Annals of Mathematics 185 (2017), 285-310
http://dx.doi.org/10.4007 /annals.2017.185.1.5

Lyapunov exponents for random
perturbations of some area-preserving
maps including the standard map

By ALEX BLUMENTHAL, JINXIN XUE, and LAI-SANG YOUNG

Abstract

We consider a large class of 2D area-preserving diffeomorphisms that are
not uniformly hyperbolic but have strong hyperbolicity properties on large
regions of their phase spaces. A prime example is the standard map. Lower
bounds for Lyapunov exponents of such systems are very hard to estimate,
due to the potential switching of “stable” and “unstable” directions. This
paper shows that with the addition of (very) small random perturbations,
one obtains with relative ease Lyapunov exponents reflecting the geometry
of the deterministic maps.

1. Introduction

A signature of chaotic behavior in dynamical systems is sensitive depen-
dence on initial conditions. Mathematically, this is captured by the positivity
of Lyapunov exponents: a differentiable map F' of a Riemannian manifold M
is said to have a positive Lyapunov exponent (LE) at x € M if ||dF}|| grows
exponentially fast with n. This paper is about volume-preserving diffeomor-
phisms, and we are interested in behaviors that occur on positive Lebesgue
measure sets. Though the study of chaotic systems occupies a good part of
smooth ergodic theory, the hypothesis of positive LE is extremely difficult to
verify when one is handed a concrete map defined by a specific equation —
except where the map possesses a continuous family of invariant cones.

An example that has come to symbolize the enormity of the challenge is
the standard map, a mapping ® = &, of the 2-torus given by

®(1,0) = (I+ Lsin®, 0+ I+ Lsinb),
where both coordinates I,6 are taken modulo 27 and L € R is a parameter.

For L > 1, the map ®; has strong expansion and contraction, their direc-
tions separated by clearly defined invariant cones on most of the phase space
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— except on two narrow strips near § = £7/2 on which vectors are rotated
violating cone preservation. As the areas of these “critical regions” tend to
zero as L — oo, one might expect LE to be positive, but this problem has
remained unresolved: no one has been able to prove, or disprove, the positivity
of Lyapunov exponents for ®, for any one L, however large, in spite of consid-
erable effort by leading researchers. The best result known [Gorl2] is that the
LE of @, is positive on sets of Hausdorff dimension 2 (which are very far from
having positive Lebesgue measure). The presence of elliptic islands, which has
been shown for a residual set of parameters [Dua94], [Dua08], confirms that
the obstructions to proving the positivity of LE are real.

In this paper, we propose that this problem can be more tractable if one
accepts that dynamical systems are inherently noisy. We show, for a class
of 2D maps F' that includes the standard map, that by adding a very small,
independent random perturbation at each step, the resulting maps have a
positive LE that correctly reflects the rate of expansion of F© — provided that
F has sufficiently large expansion to begin with. More precisely, if ||dF|| ~ L,
L > 1, on a large portion of the phase space, then random perturbations of
size O(e*LQ_E) are sufficient for guaranteeing an LE ~ log L.

Our proofs for these results, which are very short compared to previous
works on establishing nonuniform hyperbolicity for deterministic maps (e.g.,
[Jak81], [BC85], [BCI1], [WYO01], [WY06], [WYO08]), are based on the following
idea: We view the random process as a Markov chain on the projective bundle
of the manifold on which the random maps act and represent LE as an integral.
Decomposing this integral into a “good part” and a “bad part,” we estimate the
first leveraging the strong hyperbolicity of the unperturbed map and obtain
a lower bound for the second provided the stationary measure is not overly
concentrated in certain “bad regions.” We then use a large enough random
perturbation to make sure that the stationary measure is sufficiently diffused.

We expect that with more work, this method can be extended both to
higher dimensions and to situations where conditions on the unperturbed map
are relaxed.

Relation to existing results. Closest to the present work are the unpub-
lished results of Carleson and Spencer [CS], [Spe], who showed for very carefully
selected parameters L > 1 of the standard map that LE are positive when the
map’s derivatives are randomly perturbed. For comparison, our first result
applies to all L > 1 with a slightly larger perturbation than in [CS], and our
second result assumes additionally a finite condition on a finite set; we avoid
the rather delicate parameter selection by perturbing the maps themselves, not
just their derivatives.
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Parameter selections similar to those in [CS] were used — without ran-
dom perturbations — to prove the positivity of LE for the Hénon maps [BC91],
quasi-periodic cocycles [You97], and rank-one attractors [WYO08], building on
earlier techniques in 1D; see, e.g., [Jak81], [Ryc88], [BC85], [WY06]. See
also [SS15], which estimates LE from below for Schrédinger cocycles over the
standard map. Relying on random perturbation alone — without parameter
deletion — are [L.S12], which contains results analogous to ours in 1D, and
[LSSWO03], which applied random rotations to twist maps. We mention also
[BC14], which uses hyperbolic toral automorphisms in lieu of random pertur-
bations.

Farther from our setting, the literature on LE is vast. Instead of endeav-
oring to give reasonable citation of individual papers, let us mention several
categories of results in the literature that have attracted much attention, to-
gether with a small sample of results in each. Furstenberg’s work [Fur63| in
the early 60’s initiated extensive research on criteria for the LE of random
matrix products to be distinct (see, e.g., [GM89], [GR86], [Vir80]). Similar
ideas were exploited to study LE of cocycles over hyperbolic and partially
hyperbolic systems (see, e.g., [BV04], [BGMVO03]), with a generalization to de-
terministic maps [AV10]. Unlike the results in the first two paragraphs, these
results do not give quantitative estimates; they assert only that LE are simple,
Or Nonzero.

We mention as well the formula of Herman [Her83|, [Kni92] and the re-
lated work [AB02], which use subharmonicity to estimate Lyapunov exponents,
and the substantial body of work on 1D Schrédinger operators (e.g., [Kot84],
[Boul3], [Pui04], [AJ09]). We also note the C! genericity of zero Lyapunov
exponents of volume-preserving surface diffeomorphisms away from Anosov
[Boc02] and its higher-dimensional analogue [BV05]. Finally, we acknowledge
results on the continuity or stability of LE, as in, e.g., [Rue79], [Hen84], [Kif82],
[BNV10], [LY91].

This paper is organized as follows. We first state and prove two results
in a relatively simple setting: Theorem 1, which contains the core idea of
this paper, is proved in Sections 3 and 4, while Theorem 2, which shows how
perturbation size can be decreased if some mild conditions are assumed, is
proved in Section 5. We also describe a slightly more general setting, which
includes the standard map, and observe in Section 6 that the proofs given
earlier in fact apply, exactly as written, to this broader setting.

2. Results and remarks

2.1. Statement of results. We let 1 : S' — R be a C?3 function for which
the following hold:
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(H1) Oy, = {& € S' : /() = 0} and C}) = {z € S' : ¢"(2) = 0} have finite
cardinality;
(H2) mingecy [¢(2)] > 0 and minzeen [07(2)] > 0.
For L > 1 and a € [0, 1), we define
f=fra:S"' =R by f(x) = L(z) + a.
Let T? = S! x S! be the 2-torus. The deterministic map to be perturbed is

(1) F=Fp,: T? — T2, where F(z,y) = ( J) = yx(mod 1 )

We have abused notation slightly in equation (1): We have made sense of
f(x) —y by viewing y € S' as belonging in [0, 1), and have written “z (mod 1)”
instead of 7(z) where 7 : R — S! 2 R/Z is the usual projection. Observe that
F is an area-preserving diffeomorphism of T?.

We consider compositions of random maps

Fl)=F, o---0F,, for n=1,2,...,
where
F,=FoS,, Sw(z,y) = (v + w (mod 1),y),

and the sequence w = (wi,ws,...) is chosen independent and identically dis-
tributed with respect to the uniform distribution v on [—e, €] for some € > 0.
Thus our sample space can be written as Q = [—e, e]N, equipped with the
probability P = (VE>N.

Throughout, we let Leb denote Lebesgue measure on T2.

THEOREM 1. Assume v obeys (H1) and (H2), and fix a € [0,1). Then
(a) for every L >0 and € > 0,

€ : 1
2) X = Jim L log [(dF2) )|
exists and is independent of (z,y,w) for every (x,y) €T? and P-a.e. w€Q;
(b) given o, f € (0,1), there is a constant C' = Co g > 0 such that for all L, e
where L is sufficiently large (depending on v, o, B) and € > L_CLFB, we
have

Al > alog L.

Theorem 1 assumes no information whatsoever on dynamical properties
of F beyond its definition in equation (1). Our next result shows, under some
minimal, easily checkable, condition on the first iterates of F', that the bound
above on A continues to hold for a significantly smaller e. Let N.(Cy,) denote
the c-neighborhood of C’{ZJ in S'. We formulate the following condition on
[=rra
(H3)(c) For any #,3’ € Cy, we have that f2 — 2'(mod 1) & No(Cy).
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Observe that for L large, the set of a for which (H3)(c) is satisfied tends
tolasc— 0.

THEOREM 2. Let ¢ be as above, and fix an arbitrary co > 0. Then given
a,B € (0,1), there is a constant C = Cq 3 > 0 such that for all L,a,e where
— L is sufficiently large (depending on v, co, o, B);

— a €[0,1) is chosen so that f = fr, 4 satisfies (H3)(co); and
> L—C’L2*57

then we have
A > alog L.

A slight extension. Let ¢ : S' — R be as above. For L > 0 and a € [0, 1),
we write fo = fy. 1, = LY + a, and for € > 0, we define
U-1.(fo) = {f : S' — R such that || f — follcs < Le}.
We let C and C} denote the zeros of f” and f”. Below, (H3)(c) is to be read
with C} in the place of Cj,. We write Fy(z,y) = (f(2) — y (mod 1) ,z) for
f € ua,L(fO)'
THEOREM 3. Let ¢ : St — R satisfy (H1) and (H2) as before. For a €

[0,1) and L > 1, let fo be as defined above. Then there exists e > 0 sufficiently
small so that

(1) Theorems 1 and 2 hold for F = Fy for all L > 0 sufficiently large and

f €U r(fo);
(2) L depends only on 1 as before but a in Theorem 2 depends on f.

The Chirikov standard map is defined as follows: a parameter L > 0 is
fixed, and the map (I, 0) — (I,0), sending [0,2)? into itself, is defined by
I=1+2nLsind,
0=60+1=0+1+2rLsind,
where both coordinates I, 6 are taken modulo 2.

COROLLARY 4 (The standard map). Let L be sufficiently large. Then,

e Theorem 1 holds for the standard map;
e if additionally the map f(x) = Lsin(2wx) + 2z satisfies (H3)(c) for some
¢ > 0, then Theorem 2 holds for the standard map for this value of L.

Theorem 3 and Corollary 4 are proved in Section 6. All discussions prior
to Section 6 pertain to the setting described at the beginning of this section.

2.2. Remarks.
Remark 1: Uniform hyperbolicity on large but noninvariant regions of the

phase space. An important property of the deterministic map F' is that cone
fields can be defined on all of T? in such a way that they are preserved by
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dF (., for (z,y) in a large but noninvariant region in T2?. For example, let
C% = {v = (va,vy) : |vy/vg] < 3}, Then for (z,y) ¢ {|f'| < 10}, which
by (H1) and (H2) is comprised of a finite number of very narrow vertical
strips in T? for L large, one checks easily that dF(; ) maps C% into C' 1 and
expands vectors in these cones uniformly. It is just as easy to see that this
cone invariance property cannot be extended across the strips in {|f’| < 10}
and that F' is not uniformly hyperbolic.

These “bad regions” where the invariant cone property fails shrink in size
as L increases. More precisely, let K7 > 1 be such that |¢'(z)| > K 'd(z, Cy);
that such a K exists follows from (H1) and (H2) in Section 2.1. It is easy to
check that for any n € (0, 1),

K,
L=

d(z,Cy) > = |f'(x)| = L",

and this strong expansion in the z-direction is reflected in dF{, , for any y.

We must stress, however, that regardless of how small these “bad regions”
are, the positivity of Lyapunov exponents is not guaranteed for the determin-
istic map F' — except for the Lebesgue measure zero set of orbits that never
venture into these regions. In general, tangent vectors that have expanded
in the good regions can be rotated into contracting directions when the orbit
visits a bad region. This is how elliptic islands are formed.

Remark 2: Interpretation of condition (H3). We have seen that visiting
neighborhoods of V; := {x = 2} for € C{/) can lead to a loss in hyperbolicity,
yet at the same time it is unavoidable that the “typical” orbit will visit these
“bad regions.” Intuitively, it is logical to expect the situation to improve if we
do not permit orbits to visit these bad regions two iterates in a row — except
that such a condition is impossible to arrange: since F(Vz) = {y = '}, it
follows that F'(Vz/) meets V; for every #,4’ € Cj,. In Theorem 2, we assert
that in the case of random maps, to reduce the size of ¢ it suffices to impose the
condition that no orbit can be in C{/J x St for three consecutive iterates. That
is to say, suppose F(x;,vy;) = (Tit1,Yi+1), ¢ = 1,2,.... If ;2,41 € C{p, then
T2 must stay away from qu,). This is a rephrasing of (H3). Such a condition
is both realizable and checkable, as it involves only a finite number of iterates
for a finite set of points.

Remark 3: Potential improvements. Condition (H3) suggests that one
may be able to shrink e further by imposing similar conditions on one or two
more iterates of F'. Such conditions will cause the combinatorics in Section 5
to be more involved, and since our e, which is ~ L_L%B, is already extremely
small for large L, we will not pursue these possibilities here.
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3. Preliminaries
The results of this section apply to all L,e > 0 unless otherwise stated.

3.1. Relevant Markov chains. Our random maps system {F},>1 can be
seen as a time-homogeneous Markov chain X' := {(x,, y,)} given by

(l’n, yn) = Fﬁ(x&y[)) = Fwn(xn—luyn—l)'

That is to say, for fixed €, the transition probability starting from (z,y) € T?
is

P((z,y),A) = P((z,y),A) = v{w € [-€, ¢ : Fu(z,y) € A}
for Borel A ¢ T2. We write P*)((x,y),-) (or P((f)y)
k-step transition probability. It is easy to see that for this chain, Lebesgue
measure is stationary, meaning for any Borel set A C T2,

Leb(A) — / P((x,y), A) dLeb(z, y).

Ergodicity of this chain is easy and we dispose of it quickly.

) for the corresponding

LEMMA 5. Lebesgue measure is ergodic.

Proof. For any (z,y) € T? and w1, ws € [—¢, €,
(3) Fw2Ole(x7y):FOFOSL//.Jl,—wQ(xvy)a

where S/ (7,y) = (a: + w (mod 1),y + w'(mod 1)) That is to say, P((j)y) is
supported on the set F2([x —¢,7+¢] X [y — €,y + ¢]), on which it is equivalent

to Lebesgue measure. From this one deduces immediately that

(i) every ergodic stationary measure of X = {(z,,y,)} has a density, and

(ii) all nearby points in T? are in the same ergodic component. Thus there
can be at most one ergodic component. O

Part (a) of Theorem 1 follows immediately from Lemma 5 together with
the Multiplicative Ergodic Theorem for random maps.
Next we introduce a Markov chain X on PT?, the projective bundle

over T2. Associating § € P! = [0, 7) with the unit vector ug = (cos 6, sin8),
F,, induces a mapping F,, : PT? — PT? defined by

(dFy) ()t
[(dFw) (2 yyusll

Here = is chosen to ensure that 6’ € [0, 7). The Markov chain X :={ (2, yn, 0n)}
is then defined by

Ey(z,y,0) = (Fy(x,y),0), where ug =+

(.%'n, Yn,s Hn) - Fwn (xn—lv Yn—1, Hn—l)-

We write P for its transition operator, P™ for the n-step transition transition
operator, and use Leb to denote also Lebesgue measure on PT?.
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For any stationary probability measure /i of the Markov chain (2, yn, 0r),
define

A = [ 108 1(dF.) oyl ditay.6) i ().

LEMMA 6. For any stationary probability measure fi of the Markov chain X,
we have

AL = M)

Proof. By the additivity of the cocycle (z,y,0) > log ||d(F,) gy uell, we
have, for any n € N,

N@) = [ = 10 I(AED) gy uoll i, ,60) ()" )

1
g/gwa@MwHﬂ%@deW@)

That fi projects to Lebesgue measure on T? is used in passing from the first to
the second line, and the latter converges to A\{ as n — oo by the Multiplicative
Ergodic Theorem. ([

Thus to prove part (b) of Theorem 1, it suffices to prove that (i) >
alog L for some ji. Uniqueness of [ is not required. On the other hand, once
we have shown that A{ > 0, it will follow that there can be at most one i with
A(fr) > 0. Details are left to the reader.

We remark also that while Theorems 1-3 hold for arbitrarily large values
of €, we will treat only the case ¢ < %, leaving the very minor modifications
needed for the € > % case to the reader.

Finally, we will omit from time to time the notation “(mod 1)” when the
meaning is obvious, e.g., instead of the technically correct but cumbersome
f(z+w (mod 1)) —y (mod 1), we will write f(z +w) —v.

3.2. A 3-step transition. In anticipation for later use, we compute here the
transition probabilities p(3)((m, y,0),-), also denoted P((j)y 0): Let (x0,y0,00) €
PT? be fixed. We define

H= H((i’())’yo’eo) : [—e€,€® — PT?
by
H(wi,ws,w3) = F, o F,, o Fy, (0,30, 00).
Then P = H,((v%)3), the pushforward of (v€)3 on [—¢, €]® by H. Write

(20,90,00)

(@i, Yi, 0i) = Fo,(xi-1,Yi-1,0i-1), 1 = 1,2, 3.
LEMMA 7. Let e € (0,3]. Let (zo,y0,60) € PT? be fized, and let H =
) be as above. Then

®3)

(%0,%0,00
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(i) we have
(4) det dH (w1, wy,ws) = sin?(63) tan?(0y) tan?(0) f” (zo + wi);

(i) assuming 0y # 7/2, we have that det dH # 0 on V where V C [—¢, €]? is
an open and dense set having full Lebesque measure in [—e, €]3;
(ili) H is at most #(Cy))-to-one, i.e., no point in PT? has more than #Cy

preimages.

Proof of Lemma 7. The projectivized map F, can be written as

(5) Fw(x,y, 0) = <f(37 +w) =y, +w, arctan f(x +w1) _ tan9> ’

where arctan is chosen to take values in [0, 7).
(i) It is convenient to write k; = tan6;, so that ki1 = (f'(yir1) — ki) L.
Note as well that x;4+1 = f(yi+1) — vi- Then

(6)
dxs N dys A dbs

oo 00
= (f"(y3)dys — dy2) A dys A (ayz dys + 8k3 dk2>

003
= —dys A dysz N (8k dk’2>
ok ok
= —dyas A (dws + f'(y2)dya — dy1) A < > <72d Yo + 8k2dk1>
- 003 Oks
= —dy2 A\ d(w?, — yl) <8k2 k1 dkq
003 Oksy Ok )
~(dan + £/ )e) A =) A (2 52
- 003 Oksy Ok )
= —dwsy N dws A (8]{2 k1 8y1d .

It remains to compute the parenthetical term. The second two partial deriva-
tives are straightforward. The first partial derivative is computed by taking
the partial derivative of the formula cot 03 = f’(y3) — ko with respect to k2 on

both sides. As a result, we obtain
005 Oko Ok
8716‘287];873/1 = — sin? 05 tan® H tan? 01" (w0 + wr).
(ii) For z € [0,1) and 0 € [0,7) \ {w/2}, define U(z,0) = {w € [—€,¢€ :
f'(x + w) —tand # 0}. Note that U(x,6) has full Lebesgue measure in [—¢, €]
by (H1). We define

V = {(w1,wa,w3) € [—€,€] :wy € U(xg, 0p),ws € Uz, 601),
w3 € U(wa,02), and f"(xo +w1) # 0}.
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By (H1) and Fubini’s Theorem, V has full measure in [—¢, €]3, and it is clearly
open and dense. To show detdH # 0, we need 6; # 0 for i = 1,2,3 on V.
This follows from the fact that for 6;,_; # 7 /2, if w; € U(z;j—1,60;—1), then
Qi 75 0, 7T/2

(iii) Given (z3,ys,03), we solve for (w1,ws,ws3) so that H(wy,ws,ws) =
(z3,ys3,03). Letting (x;,v:,60;), i = 1,2, be the intermediate images, we note
that yo is uniquely determined by z3 = f(y3) — y2, and 65 is determined by
cot B3 = f'(y3)—tan fo, as is 1 once O and y; are fixed. This in turn determines
f'(xo 4+ w1), but here uniqueness of solutions breaks down.

Let wY) € [—€,¢l,i=1,...,n, give the required value of f’(xz +w¥)). We
observe that each wgi) determines uniquely ygi) =20+ wgi), x&i) =f (ygz)) — %0,
) = Yo — azgi), xéi) = f(y2) — ygi), and finally wéi) = y3 — xg). Thus the
number of H-preimages of any one point in PT? cannot exceed n. Finally, we

have n < 2 for € small and n < #(Cy)) for € as large as 3. O

(i
Wa

COROLLARY 8. For any stationary probability fi of X, we have (T2 x
{r/2}) = 0, and for any (xo,y0,00) with 0y # 7/2 and any (z3,ys,03) € PT?,

. (3 o
the density of P((xg,yo,eo) at (rs3,ys,03) is given by

1 1 1
(7) (26)3( 2 )If”(fco+w1)l) p(w3,ys,03)"

w1€€(w3,y3,03

where
E(x3,ys3,03) = {w1 : Jwa,ws such that H(wi,ws,ws) = (x3,y3,03)}

and
p(x,,0) = sin®(0) [f'(f(y) — 2)('(y) — cot ) — 1]

Proof. To show (T x {m/2}) = 0, it suffices to show that given any
x €[0,1) and any 6 € [0,7), v{w € [—€,€¢] : f'(x +w) =tanf} = 0, and that
is true because Cy/ is finite by (H1). The formula in (7) follows immediately
from the proof of Lemma 7, upon expressing tan?(fy)tan?(6;) in terms of
(z3,ys3,03) as was done in the proof of Lemma 7(iii). O

4. Proof of Theorem 1

The idea of our proof is as follows: Let i be any stationary probability
of the Markov chain X. To estimate the integral in A(fr), we need to know
the distribution of & in the #-direction. Given that the maps F,, are strongly
uniformly hyperbolic on a large part of the phase space with expanding direc-
tions well aligned with the z-axis (see Remark 1), one can expect that under
dFY for large N, ji will be pushed toward a neighborhood of {# = 0} on much
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of T2, and that is consistent with A ~ log L. This reasoning, however, is pred-
icated on [i not being concentrated, or stuck, on very small sets far away from
{6 ~ 0}, a scenario not immediately ruled out as the densities of transition
probabilities are not bounded.

We address this issue directly by proving in Lemma 9 an a priori bound
on the extent to which fi-measure can be concentrated on (arbitrary) small
sets. This bound is used in Lemma 10 to estimate the ji-measure of the set in
PT? not yet attracted to {# = 0} in N steps. The rest of the proof consists of
checking that these bounds are adequate for our purposes. In the rest of the
proof, let {t be an arbitrary invariant probability measure of X.

LEMMA 9. Let A C {0 € [7/4,37/4]} be a Borel subset of PT2. Then for
L large enough,

®) i)

for all e € (0, %], where C > 0 is a constant independent of L,e or A.

Proof. By the stationarity of /i, we have, for every Borel set A C PT?,

(9) ) = [ B, 00 (A) di(ao, 0. 00).

Our plan is to decompose this integral into a main term and “error terms,”

depending on properties of the density of ]5((53 Y0,00)"

slightly different depending on whether € < L7% or > L3,

The decomposition is

The case ¢ < L™2. Let K5 > 1 be such that [ ()] > Ky td(x, Cy); such
a Ko exists by (H1) and (H2). Define B = {(z,y) : d(z,C}) < 2K, L1/},
Then splitting the right side of (9) into

(10 [+ ,
B x[0,7) PT2\ (B x[0,r))

we see that the first integral is < Leb(B”) < %, where M, = #C{Z.

As for (zo,y0) € B”, since |f"(zo + w)| > L3, the density of P((j’o) 40.00)
< [(26)3M2_1L%p]_1 by Corollary 8.
To bound the second integral in (10), we need to consider the zeros of p.
As A C T? x [r/4, 37 /4], we have sin?(f3) > 1/2. The form of p in Corollary 8
prompts us to decompose A into
A=(ANG)U(A\QG),

where G = G x [0,7) and

is

G = {(z,y) :d(y,Cl) > K1L™3, d(f(y) — x,C}) > K, L7}
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Then on G N A, we have p > %(%L)2 for L sufficiently large. This gives

PO (Andyda< -C

/IP’TZ\(B”X[O,w)) (wo.50.60)

1
63\/Z ﬁ Leb(A)

Finally, by the invariance of f,

0

AN\ G) dji
/IP’TQ\(B”X[OJ)) (oo n) (AN )i

IN

f(A\ G) = Leb(T?\ G).

We claim that this is < L~2. Clearly, Leb{d(y,C;,) < Kllfé}) ~ L72. As
for the second condition,

{y: fy) € (z—K1L73, 2+ I L73)} = {y 1 9(y) € (Y~ K1L 73,2/ + G L73)},
which in the worst case has Lebesgue measure < L3 by (H1) and (H2).

The case ¢ > L 2. Here we let B” = {(z,y) : d(z,Cy) < KyL=3/4}, and
we decompose the right side of (9) into

/(p((jgvyo’eo))1(A) div + /(p((jg,yoﬁo))2(A) djr

where, in the notation in Section 3.2,

(P((jg»yoﬂo))l = H. ((VE)3|{mo+w1€§”})
and

(3) _ N B
<P(zo’y0’90))2 = H. <(V ) |{$0+w1¢B”}> ’
Then the first integral is bounded above by

sup v{wi € B" — 20} < ¢ ' Leb(B") < Const - L4,
zo€eS!

while the density of (P((jg’yoﬁo))g is < [(2¢)°My 'LY* - p(x3,ys,03)]"'. The

second integral is treated as in the case of € < L3, O

As discussed above, we now proceed to estimate the Lebesgue measure
of the set that remains far away from {# = 0} after N steps, where N is
arbitrary for now. For fixed w = (w1, ...,wn), we write (z;,v;) = F' (20, 0)
for 1 <i < N and define Gy = Gy (w1,...,wn) by B

GN = {(.%'Q,yo) (S T2 d(l’Z +wi+1,0{p) Z KlL_1+’8 for all 0 S 7 S N — 1}.

We remark that for (xg,yo) € G, the orbit Fé(:cg,yo),i < N, passes through
uniformly hyperbolic regions of T2, where invariant cones are preserved and
If (2 + wig1)| > LB for each i < N; see Remark 1 in Section 2. We further

define Gy = {(x0,y0,00) : (x0,y0) € GN}.
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LEMMA 10. Let 8 > 0 be given. We assume L is sufficiently large (de-
pending on ). Then for any N € N, € € (0, %] and wy,...,wN € [—€, €,

A ¢ L
(GN N {[tanfn| > 1}) < T (1 + W) :

Proof. For (x9,y0) € G, consider the singular value decomposition of
(dFéV )(wo.y0)- et ¥y denote the angle corresponding to the most contracted di-
rection of (dFéV)(a,O’y0 zo,0)> and let o >1> ot
denote the singular values of (dFéV )(wowo): A straightforward computation

) and 97 its image under (dF.Y),

gives
1.4 _ _ 15\
iL <|tandy|,[tandy| and o> §L .

It follows immediately that for fixed (xg,v0), {00 : |tanfy| > 1} C [7/4, 37 /4]
and
Leb{fp : |tanfy| > 1} < const L™V,

Applying Lemma 9 with A = G N {|tanfx| > 1}, we obtain the asserted
bound. O

By the stationarity of f, it is true for any N that

M= [ [ N Por ) eyt 1dFo 00 Foy)ofp ) (or) - o),

We have chosen to estimate A(ji) one sample path at a time because we have
information from Lemma 10 on (F,,, o- - -oF,,, ).fi for each sequence w1, . ..,wn.

PropPOSITION 11. Let o, € (0,1). Then, there are constants C =
Cap > 0 and C" = C| 5 > 0 such that for any L sufficiently large, we
have the following. Let N = |C'L'P|, € € [L*CLPB,%], and fix arbitrary
Wi, WN41 € [—€,€]. Then,

(11> I = /IPTQIOgH(deN+1)(:EN,yN)u9N’dﬂ($07y0760) > alogL.

Integrating (11) over (w1, ...,wn+1) gives A(ft) > alog L. As A\{ > A(q),
part (b) of Theorem 1 follows immediately from this proposition.

Proof. The number N will be determined in the course of the proof, and
L will be enlarged a finite number of times as we go along. As usual, we will
split I, the integral in (11), to one on a good and a bad set. The good set
is essentially the one in Lemma 10, with an additional condition on (xy,yn),
where dF' will be evaluated. Let

Gy = {(x0,90) € Gn = d(xn 4+ wn11,Cp) > Kym},

where m > 0 is a small parameter to be specified later. As before, we let
N = Gy x[0,2m). Then G := Gy N {|tanfy| < 1} is the good set; on G,
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the integrand in (11) is > log ( ) Elsewhere we use the worst lower bound
—1og(2|1Y'||c, L). Altogether we have

(12) 1> tog(tmr) —10g "I i)

where

(13) B=PT2\ G = (PT?\ G%) U (G N{|tanby| > 1}).
We now bound ji(B). First,

(14) A(PT2\ G%) =1 — Leb(GY) < K1 Mi(m + NL™'FP),

where My = #C,. Letting N = |C'L' ] and m = C' = 4K 35 Where p is a

small number to be determined, we obtain 4(PT?\G%) < 1p. From Lemma 10,

C 1
(15) (G N {[tanby| > 1}) < L(l + (3)

4

into (12), we see that
I > (1-2p)logL —{ terms involving logp, plogp and constants }.

Setting p = i(l — «a) and taking L large enough, one ensures that I > alog L.
[l

5. Proof of Theorem 2

We now show that with the additional assumption (H3), the same result
holds for e > L=CL™*",

5.1. Proof of the theorem modulo the main proposition. As the idea of
the proof of Theorem 2 closely parallels that of Proposition 11, it is useful to
recapitulate the main ideas:

(1) the main Lyapunov exponent estimate is carried on the subset {(xo, yo, 6p):
(70,%0) € Gy, |tanfy| < 1} of PT?, where G consists of points whose
orbits stay > L~'*# away from C{/} x St in their first N iterates;

(2) since Leb(G$;) ~ NL™1*# we must take N < L=,

(3) by the uniform hyperbohclty of FN on Gy, Leb{\ tan On| > 1} ~ LN,

(4) for af{|tanéy| > 1} to be small, we must have 3L N <« 1 (Lemma 10).

148
leN > L~ L~ , and

Items (2)—(4) together suggest that we require e > L™3
we checked that for this e, the proof goes through.

The proof of Theorem 2 we now present differs from the above in the
following way: The set G, which plays the same role as in Theorem 1, will

be different. It will satisfy
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(A) Leb(G%) ~ NL72t8 and
(B) the composite map dFéV is uniformly hyperbolic on Gy.

The idea is as follows. To decrease €, we must increase N, while keeping the
set G§; small. This can be done by allowing the random orbit to come closer
to C{b x S', but with that, one cannot expect uniform hyperbolicity in each
of the first N iterations, so we require only (B). This is the main difference
between Theorems 1 and 2. Once Gy is properly identified and properties (A)
and (B) are proved, the rest of the proof follows that of Theorem 1: Property
(A) permits us to take N ~ L2~# in item (2), and item (3) is valid by property
(B). Item (4) is general and therefore unchanged, leading to the conclusion
that it suffices to assume ¢ > L=¢L7""" As the arguments follow those in
Theorem 1 verbatim modulo the bounds above and accompanying constants,
we will not repeat the proof. The rest of this section is focused on producing
Gn with the required properties.

It is assumed from here on that (H3)(co) holds, and L,a and € are as in
Theorem 2. Having proved Theorem 1, we may assume ¢ < L~!. In light of
the discussion above, wy, -+ ,wn,wn+1 € [—€, €] will be fixed throughout, and
(x4,5) = F (x0,y0) as before.

Definition of Gn. For arbitrary N, we define Gy to be
Gy = {(z0,50) € T?:
(a) forall 0 <i < N —1,
(i) d(z; + wit1,Cy) > K L2,
(i) d(@; + wit1, C) - d(zip1 + wite, C)) > KFL™20/2,
(b) d(zo +w1,Cy), d(xn-1+ wn,Cy) > p/(16M7)},
where My = #Cy, and p = p(a) is a small number to be determined. Notice
that (a)(i) implies only |f(z; + wiz1)] > L~'#, not enough to guarantee
expansion in the horizontal direction. We remark also that even though (a)(ii)

implies |f"(z; + wir1)f (xiv1 + wit2)| > LP/2 hyperbolicity does not follow
without control of the angles of the vectors involved.

LEMMA 12 (Property (A)). There exists Co > 1 such that for all N,
Leb(GS) < CoNL™28 4 g.
Proof. Let

Ay ={z €[0,1):d(z,C)) > Ky L *F},
Ay ={(z,y) € T? : z € Ay, and d(z,Cy) -d(fx —y,Cy) > K2[7248/2}
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We begin by estimating Leb(Az). Note that Leb(A§) < 2M; K L2 and for
each fixed x € Ay,

K2[-2+8/2 IM, K2, —2+8/2
(16)  Leb {y €10,1):d(fr —y,Cy) < L < 2

d(z,Cy) d(z,Cy)
hence
2M K} L=2+P/2
Leb A5 < Leb A§ + / dx.
2 ! r€A] d(x7 qu/;)

Let ¢ = $min{d(2,4') : 2,4’ € Cy,& # @'} . We split the integral above
into fd(x,C;b)>é + leL_QWSd(L%)Sé. The first one is bounded from above by
M K?¢ 1 L=2%8/2 and the second by

¢ du

(17)  AMZKIL72P/2 / — < 42— B)MEK?L 2B 2100 L
K L-2+8 U

(having used that —log K7 and logé are < 0). So on taking L large enough
so that LP/? > log L, it follows that Leb(A$§) < CoL~2tP where Cy = Cay
depends on ) alone.

Let Gy be equal to Gy with condition (b) removed. Then

N-1
Gy = () (F) (A2 — (wi+1,0)),
i=0
so Leb(Gy) > 1 — CoNL™28. The rest is obvious. 0

ProprosITION 13 (Property (B)). For any N > 2, (dFéV)(xo,yO) is hyper-
bolic on G with the following uniform bounds. The larger singular value oy
of (dFéV)( ) satisfies

Z0,Y0

B
Jl((dFiV)(ro,yo)) 2 L15N’

and if 9y € [0,7) denotes the most contracting direction of (dFéV)( and

Uy € [0,7) its image, then
[0y — /2|, |9y — /2] < L7

Z0,40)

The bulk of the work in the proof of Theorem 2 goes into proving this
proposition.

5.2. Proof of Property (B) modulo technical estimates. Let ¢ = ¢y < co,
where ¢ is as in (H3); we stipulate additionally that ¢ < p/16M;, where p = p,
and M, are as before. First we introduce the following symbolic encoding of T2.
Let

B:N\/%(C{Z,)XSH I=N,(Cy)xS'"\B, and G =T\ (BUI).
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To each (z0,y0) € T? we associate a symbolic sequence
(20,50) = W =Wy_1-- WiWo € {B,1,G}",

where (x; + wiy1,y;) € W;. We will refer to any symbolic sequence of length
> 1, e.g., V = GBBG, as a word, and we use Len(V) to denote the length of
V, i.e., the number of letters it contains. We also write G* as shorthand for
a word consisting of k copies of G. Notice that symbolic sequences are to be
read from right to left.

The following is a direct consequence of (H3).

LEMMA 14. Assume that € < L™'. Let (x9,y0) € T? be such that (xo +
w1,Y0) € BUT and (1 + wa,y1) € B. Then (x2 + ws,y2) € G.

Proof. Let &g,21 € C{p (possibly &g = Z1) be such that d(zg,Zo) < ¢ and
d(xzy,21) < \/% Since (f(#1) —2o) (mod 1) & N, (Cy,) by (H3), it suffices to
show |zo — (f(Z1) — Zp) (mod 1)| < ¢o:

|z2 — (f(Z1) — Zo) (mod 1)| = [(f(21 +w2) —y1) — (f(21) — T0) (mod 1)|
< [f(z1+w2) — f(@1)] + d(y1, Zo)-

To see that this is < ¢g, observe that for large L, we have

. 1 c %
Flan ) — F@0l < gL (S +27) < e
and d(y1, Zo) = d(xo + w1, Zo) < 2c. O

Next we apply Lemma 14 to put constraints on the set of all possible
words W associated with (x,y0) € Gn.

LEMMA 15. Let W be associated with (xo,y0) € Gn. Then W must have
the following form:

(18) W = G*MVy G-V - GRVGR,

where M > 0, ko, k1,--- ,ky > 1, and if M > 0, then each V; is one of the
words in

V = {B,BB, or BI*B,I*B,I* BI* for somek >1}.

Proof. The sequence W starts and ends with G by the definition of Gy
and the stipulation that ¢ < p/(16M7); thus a decomposition of the form (18)
is obtained with words {V;}M, formed from the letters {I, B}. To show that
the words {V;}*, must be of the proscribed form, observe that

e BB occurs only as a subword of GBBG,
e BJI only occurs as a subword of GBI,
e /B only occurs as a subword of I BG.
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Each of these constraints follows from Lemma 14; for the third, G is the only
letter that can precede IB. It follows from the last two bullets that all the Is
must be consecutive, and B can appear at most twice. O

With respect to the representation in (18), we view each V; as representing
an excursion away from the “good region” G. In what follows, we will show
that Gy and (H3) are chosen so that for (xg,y0) € G, vectors are not rotated
by too much during these excursions, and hyperbolicity is restored with each
visit to G. To prove this, we introduce the following cones in tangent space:

C,=C(L™'P/Y, ¢ =c(1), and C,=C(L' P/,

where C(s) refers to the cone of vectors whose slopes have absolute value < s.
The letters n,w stand for “narrow” and “wide,” respectively.
Let (z9,y0) € G, and for some m and [, suppose that

{(@mtiz1 + Wmtis Ymrio1) Yooy
corresponds to the word V = V;---V; € V. To simplify notation, we write

(Zi,5i) = (Tmtio1 + Wintis Ymrio1)  and  dF' = dF G, syo--odFg =
PROPOSITION 16. Let {(%;,5:)}.=y and V = Vi---V; € V be as above.
Then

—~ —~ — 1 _
dF'(Co) C Cuy  (dF')*(Co) CCu  and Jnin NdFt) = 3 L)
uEln,||uj|=

where ny (V') is the number of appearances of the letter I in the word V.
We defer the proof of Proposition 16 to the next subsection.

Proof of Proposition 13 assuming Proposition 16. For (zo,y0) € Gn, let
W be as in (18). It is easy to check that if (2, + Wmi1,Ym) € G, then
(19)

. 1
(dem+1)(:pm,ym)(Cw) CCp with )UH > 1[,/8/4.

: dF.
wec o ()@

Applying (19) and Proposition 16 alternately, we obtain
(dFY) (r,50) (Cw) C Cn.

Identical considerations for the adjoint yield the cones relation (dFéV )kao,yo) w
C Cp. We now use the following elementary fact from linear algebra: if M is
a 2 x 2 real matrix with distinct real eigenvalues n; > 72 and corresponding
eigenvectors vy, vy € R2?, and if C is any closed convex cone with nonempty
interior for which MC C C, then v; € C.

We conclude that the maximal expanding direction Jg for (dFéV ) (o,0)

and its image 19} both belong to C,. The estimates for 9,7 now follow on
recalling that ¥, = 9§ + 7/2 (mod 7),9y = 94 + 7/2 (mod 7).
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It remains to compute 01((dFéV)($O’yO)). From (19) and the derivative
bound in Proposition 16, we obtain

min ||(dFY yull ZL?((ko—1)+(k1—1)+...+(kM,1_1)+kM+Z£\il(m(Vi)+l)>

i )@
ueCyfu= (00

As there cannot be more than two copies of B in each V € V, we have

n[(V) +1 > 1
Len(V)+1 ~ 3’
and the asserted bound follows. O

5.3. Proof of Proposition 16. Cones relations for adjoints are identical to
those of the original and so are omitted; hereafter, we work exclusively with
the original (unadjointed) derivatives. We will continue to use the notation in
Proposition 16. Additionally, in each of the assertions below, if dF! is applied
to the cone C, then min refers to the minimum taken over all unit vectors
u e C.

The proof consists of enumerating all cases of V € V. We group the
estimates as follows.

LEMMA 17.
(a) For V =1: dF(Cy) C C, and min ||dFul| > 1K1/eVL > LY4,
(b) For V.=B: dF(Cn) C Cyp and min ||dFu|| > 1.
The next group consists of two-letter words, the treatment of which will
rely on condition (a)(ii) in the definition of Gy .
LEMMA 18.
(c) For V = BB: dEQ(Cn) C Cy and min dezQuH > A3,
(d) For V.= BI: dF%*(C) C Cy and min ||dF?u| > min{lK;\/cVL, L?/?}
> LP/5.
(e) For V = IB: dF?(C,) C C1 and min ||dF2u|| > LP/3.

This leaves us with the following most problematic case.

LEMMA 19.
(f) For V.= BIB: dF3(Cpn) C Cy and min ||dF3u| > L/5.

Proof of Proposition 16 assuming Lemmas 17-19. We go over the follow-
ing checklist:
e V = B or BB was covered by (b) and (c); total growth on C, is >
For k> 1,
e V = I* follows from (a); total growth on C, is > LF/* > L3k,

1
3
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e V = I*B = I*"1(IB) follows from concatenating (e) and (a); total growth
on C, is > LE-V/4. [8/3 5 L5k,

e V = BI¥ = (BI)I*! follows from concatenating (a) and (d); total growth
on G, is > LA/5 . L(k-1/4 > Lgk.

Lastly,

e V = BIB follows from (f); total growth on C, is > L?/%; and
e for k > 2,V = BI*B = (BI)I*"2(IB) follows by concatenating (e), fol-
lowed by (a) then (d); total growth on C, is > LP/5. Lk=2)/4. [8/3 > L3k,

This completes the proof. O

Lemma 17 is easy and left to the reader; it is a straightforward application
of the formulae

1

T —tange NAFusll = V/(F/(@1) cosbo — sin0)? + cos?

tan 6, =

where 6, € [0,7) denotes the angle of the image vector dFug,.
Below we let K be such that |f'| < KL.

Proof of Lemma 18. We write u = ug, and 61,02 € [0,27) for the angles
of the images dF'u, dF?u respectively. Throughout, we use the following “two
step” formulae:

f'(@1) — tan b
(@) f(Z2) — f'(T2) tan by — 1’
(21) |dF?ug|| > |(f'(Z1)f"(Z2) — 1) cos Op| — | f(Z2) sin o]

(20) tan 0y =

The estimate |f/(Z1)f'(Z2)| > LP/? (condition (a)(ii) in the definition of G )
will be used repeatedly throughout.

We first handle the vector growth estimates. For (c) and (e), as u = ug,
€ Cn, the right side of (21) is > $L/2 — 2K LA/* > LP/3.

For (d), we break into the cases
(d.i) |f'(Z2)| > LP/* and
(i) | /(32)] < L7/
In case (d.i), by (a) we have that ug, € C1 and ||dF 3, = ug,| > 1K1y/cVL.
Thus |tanfy| < 2L~ /% < 1 and ldFz, 5yuo.ll = SLP/4 > 1, completing the
proof. In case (d.ii), the right side of (21) is

1 1
> (LP?2 —1)— —LP/* > [P/3,

\V)
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We now check the cones relations for (c¢)—(e). For (c),

< |f'(21)| + | tan o |

~ @) (@2)] — | (22) tan o] — 1
KL+ Lo 1-6/2 o [1-B/4

§L5/2—KLﬂ/4—1§2KL < L )

so that ug, € Cy as advertised. The case (d.i) has already been treated. For

|tan 02|

(d.ii), the same bound as in (c) gives

KL+1

< K L-B/2 « [1-B/4
Tom o= < 2KL < LA

| tan O3] <

hence ug, € Cy.
For (e) we again distinguish the cases

(ed) |f'(Z1)| > LP/* and
(edi) |f'(Z1)] < LP/*.
In case (e.i), one easily checks that dFz, ~)(Cn) C C1 and then dF;, = (C1)
C C; by (a). In case (e.ii) we compute directly that
|/ (x1)| + | tan 6| _ LA 4 [~14A/4
|f/(z1) f(z2)| — | f'(x2) tan 6| — 1 — LA/2 — KLA/* — 1
hence uy, € C;. O

| tan o] <

< 1,

Proof of Lemma 19. We let u = ug, € C,, (i.e., |tanfy| < L~148/4) and
write 61,02,05 € [0, 7) for the angles associated to the subsequent images of w.
We break into two cases:

(D) (@) = [f'(Z1)] and

D) [f(zs)| < | f'(@1)].

In case (I), we compute

|f'(@1)] + | tan 6o
|f1(@0) ['(@2)] — | f/(Z2) tan o[ — 1
2|f'(@1)] PNY:
<

having used that |f/(#1)] > L~'"# and |tanfy| < L~'*#/* in the second
inequality. Now,

| tan O <

1 1
= < = p-
|/ (@3)| — [tan Oa] — [f/(Z1)| — 4] f'(Z1)|L~F/2
<2 P < LA

]tan93| <

<

2
[/ (@1)]
In case (II), we use
2

1
tan 6| < — < — < —,
[tan bl < T T Teanbol = [F ) =L 597 = [F(&s)]
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again using that |f'(Z3)| > L~'*7, and then
|/ (2)] + | tan 61|
|[f"(Z2) f/(Z3)| — | f'(23) tan 61] — 1
_ KL+ 2" (z3)| ! _ KL+ 2L1F
- LA/2 3 - LB2_3
For vector growth, observe that from (e) we have dF2(C,) C C; and
min ||dF?ul| > LP/3. So, if | f(Z3)| > L7/'2, then

| tan 5| <

<oKLY B2 « [1-B/4,

1
‘|dF(;57§3)U92|’ > E(Lﬁ/u - 1) > 1.

Conversely, if | f(Z3)| < L?/12, then we can use the crude estimate || (dF(;@)*l I
< VIf'(@)[? + 1 applied to (2,y) = (3, 93), yielding
I(dF iz, 50) 1 < VL1241 <2002,

hence ||dF3ul| > SLA/3=BN2 = 11B/4 > [A/5 completing the proof. O

6. The standard map
Let ¢ and fo = fy,1,« = LY + a be as defined in Section 2.1.

LEMMA 20. There exists € > 0 and Ko > 1, depending only on 1, for
which the following holds: for all L >0 and f € U 1(fo),

(a) max{||f'llco, L/ lco, [l f"llco} < KoLs
(b) the cardinalities of Cy and C are equal to those of fo (equivalently those

of ¥);

(c) miniec} | ()], minieo}/ lf"(2)] > KalL; and

(d) ming grecr d(, &), mingzecn d(2,2') > Kyt
The proof is straightforward and is left to the reader.

Proof of Theorem 3. We claim — and leave it to the reader to check —
that the proofs in Sections 3-5 (with C, C} replacing Cj,, Cy) use only the
form of the maps F' = F as defined in Section 2.1 and the four properties
above. Thus they prove Theorem 3 as well. ([

Proof of Corollary 4. Under the (linear) coordinate change x = %H,y =
%(9 — I), the standard map conjugates to the map

(z,y) — (Lsin(27z) + 22 — y, )

defined on T?, with both coordinates taken modulo 1. This map is of the
form Fy, with f(z) = fo(xz) 4+ 2z and fo(x) := Lsin(2mx); here a = 0 and
Y(x) = sin(2mz). Let € > 0 be given by Theorem 3 for this choice of ¢». Then
f clearly belongs in U, 1,(fo) for large enough L. O
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