THE ZERO-ERROR CAPACITY OF A
INTERFERENCE CHANNEL POSITIVE?

In an interference channel (X1 ×X2, p(y1, y2|x1, x2),Y1 ×
Y2) two independent transmitters wish to communicate inde-
pendent messages W1 and W2 to to independent receivers.
Receiver 1 wishes to decode W1 and receiver 2 wishes to
decode W2. At each channel use the inputs and outputs are re-
lated through p(y1, y2|x1, x2) at that channel use, independent
of the inputs and outputs at other times. The ε-error capacity
of the interference channel is open in general, but is known
for classes of deterministic ICs, strong ICs, and is known to
within a constant gap for a class of semi-deterministic ICs
which includes the Gaussian IC [19].

First, let us define zero-error communication over the
interference channel. An (n,W1,W2, h1, h2,X1,X2, g1, g2)
protocol consists of:
• Two input message sets W1 and W2.
• Two encoding functions h1 : W1 → X1, h2 : W2 →
X2 and two codebooks X1 ⊂ Xn

1 , X2 ⊂ Xn
2 . Messages



w1, w2 are mapped to codewords x1(w1) = h1(w1) and
x2(w2) = h2(w2) which are transmitted over the channel
p(y1, y2|x1, x2).

• Two decoding functions g1 : Yn
1 → W1 and g2 : Yn

2 →
W2 that produce estimates of the transmitted messages
w1 and w2.

A rate pair (R1 := 1
n log ||W1||, R2 := 1

n log ||W2||) is achiev-
able if there exists an (n,W1,W2, h1, h2,X1,X2, g1, g2) pro-
tocol which achieves zero-error, i.e. for which the decoded
messages exactly equal the transmitted messages for all pos-
sible messages w1, w2 in W1×W2, regardless of the channel
realizations p(y|x1, x2) over the n channel uses. The zero-
error capacity region is the union of all achievable rate pairs.

Along similar lines as for the MAC and BC channels, we
see that the conditions for positive capacity region will depend
on the following graphs:

GX1=x1,X2|Y2
: vertices (x1, x2), x2 ∈ X2 for fixed x1

edge between (x1, x2) 6= (x1, x
′
2), if ∃y2 ∈ Y2 :

p(y2|x1, x2) · p(y2|x1, x′2) > 0 (16)

GX1,X2=x2|Y1
: vertices (x1, x2), x1 ∈ X1 for fixed x2

edge between (x1, x2) 6= (x′1, x2), if ∃y1 ∈ Y1 :

p(y1|x1, x2) · p(y1|x′1, x2) > 0. (17)

Then, the conditions for positive capacity region are:

Theorem 6. The zero-error capacity region of the IC is not
the point (0, 0) if and only if either of the following conditions
hold:

∃x1 ∈ X1 : α(GX1=x1,X2|Y2
) > 1 (18)

∃x2 ∈ X2 : α(GX1,X2=x2|Y1
) > 1 (19)

Equation (18) will lead to a rate pair of at least (0, 1), while
(19) leads to a rate pair of at least (1, 0). The proof follows
the same techniques as before.

VII. CONCLUSION

We have presented conditions for the relay, multiple-access,
broadcast and interference channels for the zero-error capacity
to be larger than the trivial point or region (i.e. for positive
zero-error capacity). This is a first step towards finding a
useful expression for the capacity region of such channels.
For the multi-user channels with rate pairs (MAC, BC, IC), the
conditions found boil down to at least one of the users having
a positive zero-error capacity. Another interesting question
would be to determine necessary and sufficient conditions to
ensure that both R1 > 0 and R2 > 0 without time-sharing,
i.e. positive rates for both users simultaneously in a single
time slot. We hope and expect that the capacity regions may
be expressed in terms of some of the multi-user confusability
graphs presented here, and this is the subject of ongoing work.
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