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ABSTRACT

This paper describes a mechanism design methodology that
assembles standard components to trace plane curves that have
a Fourier series pavameterization. This approach can be used to
approximate complex plane curves to interpolate image bound-
aries constructed from points. We describe three ways ro con-
struct a mechanism that generaies a curve from a Fourier series
parameterization. One uses Scorch yoke linkages for each term
of Fourier series which are added using a belt drive. The second
approach uses a coupled serial chain for each coordinate Fourier
parameterization. The third method uses one consirained cou-
pled serial chain to trace a specified plane curve. This work can
be viewed as a version of the Kempe Universality Theorem that
states that a linkage exists that can trace any plane algebraic
curve. In our case, we include belts and pulleys, and obtain link-
ages thar trace curves that have Fourier parameterizations.

INTRODUCTION

In 1876 Kempe [1] showed that a mechanism exists that can
trace any plane curve defined by an algebraic equation. Recent
work by Kapovich and Millson [2] confirmed this result. How-
ever, the devices generated by this process are hopelessly com-
plex. So here, we consider the problem of constructing simpler
mechanisms to trace plane curves. We consider two tvpes of
plane curves, f(x,y)=0, (i) those that have an algebraic equation
that can be written in polar and therefore have parameterized ex-
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pressions y(8) = (x(8),v(8)), and (i) those curves that may or
may not be algebraic but are parameterized, y(z) = (x(z),¥(1)).
In both cases, we assume that we can find a Fourier series ex-
pansion of the functions, ¥(8} and ¥(¢), and then we construct
several types of linkage systems that generate these curves by
addition of the Fourier coefficients. If there is a large number of
Fourier coefficients, then we approximate the curve by truncat-
ing the Fourier series. This approach assumes the plane curve is
closed, though we are working on methods to expand the class
of curves.

LITERATURE REVIEW

Inspired by Watt's application of a four-bar coupler link-
age to provide approximate straight line motion on steam en-
gine, Nolle [3,4] and Koetsier [5, 6] developed the early design
methodology of curve-tracing mechanisms. Kempe [1, 7] proved
the existence of a mechanism to trace any plane algebraic curve
by introducing a standard set of linkages, the Additor, Reversor,
Multiplicator and Translator, which he combined to constrain an
RR chain to trace the specified curve. He remarks that, while the
a linkage obtained in this way “would not be practically useful
on account of the complexity of the linkwork,” this result does
show that such linkages exist and he encourages mathematicians
and artists to seek simpler versions.

Recently, researchers have revised Kempe's universality the-
orem, see Kapovich and Millson [2] and Kobel [8]. Saxena [9]
provides a step by step demonstration of Kempe’s method and
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obtains a mechanism with 48 links and 70 joints, see Fig. 1(a) to
trace a quadratic curve. Artobolevskii [10] shows that his cono-
graph linkage with eight-bars can be sized to trace any quadratic
curve, Fig. 1(b).

(a) Saxena’s Kempe Linkage.
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(b) Eight-bar Conograph Mechanism.

FIGURE 1. (a) A linkage assembled using Kempe’s theorem to trace
a quadratic curve requires 48 bars and 70 joints; (b) the same curve can
be generated using Artobolevskii’s eight-bar conograph mechanism.

Another comparison of the mechanism obtained by Kempe’s
existence proof and the work by “mathematicians and artist” in
the words of Kempe can be seen in the linkage obtained by Ko-
bel [8] to trace the quartic trifolium, Fig. 2. He reports that
his algorithm generates too many bars to be able to count. In
comparison, Fig. 3 is an eight-bar mechanism designed by Ar-
tobolevskii to trace the trifolium. Artobolevskii [10] provides a
synthesis theory that yields linkages to trace a large number of
plane algebraic curves up to degree four.

Roth and Freudenstein [11] present a different approach of
curve tracing. They develop the method of solving loop equa-
tions of four bar linkage to obtain the dimensions of a linkage.
The coupler point can be driven to go through the nine points on
the designed curve. Wampler [12] calculate the complete solu-
tion of nine-point synthesis problem. Plecnik [13, 14] shows that

FIGURE 2. Kobel use software Cinderella to generate this linkage to
trace trifolium curve.

FIGURE 3. Artobolevskii generate this mechanism to trace trifolium
curve.

the equations for 15 points six-bar generation has Bezout over
10%.

Nie and Krovi [15] present the method of designing sin-
gle degree-of-freedom coupled serial chain to trace plane curves.
The coupled serial chain is driven by pulleys and belts. They use
discrete Fourier transform approach to obtain serial chain that
can go through the sample points on a specified curve. The num-
ber of links can be reduced using optimization method.

Lord Kelvin invent the first harmonic analyzer in 1872.
Miller [16] developed a 32-element harmonic synthesizer in
1916 based on Fourier’s Theorem. This device was built accord-
ing to the calculation of the amplitude and phase of each Fourier
component in the curve equation. The continue work was done
by Brown [17], a thirty terms harmonic analyzer is constructed
to drive a pencil to draw a specified curve on a board.

While it is known that cams can be cut to obtain the de-
sired coordinate functions for a plane curve, or shaped to drive
linkages to achieve trace a desired curve [18], our focus is on
a simpler realizable way to construct mechanisms to trace plane
curves. We increase the set of standard linkages used in syn-
thesis of curve-tracing mechanism to include belts and pulleys,
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FIGURE 4. Trifolium curve.

but avoid the requirement to cut a cam to achieve a specified
function. We use belts and pulleys to add and translate the pro-
jection of Scotch yoke mechanisms and to constrain the joints
in coupled-serial chain mechanisms to achieve the summation of
Fourier coefficients that define a plane curve. The resultis a wide
range of devices that trace complex plane curves.

FOURIER DECOMPOSITION

In this section, we show how to decompose an algebraic
curve to Fourier terms. We assume the curve denoted by Carte-
sian equations can be converted to polar equation format. This
requires the length term that on the left side of the polar equation
has to be reduced to power one. The right side has to be the form
of summation of cosine and sine terms. We obtain the x and y
components by multiplying cosine and sine of the right side of
polar equation. We compute the Fourier decomposition of each
component in x and y equation. For curves already parameter-
ized in x an y directions, the Fourier decomposition terms can be
obtained directly by applying trigonometric identities.

In order to demonstrate how to decompose a curve in Carte-
sian equation, we choose the trifolium curve, see Fig. 4. The
Cartesian equation is in the form,

(o +H) D +x(x+a)] = 4axy*. (1)

In order to get the polar equation, we denote the point coor-
dinates been tracing as P = (x,y) given by,

x| __[pcos@
P{y}{psine}' 2
Substitute the coordinates P into Eq. (1) and after simplifi-
cation we obtain,

p = —a(4cos® 0 —3cos 0). (3)

Notice that in Eq. (3), the part in parenthesis can be replaced
by power reduction formula,

o0 3cos9+cos(39). @
4
The result we obtain is,
p = —acos36. 5

Now in order to get the equation in x and y direction, we
compute the projection of the polar equation onto x and y axis,

_Jx| _Jpcos@| |—acos36cosb
P{y}{psine}{—acos39sin9}' ®)

We can reduce the product using the sum and difference
identities,

2¢0s Bcos = cos(0 — @) +cos(8+ ¢),

2cosOsing =sin(0+¢) —sin(0 —¢). ™

After applying Eq. (7), we have

x| [—5(cos20 +cos40)
b= {y} - { —%(sin49 —sin20) } ' ®)

The parameter a only affects the size of the tracing curve,
here we set it to be equal to 2. The frequency of the mechanism
we design can be free chosen so here we set the unit frequency
as % rad per second. We can write Eq. (8) in time domain,

(1) —(cos 2t + cos4r)
-{}-{ it o

We can directly using Eq. (9) to design mechanism moving
in x and y direction and the projection intersects at the tracing
curve. Another approach is using Fourier transform theory, so
we can construct one coupled serial chain to trace the curve.

Assuming we have one coupled serial chain, the end point
of the last link traces the designed curve. The length of each
link can be denoted as L{,l»,L3---,L,. Each link rotates at a
constant speed, the associated angular velocity can be denoted as
W1, , 03,0, Each link can start at any phase, so the cor-
responding phase is denoted as y1, o, y3-- -, ;. Have this set
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up, we can calculate the x and y coordinates of the end-effector
as,

Licos(wit + y1) + Ly cos(ant + o)+
£(r) — {x(t)} ) Lacos(@st + y3) + -+ Ly cos(@nt + Yi)
Lisin{@t + yn ) + Ly sin{ @t + yo )+
Liysin(wst + y3) + - -+ L, sin( @yt + )
(10)

The above equation is a generalization version of Eq. (9).
Now instead of representing a point in 2D coordinates as (x,y),
we denote it as complex number form (x-+iy). So the points
consisting the curve are denoted in C instead of R. We use z(¢)
to represent the complex format of Eq. (10), it is in the form,

z(t) = Ly cos(nt + w1 ) + Lo cos(@nt + ya) + Lz cos(@st + y3 )+
<o+ Ly cos(@nt + Wy ) + i[Ly sin{ o1t + yn ) + Ly sin( ant + y»)
+Lzsin(@st + y3)+ -+ Ly sin( @ut + Y5 )]

(11)
Here we apply Euler’s formula,
¢™ = cosx+isinx. (12)
We can write Eq. (11) in the form,
z(t) = Llei(w1f+\V1) +Lzei(w2t+ll/2)
(13)

FLzel @t ts) 4y T Ot tn)

We assume infinite terms being added and each angular ve-
locity is being included, so we can write Eq. (13) as

a(f) = [ ZL(w)ei(iwf+Ww>dw. (14)

Here we factor out ¢'¥@ and replace L(w)e™¥e with Ly/(®)
and get the result,

z(t) = /:Ly/(w)e"“”dw. (15)

In Eq. (15), function Ly( @) contains all the information we
need to build a single coupled serial chain: link length, angular
frequency and phase. As long as Ly/(®) has been calculated, we
get all the configuration information to construct a coupled serial

FIGURE 5. Hypocycloid curve.

chain. We can calculate Ly (@) by performing Fourier transform
of z(¢), we have,

Ly (o) = %/:oz(t)e*i“”dt. (16)

Now we compute the one coupled serial chain configuration
for trifolum curve. We can construct z(¢) from Eq. (9), and com-
pute Fourier transform of z(z),

1 e '

Ly(w)= g/ (—(cos2t + cosdr) — i(sinds —sin2¢))e ¥ dy.

(17)

After calculation, we get the result that only consists of two
terms,

Ly(o)=—-0(w—4)—d8(w+2). (18)

For some algebraic curves, their polar equations are not in
the standard form we required. But we can easily find their pa-
rameterized equations in x and y directions. For these kind of
curves, we can still use our design procedure to construct the
mechanism to trace the curve. Here we use hypocycloid curve as
an example. The polar equation of hypocycloid curve is in the
form,

p? = (R—mR)*>+ (mR)*>+2(R —mR)mRcost.  (19)

The parameterized equation of hypocycloid curve are,

£(r) — {igg} B {(R—mR) cosmt +mR cos(t —mt)} o)

(R —mR) sinmt — mRsin(t — mt)
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We are free to choose the values of R and m. What the values
affect is only the shape of the curve. Here we set R and m to be
equal to 10 and 0.4 respectively. We get a star curve that is shown
in Fig. 5. After plug in the values we assigned, the parameterized
equations become,

_ [x(#)| _ [6cos0.4r+4cos0.61
fe) = {y(f)} - { 65in0.4: — 4sin0.67 } 1)

We get the complex format z(¢) from Eq. (21), and compute
the Fourier transform of z(7) to obtain,

1 oo
Ly(o :7/ T o
v = [ ( .

—4sin0.61))e 4.
The result we get is,

Ly (o) = 48(0.6 — 0)+ 68(0.4+ o). (23)

CONSTRUCTING THE MECHANISM

In this section, we present three ways to construct a mech-
anism to trace a plane curve. The first method uses two serial
chains designed to generate the projections of the curve on x and
y directions, which are then comnected to a single input. The
second method uses Scotch yoke mechanisms that compute each
term in the Fourier series expansion of the x and y projections,
which are then connected to a single input. Finally, we show that
the Fourier transformation of the complex coordinates z{z) of the
curve can yield a single coupled serial chain that can trace the de-
sired curve. Here we present all three methods for the examples
of the trifolium and hypocycloid curves.

Two Coupled Serial Chains

Let x(z) and y(¢) be the Fourier expansion of the components
of a curve f{z). Equation (9) defines the trifolium and Eq. (21)
defines the hypocycloid.

The procedure we use to define the two coupled serial chains
is as follows:

1. Consider the curve f(z) defined in Eq. {9); the x(r) has two
terms, so this serial chain has two links with the lengths,
Ly; =1 and Ly2 = 1; the angular velocity of the input ro-
tation defines the diameters Dy = 1/2 and Dx2 = 1/4 of
pulleys attached to each joint relative that are coupled by
belts to the drive pulley; finally, the initial configuration is
determined by the value x(0) = —2;

2. The coupled serial chain for the ¥(r) component is obtained
in the same way; there are two terms, so this serial chain has
two links with length, Ly; = 1 and Ly, = 1; the joint pulley
diameters are given by Dy; = 1/4 and Dy> = 1/2; and the
initial configuration is given by v{0) = 0, see Table 1;

3. Finally, the end-points of the x coupled serial chain and the y
coupled serial chain are commected by horizontal and vertical
sliders that intersect at the tracing point, and both chains are
driven by the same input rotation. See Fig. 6.

TABLE 1. Two Serial Chain Configuration to Trace Trifolinm Curve.

Link Number | Link Length | Phase | Pulley Diameter
Ly 1 -7 1/2
Lxa 1 - 1/4
Ly 1 —7 1/4
Ly, 1 0 1/2

TABLE 2. Two Serial Chain Configuration to Trace Hypocycloid

Curve.
Link Number | Link Length | Phase | Pulley Diameter
Lyy 6 0 3
Lxo 4 0 2
Ly; 6 0 3
Ly 4 -7 2

Applying the same procedure to the hypocyeloid curve de-
fined by Eq. (21), we obtain the dimensions listed in Table 2.
The result is a convenient procedure for defining a pair of cou-
pled serial chains that trace plane curves, see Fig. 7.

Scotch Yoke Mechanisms

For the second approach, each unit of the Scotch yoke mech-
anism simulates one term in x or y equation. Assume the positive
direction is along x axis in Cartesian coordinates, the output of
the Scotch yoke mechanism is the projection of pulley radius on
¥ axis. Equation (9) defines the trifolium and Eq. (21) defines
the hypocyeloid.

We now demonstrate the procedure of constructing Scotch
yoke mechanisms for the trifolium:

1. Consider the curve f(s) defined in Eq. (9). In order to make
the end-effector which moves vertically in y direction to
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The output of Scotch yoke mechanism is the radius projec-
tion on y axis, we convert x(¢) in the format of sine function,
we have,

x(t) =sin(2t +m/2) +sin(4t + 7 /2). (25)

2. The x Scotch yoke mechanisms is obtained from Eq. (25)
which has two terms, so we need two Scotch yoke mecha-
nisms, which have the radius Rx; = 1 and Rx, = 1; the fre-
quencies of each term define the rotating velocities wy; = 2
and wyx, = 4 for each Scotch yoke mechanism; the initial
configuration is determined by the phase in Eq. (25) that
¢x1 =n/2 and ¢xr = 7w /2;

3. The y Scotch yoke mechanisms is obtained in the same way;
Ry; =1 and Ry; = 1; the rotating velocities of the Scotch
yoke mechanism are given by wy; = 2 and wy, = 4; the
starting position is determined by ¢y1 = 0 and ¢y = 7. See
Table 3;

4. Finally, one belt add x Scotch yoke mechanisms outputs

FIGURE 6. Two coupled serial chains combines to trace a trifolium

curve.
together and drive the board horizontally; one belt add y
Scotch yoke mechanisms outputs together and drive the end-
effector to trace a trifolium curve. See Fig. 8.
TABLE 3. Scotch Yoke Mechanisms Configuration to Trace Tri-
folium Curve.
Pulley Number | Pulley Radius | Phase | Angular Velocity
Rx1 1 o 2
Rx» 1 z 4
Ry: 1 0 2
Ry 1 T 4
TABLE 4. Scotch Yoke Mechanisms Configuration to Trace Hypocy-
cloid Curve.
Pulley Number | Pulley Radius | Phase | Angular Velocity
FIGURE 7. Two coupled serial chains combines to trace a Hypocy- Rx1 6 — 2
cloid Curve. Ry 4 _ % 3
Ry 6 0 2
trace the curve, we need to drive the board to move hori-
. . . . . Ry, 4 T 3
zontally in the opposite direction . So we add a negative

sign on x(f) to get,

Applying the same procedure to the hypocycloid curve de-
x(t) = cos2r 4 cos4t. (24) fined by Eq. (21), we obtain the dimensions listed in Table 4.
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FIGURE 8. A system of Scotch yoke mechanisms to trace a trifolium
curve.

FIGURE 9. A system of Scotch yoke mechanisms to trace a Hypocy-
cloid Curve.

The result is a convenient procedure for defining Scotch yoke
mechanisms to trace hypocycloid curve, see Fig. 9.

Single Coupled Serial Chain

The third approach is constructing one constrained coupled
serial chain to trace a designed curve. Equation (18) defines the
trifolium and Eq. (23) defines the hypocycloid. Function Ly(®)
is in the format of summation of delta functions. The link’s an-
gular frequency is the @ that makes the integral of delta function
not equal to zero. The sign of @ determines the rotating direction
of each link.

We now demonstrate the procedure for the trifolium:

1. Start with the frequency domain function Ly/(@) defined in
Eq. (18); the single coupled serial chain is obtained from
Ly(w) which has two terms, so the serial chain has two
links, which have the lengths L; = 1 and L, = 1; the frequen-
cies calculated from each delta function define the diameters
Dy =1/2 and D, = 1/4 of pulleys attached each joint rela-

FIGURE 10. A constrained coupled serial chain to trace a trifolium
curve.

tive that are coupled by cables to unit diameter drive pulley;

2. The sign of the frequencies determine the rotating direction
of each link, L; is clockwise and L, is counterclockwise;
the initial configuration is determined by the arctangent of
imaginary part and real part of the coefficient in each term
that ¢; = —m and ¢ = —, see Table 5;

3. Finally, the end-point of the single coupled serial chain can
trace the trifolium curve. See Fig. 10.

TABLE 5. Configuration of One Constrained Coupled Serial chain

Mechanisms to Trace Trifolium Curve .
Link Number | Link Length | Phase | Pulley Diameter
L 1 -7 1/2
Ly 1 -7 1/4

TABLE 6. Configuration of One Constrained Coupled Serial chain
Mechanisms to Trace Hypocycloid Curve.

Link Number | Link Length | Phase | Pulley Diameter
Ly 6 0 2
Ly 4 0 2
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FIGURE 11.
cloid curve.

A constrained coupled serial chain to trace a hypocy-

Applying the same procedure to the hypocycloid curve de-
fined by Eq. (23), we obtain the dimensions listed in Table 6.
The result is a convenient procedure for defining a single cou-
pled serial chain that trace hypocycloid curve, see Fig. 11.

CONCLUSION

In this paper, we present a methodology to design mechani-
cal devices that trace plane curves. Our approach applies to plane
algebraic curves that have polar form, and to parameterized plane
curves. In both cases, expand the functions defining these curves
with a Fourier series and construct devices that add the Fourier
components. We present three ways to design these devices, (i)
the combination of two sets of coupled serial chains,(ii) the sum-
mation of the outputs of Scotch yoke mechanisms, and (iii) the
trace of the end-point of a single coupled serial chain. Two ex-
amples are used throughout to demonstrate the procedure. These
are preliminary results, our goal is to obtain similar devices for
general algebraic curves, and perhaps curves obtained as the in-
terpolation of sets of points.
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