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ABSTRACT
In this paper, we study the manifold of configurations of a

3SPS-1S spherical parallel manipulator. This manifold is ob-
tained as the intersection of quadrics in the hypersphere defined
by quaternion coordinates and is called its constraint manifold.
We then formulate Jacobian for this manipulator and consider its
singular. This is a quartic algebraic manifold called the singu-
larity variety of the parallel manipulator. A survey of the archi-
tectures that can be defined for the 3SPS-1S spherical parallel
manipulators yield a number of special cases, in particular the
architectures with coincident base or moving pivots yields singu-
larity varieties that factor into two quadric surfaces.

Keywords: Spherical parallel mechanism; Singularity vari-
ety; Jacobian matrix; Dual quaternions; homogeneous polyno-
mial

1 INTRODUCTION
Parallel manipulators can serve better than serially con-

nected manipulators in some applications such as micromanip-
ulation and robotics surgery due to their high positioning accu-
racy, high speed and high stiffness. And the three-DOF spherical
parallel manipulators (SPMs) are a class of parallel manipula-
tors which have a wide range of applications such as orienting
devices and wrists [1, 2]. However, one of the disadvantages of
parallel manipulators is the singular configurations which may
exist within its workspace. The singular configurations where
the parallel manipulator loses its stiffness result in the difficulty
of trajectory planning [3, 4]. So the singularity analysis is one of

the important problems related to SPMs.

Gosselin and Angeles [5] were the first to study the singu-
larities of general parallel manipulators and introduced two Ja-
cobian matrices that define input and output velocities. Then Da-
niali et al. [6] derived the Jacobian matrices of two classes of pla-
nar parallel manipulators and identified the three types of singu-
larities for them. Merlet [7] was the first to apply line geometry
to study singular configurations of a six-degree of freedom paral-
lel manipulator. Zlatanov et al. [8] have presented a generalized
approach to determine the singular configurations using a veloc-
ity equation that includes velocities of active and passive joints.
Alici and Shirinzadeh [9] have proposed a systematic method to
obtain the singular variety of any kinematics chain whose Jaco-
bian matrices are expressed analytically while without express-
ing singularity variety mathematically. Bonev and Gosselin [10]
have presented the singularity variety of symmetric spherical par-
allel mechanisms based on the intuitive orientation representa-
tion.

Sefrioui and Gosselin [11] have introduced the quadratic na-
ture of the singularity curves of general three-degree-of-freedom
planar parallel manipulators and gave a graphical representation
of these loci in the manipulator’s workspace using the roots of
the determinants of the manipulators Jacobian. Collins and Mc-
Carthy [12] have found these singularity variety lie on a quartic
surface when mapped to the space of planar quaternion. Later,
they [13] have generalized the method to spatial parallel manip-
ulators that have triangular base and top platform architectures
with 2-2-2 and 3-2-1 actuator configurations.

In this paper we study the Jacobian of 3SPS-1S spheri-
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cal parallel manipulators composed of three spherical-prismatic-
spherical chains and a spherical joint using dual quaternion co-
ordinates. The paper is organized as follows. First, we review
the construction and manipulation of dual Quaternion. Next we
analyze the structure of the spherical parallel manipulator and
define the constraint manifold imposed by an SPS chain. Then
we obtain the Jacobian formulation using dual quaternion and
present how singularities are distributed within the manipulator
workspace as a function of structural parameters. At last, we give
a variety of special parallel manipulator architectures, and for the
coincident pivots architecture, present the effect of its geometric
properties on the function which defines the singularity variety.

2 DUAL QUATERNION COORDINATES
The general spatial displacement between a fixed frame F

and a moving frame M is given by

Z = [R]z+d. (1)

A vector z measured in the moving frame M can be transformed
to a vector Z in the base frame F. Matrix [R] is a 3 × 3 rotation
matrix and d = (dx,dy,dz) is the translation vector between the
fixed and moving frame.

A spatial displacement can also be represented in the form of
an 8-dimensional vector known as a dual quaternion [14,15].The
first four components representing the orientation of the moving
frame are written as follows,

q1 = Sx sin(
θ

2
), q2 = Sy sin(

θ

2
), q3 = Sz sin(

θ

2
), q4 = cos(

θ

2
),

(2)
where

cos(θ) =
Tr[R]−1

2
. (3)

The operator Tr[R] denotes the trace of matrix [R]. Sx,Sy, and Sz
are extracted from the skew symmetric matrix [S] defined by

[S] =
[R]− [R]T

2sin(θ)
. (4)

The translation vector d combines with the components

q1,q2,q3,q4 to yields four additional components,

q5 =
1
2
(q4dx +q3dy −q2dz)

q6 =
1
2
(−q3dx +q4dy +q1dz)

q7 =
1
2
(q2dx −q1dy +q4dz)

q8 =
1
2
(−q1dx −q2dy −q3dz). (5)

The eight dual quaternion components satisfy two constraints
[15], given by

q2
1 +q2

2 +q2
3 +q2

4 = 1,
q1q5 +q2q6 +q3q7 +q4q8 = 0. (6)

Points in the 8-dimensional space that satisfy the constraints are
dual quaternion coordinates and can be used to represent spatial
displacements. Details about the use of these coordinates and the
geometry of the corresponding space can be found in [14–16].

The spatial displacement in Eq. 1 can be defined in terms of
dual quaternion coordinates as,

[R] =

q2
1 −q2

2 −q2
3 +q2

4 2(q1q2 −q3q4) 2(q1q3 +q2q4)
2(q1q2 +q3q4) −q2

1 +q2
2 −q2

3 +q2
4 2(q2q3 −q1q4)

2(q1q3 −q2q4) 2(q2q3 +q1q4) −q2
1 −q2

2 +q2
3 +q2

4


(7)

and

d = 2

−q8 q7 −q6 q5
−q7 −q8 q5 q6
q6 −q5 −q8 q7




q1
q2
q3
q4

 . (8)

3 CONSTRAINT MANIFOLD OF THE 3SPS-S
Now consider the 3SPS-1S parallel manipulator shown in

Fig.1 [1, 17]. The manipulator is composed of three spherical-
prismatic-spherical (SPS) chains and a spherical joint. Each SPS
chain consists of a prismatic actuator connected to a fixed plat-
form and a moving platform through two passive spherical joints.
The single spherical joint connected to the fixed platform fixes
the position of the moving platform of the mechanism while the
orientation of the moving platform can be variable. Therefore
the last four components of dual quaternion are equal to zero.

For the first chain of the 3SPS-1S mechanism, the motion
locus of moving pivot S4 which lies in the moving platform is a
circle of two spheres. One sphere takes point S0 as the center and
S0S4 as the radius. The other sphere takes point S1 as the center

2 Copyright © 2016 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/conferences/asmep/90696/ on 04/01/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



FIGURE 1. 3SPS-1S spherical parallel manipulator. The points
Gi, i = 1,2,3 denote the intersection of the lines through S0Si with the
unit sphere. Similarly zi, i = 1,2,3 denote the intersection of the lines
S0S4, S0S5 and S0S6 with the unit sphere.

and S1S4 as the radius. The same is true of conditions for two
other chains. Therefore, the 3SPS-1S spatial parallel manipulator
is a spherical mechanism with the center at point S0. The three
vectors S1, S2 and S3 intersect the unit sphere in three points G1,
G2 and G3 on the fixed body, while the other three vectors S4, S5
and S6 intersect the unit sphere in three points z1, z2 and z3 on
the moving body.

Let the location of the fixed pivot be specified by Gi =
(xi,yi,zi), i = 1,2,3 measured in F and let the moving pivot be
zi = (ui,vi,wi), i = 1,2,3, measured in M. Coordinates in the
platform M are related to coordinate in F by the transformation
Eq. 7, that is Zi = [R]zi.

Let the angle between each of the vectors Gi and Zi be αi,
i = 1,2,3, then we have the three constraint equations for the
spherical platform

Ci : GT
i Zi = GT

i [R]zi = cosαi, i = 1,2,3. (9)

These equations define three quadratic constraints on the quater-
nions q = (q1,q2,q3,q4) that define the orientation of the spher-
ical platform [18].

It is convenient to write the equations (9) as the quadratic

forms

Ci : qT [Ci]q = cosαi, i = 1,2,3, (10)

where [Ci] is a symmetric 4×4 matrix with upper triangular co-
efficients given by

C11i = xiui − yivi − ziwi,

C12i = uiyi + xivi,

C13i = uizi + xiwi,

C14i = vizi − yiwi,

C22i =−xiui + yivi − ziwi,

C23i = vizi + yiwi,

C24i =−uizi + xiwi,

C33i =−xiui − yivi + ziwi,

C34i = uiyi − xivi,

C44i = xiui + yivi + ziwi, i = 1,2,3. (11)

The intersection of the three quadric manifolds in quaternion co-
ordinates defines the constraint manifold of the spherical plat-
form.

4 SINGULARITIES OF THE 3SPS-S
In order to determine the singularities of the spherical plat-

form, we collect the three quadratic equations that define the con-
straint manifold together with the constraint that the components
of a quaternion q have unit magnitude to obtain,

qT [C1]q =cosα1,

qT [C2]q =cosα2,

qT [C3]q =cosα3,

qT q =1. (12)

The time derivative of these equations yields,


qT [C1]
qT [C2]
qT [C3]

q1, q2, q3, q4




q̇1
q̇2
q̇3
q̇4

−


−1/2sinα1α̇1
−1/2sinα2α̇2
−1/2sinα3α̇3

0

=


0
0
0
0

 . (13)

This equation can be written in the form of the Jacobian for a
parallel manipulator

[A]q̇− [B]ṙ = 0, (14)
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TABLE 1. The coordinates of the base and moving pivots used to de-
rive singularity variety for the general 3SPS-S.

1 2 3

G1 G2 G3

X 0 0 sinλ

Y 0 −sin µ −sinν cosλ

Z 1 cos µ cosν cosλ

z1 z2 z3

x0 0 0 sinσ

y0 0 −sinτ −sinρ cosσ

z0 1 cosτ cosρ cosσ

where ṙ = (α̇1, α̇2, α̇3,0). The configurations of the manipulator
for which the determinant of the coefficient matrix [A] is zero are
known as “type 2 singularities” of the manipulator [5].

The elements of [A] are linear in the quaternion coordinates
q = (q1,q2,q3,q4) therefore,

S : det[A] = 0, (15)

defines is a quartic algebraic manifold that we call the singularity
variety for the platform.

5 SINGULARITY VARIETY OF THE GENERAL 3SPS-S
The coordinates of the base S-joints of the platform, Si, i =

1,2,3, define lines through the fixed S joint that intersect the unit
sphere in the base points G1, G2 and G3, see Figure 1. Let the
coordinates of the points Gi be defined as shown in Table 1.

Similarly, the moving S-joints of the platform, S j, j = 4,5,6,
define lines though the fixed S joint that intersect the unit sphere
in the moving points zi, i = 1,2,3, Figure 1. Let the coordinates
of z1, z2 and z3 be specified as shown in Table 1.

Substitute these values of the coordinates into the matrix [A]
of the Jacobian, to obtain,

[A] =


−q1 −q2 q3 q4
D1 D2 D3 D4
D5 D6 D7 D8
q1 q2 q3 q4

 , (16)

where

D1 = q4 sin (µ − τ)−q1 cos (µ − τ),

D2 =−q3 sin (µ + τ)−q2 cos (µ + τ),

D3 =−q2 sin (µ + τ)+q3 cos (µ + τ),

D4 = q1 sin (µ − τ)+q4 cos (µ − τ),

D5 = q4 cosλ cosσ sin (ν −ρ)+q3(cosρ cosσ sinλ

+ cosλ cosν sinσ)−q1[cosλ cosσ cos (ν −ρ)

− sinλ sinσ ]−q2(cosσ sinλ sinρ + cosλ sinν sinσ),

D6 =−q3 cosλ cosσ sin (ν +ρ)+q4(cosρ cosσ sinλ

− cosλ cosν sinσ)−q2[cosλ cosσ cos (ν +ρ)

+ sinλ sinσ ]−q1(cosσ sinλ sinρ + cosλ sinν sinσ),

D7 =−q2 cosλ cosσ sin (ν +ρ)+q1(cosρ cosσ sinλ

+ cosλ cosν sinσ)+q3[cosλ cosσ cos (ν +ρ)

− sinλ sinσ ]+q4(cosσ sinλ sinρ − cosλ sinν sinσ),

D8 = q1 cosλ cosσ sin (ν −ρ)+q2(cosρ cosσ sinλ

− cosλ cosν sinσ)+q4[cosλ cosσ cos (ν −ρ)

+ sinλ sinσ ]+q3(cosσ sinλ sinρ − cosλ sinν sinσ) (17)

Setting the determinant of [A] to zero, we obtain the algebraic
equation of the singularity variety of the general 3SPS-S manip-
ulator as,

S : c1q1q2q3q4 + c2q3
1q3 + c3q3

2q4 + c4q3
3q1 + c5q3

4q2

+ c6q2
1q2

3 + c7q2
2q2

4 + c8q2
1q3q4 + c9q2

1q2q3 + c10q2
1q2q4

+ c11q2
2q3q4 + c12q2

2q1q3 + c13q2
2q1q4 + c14q2

3q2q4 + c15q2
3q1q2

+ c16q2
3q1q4 + c17q2

4q1q2 + c18q2
4q2q3 + c19q2

4q1q3 = 0. (18)

The coefficients c1 to c19 are constants defined by the coordi-
nates Gi and zi, i = 1,2,3 that define the platform. The singular-
ity variety is a quartic surface in the homogeneous coordinates
q1,q2,q3 and q4. Its geometric properties are a function of the
parameters defining the kinematic architecture of the spherical
parallel manipulator.

6 SINGULARITY VARIETIES FOR SPECIAL CASES
The geometric properties of the singularity variety are char-

acterized by the locations of the platform fixed and moving piv-
ots. Besides the above general architecture, we have studied the
singularity variety for the following special architectures.

Type 1 Pivots lie on a great circle. There are three cases: (a)
the points G1,G2 and G3 on the fixed body lie on a great circle;
(b) the moving points zi, z2 and z3 lie on a great circle; and (c)
both the bases points and the moving points lie on great circles.
See Figure 2.
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FIGURE 2. Type 1: (a) the points Gi lie on a great circle, (b) the
points zi lie on a great circle, and (c) both sets of points Gi and zi lie on
great circles.

FIGURE 3. Type 2: (a) two of the points zi on the moving body are
coincident, (b) two of the points Gi on the fixed body are coincident,
and (c) there are two sets of coincident points on both the moving and
fixed bodies.

Type 2 Pivots are coincident. There are three cases, (a) Two
of moving points zi, are coincident in the moving body, (b) two
of the base points Gi are coincident in the fixed body, or (c) both
base points and moving points are coincident. See Figure 3.

Type 3 Pivots are both coincident and on great circles. There
are two cases: (a) the points zi are on a great circle and two fixed
points are coincident; and (b) the points Gi are on a great circle
and two of the moving points are coincident. See Figure 4.

In what follows, we provide the singularity variety for each
of these cases. The coordinates of the points Gi and zi are defined
as shown in Table 2, where s and c denote the sine and cosine
functions, respectively.

The points Gi lie on a great circle. In this case, the singularity
variety of the platform is given by,

S : k1q3
1q3 − k1q3

4q2 + k2q3
3q1 − k2q3

2q4

+ k3q2
1q2

3 − k3q2
2q2

4 + k4q2
1q2q3 + k5q2

2q1q4 + k6q2
1q3q4

+ k7q2
2q3q4 + k8q2

1q2q4 + k9q2
2q1q3 + k5q2

3q1q4 + k7q2
3q1q2

+ k10q2
3q2q4 + k4q2

4q2q3 + k6q2
4q1q2 + k11q2

4q1q3 = 0, (19)

FIGURE 4. Type 3: (a) the points zi are on a great circle and two fixed
points are coincident, (b) the points Gi are on a great circle and two of
the moving points are coincident.

where the coefficients ki, i = 1, . . .11 depend on the coordinates
of Gi and zi.

The points zi lie on a great circle. In this case, the singularity
variety of the platform is given by,

S : k1q3
1q3 + k1q3

2q4 + k2q3
3q1 + k2q3

4q2

+ k3q2
1q2

3 − k3q2
2q2

4 + k4q2
1q2q4 + k5q2

2q1q3 + k6q2
1q2q3

+ k7q2
2q1q4 − k8q2

1q3q4 + k9q2
2q3q4 + k5q2

3q2q4 + k7q2
3q1q4

− k9q2
3q1q2 + k4q2

4q1q3 + k6q2
4q2q3 + k8q2

4q1q2 = 0. (20)

where the coefficients ki, k = 1, . . .9 depend on the coordinates
of Gi and zi.

The points Gi and zi lie on great circles. In this case, the
singularity variety of the platform is given by,

S : k1(q2
1q2

3 −q2
2q2

4)

+ k2(q2
1q2q3 +q2

4q2q3)+ k3(q2
2q1q4 +q2

3q1q4) = 0. (21)

where the coefficients ki, i = 1,2,3 depend on the coordinates of
Gi and zi.

Two of the points zi are coincident. In this case, the singular-
ity variety of the platform is given by,

S : P1P2 = 4sinτ(−q1q3 cos µ+q2q4 cos µ+q1q2 sin µ+q3q4 sin µ)

(q2q3 sinλ −q1q4 sinλ +q1q3 cosλ sinν+q2q4 cosλ sinν)= 0.
(22)
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TABLE 2. The coordinates of the base and moving pivots used to de-
rive singularity variety for each of the special cases. s and c denote the
sine and cosine functions.

G1 = (0,0,1) z1 = (0,0,1)

Type 1(a) G2 = (0,−sµ,cµ) z2 = (0,−sτ,cτ)

G3 = (0,−sν ,cν) z3 = (sσ ,−sρcσ ,cρcσ)

G1 = (0,0,1) z1 = (0,0,1)

Type 1(b) G2 = (0,−sµ,cµ) z2 = (0,−sτ,cτ)

G3 = (sλ ,−sνcλ ,cνcλ ) z3 = (0,−sρ,cρ)

G1 = (0,0,1) z1 = (0,0,1)

Type 1(c) G2 = (0,−sµ,cµ) z2 = (0,−sτ,cτ)

G3 = (0,−sν ,cν) z3 = (0,−sρ,cρ)

G1 = (0,0,1) z1 = (0,0,1)

Type 2(a) G2 = (0,−sµ,cµ) z2 = (0,−sτ,cτ)

G3 = (sλ ,−sνcλ ,cνcλ ) z3 = (0,0,1)

G1 = (0,0,1) z1 = (0,0,1)

Type 2(b) G2 = (0,−sµ,cµ) z2 = (0,−sτ,cτ)

G3 = (0,0,1) z3 = (sσ ,−sρcσ ,cρcσ)

G1 = (0,0,1) z1 = (0,0,1)

Type 2(c) G2 = (0,−sµ,cµ) z2 = (0,−sτ,cτ)

G3 = (0,0,1) z3 = (0,−sτ,cτ)

G1 = (0,0,1) z1 = (0,0,1)

Type 3(a) G2 = (0,−sµ,cµ) z2 = (0,−sτ,cτ)

G3 = (0,0,1) z3 = (0,−sρ,cρ)

G1 = (0,0,1) z1 = (0,0,1)

Type 3(b) G2 = (0,−sµ,cµ) z2 = (0,−sτ,cτ)

G3 = (0,−sν ,cν) z3 = (0,0,1)

Two of the points Gi are coincident. In this case, the singu-
larity variety of the platform is given by,

S : P1P2 = 4sin µ(q1q3 cosτ+q2q4 cosτ−q1q2 sinτ+q3q4 sinτ)

(q1q3 cosσ sinρ−q2q4 cosσ sinρ+q2q3 sinσ +q1q4 sinσ)= 0.
(23)

There are two sets of coincident points on both the moving
and fixed bodies. The singularity variety of the platform is
given by,

S : P1P2 = 4sin µ sinτ(q1q3 −q2q4)

(q1q3 cosτ +q2q4 cosτ −q1q2 sinτ +q3q4 sinτ) = 0. (24)

The points zi are on a great circle and two fixed points are
coincident. In this case, the singularity variety of the platform
is given by,

S : P1P2 = 4sin µ sinρ(q1q3 −q2q4)

(q1q3 cosτ +q2q4 cosτ −q1q2 sinτ +q3q4 sinτ) = 0. (25)

The points Gi are on a great circle and two of the moving
points are coincident. In this case, the singularity variety of
the platform is given by,

S : P1P2 = 4sinν sinτ(q1q3 +q2q4)

(−q1q3 cos µ +q2q4 cos µ +q1q2 sin µ +q3q4 sin µ) = 0. (26)

Notice that for each of the cases that has a coincident pair of
base pivots or moving pivots factors into the product of quadric
surfaces P1P2 = 0.

We dehomogenize the quaternion coordinates with respect
to q4 to visualize the surfaces. This is done by making the sub-
stitution x = q1/q4,y = q2/q4 and z = q3/q4. For Type 1(c), set
µ = 30◦, ν = 60◦, τ = 30◦, ρ = 60◦ to obtain the quartic surface
shown in Fig. 5. For Type 2(c), set τ = 60◦ to obtain the two
quadric surfaces shown in Figure 6. For Type 3(b), set µ = 60◦

to obtain the two quadric surfaces shown in Figure 7.

7 CONCLUSIONS
In this paper we derive the constraint manifold of the 3SPS-

S spherical parallel manipulator in quaternion coordinates. This
formulation allows the derivation of the Jacobian and the calcu-
lation of a quartic singularity variety for this manipulator.
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FIGURE 5. The singularity variety of the 3SPS-S spherical parallel
manipulator that has both sets of points Gi and zi lie on great circles.

FIGURE 6. The singularity variety of the 3SPS-S spherical parallel
manipulator that has two coincident points on the base and two coinci-
dent points on the platform, consists of two quadric surfaces P1=0 and
P2=0.

We present the general case of the singularity variety and
then consider eight special cases of these singularity varieties
determined by the locations of the base and moving pivots of
the 3SPS-S manipulator. In the cases where either a pair of base
pivots or moving pivots are coincident, we find the singularity
variety factors into two quadric surfaces.

Understanding how singularities are distributed within the
manipulator workspace as a function of architectural parameters
provides insight to singularity free design of parallel manipula-
tors.

FIGURE 7. The singularity variety of the 3SPS-S spherical paral-
lel manipulator that the points Gi are on a great circle and two of the
moving points are coincident, consists of two quadric surfaces P1=0 and
P2=0.
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