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Lyapunov exponents for random

perturbations of some area-preserving

maps including the standard map

By Alex Blumenthal, Jinxin Xue, and Lai-Sang Young

Abstract

We consider a large class of 2D area-preserving diffeomorphisms that are

not uniformly hyperbolic but have strong hyperbolicity properties on large

regions of their phase spaces. A prime example is the standard map. Lower

bounds for Lyapunov exponents of such systems are very hard to estimate,

due to the potential switching of “stable” and “unstable” directions. This

paper shows that with the addition of (very) small random perturbations,

one obtains with relative ease Lyapunov exponents reflecting the geometry

of the deterministic maps.

1. Introduction

A signature of chaotic behavior in dynamical systems is sensitive depen-

dence on initial conditions. Mathematically, this is captured by the positivity

of Lyapunov exponents: a differentiable map F of a Riemannian manifold M

is said to have a positive Lyapunov exponent (LE) at x ∈ M if ‖dFnx ‖ grows

exponentially fast with n. This paper is about volume-preserving diffeomor-

phisms, and we are interested in behaviors that occur on positive Lebesgue

measure sets. Though the study of chaotic systems occupies a good part of

smooth ergodic theory, the hypothesis of positive LE is extremely difficult to

verify when one is handed a concrete map defined by a specific equation —

except where the map possesses a continuous family of invariant cones.

An example that has come to symbolize the enormity of the challenge is

the standard map, a mapping Φ = ΦL of the 2-torus given by

Φ(I, θ) = (I + L sin θ, θ + I + L sin θ),

where both coordinates I, θ are taken modulo 2π and L ∈ R is a parameter.

For L � 1, the map ΦL has strong expansion and contraction, their direc-

tions separated by clearly defined invariant cones on most of the phase space
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— except on two narrow strips near θ = ±π/2 on which vectors are rotated

violating cone preservation. As the areas of these “critical regions” tend to

zero as L → ∞, one might expect LE to be positive, but this problem has

remained unresolved: no one has been able to prove, or disprove, the positivity

of Lyapunov exponents for ΦL for any one L, however large, in spite of consid-

erable effort by leading researchers. The best result known [Gor12] is that the

LE of ΦL is positive on sets of Hausdorff dimension 2 (which are very far from

having positive Lebesgue measure). The presence of elliptic islands, which has

been shown for a residual set of parameters [Dua94], [Dua08], confirms that

the obstructions to proving the positivity of LE are real.

In this paper, we propose that this problem can be more tractable if one

accepts that dynamical systems are inherently noisy. We show, for a class

of 2D maps F that includes the standard map, that by adding a very small,

independent random perturbation at each step, the resulting maps have a

positive LE that correctly reflects the rate of expansion of F — provided that

F has sufficiently large expansion to begin with. More precisely, if ‖dF‖ ∼ L,

L � 1, on a large portion of the phase space, then random perturbations of

size O(e−L
2−ε

) are sufficient for guaranteeing an LE ∼ logL.

Our proofs for these results, which are very short compared to previous

works on establishing nonuniform hyperbolicity for deterministic maps (e.g.,

[Jak81], [BC85], [BC91], [WY01], [WY06], [WY08]), are based on the following

idea: We view the random process as a Markov chain on the projective bundle

of the manifold on which the random maps act and represent LE as an integral.

Decomposing this integral into a “good part” and a “bad part,” we estimate the

first leveraging the strong hyperbolicity of the unperturbed map and obtain

a lower bound for the second provided the stationary measure is not overly

concentrated in certain “bad regions.” We then use a large enough random

perturbation to make sure that the stationary measure is sufficiently diffused.

We expect that with more work, this method can be extended both to

higher dimensions and to situations where conditions on the unperturbed map

are relaxed.

Relation to existing results. Closest to the present work are the unpub-

lished results of Carleson and Spencer [CS], [Spe], who showed for very carefully

selected parameters L� 1 of the standard map that LE are positive when the

map’s derivatives are randomly perturbed. For comparison, our first result

applies to all L � 1 with a slightly larger perturbation than in [CS], and our

second result assumes additionally a finite condition on a finite set; we avoid

the rather delicate parameter selection by perturbing the maps themselves, not

just their derivatives.
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Parameter selections similar to those in [CS] were used — without ran-

dom perturbations — to prove the positivity of LE for the Hénon maps [BC91],

quasi-periodic cocycles [You97], and rank-one attractors [WY08], building on

earlier techniques in 1D; see, e.g., [Jak81], [Ryc88], [BC85], [WY06]. See

also [SS15], which estimates LE from below for Schrödinger cocycles over the

standard map. Relying on random perturbation alone — without parameter

deletion — are [LS12], which contains results analogous to ours in 1D, and

[LSSW03], which applied random rotations to twist maps. We mention also

[BC14], which uses hyperbolic toral automorphisms in lieu of random pertur-

bations.

Farther from our setting, the literature on LE is vast. Instead of endeav-

oring to give reasonable citation of individual papers, let us mention several

categories of results in the literature that have attracted much attention, to-

gether with a small sample of results in each. Furstenberg’s work [Fur63] in

the early 60’s initiated extensive research on criteria for the LE of random

matrix products to be distinct (see, e.g., [GM89], [GR86], [Vir80]). Similar

ideas were exploited to study LE of cocycles over hyperbolic and partially

hyperbolic systems (see, e.g., [BV04], [BGMV03]), with a generalization to de-

terministic maps [AV10]. Unlike the results in the first two paragraphs, these

results do not give quantitative estimates; they assert only that LE are simple,

or nonzero.

We mention as well the formula of Herman [Her83], [Kni92] and the re-

lated work [AB02], which use subharmonicity to estimate Lyapunov exponents,

and the substantial body of work on 1D Schrödinger operators (e.g., [Kot84],

[Bou13], [Pui04], [AJ09]). We also note the C1 genericity of zero Lyapunov

exponents of volume-preserving surface diffeomorphisms away from Anosov

[Boc02] and its higher-dimensional analogue [BV05]. Finally, we acknowledge

results on the continuity or stability of LE, as in, e.g., [Rue79], [Hen84], [Kif82],

[BNV10], [LY91].

This paper is organized as follows. We first state and prove two results

in a relatively simple setting: Theorem 1, which contains the core idea of

this paper, is proved in Sections 3 and 4, while Theorem 2, which shows how

perturbation size can be decreased if some mild conditions are assumed, is

proved in Section 5. We also describe a slightly more general setting, which

includes the standard map, and observe in Section 6 that the proofs given

earlier in fact apply, exactly as written, to this broader setting.

2. Results and remarks

2.1. Statement of results. We let ψ : S1 → R be a C3 function for which

the following hold:
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(H1) C ′
ψ = {x̂ ∈ S

1 : ψ′(x̂) = 0} and C ′′
ψ = {ẑ ∈ S

1 : ψ′′(ẑ) = 0} have finite

cardinality;

(H2) minx̂∈C′

ψ
|ψ′′(x̂)| > 0 and minẑ∈C′′

ψ
|ψ′′′(ẑ)| > 0.

For L > 1 and a ∈ [0, 1), we define

f = fL,a : S
1 → R by f(x) = Lψ(x) + a.

Let T2 = S
1 × S

1 be the 2-torus. The deterministic map to be perturbed is

(1) F = FL,a : T
2 → T

2, where F (x, y) =

Ç
f(x)− y (mod 1)

x

å
.

We have abused notation slightly in equation (1): We have made sense of

f(x)−y by viewing y ∈ S
1 as belonging in [0, 1), and have written “z (mod 1)”

instead of π(z) where π : R → S
1 ∼= R/Z is the usual projection. Observe that

F is an area-preserving diffeomorphism of T2.

We consider compositions of random maps

Fnω = Fωn ◦ · · · ◦ Fω1
for n = 1, 2, . . . ,

where
Fω = F ◦ Sω, Sω(x, y) = (x+ ω (mod 1), y),

and the sequence ω = (ω1, ω2, . . . ) is chosen independent and identically dis-

tributed with respect to the uniform distribution νε on [−ε, ε] for some ε > 0.

Thus our sample space can be written as Ω = [−ε, ε]N, equipped with the

probability P =
Ä
νε
äN

.

Throughout, we let Leb denote Lebesgue measure on T
2.

Theorem 1. Assume ψ obeys (H1) and (H2), and fix a ∈ [0, 1). Then

(a) for every L > 0 and ε > 0,

(2) λε1 = lim
n→∞

1

n
log ‖(dFnω )(x,y)‖

exists and is independent of (x, y, ω) for every (x, y)∈T
2 and P-a.e. ω∈Ω;

(b) given α, β ∈ (0, 1), there is a constant C = Cα,β > 0 such that for all L, ε

where L is sufficiently large (depending on ψ, α, β) and ε ≥ L−CL1−β
, we

have

λε1 ≥ α logL.

Theorem 1 assumes no information whatsoever on dynamical properties

of F beyond its definition in equation (1). Our next result shows, under some

minimal, easily checkable, condition on the first iterates of F , that the bound

above on λε1 continues to hold for a significantly smaller ε. Let Nc(C
′
ψ) denote

the c-neighborhood of C ′
ψ in S

1. We formulate the following condition on

f = fL,a:

(H3)(c) For any x̂, x̂′ ∈ C ′
ψ, we have that fx̂− x̂′(mod 1) 6∈ Nc(C

′
ψ).
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Observe that for L large, the set of a for which (H3)(c) is satisfied tends

to 1 as c→ 0.

Theorem 2. Let ψ be as above, and fix an arbitrary c0 > 0. Then given

α, β ∈ (0, 1), there is a constant C = Cα,β > 0 such that for all L, a, ε where

— L is sufficiently large (depending on ψ, c0, α, β);

— a ∈ [0, 1) is chosen so that f = fL,a satisfies (H3)(c0); and

— ε ≥ L−CL2−β
,

then we have
λε1 ≥ α logL.

A slight extension. Let ψ : S1 → R be as above. For L > 0 and a ∈ [0, 1),

we write f0 = fψ,L,a = Lψ + a, and for ε > 0, we define

Uε,L(f0) = {f : S1 → R such that ‖f − f0‖C3 < Lε}.
We let C ′

f and C ′′
f denote the zeros of f ′ and f ′′. Below, (H3)(c) is to be read

with C ′
f in the place of C ′

ψ. We write Ff (x, y) = (f(x) − y (mod 1) , x) for

f ∈ Uε,L(f0).
Theorem 3. Let ψ : S1 → R satisfy (H1) and (H2) as before. For a ∈

[0, 1) and L > 1, let f0 be as defined above. Then there exists ε > 0 sufficiently

small so that

(1) Theorems 1 and 2 hold for F = Ff for all L > 0 sufficiently large and

f ∈ Uε,L(f0);
(2) L depends only on ψ as before but a in Theorem 2 depends on f .

The Chirikov standard map is defined as follows: a parameter L > 0 is

fixed, and the map (I, θ) 7→ (Ī , θ̄), sending [0, 2π)2 into itself, is defined by

Ī = I + 2πL sin θ,

θ̄ = θ + Ī = θ + I + 2πL sin θ,

where both coordinates I, θ are taken modulo 2π.

Corollary 4 (The standard map). Let L be sufficiently large. Then,

• Theorem 1 holds for the standard map;

• if additionally the map f(x) = L sin(2πx) + 2x satisfies (H3)(c) for some

c > 0, then Theorem 2 holds for the standard map for this value of L.

Theorem 3 and Corollary 4 are proved in Section 6. All discussions prior

to Section 6 pertain to the setting described at the beginning of this section.

2.2. Remarks.

Remark 1: Uniform hyperbolicity on large but noninvariant regions of the

phase space. An important property of the deterministic map F is that cone

fields can be defined on all of T2 in such a way that they are preserved by
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dF(x,y) for (x, y) in a large but noninvariant region in T
2. For example, let

C 1

5

= {v = (vx, vy) : |vy/vx| ≤ 1
5}. Then for (x, y) 6∈ {|f ′| < 10}, which

by (H1) and (H2) is comprised of a finite number of very narrow vertical

strips in T
2 for L large, one checks easily that dF(x,y) maps C 1

5

into C 1

5

, and

expands vectors in these cones uniformly. It is just as easy to see that this

cone invariance property cannot be extended across the strips in {|f ′| < 10}
and that F is not uniformly hyperbolic.

These “bad regions” where the invariant cone property fails shrink in size

as L increases. More precisely, let K1 > 1 be such that |ψ′(x)| ≥ K−1
1 d(x,C ′

ψ);

that such a K1 exists follows from (H1) and (H2) in Section 2.1. It is easy to

check that for any η ∈ (0, 1),

d(x,C ′
ψ) ≥

K1

L1−η =⇒ |f ′(x)| ≥ Lη,

and this strong expansion in the x-direction is reflected in dF(x,y) for any y.

We must stress, however, that regardless of how small these “bad regions”

are, the positivity of Lyapunov exponents is not guaranteed for the determin-

istic map F — except for the Lebesgue measure zero set of orbits that never

venture into these regions. In general, tangent vectors that have expanded

in the good regions can be rotated into contracting directions when the orbit

visits a bad region. This is how elliptic islands are formed.

Remark 2: Interpretation of condition (H3). We have seen that visiting

neighborhoods of Vx̂ := {x = x̂} for x̂ ∈ C ′
ψ can lead to a loss in hyperbolicity,

yet at the same time it is unavoidable that the “typical” orbit will visit these

“bad regions.” Intuitively, it is logical to expect the situation to improve if we

do not permit orbits to visit these bad regions two iterates in a row — except

that such a condition is impossible to arrange: since F (Vx̂′) = {y = x̂′}, it
follows that F (Vx̂′) meets Vx̂ for every x̂, x̂′ ∈ C ′

ψ. In Theorem 2, we assert

that in the case of random maps, to reduce the size of ε it suffices to impose the

condition that no orbit can be in C ′
ψ × S

1 for three consecutive iterates. That

is to say, suppose F (xi, yi) = (xi+1, yi+1), i = 1, 2, . . . . If xi, xi+1 ∈ C ′
ψ, then

xi+2 must stay away from C ′
ψ. This is a rephrasing of (H3). Such a condition

is both realizable and checkable, as it involves only a finite number of iterates

for a finite set of points.

Remark 3: Potential improvements. Condition (H3) suggests that one

may be able to shrink ε further by imposing similar conditions on one or two

more iterates of F . Such conditions will cause the combinatorics in Section 5

to be more involved, and since our ε, which is ∼ L−L2−β
, is already extremely

small for large L, we will not pursue these possibilities here.
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3. Preliminaries

The results of this section apply to all L, ε > 0 unless otherwise stated.

3.1. Relevant Markov chains. Our random maps system {Fnω }n≥1 can be

seen as a time-homogeneous Markov chain X := {(xn, yn)} given by

(xn, yn) = Fnω (x0, y0) = Fωn(xn−1, yn−1).

That is to say, for fixed ε, the transition probability starting from (x, y) ∈ T
2

is

P ((x, y), A) = P ε((x, y), A) = νε{ω ∈ [−ε, ε] : Fω(x, y) ∈ A}
for Borel A ⊂ T

2. We write P (k)((x, y), ·) (or P
(k)
(x,y)) for the corresponding

k-step transition probability. It is easy to see that for this chain, Lebesgue

measure is stationary, meaning for any Borel set A ⊂ T
2,

Leb(A) =

∫
P ((x, y), A) dLeb(x, y).

Ergodicity of this chain is easy and we dispose of it quickly.

Lemma 5. Lebesgue measure is ergodic.

Proof. For any (x, y) ∈ T
2 and ω1, ω2 ∈ [−ε, ε],

(3) Fω2
◦ Fω1

(x, y) = F ◦ F ◦ S′
ω1,−ω2

(x, y),

where S′
ω,ω′(x, y) =

Ä
x + ω (mod 1), y + ω′(mod 1)

ä
. That is to say, P

(2)
(x,y) is

supported on the set F 2([x− ε, x+ ε]× [y− ε, y+ ε]), on which it is equivalent

to Lebesgue measure. From this one deduces immediately that

(i) every ergodic stationary measure of X = {(xn, yn)} has a density, and

(ii) all nearby points in T
2 are in the same ergodic component. Thus there

can be at most one ergodic component. �

Part (a) of Theorem 1 follows immediately from Lemma 5 together with

the Multiplicative Ergodic Theorem for random maps.

Next we introduce a Markov chain X̂ on PT
2, the projective bundle

over T
2. Associating θ ∈ P

1 ∼= [0, π) with the unit vector uθ = (cos θ, sin θ),

Fω induces a mapping F̂ω : PT2 → PT
2 defined by

F̂ω(x, y, θ) = (Fω(x, y), θ
′), where uθ′ = ± (dFω)(x,y)uθ

‖(dFω)(x,y)uθ‖
.

Here ± is chosen to ensure that θ′∈ [0, π). The Markov chain X̂ :={(xn, yn, θn)}
is then defined by

(xn, yn, θn) = F̂ωn(xn−1, yn−1, θn−1).

We write P̂ for its transition operator, P̂ (n) for the n-step transition transition

operator, and use Leb to denote also Lebesgue measure on PT
2.
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For any stationary probability measure µ̂ of the Markov chain (xn, yn, θn),

define

λ(µ̂) =

∫
log ‖(dFω)(x,y)uθ‖ dµ̂(x, y, θ) dνε(ω).

Lemma 6.For any stationary probability measure µ̂ of the Markov chain X̂,
we have

λε1 ≥ λ(µ̂).

Proof. By the additivity of the cocycle (x, y, θ) 7→ log ‖d(Fω)(x,y)uθ‖, we
have, for any n ∈ N,

λ(µ̂) =

∫
1

n
log ‖(dFnω )(x,y)uθ‖ dµ̂(x, y, θ) d(νε)n(ω)

≤
∫

1

n
log ‖(dFnω )(x,y)‖ dLeb(x, y) d(νε)n(ω).

That µ̂ projects to Lebesgue measure on T
2 is used in passing from the first to

the second line, and the latter converges to λε1 as n→ ∞ by the Multiplicative

Ergodic Theorem. �

Thus to prove part (b) of Theorem 1, it suffices to prove that λ(µ̂) ≥
α logL for some µ̂. Uniqueness of µ̂ is not required. On the other hand, once

we have shown that λε1 > 0, it will follow that there can be at most one µ̂ with

λ(µ̂) > 0. Details are left to the reader.

We remark also that while Theorems 1–3 hold for arbitrarily large values

of ε, we will treat only the case ε ≤ 1
2 , leaving the very minor modifications

needed for the ε > 1
2 case to the reader.

Finally, we will omit from time to time the notation “(mod 1)” when the

meaning is obvious, e.g., instead of the technically correct but cumbersome

f(x+ ω (mod 1))− y (mod 1), we will write f(x+ ω)− y.

3.2. A 3-step transition. In anticipation for later use, we compute here the

transition probabilities P̂ (3)((x, y, θ), ·), also denoted P̂
(3)
(x,y,θ). Let (x0, y0, θ0) ∈

PT
2 be fixed. We define

H = H
(3)
(x0,y0,θ0)

: [−ε, ε]3 → PT
2

by

H(ω1, ω2, ω3) = F̂ω3
◦ F̂ω2

◦ F̂ω1
(x0, y0, θ0).

Then P̂
(3)
(x0,y0,θ0)

= H∗((νε)3), the pushforward of (νε)3 on [−ε, ε]3 by H. Write

(xi, yi, θi) = F̂ωi(xi−1, yi−1, θi−1), i = 1, 2, 3.

Lemma 7. Let ε ∈ (0, 12 ]. Let (x0, y0, θ0) ∈ PT
2 be fixed, and let H =

H
(3)
(x0,y0,θ0)

be as above. Then
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(i) we have

(4) det dH(ω1, ω2, ω3) = sin2(θ3) tan
2(θ2) tan

2(θ1)f
′′(x0 + ω1);

(ii) assuming θ0 6= π/2, we have that det dH 6= 0 on V where V ⊂ [−ε, ε]3 is

an open and dense set having full Lebesgue measure in [−ε, ε]3;
(iii) H is at most #(C ′′

ψ)-to-one, i.e., no point in PT
2 has more than #C ′′

ψ

preimages.

Proof of Lemma 7. The projectivized map F̂ω can be written as

(5) F̂ω(x, y, θ) =

Ç
f(x+ ω)− y, x+ ω, arctan

1

f ′(x+ ω)− tan θ

å
,

where arctan is chosen to take values in [0, π).

(i) It is convenient to write ki = tan θi, so that ki+1 = (f ′(yi+1) − ki)
−1.

Note as well that xi+1 = f(yi+1)− yi. Then

(6)
dx3 ∧ dy3 ∧ dθ3

= (f ′(y3)dy3 − dy2) ∧ dy3 ∧
Å
∂θ3
∂y3

dy3 +
∂θ3
∂k2

dk2

ã

= −dy2 ∧ dy3 ∧
Å
∂θ3
∂k2

dk2

ã

= −dy2 ∧ (dω3 + f ′(y2)dy2 − dy1) ∧
Å
∂θ3
∂k2

ãÅ
∂k2
∂y2

dy2 +
∂k2
∂k1

dk1

ã

= −dy2 ∧ d(ω3 − y1) ∧
Å
∂θ3
∂k2

∂k2
∂k1

dk1

ã

= −(dω2 + f ′(y1)dy1) ∧ d(ω3 − y1) ∧
Å
∂θ3
∂k2

∂k2
∂k1

∂k1
∂y1

dy1

ã

= −dω2 ∧ dω3 ∧
Å
∂θ3
∂k2

∂k2
∂k1

∂k1
∂y1

dω1

ã
.

It remains to compute the parenthetical term. The second two partial deriva-

tives are straightforward. The first partial derivative is computed by taking

the partial derivative of the formula cot θ3 = f ′(y3)− k2 with respect to k2 on

both sides. As a result, we obtain

∂θ3
∂k2

∂k2
∂k1

∂k1
∂y1

= − sin2 θ3 tan
2 θ2 tan

2 θ1f
′′(x0 + ω1).

(ii) For x ∈ [0, 1) and θ ∈ [0, π) \ {π/2}, define U(x, θ) = {ω ∈ [−ε, ε] :
f ′(x+ ω)− tan θ 6= 0}. Note that U(x, θ) has full Lebesgue measure in [−ε, ε]
by (H1). We define

V = {(ω1, ω2, ω3) ∈ [−ε, ε]3 :ω1 ∈ U(x0, θ0), ω2 ∈ U(x1, θ1),

ω3 ∈ U(x2, θ2), and f
′′(x0 + ω1) 6= 0}.
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By (H1) and Fubini’s Theorem, V has full measure in [−ε, ε]3, and it is clearly

open and dense. To show det dH 6= 0, we need θi 6= 0 for i = 1, 2, 3 on V .

This follows from the fact that for θi−1 6= π/2, if ωi ∈ U(xi−1, θi−1), then

θi 6= 0, π/2.

(iii) Given (x3, y3, θ3), we solve for (ω1, ω2, ω3) so that H(ω1, ω2, ω3) =

(x3, y3, θ3). Letting (xi, yi, θi), i = 1, 2, be the intermediate images, we note

that y2 is uniquely determined by x3 = f(y3) − y2, and θ2 is determined by

cot θ3 = f ′(y3)−tan θ2, as is θ1 once θ2 and y2 are fixed. This in turn determines

f ′(x0 + ω1), but here uniqueness of solutions breaks down.

Let ω
(i)
1 ∈ [−ε, ε], i = 1, . . . , n, give the required value of f ′(x0 +ω

(i)
1 ). We

observe that each ω
(i)
1 determines uniquely y

(i)
1 = x0 +ω

(i)
1 , x

(i)
1 = f(y

(i)
1 )− y0,

ω
(i)
2 = y2 − x

(i)
1 , x

(i)
2 = f(y2) − y

(i)
1 , and finally ω

(i)
3 = y3 − x

(i)
2 . Thus the

number of H-preimages of any one point in PT
2 cannot exceed n. Finally, we

have n ≤ 2 for ε small and n ≤ #(C ′′
ψ) for ε as large as 1

2 . �

Corollary 8. For any stationary probability µ̂ of X̂ , we have µ̂(T2 ×
{π/2}) = 0, and for any (x0, y0, θ0) with θ0 6= π/2 and any (x3, y3, θ3) ∈ PT

2,

the density of P̂
(3)
(x0,y0,θ0)

at (x3, y3, θ3) is given by

(7)
1

(2ε)3

Ñ
∑

ω1∈E(x3,y3,θ3)

1

|f ′′(x0 + ω1)|

é
1

ρ(x3, y3, θ3)
,

where

E(x3, y3, θ3) = {ω1 : ∃ω2, ω3 such that H(ω1, ω2, ω3) = (x3, y3, θ3)}
and

ρ(x, y, θ) = sin2(θ)
[
f ′(f(y)− x)(f ′(y)− cot θ)− 1

]2
.

Proof. To show µ̂(T × {π/2}) = 0, it suffices to show that given any

x ∈ [0, 1) and any θ ∈ [0, π), νε{ω ∈ [−ε, ε] : f ′(x+ ω) = tan θ} = 0, and that

is true because C ′′
ψ is finite by (H1). The formula in (7) follows immediately

from the proof of Lemma 7, upon expressing tan2(θ2) tan
2(θ1) in terms of

(x3, y3, θ3) as was done in the proof of Lemma 7(iii). �

4. Proof of Theorem 1

The idea of our proof is as follows: Let µ̂ be any stationary probability

of the Markov chain X̂ . To estimate the integral in λ(µ̂), we need to know

the distribution of µ̂ in the θ-direction. Given that the maps Fω are strongly

uniformly hyperbolic on a large part of the phase space with expanding direc-

tions well aligned with the x-axis (see Remark 1), one can expect that under

dFNω for large N , µ̂ will be pushed toward a neighborhood of {θ = 0} on much
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of T2, and that is consistent with λε1 ≈ logL. This reasoning, however, is pred-

icated on µ̂ not being concentrated, or stuck, on very small sets far away from

{θ ≈ 0}, a scenario not immediately ruled out as the densities of transition

probabilities are not bounded.

We address this issue directly by proving in Lemma 9 an a priori bound

on the extent to which µ̂-measure can be concentrated on (arbitrary) small

sets. This bound is used in Lemma 10 to estimate the µ̂-measure of the set in

PT
2 not yet attracted to {θ = 0} in N steps. The rest of the proof consists of

checking that these bounds are adequate for our purposes. In the rest of the

proof, let µ̂ be an arbitrary invariant probability measure of X̂ .

Lemma 9. Let A ⊂ {θ ∈ [π/4, 3π/4]} be a Borel subset of PT2. Then for

L large enough,

µ̂(A) ≤ Ĉ

L
1

4

Ç
1 +

1

ε3L2
Leb(A)

å
(8)

for all ε ∈ (0, 12 ], where Ĉ > 0 is a constant independent of L, ε or A.

Proof. By the stationarity of µ̂, we have, for every Borel set A ⊂ PT
2,

(9) µ̂(A) =

∫

PT2

P̂
(3)
(x0,y0,θ0)

(A) dµ̂(x0, y0, θ0).

Our plan is to decompose this integral into a main term and “error terms,”

depending on properties of the density of P̂
(3)
(x0,y0,θ0)

. The decomposition is

slightly different depending on whether ε ≤ L− 1

2 or ≥ L− 1

2 .

The case ε ≤ L− 1

2 . Let K2 ≥ 1 be such that |ψ′′(x)| ≥ K−1
2 d(x,C ′′

ψ); such

a K2 exists by (H1) and (H2). Define B′′ = {(x, y) : d(x,C ′′
ψ) ≤ 2K2L

−1/2}.
Then splitting the right side of (9) into

(10)

∫

B′′×[0,π)
+

∫

PT2\(B′′×[0,π))
,

we see that the first integral is ≤ Leb(B′′) ≤ 4K2M2√
L

, where M2 = #C ′′
ψ.

As for (x0, y0) 6∈ B′′, since |f ′′(x0 + ω)| ≥ L
1

2 , the density of P̂
(3)
(x0,y0,θ0)

is

≤ [(2ε)3M−1
2 L

1

2 ρ]−1 by Corollary 8.

To bound the second integral in (10), we need to consider the zeros of ρ.

As A ⊂ T
2× [π/4, 3π/4], we have sin2(θ3) ≥ 1/2. The form of ρ in Corollary 8

prompts us to decompose A into

A = (A ∩ Ĝ) ∪ (A \ Ĝ),
where Ĝ = G× [0, π) and

G = {(x, y) : d(y, C ′
ψ) > K1L

− 1

2 , d(f(y)− x,C ′
ψ) ≥ K1L

− 1

2 }.
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Then on Ĝ ∩A, we have ρ ≥ 1
2(

1
2L)

2 for L sufficiently large. This gives
∫

PT2\(B′′×[0,π))
P̂

(3)
(x0,y0,θ0)

(A ∩ Ĝ) dµ̂ ≤ C

ε3
√
L

1

L2
Leb(A).

Finally, by the invariance of µ̂,
∫

PT2\(B′′×[0,π))
P̂

(3)
(x0,y0,θ0)

(A \ Ĝ) dµ̂ ≤ µ̂(A \ Ĝ) = Leb(T2 \G).

We claim that this is . L− 1

2 . Clearly, Leb{d(y, C ′
ψ) ≤ K1L

− 1

2 }) ≈ L− 1

2 . As

for the second condition,

{y : f(y) ∈ (z−K1L
− 1

2 , z+K1L
− 1

2 )} = {y : ψ(y) ∈ (z′−K1L
− 3

2 , z′+K1L
− 3

2 )},

which in the worst case has Lebesgue measure . L− 3

4 by (H1) and (H2).

The case ε ≥ L− 1

2 . Here we let ‹B′′ = {(x, y) : d(x,C ′′
ψ) ≤ K2L

−3/4}, and
we decompose the right side of (9) into

∫ (
P̂

(3)
(x0,y0,θ0)

)

1
(A) dµ̂ +

∫ (
P̂

(3)
(x0,y0,θ0)

)

2
(A) dµ̂

where, in the notation in Section 3.2,
(
P̂

(3)
(x0,y0,θ0)

)

1
= H∗

(
(νε)3|{x0+ω1∈B̃′′}

)

and (
P̂

(3)
(x0,y0,θ0)

)

2
= H∗

(
(νε)3|{x0+ω1 /∈B̃′′}

)
.

Then the first integral is bounded above by

sup
x0∈S1

νε{ω1 ∈ ‹B′′ − x0} . ε−1 Leb(‹B′′) ≤ Const · L−1/4,

while the density of (P̂
(3)
(x0,y0,θ0)

)2 is ≤ [(2ε)3M−1
2 L1/4 · ρ(x3, y3, θ3)]−1. The

second integral is treated as in the case of ε ≤ L− 1

2 . �

As discussed above, we now proceed to estimate the Lebesgue measure

of the set that remains far away from {θ = 0} after N steps, where N is

arbitrary for now. For fixed ω = (ω1, . . . , ωN ), we write (xi, yi) = F iω(x0, y0)

for 1 ≤ i ≤ N and define GN = GN (ω1, . . . , ωN ) by

GN = {(x0, y0) ∈ T
2 : d(xi + ωi+1, C

′
ψ) ≥ K1L

−1+β for all 0 ≤ i ≤ N − 1}.

We remark that for (x0, y0) ∈ GN , the orbit F iω(x0, y0), i ≤ N , passes through

uniformly hyperbolic regions of T2, where invariant cones are preserved and

|f ′(xi + ωi+1)| ≥ Lβ for each i < N ; see Remark 1 in Section 2. We further

define ĜN = {(x0, y0, θ0) : (x0, y0) ∈ GN}.



LYAPUNOV EXPONENTS FOR RANDOM PERTURBATIONS 297

Lemma 10. Let β > 0 be given. We assume L is sufficiently large (de-

pending on β). Then for any N ∈ N, ε ∈ (0, 12 ] and ω1, . . . , ωN ∈ [−ε, ε],

µ̂(ĜN ∩ {| tan θN | > 1}) ≤ Ĉ

L
1

4

Å
1 +

1

ε3L2+βN

ã
.

Proof. For (x0, y0) ∈ GN , consider the singular value decomposition of

(dFNω )(x0,y0). Let ϑ
−
0 denote the angle corresponding to the most contracted di-

rection of (dFNω )(x0,y0) and ϑ
−
N its image under (dFNω )(x0,y0), and let σ>1>σ−1

denote the singular values of (dFNω )(x0,y0). A straightforward computation

gives
1

2
Lβ ≤ | tanϑ−0 |, | tanϑ−N | and σ ≥

Å
1

3
Lβ
ãN

.

It follows immediately that for fixed (x0, y0), {θ0 : | tan θN | > 1} ⊂ [π/4, 3π/4]

and

Leb{θ0 : | tan θN | > 1} < const L−βN .

Applying Lemma 9 with A = ĜN ∩ {| tan θN | > 1}, we obtain the asserted

bound. �

By the stationarity of µ̂, it is true for any N that

λ(µ̂)=

∫ Å∫
‖(dFωN+1

)(xN ,yN )uθN ‖d(F̂ωN ◦ · · · ◦ F̂ω1
)∗µ̂
ã
dνε(ω1) · · · dνε(ωN+1).

We have chosen to estimate λ(µ̂) one sample path at a time because we have

information from Lemma 10 on (F̂ωN ◦· · ·◦F̂ω1
)∗µ̂ for each sequence ω1, . . . , ωN .

Proposition 11. Let α, β ∈ (0, 1). Then, there are constants C =

Cα,β > 0 and C ′ = C ′
α,β > 0 such that for any L sufficiently large, we

have the following. Let N = bC ′L1−βc, ε ∈ [L−CL1−β
, 12 ], and fix arbitrary

ω1, · · · , ωN+1 ∈ [−ε, ε]. Then,

I :=

∫

PT2

log ‖(dFωN+1
)(xN ,yN )uθN ‖ dµ̂(x0, y0, θ0) ≥ α logL.(11)

Integrating (11) over (ω1, . . . , ωN+1) gives λ(µ̂) ≥ α logL. As λε1 ≥ λ(µ̂),

part (b) of Theorem 1 follows immediately from this proposition.

Proof. The number N will be determined in the course of the proof, and

L will be enlarged a finite number of times as we go along. As usual, we will

split I, the integral in (11), to one on a good and a bad set. The good set

is essentially the one in Lemma 10, with an additional condition on (xN , yN ),

where dF will be evaluated. Let

G∗
N = {(x0, y0) ∈ GN : d(xN + ωN+1, C

′
ψ) ≥ K1m},

where m > 0 is a small parameter to be specified later. As before, we let

Ĝ∗
N = G∗

N × [0, 2π). Then G := Ĝ∗
N ∩ {| tan θN | ≤ 1} is the good set; on G,
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the integrand in (11) is ≥ log
Ä
mL
4

ä
. Elsewhere we use the worst lower bound

− log(2‖ψ′‖C0
L). Altogether we have

I ≥ log(
1

4
mL)− log

m‖ψ′‖L2

2
µ̂(B),(12)

where

(13) B = PT
2 \ G = (PT2 \ Ĝ∗

N ) ∪ (Ĝ∗
N ∩ {| tan θN | > 1}).

We now bound µ̂(B). First,
(14) µ̂(PT2 \ Ĝ∗

N ) = 1− Leb(G∗
N ) ≤ K1M1(m+NL−1+β),

where M1 = #C ′
ψ. Letting N = bC ′L1−βc and m = C ′ = p

4K1M1
, where p is a

small number to be determined, we obtain µ̂(PT2\Ĝ∗
N ) ≤ 1

2p. From Lemma 10,

(15) µ̂(Ĝ∗
N ∩ {| tan θN | > 1}) ≤ Ĉ

L
1

4

Ç
1 +

1

(εL
1

3
βN )3

å
.

For N as above and ε in the designated range (with C = β
3C

′), the right side

of (15) is easily made < 1
2p by taking L large, so we have µ̂(B) ≤ p. Plugging

into (12), we see that

I ≥ (1− 2p) logL − { terms involving log p, p log p and constants }.
Setting p = 1

4(1− α) and taking L large enough, one ensures that I > α logL.

�

5. Proof of Theorem 2

We now show that with the additional assumption (H3), the same result

holds for ε ≥ L−CL−2+β
.

5.1. Proof of the theorem modulo the main proposition. As the idea of

the proof of Theorem 2 closely parallels that of Proposition 11, it is useful to

recapitulate the main ideas:

(1) the main Lyapunov exponent estimate is carried on the subset {(x0, y0, θ0) :
(x0, y0) ∈ GN , | tan θN | < 1} of PT2, where GN consists of points whose

orbits stay & L−1+β away from C ′
ψ × S

1 in their first N iterates;

(2) since Leb(GcN ) ∼ NL−1+β , we must take N . L1−β ;
(3) by the uniform hyperbolicity of FNω on GN , Leb{| tan θN | > 1} ∼ L−cN ;

(4) for µ̂{| tan θN | > 1} to be small, we must have 1
ε3
L−cN � 1 (Lemma 10).

Items (2)–(4) together suggest that we require ε > L− 1

3
cN ≥ L−c′L−1+β

, and

we checked that for this ε, the proof goes through.

The proof of Theorem 2 we now present differs from the above in the

following way: The set GN , which plays the same role as in Theorem 1, will

be different. It will satisfy
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(A) Leb(GcN ) ∼ NL−2+β , and

(B) the composite map dFNω is uniformly hyperbolic on GN .

The idea is as follows. To decrease ε, we must increase N , while keeping the

set GcN small. This can be done by allowing the random orbit to come closer

to C ′
ψ × S

1, but with that, one cannot expect uniform hyperbolicity in each

of the first N iterations, so we require only (B). This is the main difference

between Theorems 1 and 2. Once GN is properly identified and properties (A)

and (B) are proved, the rest of the proof follows that of Theorem 1: Property

(A) permits us to take N ∼ L2−β in item (2), and item (3) is valid by property

(B). Item (4) is general and therefore unchanged, leading to the conclusion

that it suffices to assume ε > L−c′L−2+β
. As the arguments follow those in

Theorem 1 verbatim modulo the bounds above and accompanying constants,

we will not repeat the proof. The rest of this section is focused on producing

GN with the required properties.

It is assumed from here on that (H3)(c0) holds, and L, a and ε are as in

Theorem 2. Having proved Theorem 1, we may assume ε ≤ L−1. In light of

the discussion above, ω1, · · · , ωN , ωN+1 ∈ [−ε, ε] will be fixed throughout, and

(xi, yi) = F iω(x0, y0) as before.

Definition of GN . For arbitrary N , we define GN to be

GN = {(x0, y0) ∈ T
2 :

(a) for all 0 ≤ i ≤ N − 1,

(i) d(xi + ωi+1, C
′
ψ) ≥ K1L

−2+β ,

(ii) d(xi + ωi+1, C
′
ψ) · d(xi+1 + ωi+2, C

′
ψ) ≥ K2

1L
−2+β/2,

(b) d(x0 + ω1, C
′
ψ), d(xN−1 + ωN , C

′
ψ) ≥ p/(16M1)},

where M1 = #C ′
ψ and p = p(α) is a small number to be determined. Notice

that (a)(i) implies only |f ′(xi + ωi+1)| ≥ L−1+β , not enough to guarantee

expansion in the horizontal direction. We remark also that even though (a)(ii)

implies |f ′(xi + ωi+1)f
′(xi+1 + ωi+2)| ≥ Lβ/2, hyperbolicity does not follow

without control of the angles of the vectors involved.

Lemma 12 (Property (A)). There exists C2 ≥ 1 such that for all N ,

Leb(GcN ) ≤ C2NL
−2+β +

p

4
.

Proof. Let

A1 = {x ∈ [0, 1) : d(x,C ′
ψ) ≥ K1L

−2+β},
A2 = {(x, y) ∈ T

2 : x ∈ A1, and d(x,C
′
ψ) · d(fx− y, C ′

ψ) ≥ K2
1L

−2+β/2}.
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We begin by estimating Leb(A2). Note that Leb(A
c
1) ≤ 2M1K1L

−2+β , and for

each fixed x ∈ A1,

(16) Leb

{
y ∈ [0, 1) : d(fx− y, C ′

ψ) <
K2

1L
−2+β/2

d(x,C ′
ψ)

}
≤ 2M1K

2
1L

−2+β/2

d(x,C ′
ψ)

,

hence

LebAc2 ≤ LebAc1 +

∫

x∈A1

2M1K
2
1L

−2+β/2

d(x,C ′
ψ)

dx.

Let ĉ = 1
2 min{d(x̂, x̂′) : x̂, x̂′ ∈ C ′

ψ, x̂ 6= x̂′} . We split the integral above

into
∫
d(x,C′

ψ
)>ĉ +

∫
K1L−2+β≤d(x,C′

ψ
)≤ĉ. The first one is bounded from above by

2M1K
2
1 ĉ

−1L−2+β/2 and the second by

(17) 4M2
1K

2
1L

−2+β/2
∫ ĉ

K1L−2+β

du

u
≤ 4(2− β)M2

1K
2
1L

−2+β/2 logL

(having used that − logK1 and log ĉ are < 0). So on taking L large enough

so that Lβ/2 ≥ logL, it follows that Leb(Ac2) ≤ C2L
−2+β , where C2 = C2,ψ

depends on ψ alone.

Let ‹GN be equal to GN with condition (b) removed. Then

‹GN =
N−1⋂

i=0

(F iω)
−1
Ä
A2 − (ωi+1, 0)

ä
,

so Leb(‹GN ) ≥ 1− C2NL
−2+β . The rest is obvious. �

Proposition 13 (Property (B)). For any N ≥ 2, (dFNω )(x0,y0) is hyper-

bolic on GN with the following uniform bounds. The larger singular value σ1
of (dFNω )(x0,y0) satisfies

σ1
Ä
(dFNω )(x0,y0)

ä
≥ L

β

15
N ,

and if ϑ−0 ∈ [0, π) denotes the most contracting direction of (dFNω )(x0,y0) and

ϑ−N ∈ [0, π) its image, then

|ϑ−0 − π/2|, |ϑ−N − π/2| ≤ L−β .

The bulk of the work in the proof of Theorem 2 goes into proving this

proposition.

5.2. Proof of Property (B) modulo technical estimates. Let c = cψ � c0,

where c0 is as in (H3); we stipulate additionally that c ≤ p/16M1, where p = pα
andM1 are as before. First we introduce the following symbolic encoding of T2.

Let

B = N√
c
L

(C ′
ψ)× S

1, I = Nc(C
′
ψ)× S

1 \B, and G = T
2 \ (B ∪ I).
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To each (x0, y0) ∈ T
2 we associate a symbolic sequence

(x0, y0) 7→ W̄ =WN−1 · · ·W1W0 ∈ {B, I,G}N ,
where (xi + ωi+1, yi) ∈ Wi. We will refer to any symbolic sequence of length

≥ 1, e.g., V̄ = GBBG, as a word, and we use Len(V̄ ) to denote the length of

V̄ , i.e., the number of letters it contains. We also write Gk as shorthand for

a word consisting of k copies of G. Notice that symbolic sequences are to be

read from right to left.

The following is a direct consequence of (H3).

Lemma 14. Assume that ε < L−1. Let (x0, y0) ∈ T
2 be such that (x0 +

ω1, y0) ∈ B ∪ I and (x1 + ω2, y1) ∈ B. Then (x2 + ω3, y2) ∈ G.

Proof. Let x̂0, x̂1 ∈ C ′
ψ (possibly x̂0 = x̂1) be such that d(x0, x̂0) < c and

d(x1, x̂1) <
»

c
L . Since (f(x̂1)− x̂0) (mod 1) 6∈ Nc0(C

′
ψ) by (H3), it suffices to

show |x2 − (f(x̂1)− x̂0) (mod 1)| � c0:

|x2 − (f(x̂1)− x̂0) (mod 1)| = |(f(x1 + ω2)− y1)− (f(x̂1)− x̂0) (mod 1)|
≤ |f(x1 + ω2)− f(x̂1)|+ d(y1, x̂0).

To see that this is � c0, observe that for large L, we have

|f(x1 + ω2)− f(x̂1)| <
1

2
L‖ψ′′‖

Å…
c

L
+ L−1

ã2
< ‖ψ′′‖c

and d(y1, x̂0) = d(x0 + ω1, x̂0) < 2c. �

Next we apply Lemma 14 to put constraints on the set of all possible

words W̄ associated with (x0, y0) ∈ GN .

Lemma 15. Let W̄ be associated with (x0, y0) ∈ GN . Then W̄ must have

the following form :

W̄ = GkM V̄MG
kM−1 V̄M−1 · · ·Gk1 V̄1Gk0 ,(18)

where M ≥ 0, k0, k1, · · · , kM ≥ 1, and if M > 0, then each V̄i is one of the

words in

V = {B,BB, or BIkB, IkB, Ik, BIk for some k ≥ 1}.
Proof. The sequence W̄ starts and ends with G by the definition of GN

and the stipulation that c ≤ p/(16M1); thus a decomposition of the form (18)

is obtained with words {V̄i}Mi=1 formed from the letters {I, B}. To show that

the words {V̄i}Mi=1 must be of the proscribed form, observe that

• BB occurs only as a subword of GBBG,

• BI only occurs as a subword of GBI,

• IB only occurs as a subword of IBG.
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Each of these constraints follows from Lemma 14; for the third, G is the only

letter that can precede IB. It follows from the last two bullets that all the Is

must be consecutive, and B can appear at most twice. �

With respect to the representation in (18), we view each V̄i as representing

an excursion away from the “good region” G. In what follows, we will show

that GN and (H3) are chosen so that for (x0, y0) ∈ GN , vectors are not rotated

by too much during these excursions, and hyperbolicity is restored with each

visit to G. To prove this, we introduce the following cones in tangent space:

Cn = C(L−1+β/4), C1 = C(1), and Cw = C(L1−β/4),

where C(s) refers to the cone of vectors whose slopes have absolute value ≤ s.

The letters n,w stand for “narrow” and “wide,” respectively.

Let (x0, y0) ∈ GN , and for some m and l, suppose that

{(xm+i−1 + ωm+i, ym+i−1)}li=1

corresponds to the word V̄ = Vl · · ·V1 ∈ V. To simplify notation, we write

(x̃i, ỹi) = (xm+i−1 + ωm+i, ym+i−1) and d‹F l = dF(x̃l,ỹl)
◦ · · · ◦ dF(x̃1,ỹ1)

.

Proposition 16. Let {(x̃i, ỹi)}li=1 and V̄ = Vl · · ·V1 ∈ V be as above.

Then

d‹F l(Cn) ⊂ Cw,
Ä
d‹F l)∗(Cn) ⊂ Cw and min

u∈Cn,‖u‖=1
‖d‹F lu‖ ≥ 1

2
L
β

5
nI(V̄ ),

where nI(V̄ ) is the number of appearances of the letter I in the word V̄ .

We defer the proof of Proposition 16 to the next subsection.

Proof of Proposition 13 assuming Proposition 16. For (x0, y0) ∈ GN , let

W̄ be as in (18). It is easy to check that if (xm + ωm+1, ym) ∈ G, then

(19)

(dFωm+1
)(xm,ym)(Cw) ⊂ Cn with min

u∈Cw,‖u‖=1
‖(dFωm+1

)(xm,ym)u‖ ≥ 1

4
Lβ/4.

Applying (19) and Proposition 16 alternately, we obtain

(dFNω )(x0,y0)(Cw) ⊂ Cn.
Identical considerations for the adjoint yield the cones relation (dFNω )∗(x0,y0)Cw
⊂ Cn. We now use the following elementary fact from linear algebra: if M is

a 2 × 2 real matrix with distinct real eigenvalues η1 > η2 and corresponding

eigenvectors v1, v2 ∈ R
2, and if C is any closed convex cone with nonempty

interior for which MC ⊂ C, then v1 ∈ C.
We conclude that the maximal expanding direction ϑ+0 for (dFNω )(x0,y0)

and its image ϑ+N both belong to Cn. The estimates for ϑ−0 , ϑ
−
N now follow on

recalling that ϑ−0 = ϑ+0 + π/2 (mod π), ϑ−N = ϑ+N + π/2 (mod π).
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It remains to compute σ1
Ä
(dFNω )(x0,y0)

ä
. From (19) and the derivative

bound in Proposition 16, we obtain

min
u∈Cw,‖u‖=1

‖(dFNω )(x0,y0)u‖≥L
β

5

Ä
(k0−1)+(k1−1)+···+(kM−1−1)+kM+

∑M

i=1
(nI(V̄i)+1)

ä

As there cannot be more than two copies of B in each V̄ ∈ V, we have

nI(V̄ ) + 1

Len(V̄ ) + 1
≥ 1

3
,

and the asserted bound follows. �

5.3. Proof of Proposition 16. Cones relations for adjoints are identical to

those of the original and so are omitted; hereafter, we work exclusively with

the original (unadjointed) derivatives. We will continue to use the notation in

Proposition 16. Additionally, in each of the assertions below, if d‹F l is applied
to the cone C, then min refers to the minimum taken over all unit vectors

u ∈ C.
The proof consists of enumerating all cases of V̄ ∈ V . We group the

estimates as follows.

Lemma 17.

(a) For V̄ = I : d‹F (C1) ⊂ C1 and min ‖d‹Fu‖ ≥ 1
2K1

√
c
√
L� L1/4.

(b) For V̄ = B: d‹F (Cn) ⊂ Cw and min ‖d‹Fu‖ ≥ 1
2 .

The next group consists of two-letter words, the treatment of which will

rely on condition (a)(ii) in the definition of GN .

Lemma 18.

(c) For V̄ = BB: d‹F 2(Cn) ⊂ Cw and min ‖d‹F 2u‖ ≥ Lβ/3.

(d) For V̄ = BI : d‹F 2(C1) ⊂ Cw and min ‖d‹F 2u‖ ≥ min{1
2K1

√
c
√
L,Lβ/3}

≥ Lβ/5.

(e) For V̄ = IB: d‹F 2(Cn) ⊂ C1 and min ‖d‹F 2u‖ ≥ Lβ/3.

This leaves us with the following most problematic case.

Lemma 19.

(f) For V̄ = BIB: d‹F 3(Cn) ⊂ Cw and min ‖d‹F 3u‖ ≥ Lβ/5.

Proof of Proposition 16 assuming Lemmas 17–19. We go over the follow-

ing checklist:

• V̄ = B or BB was covered by (b) and (c); total growth on Cn is ≥ 1
2 .

For k ≥ 1,

• V̄ = Ik follows from (a); total growth on Cn is ≥ Lk/4 � L
β

5
k.
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• V̄ = IkB = Ik−1(IB) follows from concatenating (e) and (a); total growth

on Cn is ≥ L(k−1)/4 · Lβ/3 � L
β

5
k.

• V̄ = BIk = (BI)Ik−1 follows from concatenating (a) and (d); total growth

on Cn is ≥ Lβ/5 · L(k−1)/4 � L
β

5
k.

Lastly,

• V̄ = BIB follows from (f); total growth on Cn is ≥ Lβ/5; and

• for k ≥ 2, V̄ = BIkB = (BI)Ik−2(IB) follows by concatenating (e), fol-

lowed by (a) then (d); total growth on Cn is ≥ Lβ/5 ·L(k−2)/4 ·Lβ/3 � L
β

5
k.

This completes the proof. �

Lemma 17 is easy and left to the reader; it is a straightforward application

of the formulae

tan θ1 =
1

f ′(x̃1)− tan θ0
, ‖d‹Fuθ‖ =

»
(f ′(x̃1) cos θ0 − sin θ0)2 + cos2 θ0,

where θ1 ∈ [0, π) denotes the angle of the image vector d‹Fuθ0 .
Below we let K be such that |f ′| ≤ KL.

Proof of Lemma 18. We write u = uθ0 and θ1, θ2 ∈ [0, 2π) for the angles

of the images d‹Fu, d‹F 2u respectively. Throughout, we use the following “two

step” formulae:

tan θ2 =
f ′(x̃1)− tan θ0

f ′(x̃1)f ′(x̃2)− f ′(x̃2) tan θ0 − 1
,(20)

‖d‹F 2uθ‖ ≥ |(f ′(x̃1)f ′(x̃2)− 1) cos θ0| − |f ′(x̃2) sin θ0|.(21)

The estimate |f ′(x̃1)f ′(x̃2)| ≥ Lβ/2 (condition (a)(ii) in the definition of GN )

will be used repeatedly throughout.

We first handle the vector growth estimates. For (c) and (e), as u = uθ0
∈ Cn, the right side of (21) is ≥ 1

2L
β/2 − 2KLβ/4 � Lβ/3.

For (d), we break into the cases

(d.i) |f ′(x̃2)| ≥ Lβ/4 and

(d.ii) |f ′(x̃2)| < Lβ/4.

In case (d.i), by (a) we have that uθ1 ∈ C1 and ‖dF(x̃1,ỹ1)
uθ0‖ ≥ 1

2K1
√
c
√
L.

Thus | tan θ2| ≤ 2L−β/4 � 1 and ‖dF(x̃2,ỹ2)
uθ1‖ ≥ 1

2L
β/4 � 1, completing the

proof. In case (d.ii), the right side of (21) is

≥ 1√
2
(Lβ/2 − 1)− 1√

2
Lβ/4 � Lβ/3.
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We now check the cones relations for (c)–(e). For (c),

| tan θ2| ≤
|f ′(x̃1)|+ | tan θ0|

|f ′(x̃1)f ′(x̃2)| − |f ′(x̃2) tan θ0| − 1

≤ KL+ L−1+β/4

Lβ/2 −KLβ/4 − 1
≤ 2KL1−β/2 � L1−β/4,

so that uθ2 ∈ Cw as advertised. The case (d.i) has already been treated. For

(d.ii), the same bound as in (c) gives

| tan θ2| ≤
KL+ 1

Lβ/2 − Lβ/4 − 1
≤ 2KL1−β/2 � L1−β/4,

hence uθ2 ∈ Cw.
For (e) we again distinguish the cases

(e.i) |f ′(x̃1)| ≥ Lβ/4 and

(e.ii) |f ′(x̃1)| < Lβ/4.

In case (e.i), one easily checks that dF(x̃1,ỹ1)
(Cn) ⊂ C1 and then dF(x̃2,ỹ2)

(C1)
⊂ C1 by (a). In case (e.ii) we compute directly that

| tan θ2| ≤
|f ′(x1)|+ | tan θ0|

|f ′(x1)f ′(x2)| − |f ′(x2) tan θ0| − 1
≤ Lβ/4 + L−1+β/4

Lβ/2 −KLβ/4 − 1
� 1,

hence uθ2 ∈ C1. �

Proof of Lemma 19. We let u = uθ0 ∈ Cn (i.e., | tan θ0| ≤ L−1+β/4) and

write θ1, θ2, θ3 ∈ [0, π) for the angles associated to the subsequent images of u.

We break into two cases:

(I) |f ′(x̃3)| ≥ |f ′(x̃1)| and
(II) |f ′(x̃3)| < |f ′(x̃1)|.
In case (I), we compute

| tan θ2| ≤
|f ′(x̃1)|+ | tan θ0|

|f ′(x̃1)f ′(x̃2)| − |f ′(x̃2) tan θ0| − 1

≤ 2|f ′(x̃1)|
Lβ/2 − 2KLβ/4 − 1

≤ 4|f ′(x̃1)|L−β/2,

having used that |f ′(x̃1)| ≥ L−1+β and | tan θ0| ≤ L−1+β/4 in the second

inequality. Now,

| tan θ3| ≤
1

|f ′(x̃3)| − | tan θ2|
≤ 1

|f ′(x̃1)| − 4|f ′(x̃1)|L−β/2

≤ 2

|f ′(x̃1)|
≤ 2L1−β � L1−β/4.

In case (II), we use

| tan θ1| ≤
1

|f ′(x̃1)| − | tan θ0|
≤ 1

|f ′(x̃3)| − L−1+β/4
≤ 2

|f ′(x̃3)|
,
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again using that |f ′(x̃3)| ≥ L−1+β , and then

| tan θ3| ≤
|f ′(x̃2)|+ | tan θ1|

|f ′(x̃2)f ′(x̃3)| − |f ′(x̃3) tan θ1| − 1

≤ KL+ 2|f ′(x̃3)|−1

Lβ/2 − 3
≤ KL+ 2L1−β

Lβ/2 − 3
≤ 2KL1−β/2 � L1−β/4.

For vector growth, observe that from (e) we have d‹F 2(Cn) ⊂ C1 and

min ‖d‹F 2u‖ ≥ Lβ/3. So, if |f ′(x̃3)| ≥ Lβ/12, then

‖dF(x̃3,ỹ3)
uθ2‖ ≥ 1√

2
(Lβ/12 − 1) � 1.

Conversely, if |f ′(x̃3)| < Lβ/12, then we can use the crude estimate ‖(dF(x̃,ỹ))
−1‖

≤
»
|f ′(x̃)|2 + 1 applied to (x̃, ỹ) = (x̃3, ỹ3), yielding

‖(dF(x̃3,ỹ3)
)−1‖ ≤

»
L2β/12 + 1 ≤ 2Lβ/12,

hence ‖d‹F 3u‖ ≥ 1
2L

β/3−β/12 = 1
2L

β/4 � Lβ/5, completing the proof. �

6. The standard map

Let ψ and f0 = fψ,L,a = Lψ + a be as defined in Section 2.1.

Lemma 20. There exists ε > 0 and K0 > 1, depending only on ψ, for

which the following holds : for all L > 0 and f ∈ Uε,L(f0),
(a) max{‖f ′‖C0 , ‖f ′′‖C0 , ‖f ′′′‖C0} ≤ K0L;

(b) the cardinalities of C ′
f and C ′′

f are equal to those of f0 (equivalently those

of ψ);

(c) minx̂∈C′

f
|f ′′(x̂)|, minẑ∈C′′

f
|f ′′′(ẑ)| ≥ K−1

0 L; and

(d) minx̂,x̂′∈C′

f
d(x̂, x̂′), minẑ,ẑ′∈C′′

f
d(ẑ, ẑ′) ≥ K−1

0 .

The proof is straightforward and is left to the reader.

Proof of Theorem 3. We claim — and leave it to the reader to check —

that the proofs in Sections 3–5 (with C ′
f , C

′′
f replacing C ′

ψ, C
′′
ψ) use only the

form of the maps F = Ff as defined in Section 2.1 and the four properties

above. Thus they prove Theorem 3 as well. �

Proof of Corollary 4. Under the (linear) coordinate change x = 1
2πθ, y =

1
2π (θ − I), the standard map conjugates to the map

(x, y) 7→ (L sin(2πx) + 2x− y, x)

defined on T
2, with both coordinates taken modulo 1. This map is of the

form Ff , with f(x) = f0(x) + 2x and f0(x) := L sin(2πx); here a = 0 and

ψ(x) = sin(2πx). Let ε > 0 be given by Theorem 3 for this choice of ψ. Then

f clearly belongs in Uε,L(f0) for large enough L. �
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