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Abstract. We present a simulation of the global composition of the troposphere which includes the chemistry of halogens (Cl,
Br, I). Building on previous work within the GEOS-Chem model we include emissions of inorganic iodine from the oceans,
anthropogenic and biogenic sources of halogenated gases, gas phase chemistry, and a parameterised approach to heterogeneous
halogen chemistry. Consistent with Schmidt et al. (2016) we do not include sea-salt de-bromination. Observations of halogen
radicals (BrO, IO) are sparse but the model has some skill in reproducing these. IO shows both high and low biases in different
datasets, BrO concentrations though appear to be modelled low. Comparisons to the very sparse observations dataset of reactive
Cl1 species suggests the model represents a lower limit on impacts due to likely underestimates in emissions and therefore
burdens. Inclusion of Cl, Br, I results in a general improvement in simulation of ozone (O3) concentrations, except in polar
regions where the model now underestimates O3 concentrations. Halogen chemistry reduces the global tropospheric O3 burden
by ~15 %, with the O3 lifetime reducing from 26 days to 22 days. Global mean OH concentrations of 1.34 x10% molecules
cm ™3 are 4.5 % lower than in a simulation without halogens, leading to an increase in the CH, lifetime (6.5 %) due to OH
oxidation from 7.48 years to 7.96 years. Oxidation of CH4 by Cl is small (~1 %) but CI oxidation of other VOCs (ethane,
acetone, and propane) can be significant (~9-18 %). Oxidation of VOCs by Br is smaller, representing 2.1% of the loss of
acetaldehyde and 0.6% of the loss of formaldehyde.
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1 Introduction

To address problems such as air quality degradation and climate change, we need to understand the composition of the tropo-
sphere and its oxidative capacity. A complicated relationship exists between key chemical families and species such as ozone
(03), HOx (HO2+0OH), NOyx (NO2+NO) and organic compounds which include carbon monoxide (CO), methane (CH,), hy-
drocarbons and oxygenated volatile organic compounds (VOCs) (see for example Monks et al. (2015)). The most important of
tropospheric oxidants is OH, which is itself produced indirectly through photolysis of O3. Oxidants control the concentrations
of key climate and air-quality gases and aerosols (including O3, methane, sulfate aerosol, and secondary organic aerosols)
(Monks et al., 2009; Prather et al., 2012; Unger et al., 2006). Os itself is not directly emitted, and it’s tropospheric burden is
controlled by its sources through chemical productions from NOy and organic compounds, transport from the stratosphere,
and loss via deposition and chemical reactions (Monks et al., 2015).

Halogens (Cl, Br, I) are known to destroy Og through catalytic cycles, such as that shown in reactions 1-3 (Chameides and
Davis, 1980). Tropospheric halogens have also been shown to change OH concentrations (Bloss et al., 2005) and perturb OH
to HO, ratios towards OH (Chameides and Davis, 1980). Halogens perturb the NO to NOs ratio and reduce NOy concentra-
tions by hydrolysis of XNOjg. These perturbations also indirectly decrease O3 formation (von Glasow et al., 2004). Halogens
directly oxidise organics species, with Cl radical reactions proceeding the fastest (Atkinson et al., 2006; Sander et al., 2011).
They also play an important role in determining the chemistry of mercury (Holmes et al., 2009; Parrella et al., 2012; Wang
et al., 2015; Coburn et al., 2016). The literature on tropospheric halogens has been the topic of several recent reviews, which
cover the background in more detail (Simpson et al., 2015; Saiz-Lopez et al., 2012b). However, many uncertainties still exist,
notably with heterogeneous halogen chemistry (Abbatt et al., 2012), and gas-phase iodine chemistry (Saiz-Lopez et al., 2014;

Sommariva and von Glasow, 2012).

O3+ X —XO+ 0y (D
HO5 + X0 — HOX 4+ 05 2
HOX +hv — OH+ X 3)

Net: HO5 + O3 — 205 + OH

Tropospheric halogen chemistry has been studied in box model studies (see Simpson et al. 2015 and citations within) and
more recently in global models ( e.g. Parrella et al. 2012; Saiz-Lopez et al. 2012a, 2014; Schmidt et al. 2016; Sherwen et al.
2016). Modelling has sought to quantify emissions budgets and evaluate these on a global scale (Bell et al., 2002; Ziska et al.,
2013; Hossaini et al., 2013; Ordéiez et al., 2012). Global studies have considered impacts of halogens in the troposphere
(Parrella et al., 2012; Saiz-Lopez et al., 2012a, 2014; Schmidt et al., 2016; Sherwen et al., 2016) and reported reductions in the
tropospheric O3 burden by up to ~15 %. However, this field of research is quickly evolving, with new halogen sources such
as inorganic ocean iodine (Carpenter et al., 2013; MacDonald et al., 2014) and CINOg produced from N2Oj hydrolysis on
sea-salt (Roberts et al., 2009; Bertram and Thornton, 2009; Sarwar et al., 2014) now appearing to be globally important.



10

15

20

25

30

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-424, 2016 Atmospheric
Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Published: 20 May 2016 and Physics
(© Author(s) 2016. CC-BY 3.0 License.

Discussions

Previous studies of halogen chemistry within the GEOS-Chem (www.geos-chem.org) model have focussed on either bromine
or iodine chemistry. Parrella et al. (2012) presented a bromine scheme and its effects on oxidants in the past and present
atmosphere. Eastham et al. (2014) presented the Unified tropospheric-stratospheric Chemistry eXtension (UCX), which added
a stratospheric bromine and chlorine scheme. This chlorine scheme was then employed in the troposphere with an updated
heterogeneous bromine and chlorine scheme by Schmidt et al. (2016). An iodine scheme was employed in the troposphere to
consider present day impacts of iodine on oxidants (Sherwen et al., 2016), which used the representation of bromine chemistry
from Parrella et al. (2012). Up this point, however, the coupling of chlorine, bromine, and iodine in the GEOS-Chem model
and its subsequent impact on the simulated composition of the atmosphere has not been described.

Here we present such a coupled halogen scheme within GEOS-Chem and consider tropospheric impacts of halogens. This
simulation includes recent updates to chlorine (Eastham et al., 2014; Schmidt et al., 2016), bromine (Parrella et al., 2012;
Schmidt et al., 2016), and iodine (Sherwen et al., 2016) chemistry with further updates and additions described in Section 2.
In Section 3 we describe the modelled distribution of inorganic halogens (Section 3.1-3.3), and compare with observations
(Section 3.4). We then outline the impact on oxidants (Section 4.1-4.2), organic compounds (Section 4.3), and other species

(Section 4.4).

2 Model Description

This work uses the GEOS-Chem chemical transport model (www.geos-chem.org, version 10) run at 4°x5° spatial resolution.
The model is forced by assimilated meteorological and surface fields from NASA’s Global Modelling and Assimilation Office
(GEOS-5) . The model chemistry scheme includes Ox, HOy, NOg, and VOC chemistry as described in Mao et al. (2013).
Dynamic and chemical time-step are 30 and 60 minutes, respectively. Stratospheric chemistry is modelled using a linearised
mechanism as described by Murray et al. (2012).

We update the standard model chemistry to give a representation of chlorine, bromine and iodine chemistry. We describe
this version of the model as “Cl+Br+]” in this paper. It is based on the iodine chemistry described in Sherwen et al. (2016)
with updates to the bromine and chlorine scheme described by Schmidt et al. (2016) and Eastham et al. (2014). We have made
a range of updates beyond these. Updated or new reactions not included in Sherwen et al. (2016), Schmidt et al. (2016), or
Eastham et al. (2014) are given in Table 1 with a full description of the halogen chemistry scheme used given in Appendix
Tables 6-9.

For the photolysis of IoOx (X=2,3,4) we have adopted the absorption cross-sections reported by Gémez Martin et al. (2005)
and Spietz et al. (2005) and used the I,O5 cross-section for I;O4. A quantum yield of unity was assumed for all I;Ox species.
It is noted that recent work has used an unpublished spectrum for 15O, that is much lower that IoO3 Saiz-Lopez et al. (2014),
but this is not expected to have a large effect on conclusions presented here.

The parameterisation for oceanic iodide concentration was changed from Chance et al. (2014) to MacDonald et al. (2014)

as the latter resulted in an improved comparison with observations (see Section 7.5 of Sherwen et al. 2016).
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The product of acid catalysed di-halogen release following IT (HOIL, INO2, INO3) uptake was updated from Iy as Sherwen
et al. (2016) to yield IBr and ICI following McFiggans et al. (2002). Acidity is calculated online through titration of sea salt
aerosol by uptake of sulfate dioxide (SO;), nitric acid (HNO3) and sulfuric acid (H,SO,) as described by Alexander (2005).
Re-release of IX (X=Cl,Br) is only permitted to proceed if the sea salt is acidic (Alexander, 2005). Thus aerosol cycling of
IX in the model is not a net source of Iy (and may be a net sink on non-acid aerosol) but alters the speciation (Sherwen et al.,
2016). The ratio between IBr and IC1 was set to be 0.15:0.85 (IBr:ICl), instead of the 0.5:0.5 used previously (Saiz-Lopez
et al., 2014; McFiggans et al., 2000). A ratio of 0.5:0.5 gives a large overestimate of BrO with respect to the observations used
in Section 3.4.2 (Read et al., 2008; Volkamer et al., 2015). We attributed this reduction to the de-bromination of sea-salt which
we do not consider here, and the potential for the model to over estimate the BrOx lifetime. This is discussed further in the next
section but future laboratory and field studies of these heterogenous process are needed to help constrain these parameters.

Iodine on aerosol is represented in the model with separate tracers based on the aerosol on which irreversible uptake occurs
(see Table 8). We include 3 iodine aerosol tracers to represent iodine on accumulation and coarse mode sea-salt and on sulfate
aerosol. The physical properties of the iodine aerosol tracers are assumed to be the same as its parent aerosol as previously
described for sulfate (Alexander et al., 2012) and sea-salt aerosol (Jaeglé et al., 2011).

We have added to the chlorine chemistry scheme described by Eastham et al. (2014) to include more tropospheric relevant
reactions based on the JPL 10-6 compilation (Sander et al., 2011) and IUPAC (Atkinson et al., 2006). The heterogenous reaction
of N2Oj5 on aerosols was updated to yield products of CINO, and HNOj3 (Bertram and Thornton, 2009; Roberts et al., 2009)
on sea salt, and 2HNOj3 on other aerosol types. Reaction probabilities are unchanged (Evans and Jacob, 2005).

Deposition and photolysis of inter-halogen species (ICI, BrCl, IBr) and the reaction between CIO and IO were also included
(Sander et al., 2011).

3 Model results

We run the model for two years (1/1/2004 to 1/1/2006), discarding the first year as a “spin-up” period and using the second year
(2005) for analysis. Non-halogen emissions are described in Sherwen et al. (2016). A reference simulation without any halogens
(“NOHAL”) was also performed. Where comparisons with observations are shown, the model is run for the appropriate year
with a 3 months “spin-up” before the observational dates, unless explicitly stated otherwise. The appropriate month from the
2005 simulation is used as the initialisation for these observational comparisons to account for inter-annual variations. The
model is sampled at the nearest timestamp and grid box. The model only calculates chemistry in the troposphere. To avoid

confusion we do not show results above the tropopause (lapse rate of temperature falls below 2 K/km).
3.1 Emissions

The emissions fluxes of chlorine, bromine, and iodine species are shown in Figure 1 with global totals in Table 2. We do not

consider the CI and Br contained within sea-salt as emitted in our simulation, following Schmidt et al. (2016) until a chemical
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process liberates them into the gas-phase. These processes are the uptake of NoO5 on sea-salt and uptake of I species on
sea-salt. We do not include explicit sea-salt de-bromination for reasons described in Schmidt et al. (2016).

The organic iodine (CH3I, CH3I5, CH5ICI, CH5IBr) emissions are from Ordéiiez et al. (2012) as described in Sherwen
et al. (2016). Inorganic iodine emissions (HOI, I5) (Carpenter et al., 2013; MacDonald et al., 2014) are 28 % lower here than
reported by Sherwen et al. (2016), due to use of the MacDonald et al. (2014) parameterisation for ocean surface iodide rather
than that of Chance et al. (2014). Heterogeneous iodine aerosol chemistry (Section 2 and Appendix Section B1) does not lead
to a net release of iodine, instead just recycling it from less active forms (INOs, INO3, HOI) into more active forms (ICI/IBr).

The organic bromine (CH3Br, CHBr3, CH5Bry) emissions have been reported previously (Parrella et al., 2012; Schmidt
et al., 2016) and our simulation is consistent with this work. A further source of 0.031 Tg Br yr~! (3.4 % of total) is included
here from CH,IBr photolysis. The heterogeneous cycling for Bry (defined in footnote below') has been updated here from
Schmidt et al. (2016), as described in Section 2/Appendix B1. An additional Bry source not considered by Schmidt et al.
(2016) is iodine activated IBr release from sea salt, which amounts to 0.31 Tg Br yr—! and the majority (67 %) of this is
tropical (22°N-22°S). With all these updates, the tropospheric mean daytime (07:00-19:00) BrO concentration is 1.1 pmol
mol~! (0.64 pmol mol~! 24 hr average), which is 13 % higher than reported in Schmidt et al. (2016).

The organic chlorine emission (CH3Cl, CHCl;3, CH3Cly) for this simulation (Table 2) has been described previously
Schmidt et al. (2016) and set using fixed surface concentrations. An additional source of 0.046 Tg Cl yr='(0.94 % of to-
tal) is present from CH5ICI photolysis (Sherwen et al., 2016). CINOs production from the heterogeneous uptake of NoOj5
provides a source of 0.66 Tg Cl yr—! (14 % of total) with the vast majority (95 %) being in the northern hemisphere, with
strongest sources in coastal regions north of 20°N. For June we calculate a global source of 21 Gg Cl month~! which is
substantially less than the 62 Gg Cl month~! (Pers. com. Sarwar Golam 2016) calculated in a previous study (Sarwar et al.,
2014). The difference in NOy concentrations due to differences in model resolution probably contributes to this. Uptake of
HOIL, INO, and INO3 to sea-salt aerosol leads to the emission of ICl, giving an additional source of 0.78 Tg Cl yr—* (17.6 %
of total) mostly (67 %) in tropical (22°N-22°S) locations.

Most of the emissions of Br and I species in our simulation occur in the tropics. It is notable that the chlorine emissions are
more widely distributed. This is as a result of longer lifetimes of chlorine precursor gases which moves their destruction further

from their emissions and that the CINO- source is primarily in the northern extra tropics.
3.2 Deposition of halogens

Figure 2 shows the global annual integrated wet and dry deposition of inorganic Xy (X=Cl, Br,I). Much of the deposition of the
halogens occurs over the oceans (69 %, 83 %, and 90 % for Cly, Bry and Iy respectively). It is high over regions of significant
tropical precipitation (ITCZ, Maritime continents, Indian Ocean) and much lower at the poles reflecting lower precipitation
and emissions.

We find that the the major Cly depositional sink is HCI (85 %), with HOCI contributing 11 % and CINOg3 3.2 %. The Bry
sink is split between HBr, HOBr and BrNOj3 with fractional contributions of 38, 30 and 24 % respectively. The major Iy sink

"Here Xy (X=CI,Br,]) is the sum of gas-phase inorganic species of a given halogen in units of that halogen
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is HOI deposition which represents 59 % of the depositional flux. The two next largest sinks are deposition of INO3 and iodine
aerosol (22 % and 15 %).

3.3 Halogen species concentrations

Figure 3 shows the surface and zonal concentration of annual mean Iy, Bry, Cly, with Figure 4 showing the same for 10, BrO
and Cl, key halogen compounds in the atmosphere. Figure 5 showing the global molecule weighted mean vertical profile of the
halogen speciation.

Inorganic iodine concentrations are highest in the tropical marine boundary layer consistent with their dominant emissions
regions. The highest concentrations are calculated in the coastal tropical regions, where enhanced O3 concentrations from in-
dustrial areas flow over high predicted oceanic iodide concentrations and lead to increased oceanic inorganic iodine emissions.
Within the vertical there is an average of ~0.5-1 pmol mol~! of Iy consistent with previous model studies (Saiz-Lopez et al.,
2014; Sherwen et al., 2016). The lowest concentrations of Iy are seen just above the marine boundary layer where Iy loss via
wet deposition is most favourable due to partitioning towards water soluble HOI. At higher altitudes, lower temperature and
high photolysis rates push the Iy speciation to less water soluble compounds (I0, INOj3) and hence the Iy lifetime is longer. IO
concentrations (Figure 4) follow the concentrations of I,, with high concentrations in the tropical marine boundary layer. The
1O concentration increases into the upper troposphere reflecting a partitioning of I, in this region towards IO (and IONO3) and
away from HOI. The global mean tropospheric lifetimes of Iy and IOy are 2.3 days and 1.3 minutes, respectively.

Total reactive bromine is more equally spread through the atmosphere than iodine. This reflects the longer lifetime of source
species with respect to photolysis which gives a more significant source higher in the atmosphere. The highest concentrations
are still found in the tropics. Unlike Iy, Bry increases significantly with altitude, with BrNO3 and HOBr being the two most
dominant species. BrO concentrations (Figure 4) follows the concentration of inorganic bromine. In the boundary layer the
highest concentrations are found in the tropical marine boundary layer concentrations are in the tropical marine boundary. BrO
and IO do not strongly correlate in the tropical marine boundary layer reflecting their differing sources. BrO concentrations
increase towards the upper troposphere associated with the increase in total Br,,. The global annual average (molecule weighted)
tropospheric BrO mixing ratio in our simulation is 0.64 pmol mol~! (Bry=4.5 pmol mol~!). When previous implementations
(Parrella et al., 2012; Schmidt et al., 2016) are run for the same year and model version as this work (GEOS-Chem v10), the
modelled BrO concentrations are found to be 12 % lower than Schmidt et al. (2016), but 17 % higher than Parrella et al. (2012).
We calculate a tropospheric lifetime of Bry of 17 days and a BrOy lifetime of 15 minutes.

Total inorganic chlorine has a highly non-uniform distribution at the surface reflecting the dominance of the CINOg source
from N5 Os5 uptake on sea-salt. At the surface CINO,, HCI, BrCl and HOCI represent around 25 % of the total Cly each. Away
from the surface the CINOq concentrations drop off rapidly due to the short lifetime of sea salt. HCI concentrations increase
significantly into the middle and upper troposphere and dominate the Cly distribution. This suggests that stratospheric chlorine
freed from CFCs and organic chlorine strongly contributes to free tropospheric concentrations of Cly. However modelled Cly
is likely a lower limit on the concentrations in the uppermost troposphere (Froidevaux et al., 2008). Cl mixing ratios are very

low 0.075 fmol mol~! or 2000 cm~? in the marine boundary layer. Reactive Cl (ie not HCI) drop from the surface to around
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10km where it then increases again towards to stratosphere. Cl shows a wider distrbution than IO and BrO reflecting the source
wider distribution of Cl,. We calculate a tropospheric lifetime of Cly of 15 days, a ClOy lifetime of 2 seconds, and a global
tropospheric mean inorganic chlorine (Cly) concentration of 70 pmol mol~! in our simulation.

The chemistry of halogens and sea-salt is highly uncertain (Simpson et al., 2015; Saiz-Lopez et al., 2012b; Abbatt et al.,
2012). Estimates for sea-salt de-bromination range from 0.51 Tg yr—! (Parrella et al. 2012 implemented in GEOS-Chem v10
and v9-2) to 2.9 Tg yr~! (Fernandez et al., 2014). Some studies have also not included sea-salt de-bromination (von Glasow
et al., 2004; Schmidt et al., 2016) as we do not in this work. Arguably this work therefore provides a lower estimate of bromine
and chlorine sources in the troposphere.

Figure 6 shows column integrated BrO and IO, which are the major halogen species for which we have observations (see
Section 3.4). Tropospheric ClO concentrations within the troposphere are small (see Figure 5) and are therefore not shown
in Fig 6. Tropical maxima are seen for both BrO and IO, with BrO concentrations decreasing towards the equator. For IO a
localised maximum is seen in the Arabian Sea. The IO maximum in Antarctica reported from satellite retrievals (Schonhardt

et al., 2008) is not reproduced in our model potentially reflecting the lack of polar specific processes in the model.
3.4 Comparison with halogen observations

The observational dataset of tropospheric halogen compounds is sparse. Previous studies that this work is based on have shown
comparisons for the oceanic precursors for chlorine (Eastham et al., 2014; Schmidt et al., 2016), bromine (Parrella et al., 2012;
Schmidt et al., 2016), and iodine (Bell et al., 2002; Sherwen et al., 2016; Ordéfiez et al., 2012). The model performance in
simulating these compounds has not changed since these previous publications so we focus here on the available observations

of concentrations of 10, BrO, and some inorganic chlorine species (CINOg, HCl and Cly).
3.4.1 Todine monoxide (I0)

A comparison of IO to a suite of recent remote surface observations is shown in Fig 7. The model shows an overall negative
bias of 21 %. This compares with the 90 % positive bias previously reported in (Sherwen et al., 2016). This reduction in bias
is due to the use of the MacDonald et al. (2014) iodide parameterisation over that of Chance et al. (2014) which has reduced
the inorganic emission of iodine, along with the restriction of iodine recycling to acidic aerosol.

Figure 8 shows a comparison between modelled IO with altitude against observations in the eastern Pacific (Volkamer et al.,
2015; Wang et al., 2015). In general, the model agreement with observations is good. There is an average bias of +40 % in
the free troposphere (350 hPa<p< 900 hPa), which increases to +58 % in the upper troposphere (350 hPa>p> tropopause).
As with the surface measurements, the model bias when comparing to IO observations (Volkamer et al., 2015; Wang et al.,
2015) in the free and upper troposphere is decreased from previously reported positive biases of 73 % and 96 %, respectively
(Sherwen et al., 2016).
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3.4.2 Bromine monoxide (BrO)

Comparisons of BrO against seasonal satellite tropospheric BrO observations from GOME-2 (Theys et al., 2011) are shown
in Figure 9. As shown previously (Parrella et al., 2012; Schmidt et al., 2016) the model has some skill in capturing both
the latitudinal and monthly variations in tropospheric BrO columns. However it underestimates the column BrO in the lower
southern latitudes (60°S-90°S), and to a smaller degree also in lower northern latitudes (60°N-90°N) which may reflect the
lack of bromine from polar (blown snow, frost flowers etc.) sources and sea-salt de-bromination processes.

Figure 11 shows modelled vertical BrO concentrations against observations in the eastern Pacific (Volkamer et al., 2015;
Wang et al., 2015). We find a reasonable agreement within the free troposphere (350 hPa<p< 900 hPa) in both the tropics
and subtropics, with an average negative bias of 15 and 34 %, respectively. A similar comparisons is seen in the upper tropo-
sphere (350 hPa>p> tropopause) show similar negative biases for the tropics and subtropics, of 20 and 24 %, respectively.
The decrease in agreement seen in the TORERO comparison (Fig. 11) relative to that previously presented in Schmidt et al.
(2016) is due to reduced BrCl and BrO production from slower cloud multiphase chemistry (see Sections B1-B3). We model
hihjer BrO concentrations in the tropical marine boundary layer above those observed (Volkamer et al., 2015). Our modelled
concentrations are lower than those reported previously (Miyazaki et al., 2016; Long et al., 2014; Pszenny et al., 2004; Keene
et al., 2009).

As shown in Fig. 10, comparisons between the model and observations of BrO made at Cape Verde (Read et al., 2008;
Mahajan et al., 2010) show a negative bias of 50 %. We attribute this to the high local sea-salt loadings at this site (Carpenter
et al., 2010), which is situated in the surf zone. This may locally increase the BrO concentrations. The model concentrations of
~1 pmol mol~! are however consistent with other ship borne observations made in the region (Leser et al., 2003).

Our model does not include sea-salt de-bromination and yet calculated roughly the correct concentrations of BrO. Inclu-
sion of sea-salt de-bromination leads to excessively high BrO concentration in the model (Schmidt et al., 2016). Sea-salt
de-bromination is well observed, thus the success of the model despite the lack of inclusion of this process suggest model
failure in other areas. The BrOy lifetime may be too long. This is dominate by the reaction between Br and organics to produce
HBr. Oceanic sources of VOCs such as acetaldehyde have been proposed (Millet et al., 2010; Volkamer et al., 2015) and a
significant increase in the concentration of these species would lead to lower BrOy concentrations. Alternatively, a reduction
in the efficiency of cycling of Bry through aerosol would also have a similar effect. The aerosol phase chemistry is complex
and the parameterisations used here may be too simple or fail to capture key processes (e.g. pH, organics). These all require
further study in order to help reconcile the rapidly growing body of observation of both gas and aerosol phase bromine in the

atmosphere with models.
3.4.3 Nitryl chloride (CINO), hydrochloric acid (HCI), hypochlorous acid (HOCI) and molecular chlorine (Cl,)

Very few constraints on the concentration of tropospheric chlorine species are available.
An increasing number of CINO, observations are available (Table 3). We find that the model does reasonably well in coastal

regions, but does not reproduce observations in continental regions or regions with very high NOy.
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Lawler et al. (2011) reports measurements of HOCI and Cls at Cape Verde for a week in June 2009. For the first 4 days
of the campaign, HOCI concentrations were higher and peaked at ~100 pmol mol~! with Cl, concentrations peaking at ~30
pmol mol~!. For the later days, HOCI concentrations dropped to around 20 pmol mol~! and Cl, concentrations to ~0-10
pmol mol~!. We calculate much lower concentrations of Cly ( 1x10~2 pmol mol~!) and slightly lower HOCI ( 10 pmol
mol 1) throughout the same days of the year in our analysis year (2005). This is similar to findings of Long et al. (2014), who
also found better comparisons with the cleaner period of observations. Similar to the comparison with observed CINO5, our
simulation underestimates HOCI and Cls.

The model does not include many sources of reactive chlorine. The failure to reproduce continental CINOs is likely due
to a lack of representation of sources such as salt plains, direct emission from power station and swimming pools, and HCI
acid displacement. The inability to reproduce the very high CINO, found in cities (Pasadena) and industrialised regions(Texas)
may be due to the coarse resolution of the model compared to the spatial inhomogeneity of these observations. The failure to
reproduce the Cape Verde observations may be due to the very simple aerosol phase chlorine chemistry included in the model.
Overall we suggest that the model provides a lower limit estimate of the chlorine emissions and therefore burdens within the
troposphere, but constraints at the surface concentrations are limited and vertical profiles are not available. Further laboratory
work to better define aerosol processes and observations will be necessary to investigate the role of chlorine on tropospheric

chemistry.

4 TImpact of halogens

We now investigate the impact of the halogen chemistry on the composition of the troposphere. We start with O3 and OH and

then move onto other components of the troposphere.
4.1 Ozone (O3)

Figure 12 shows changes in column, surface and zonal O3 both in absolute and fractional terms between simulations with and
without halogen emissions (“Cl+Br+I” vs “NOHAL”). Globally the mass-weighted, annual-average mixing ratio is reduced by
7.4 pmol mol~! (14.6%) with the inclusion of halogens (“Cl+Br+I"-“NOHAL”)/“NOHAL"*100). A much larger percentage
decrease of 25.0 % (7.2 pmol mol—!) is seen over the ocean surface. Large percentage losses are seen in the oceanic southern
hemisphere as reported previously (Long et al., 2014; Schmidt et al., 2016; Sherwen et al., 2016) reflecting the significant
ocean-atmosphere exchange in this regions. The majority (65 %) of the change in O3 mass due to halogens occurs in the free
troposphere (350 hPa<p<900 hPa).

Comparisons of the model and observed surface and sonde O3 concentrations are given in Figures 13 and 14. In the tropics
the fidelity of the simulation improves with the inclusion of halogens (Schmidt et al., 2016; Sherwen et al., 2016). Sonde and

surface comparisons north of ~50°N and south of ~60°S however show that the model now underestimates Os.
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The global odd oxygen budget (Oy, as defined in the footnote below?) in the troposphere with (“Cl+Br+I") and without
halogens (“NOHAL”) is shown in Table 4. The Oy loss through chlorine, bromine, and iodine represents 0.46, 5.8 and 12 %
of the total Oy loss respectively, thus halogens constitute 18.2 % of the overall O3 loss. The sum of halogen driven Oy loss is
900 Tg Ox yr—!, which is similar to the magnitude of loss via reaction of O3 with HO of ~1100 Tg Ox yr—* (23 % of total).
Halogen cross-over reactions (BrO+10, BrO+ClO, I0+ClO) contribute little to the overall O3 loss. This number compares with
~930 Tg Oy yr~! reported in GEOS-Chem previously by Sherwen et al. (2016). Saiz-Lopez et al. (2014) found that, between
50°S-50°N and over ocean only, halogens are responsible for the loss of 640 Tg Ox yr—!. We find a comparable value of 670

1 with our model.

Ox yr—

The majority of the halogen driven O3 loss (58.1 %) occurs in the free troposphere (350 hPa<p<900 hPa). Halogens
represent 34.9 and 31.0 % of Oy loss in the upper troposphere (350 hPa>p> tropopause) and marine boundary layer (900
hPa<p ) respectively as shown in Figure 15. The marine boundary layer Oy loss attributable to halogens is equal to the 31
% reported by Prados-Roman et al. (2015a) previously, and it is slightly higher than that reported solely for iodine of 26 %
(Sherwen et al., 2016).

Although the partitioning between the Oy loss processes is significantly different between the simulations with halogens
and without (Table 4), the overall annual Oy loss only increases by 2.2 % (4933 vs 4829 Tg yr—!). The Ox production term
decreases by 1.0 %. This decrease is due to a reduction in NOy concentrations due to hydrolysis of XNOg (X=Cl, Br, I). Our
tropospheric NOy burden decreases by 1.7 % to 168 Gg N (see table 10) on inclusion of halogens consistent with observations
and previous model studies (Long et al., 2014; von Glasow et al., 2004; Parrella et al., 2012; Schmidt et al., 2016). Globally
NOy loss through CINO3 and BrNOg hydrolysis is approximately equal (1:0.86), and overall proceeds at a rate of ~10 %
of the NOy loss through the NO2+OH pathway. Iodine nitrite and nitrate (INO2, INO3) hydrolysis is much less significant
(~0.25 % of rate of NO5+OH). Net Oy is the difference between the production and loss terms and the change here is much
greater leading to an overall decrease in net production of tropospheric Oz (POx-LOy) of 26 % (159 Tg yr~!), and a resultant

in decrease O3 lifetime of 14 %.
4.2 HOyx (OH+HO,)

We find that global molecule weighted average HOx (OH+HO>) concentrations are reduced by 8.5 % with the inclusion of
halogens, with OH decreasing by 4.5 % from 1.40x105 to 1.34x10° molecules cm~3. Lower O3 concentrations decrease the
primary OH source (O3 h—”>20H) by 15.5 %, and the secondary OH source from HO2+NO by 2.2 %.

The reduction in the sources of OH is buffered by an additional OH source from the photolysis of HOX (X=Cl, Br, I) which
acts to increase the conversion of HO- to OH. Previously, Sherwen et al. (2016) showed an increase of 1.8 % in global OH
concentrations on inclusion of iodine. However, increased Bry and reduced Iy concentrations in the simulations described here

mean that the increased OH source from HOX photolysis does not compensate fully for the reduced primary source, resulting

2Here Oy is defined as O3 +NOgz 4 2NO3 4+ PAN + PMN + PPN 4 HNOy + 3N205 + HNO3 + MPN + XO + HOX + XNO3 + 2XNO3 +
2010 + 21502 + 31203 + 41204 + 2Cl202 + 20CIO, where X=Cl, Br, I; PAN = peroxyacetyl nitrate; PPN = peroxypropionyl nitrate; MPN = methyl

peroxy nitrate; and PMN = peroxymethacryloyl nitrate.
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in an overall 4.5 % reduction in global mean OH. This buffering contributes to a smaller change in OH than report previously
by Schmidt et al. (2016) of 11 %. As reported previously (Long et al., 2014; Schmidt et al., 2016), we also find the net effect
of halogens on the OH:HOx ratio is a small increase (4.4 %).

4.3 Organic Compounds

The oxidation of volatile organic compounds (VOCs) by halogens is included in this simulation (see Table 6 for reactions).
The global fractional loss due to OH, Cl, Br, NOj3, and photolysis for a range of organics is shown in Figure 16.

Globally, Br oxidation is small in our simulation and contributes 2.0 % to the loss of acetaldehyde (CH3CHO), 0.6 %
of the loss of formaldehyde (CH2O), 0.26 % of the loss of >C4 alkenes, and < 0.001 % of the loss of other compounds.
Recent work has suggests a significant source of oceanic oxygenated VOCs (Millet et al., 2010; Coburn et al., 2014; Sinreich
et al., 2010; Mahajan et al., 2014; Lawson et al., 2015; Volkamer et al., 2015; Myriokefalitakis et al., 2008) which we do not
include in this simulation. Furthermore although our modelled Bry is broadly comparable to some previous work (Schmidt
et al., 2016; Parrella et al., 2012), it is lower in the marine boundary layer than in other recent work (Long et al., 2014). The
combination of these two factors suggest that our model provides a lower bounds of impacts of bromine on VOCs. Significantly
higher concentrations of oVOC would decrease the BrO concentrations in the model and might then allow an increased sea-salt
source of reactive bromine.

The oxidation of Volatile Organic Compounds (VOCs) by chlorine is more significant. In our simulation chlorine accounts
for 18, 9, and 9 % of the global loss of ethane (CoHg), propane (C3Hsg), and acetone (CH3C(O)CHz)), respectively. Loss
of other VOC:s is globally small. This increased loss due to Cl is to some extent compensated for by the reduction in the OH
concentrations that we calculate. Thus the overall lifetime of ethane, propane, and acetone changes from 131, 38, 85 days in
the simulation without halogens to 120, 37, 82 in the simulation with halogens. Notably the ethane lifetime without halogens
is 10% longer than it is with. Given that we consider the chlorine in the model to be a lower limit, ethane oxidation by chlorine
may in reality be more significant than found here.

Methane is a significant climate gas, as it has the second highest forcing amongst well-mixed greenhouse gases from prein-
dustrial to present day (Myhre et al., 2013). In our simulation without halogens we calculate a tropospheric chemical lifetime
due to OH of 7.48 years. With the inclusion of halogen chemistry the OH concentration drops, extending the methane lifetime
due to OH of become to 7.96 years (an increase of 6.5 %). However, in our halogen simulations, chlorine radicals also oxidise
methane (~1 % of the total loss) shortening the lifetime to 7.89 years (0.85 %). As noted previously, the model’s chlorine
concentrations appear to be underestimated. Allan et al. (2007) estimate a 25 Tg yr~! sink for methane from CI (~4 %), sig-
nificantly higher than our estimate. Overall the model’s CH,4 lifetime still appears to be short compared to the observationally
based estimation of 9.1 4 0.9 from Prather et al. (2012), but halogens decrease this bias.

In our simulations, halogens (essentially chlorine) have a significant but not overwhelming role in the concentrations of
hydrocarbons (from ~1 % of methane loss to ~18 % of ethane loss). However, as discussed earlier the low biases seen with the
very limited observational dataset of chlorine compounds would suggest that the impacts calculated here are probably lower

limits.
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4.4 Other species

With the inclusion of halogens in the troposphere there are a large number of changes in the composition of the troposphere.
Figure 17 illustrates the fractional global change in burden by species (for abbreviation see footnote?). The spatial and zonal
distribution of these changes by species family (HOy, NOy, SOy as defined in footnote*) are shown in Figure 18 and for a few
VOCs (C3Hg, CoHg, acetone, and >C4 alkanes) in Figure 19. A tabulated form of these changes is given within the Appendix
(Table 10)

As discussed in section 4.1 and 4.1, a clear decrease in oxidants (O3, OH, HO5, H5O5) is seen. This drives an increase in
the concentrations of some VOCs (2.1 % on a per carbon basis), including CO (2.8 %) and Isoprene (3.4 %). However, as
discussed, it also adds an additional Cl sink term which leads to an overall decrease in some species (e.g. CoHg, (CH3)2CO,
C3Hg) particularly in the northern hemisphere oceanic regions. The SOy burden increases slightly (0.7 %), which can be

attributed to decreases in oxidants.

5 Summary and Conclusions

We have presented a model of tropospheric composition which has attempted to include the major routes of halogen chemistry
impacts. Assessment of the model performance is limited as observations of halogen species are extremely sparse. However,
given the available observations we conclude that the model has some useful skill in predicting the concentration of iodine and
bromine species and appears to underestimate the concentrations of chlorine species.

Consistent with previous studies, our model shows significant halogen driven changes in the concentrations of oxidants.
The tropospheric O3 burden and global mean OH decreased by 14.6 %, and 4.5 % respectively, on inclusion of halogens. The
methane lifetime increases by 6.5 %, improving agreement with observations.

There are a range of changes in the concentrations of other species. Direct reaction with CI atoms leads to enhanced oxida-
tion of hydrocarbons with ethane showing a significant response. Given the model appears to provide a lower limit for atomic
ClI concentrations this suggests a major missing oxidation pathway for ethane which is currently not considered. NOy concen-
trations are reduced by aerosol hydrolysis of the halogen nitrates which leads to reduced global O3 production. Our simulation
of BrO appears to be relatively consistent with those observed, however we do not include sea-salt de-bromination mechanism.
This would suggest that either the cycling of bromine in our model is generally too fast, or that we do not have sufficiently
large BrOy sinks (potentially oVOCs). Both hypothesis warrant further research.

Significant uncertainties however remain in our understanding of halogens in the troposphere. The gas phase chemistry and
photolysis parameters of iodine compounds are uncertain, together with the emissions of their organic and inorganic precursors

(Sherwen et al., 2016). For chlorine, bromine and iodine heterogeneous chemistry, little experimental data exists and suitable

3 Abbreviated species names are defined in the GEOS-Chem manual (http:/acmg.seas.harvard.edu/geos/doc/man/appendix_6.html) and here:
MOH=Methanol, EOH=Ethanol, ALD2=Acetaldehyde, ISOP=Isoprene, ALK4=>C4 alkanes, CH3Oq,=Methylperoxy radical, A302= primary ROz from

C3Hg, B302=secondary RO2 from C3Hg, ATO2=RO3 from Acetone, R402=RO3 from >C4 alkanes, RIO2=RO> from Acetone
4 Here we define families of HOy, NOy and SOy as follows. HOy: OH + HO2, NOyx: NO+NOs, SOy : SO3 + SO4 + SOy on sea salt.
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parameterisations for the complex aerosols found in the atmosphere are unavailable (Abbatt et al., 2012; Saiz-Lopez et al.,
2012b; Simpson et al., 2015).
Understanding fully the impact of halogens on tropospheric composition will require significant development of new experi-

mental techniques and more field observations, new laboratory studies and models which are able to exploit these developments.

Appendix A: Tabulated Burden Changes on inclusion of halogens

Table 10 gives the burdens with and without halogens and the fractional change.

Appendix B: Gas phase Chemistry Scheme

Here is described the full halogen chemistry scheme as presented in previous work (Bell et al., 2002; Eastham et al., 2014;
Parrella et al., 2012; Schmidt et al., 2016; Sherwen et al., 2016) and with updates as detailed in section 2 and Table 1. The

complete gas phase photolysis, bimolecular and termolecular reactions are described in Tables 5 ,6 and 7 .
B1 Heterogenous reactions

The halogen multiphase chemistry mechanism is based on the iodine mechanism (“Br+I") described in Sherwen et al. (2016)
and the coupled mechanism of Schmidt et al. (2016). The heterogenous reactions in the scheme are shown in Table 8 and
with further detail individual detail on certain reactions below. The loss rate of a molecule X due to multiphase processing on

aerosol is calculated following Jacob (2000).

dnx T 4N\t
— A Bl
dt <Dg +C'y) X B

where 7 is the aerosol effective radius, Dy is the gas phase diffusion coefficient of X, c is the average thermal velocity of X,

~ is the reactive uptake coefficient, A is the aerosol surface area concentration, and nx is the gas phase concentration of X.
B2 Aerosols

We consider halogen reactions on sulfate aerosols, sea salt aerosols, and liquid and ice cloud droplets. The implementation of
sulfate type aerosols in GEOS-Chem is described by Park et al. (2004) and Pye et al. (2009). Sulfate aerosols are assumed to
be acidic with pH=0.

The GEOS-Chem sea salt aerosol simulation is as described by Jaeglé et al. (2011). The transport and deposition of sea
salt bromide follows that of the parent aerosol. Oxidation of bromide on sea-salt produces volatile forms of bromine that are
released to the gas phase. Sea salt aerosol is emitted alkaline, but the alkalinity can be titrated in GEOS-Chem by uptake of
HNOg3, SO4, H2SO, (Alexander, 2005). Sea salt aerosol with no remaining alkalinity is assumed to have pH=5. We assume

no halide oxidation on alkaline sea salt aerosol.
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The liquid cloud droplet surface area is modelled using cloud liquid water content from GEOS-FP (Lucchesi, 2013) and
assuming effective cloud droplet radii of 10 um and 6 um for marine and continental clouds, respectively. The ice cloud
droplet surface area is modelled in a similar manner assuming effective ice droplet radii of 75 ym. We assume that ice cloud
chemistry is confined to an unfrozen overlayer surrounding the ice crystal, see Schmidt et al. (2016) for details. Cloud water
pH (typically between 4 and 6) is calculated locally in GEOS-Chem following (Alexander et al., 2012).

The reactive uptake coefficients depend on the aerosol halide concentration. For sea salt aerosol, the bromide concentration
is calculated directly from the bromide content and the aerosol mass. Sea salt aerosol chloride is assumed to be in excess (see
below). For clouds and sulfate aerosol, the bromide and chloride concentration is estimated assuming equilibrium between gas

phase HX and aerosol phase X .
B3 Reactive uptake coefficients
B3.1 HOBr+ Cl~ /Br~

The reactive uptake coefficient is calculated as

y=T a7, (B2)

where the mass accomodation coefficient for HOBr is o = 0.6 and

_ 4Hyop: RTkyoprx- (X J[HT L f(r,1,)
c

r

) (B3)
with kpoprrcr- = 5.9 x 10°M~2s7! and kpoprypr- = 1.6 x 1019 M =257, In the equation above c is the average thermal
velocity of HOBr, and f(I,.,7) is a reacto-diffusive correction factor,

f(l,7) = coth (T) — &, (B4)

l, r

with r being the radius of the aerosol. For sea salt aerosol HOBr + CI~ is assumed to be limited by mass accommodation, i.e.

I' > «, due to high concentration of Cl1~ in sea salt aerosol. The reacto-diffusive length scale is

Dy
I, = , BS
\/kHOBr+X [(X~][HT] ®

where D; = 1.4 x 10~°cm?s~ 1! is the aqueous phase diffusion coefficient for HOBr. The listed parameters are taken from

Ammann et al. (2013), and ko, .- is from Beckwith et al. (1996).
B3.2 CINOj;+ Br~
The reactive uptake coefficient is calculated as

y=T"'+a )7, (B6)
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where the mass accomodation coefficient for CINOs is o« = 0.108 and

. 4WRT,C/[Br}Dl | (B7)

where c is the average thermal velocity of CINO3, D; = 5.0 x 10~%cm?s™! is the aqueous phase diffusion coefficient for

CINOsg, and W = 105 v/Ms bar~!.
B3.3 O3+ Br—

The reactive uptake coefficient is calculated as
y=Iv+Ts, (B8)

where I'y, is the bulk reaction coefficient,

I, = 4H03 RTkO3+Br* [Br_]lrf(rvlr) ’ (B9)

C

with ko, g~ = 6.8 x 10® exp(—4450K/T)M~!s~1. In the equation above c is the average thermal velocity of Og, and
f(l,,r) is a reacto-diffusive correction factor,
r l,
f(l,,r) = coth ) (B10)
, r

with r being the radius of the aerosol. The reacto-diffusive length scale is

D
by = 4| ———— (B11)
kOngBr* [Br ]

where D; = 8.9 x 10~%cm?s ™! is the aqueous phase diffusion coefficient for Os.
The surface reaction coefficient is calculated as,
_ 4k8 [BI‘_ (Surf)] KLangC Nmax
o1+ Krange[Os(g)])
2

where the surface reaction rate constant is k; = 10~ cm?s™!, the equilibrium constant for O3 is Krangc = 10~ e¢m3, and

I, B12)

the maximum number of available sites is taken as Ny.x = 3 X 10'* cm 2. The surface bromide concentration is estimated as,

[Br~ (surf)] = min(3.41 x 10" cm™2M ™! [Br ™|, Nyax)- (B13)
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Figure 1. Average annual halogen surface emission of species and column integrated fluxes for species that have fixed surface concentrations
in the model (CH3Cl, CH3Cl, CHCl3, CHBr3) or those with vertically variable sources ( CINOs from N2Os uptake on sea-salt and IX
(X=Cl,Br) production from HOI, INO3, and INO3 uptake). Values are given in kg X m2s7! (X=Cl,Br,I).
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Figure 1. Continued.
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Figure 2. Annual global Xy (X=Cl, Br, I) deposition (defined in Footnote 1). Values are given in terms of mass of halogen deposited (kg X
m~2 s, X=Cl,Br,]).
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Figure 3. Tropospheric distribution of Cly, Bry, and Iy (defined in Footnote 1) concentrations. Upper plots show surface and lower plots
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plotted value of 17 pmol mol ™! at the surface over the Red Sea.
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Figure 4. Tropospheric distribution of 10, BrO and CI concentrations. Upper plots show surface and lower plots show zonal values. Only

boxes that are entirely tropospheric are included in this plot.
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Figure 5. Modelled global average vertical Xy (X=Cl, Br, I) (defined in Footnote 1). Units are pmol mol~! of X (where X=Cl, Br, I). For
Cly the y-axis is capped at 20 pmol mol ! to show speciation. A Cly maximum of 1062 pmol mol " is found within the altitudes shown due

to additional HCI contributions increasing with altitude.
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Figure 7. Iodine oxide (I0) surface observations (black) by campaign compared against the simulation with halogen chemistry (“Cl+Br+I",

red). Cape Verde measurements are shown against hour of day and others are shown as a function of latitude. Values are considered in 20°

bins, with observations and modelled values at the same location and time (as described in section 2) shown side-by-side around the mid point

of each bin. The extent of the bins is highlighted with grey dashed lines. Observations are from Cape Verde (Tropical Atlantic, Mahajan et al.

2010; Read et al. 2008), TransBrom (West Pacific, GroBmann et al. 2013), the Malaspina circumnavigation (Prados-Roman et al., 2015b),
HaloCAST-P (East Pacific, Mahajan et al. 2012), and TORERO ship (East Pacific, Volkamer et al. 2015). The number of data points within

latitudinal bin are shown as “n

the most extreme point within 1.5 times the inter-quartile range.

31

. The boxplot extents give the inter-quartile range, with the median shown within the box. The whiskers give



Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-424, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 20 May 2016

(© Author(s) 2016. CC-BY 3.0 License.

Atmospheric
Chemistry
and Physics

Discussions

14}

12

10+_

Altitude (km)
T
|
L

Fegr.
|

;

-+ +

—  Obs. (AMAX DOAS)
Model

(pmol mol~1)

Figure 8. Vertical comparison of the model (“Cl+Br+I") and measured iodine oxide (IO) during TORERO aircraft campaign (Volkamer

et al., 2015; Wang et al., 2015). Model and observations are in red and black respectively. Values are considered in 0.5 km bins, with

observations and modelled values at the same location and time (as described in section 2) shown side-by-side around the mid point of

each bin. Measurements were taken aboard the NSF/NCAR GV research aircraft by the University of Colorado airborne Multi-Axis DOAS
instrument (CU AMAX-DOAS) in the eastern Pacific in January and February 2012 (Volkamer et al., 2015; Wang et al., 2015). The boxplot

extents give the inter-quartile range, with the median shown within the box. The whiskers give the most extreme point within 1.5 times the

inter-quartile range.
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Figure 9. Seasonal variation of zonal mean tropospheric BrO columns in different latitudinal bands. 2007 observations from the GOME-2

satellite instrument (Theys et al., 2011) are compared to GEOS-Chem values at the GOME- 2 local overpass time (9:00-11:00).
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Figure 10. Bromine oxide (BrO) surface observations (black) at Cape Verde (Read et al., 2008; Mahajan et al., 2010) compared against the

simulation with halogen chemistry (“Cl+Br+1”, red). Values are binned by hour of day.
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Figure 11. Vertical comparison of the model (“Cl+Br+I"") and measured iodine oxide (BrO) during TORERO aircraft campaign (Volkamer
et al., 2015; Wang et al., 2015) in the Subtropics (left) and Tropics (right).. Model and observations are in red and black, respectively.
Observations and modelled values at the same location and time (as described in section 2) are shown side-by-side around the mid point of
each bin. Measurements were taken aboard the NSF/NCAR GV research aircraft by the University of Colorado airborne Multi-Axis DOAS
instrument (CU AMAX-DOAS) in the eastern Pacific in January and February 2012 (Volkamer et al., 2015; Wang et al., 2015). Observations

below 4 km were at or below the limit of detection, which is illustrated with a dashed green line (~0.5 pmol mol ).
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Figure 12. Change in tropospheric O3 on inclusion of halogen chemistry. Column (left), surface (middle) and zonal (right) change are shown.

Upper plots show absolute change and lower plots below give change in % terms ( (“Cl+Br+I"-“NOHAL”)/“NOHAL"*100).
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Figure 13. Seasonal cycle of near-surface O3 at a range of Global Atmospheric Watch (GAW) sites . Observational data shown are 6 year
monthly averages (2006-2012). Model data is for 2005. Data is from GAW compiled and processed as described in (Sofen et al., 2016). Blue

and red lines represent simulations without halogens (“NOHAL”) with halogens (“Cl+Br+I"), respectively.
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Figure 14. Comparison between annual modelled Oz profiles and sonde data (2005). Profiles shown are the annual mean of available

observations from World Ozone and Ultraviolet Radiation Data Centre (WOUDC, 2014) and model data for 2005 at given locations. Blue

and red lines represent simulations without halogens (“NOHAL”) with halogens (“Cl+Br+I"), respectively. Observations (in black) show

mean concentrations with upper and lower quartiles given by whiskers.
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Figure 15. Global annual average tropospheric vertical odd oxygen loss (Oy) through different reaction routes (Photolysis, HOy, I0x, BrOy,
and ClOy).
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Figure 16. Global loss routes (+hv, +Br, +NOs3, +Cl, +OH) of organic compounds shown as % of total tropospheric losses.
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Figure 17. Changes in tropospheric burden of species and families on inclusion of halogens (“Cl+Br+I") compared to no halogens (“NO-
HAL”). Burdens are considered in elemental terms (e.g Tg S/N/C) and species masses for OH, HO2, HoO2 and Os. The family denoted by
“VOCs” in this plot is defined as the sum of carbon masses of CO, formaldehyde, acetaldehyde, ethane, acetone, isoprene, propane, >C4

alkanes, >C3 alkenes, and >3C ketones. Abbreviations for tracers are expanded in Footnote 3
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Figure 18. Global annual average surface and zonal change (%) in HOx, NOx and SOy families (as defined in Footnote 4) on inclusion of

halogens
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Figure 19. Global annual average surface and zonal change (%) in ethane (C2Hg), propane (C3Hg), >C4 alkanes, and acetone
(CH3C(O)CHs) on inclusion of halogens. For species where all average changes are negative a continuous colourbar is used (CsHg and

C2Hg) and for species where both negative and positive changes are present a divergent colourbar is used (>C4 alkanes and CH3C(O)CHs)
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Table 1. Additional halogen reactions included in this simulation that are not described in previous work (Eastham et al., 2014; Schmidt

et al., 2016; Sherwen et al., 2016). The full reaction scheme is given in the Appendix (Sections 6-9). The rate constant is calculated using a

standard Arrhenius expression Ae~(Pa/RT)
RxnID  Reaction A Ea/R Citation
cm® molecules™'s™! K

M29 10 + CIO — I+ OCIO 2.59x107 12 280 Atkinson et al. (2007)
M30 I0+CIO - 1+Cl+0 1.18x10712 280 Atkinson et al. (2007)
M31 I0 + CIO — ICl + O4 9.40x10™ '3 280 Atkinson et al. (2007)
M32 Cl + HCOOH — HCI + CO2 + H,0 2.00x10~*? - Sander et al. (2011)
M33 Cl+ CH302 — CIO + CH20 + HOx(e) 1.60x10~1° - Sander et al. (2011)
M34 Cl + CH;00H — HCI + CH30- 5.70x10~ 11 - Sander et al. (2011)
M35 Cl + CoHg — HCl + C2H50- 7.20x107 11 -70 Sander et al. (2011)
M36 Cl + C2H502 — CIO + HOo+ ALD2 (%) 7.40x107 11 - Sander et al. (2011)
M37 Cl + EOH — HCI + ALD2 (<) 9.60x10~1* - Sander et al. (2011)
M38 Cl+ CH3C(O)OH — HCl + CH302, + CO2  2.80x107** - Sander et al. (2011)
M39 Cl + C3Hs — HCI + A302 7.85x107 11 -80 Sander et al. (2011)
M40 Cl + C3Hg — HCl + B302 6.54x107 11 - Sander et al. (2011)
M41 Cl + ACET — HCI + ATO2 7.70x107 11 -1000  Sander et al. (2011)
M42 Cl + ISOP — HCI + RIO2 7.70x107 11 500 Sander et al. (2011)
M43 Cl + MOH — HCI + CH,0 + HO» 5.50x107 1! - Sander et al. (2011)
M61 Cl + ALK4 — HCI + R402 2.05x10710 - Atkinson et al. (2006)
M62 Br + PRPE — HCI + PO2 3.60x10712 - Atkinson et al. (2006)
M63 Cl + PRPE 2L HCI + PO2 + M 2.80x10719($) - Atkinson et al. (2006)
H1 N2 O5l> HNO3+ CINO2(©) - - (see table footnote)
H2 HOI = 0.85ICI + 0.15IBr* - - (see table footnote)
H3 INO; L 0.85ICI +.0151Br* - - (see table footnote)
H4 INOs - 0.85ICI + 0.15IBr* - - (see table footnote)
P1 Ic1 1+l - - Sander et al. (2011)
P2 IBr 24 1+ Br - - Sander et al. (2011)

Table footnote: (e) Reaction from JPL, only considering the major channel ( Dale and Poulet. 1996 ) and product of CH3 O reacts to form CH2O + HO» (
CH30 +O2 — CH20 + HO2). (x) Only first channel from JPL considered. the 2nd channel forms a criegee (HCl + C2H4O2 ) and therefore cannot be
represented by reduced GEOS-Chem chemistry scheme.(<1) Reaction defined by JPL and interpreted as proceeding via hydrogen abstraction, therefore the
acetaldehyde product is assumed. ($) K(infinity) rate given in table, K(0) rate = 4.00x10~28 with Fc=0.6 as shown in Table 7). (&) Reaction only proceeds
on sea-salt aerosol. (*) Reactions which were included in previous work (Sherwen et al. (2016)), but di-halogen products have been updated split between
IClI and IBr (See Section 2) and only proceed on acidic sea-salt aerosol following McFiggans et al. (2000). Acidity of aerosol is calculated as described in

Alexander (2005). Abbreviations for tracers are expanded in footnote 3.
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Table 2. Global sources of reactive tropospheric inorganic halogens. Sources with fixed concentration in the model for Cly (CH3Cl, CH3Cla,

CHCI3) and Bry (CHBr3) are shown in terms of chemical release (e.g. +Cl, +OH, +hv) and are in bold. Inclusion of chlorine and bromine

organic species has been reported before in GEOS-Chem (Eastham et al., 2014; Parrella et al., 2012; Schmidt et al., 2016). X2 (I2) and HOX

(HOI) are the inorganic ocean source from (Carpenter et al., 2013), XNOs is the source from the uptake of N2O5 on sea-salt (CINOy).

Sources Iy (Tglyr™') Bry(TgBryr ') Cly(TgClyr )
CH3X 0.26 0.06 2.19

CH2X 0.33 0.09 0.59

CHX3 - 0.41 0.26

HOX 2.02 - -

Xa 0.14 - -

X - 0.31(*) 0.78(*)

XNO2 - - 0.66
stratosphere 0.00 0.06 0.43

total source(*) 2.75 0.92 4.90

(*) Note: Acid catalysed sea-salt IX (X=Cl, Br) flux only stated for Cly and Bry as it does not

represent a net Iy source.

Table 3. Comparison between modelled and observed CINO,. Concentrations are shown as the maximum and average of the daily maximum

value for the observational and equivalent model time period. Sites marked as (**) are considered continental sites. The model value are taken

for the nearest time-step and location within the analysis year (2005).

Obs. “Cl+Br+I”
Location Lat. Lon. Max Mean Max Mean Reference
Coastal
Pasedena, CA (2010) 342 -1182 346 148 044 020 Mielke et al. (2013)
Southern China (2012) 222 1143 200 0.31 0.61 0.18 Tham et al. (2014)
Los Angeles, California (2010) 34.1 -1182 1.83 0.50 044 020 Riedel et al. (2012)
Houston, Texas (2006) 304 954 1.15 0.80 0.19 0.04 Osthoff et al. (2008)
London, UK (2012) 515 -02 0.73 023 0.51  0.17 Bannan et al. (2015)
Texas (2013) 304 -954  0.14 0.08 0.19  0.04 Faxon et al. (2015)
Continental
Hessen, Germany (2011) 50.2 8.5 0.85 0.20 0.16 0.02 Phillips et al. (2012)
Boulder, Colorado (2009) 40.0 -1053 044 0.14 0.00 0.00 Thornton et al. (2010); Riedel et al. (2013)
Calgary, CAN (2010) 51.1 -1141 024 022 0.02 0.01 Mielke et al. (2011)
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Table 4. Comparison between global tropospheric Ox budgets of simulations “Cl+Br+I" (with halogen chemistry) and “NOHAL” (without
halogen chemistry). Recent average model values from ACCENT (Young et al., 2013) are also shown for comparison. For the X1 O + X520
halogen crossover reactions where X10 ~=X20 we split the O3 loss equally between the two routes. Values are rounded to the nearest

integer value.

"Cl4+Br+I" "NOHAL" ACCENT

O3 burden (Tg) 355 416 340 £ 40

Oy chemical sources (Tg yr—')

NO + HO» 3526 3607 -
NO + CH302 1327 1316 -
NO + RO2 524 508 -
Total chemical Oy sources (POy) 5376 5431 5110 + 606

Oy chemical sinks (Tg yr—!)

03 + Hy0 % 20H + O, 2102 2489 -
03 + HO, — OH + O 1136 1432 -
O3 + OH — HO4 + O, 611 737 -
HOBr “%Br + OH 214 - -
HOBr + HCI — BrCl 28 - -

HOBr + HBr — Brs + H2O (aq. aerosol) 13 - -
BrO + BrO — 2Br + O 8
BrO + BrO — Br; + O3 3
BrO + OH — Br+ HO» 9
10 +BrO — Br+ 1+ O2 9 - -
CIO + BrO — Br + CIOO/OCIO 2

0

Other bromine Oy sinks

Total bromine Oy sinks 284 - -

HOI %1 + OH 457 - -

010 241+ 0, 125 - -

10 + BrO — Br+1+ Oz 9 - -

10 + ClIO — I+ Cl + O2/ IC1 + O2 0 - -

Other iodine Oy sinks 2 - -

Total iodine Oy sinks 593 - -

HOCI 21 + OH 15 - -

CH3032 + CIO — CIOO 4 - -

CIO + BrO — Br + CIOO/OCIO 2 - -

CINO3 + HBr — BrCl 1 - -

10 + CIO — I+ Cl + O2/ IC1 + O3 0 - -

Other chlorine Oy sinks 1 = =

Total chlorine Oy sinks 23 - -

Other Oy sinks 184 172 -

Total chem. Oy sinks (LOx) 4933 4829 4668 £ 727
03 POx-LOx (Tgyr ') 443 602 618 £ 251
O3 Dry deposition (Tg yr ') 832 980 1003 + 200
O3 Lifetime (days) 22 26 2+2

O3 STE (POx-LOx-Dry dep.) (Tgyr ') 389 378 552+ 168
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Table 5. Photolysis reactions of halogens included in scheme. Photolysis is described in Eastham et al. (2014) (CINO2, CINOs3, and C100),
Sherwen et al. (2016) (Iz, HOI, IO, OIO, INO, INO2, INO3, 1202, 1203, 1204, CH3I, CHzI>, CH2IC1, CH2IBr ), and Schmidt et al.
(2016) (BrCl, Cls, C10, HOCI, CINO2, CINO3, ClIO0, Cl04, CH3Cl, CH3Cls, and CHCI3.). As stated in Section 2, we have used the

1204 cross-section for 1oO4

ID Reaction Cross-section reference
Lo Sander et al. (2011)
12 HOI X 1+0H Sander et al. (2011)
13 10 (+02) 25 1 (+ O3) Sander et al. (2011)
4 010 51+ 0, Sander et al. (2011)
J5  INO X 1+NO Sander et al. (2011)
16 INO; 21+ NO, Sander et al. (2011)
17 INOs 251+ NOs Sander et al. (2011)
J8 1,02 14010 Gomez Martin et al. (2005), Spietz et al. (2005)
J9 CHsl oy Sander et al. (2011)
J10  CHzls L) | Sander et al. (2011)
J11  CH.ICI otal Sander et al. (2011)
J12  CH,IBr %1+ Br Sander et al. (2011)
J13 1,04 by, 2010 see caption

J14 1203 v, 010 +10 Go6mez Martin et al. (2005), Spietz et al. (2005)
J15 CHBrs 2% 3Br Sander et al. (2011)
716  Bry 2% 2Br Sander et al. (2011)
717 BrO (+O2) 2% Br (+03) Sander et al. (2011)
J18 HOBr % Br+ OH Sander et al. (2011)
J19  BrNOs 2% Br+ NO» Sander et al. (2011)
J20  BrNO;3 2% Br+NOs Sander et al. (2011)
121  BrNOs 2% BrO + NO, Sander et al. (2011)
122 CH,Br, 2% 2Br Sander et al. (2011)
J23  BrCl L Br+ Cl Sander et al. (2011)
124 Cl2 oact Sander et al. (2011)
125 ClO (+02) 2 C1 (+03) Sander et al. (2011)
126 OCIO (+02) % CIO (+05) ~ Sander et al. (2011)
127  Cl209 ho, Cl + CIOO Sander et al. (2011)
128 CINO; 2% Cl+ NO, Sander et al. (2011)
J29 CINOs Riye It NOs Sander et al. (2011)
J30 CINOs 1o + NO; Sander et al. (2011)
J31  HOCI % Cl+OH Sander et al. (2011)
132 Cl00 2% ¢l Sander et al. (2011)
J33 CHsCl Riaye It CH302, Sander et al. (2011)
134 CHsCly 2% 2C] Sander et al. (2011)
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Table 6. Bimolecular halogen reactions included in scheme. This includes reactions from previous updates to descriptions of halogen chem-

istry in GEOS-Chem (Parrella et al. (2012); Eastham et al. (2014); Schmidt et al. (2016); Sherwen et al. (2016)), and those described in

—Fa
RT

Section 2. These are given in the Arrhenius form with the rate equal to A - exp ( ). Unknown values are represented by a dash and
these set to zero in the model, reducing the exponent to 1. The bi-molecular reactions with an M above the arrow represent termolecular
reactions where the pressure dependence is not known or are uni-molecular decomposition reactions. Abbreviations for tracers are expanded

in footnote3

RxnID  Reaction A —Ea/R  Citation

cm® molecules™ K
Ml 1405 +10+0, 2.10x107 1 -830 Atkinson et al. (2007)
M2 1+HO, — HI+ 02 1.50x107 1 41090 Sanderetal. 2011)
M3 I + OH — HOI +1 2.10x1071° - Atkinson et al. (2007)
M4 HI+OH — I +H0 1.60x107 1 440 Atkinson et al. (2007)
M5 HOI + OH — 10 + H20 5.00x10712 - Riffault et al. (2005)
M6 10 + HO; — HOI + 02 1.40x107 1 540 Atkinson et al. (2007)
M7 10 +NO — 1 +NO; 7.15x10712 300 Atkinson et al. (2007)
M8 HO + CHzl — H0 +1 430x10712 <1120 Atkinson et al. (2008)
M9 INO +INO — I + 2NO 8.40x107 1" 22620 Atkinson et al. (2007)
MI0O  INO; +INO; — I +2NO2 4.70x10712 -1670  Atkinson et al. (2007)
Mil I+ NO3 — 1+INO; 1.50x10~*2 - Atkinson et al. (2007)
MI2 INOg +1— I+ NOg 9.10x107"* -146 Kaltsoyannis and Plane (2008)
M3 1+BrO — 10 + Br 1.20x10~""! - Sander et al. (2011)
Mi4 10 + Br — I+ BrO 2.70x10~""! - Bedjanian et al. (1997)
Mi5 10 +BrO — Br+1+ 0, 3.00x107 "2 510 Atkinson et al. (2007)
MI6 10 +BrO — Br+0I0 1.20x10~ 510 Atkinson et al. (2007)
MI7  0I0+0I0 — 1,04 15010710 - Gémez Martin et al. (2007)
MI§  0I0+NO — NO, +10 11010712 542 Atkinson et al. (2007)
M19 10 +10 — 1+ 010 2.16x107 " 180 Atkinson et al. (2007)
M20 10 +10 — 1O, 3.24x107 1 180 Atkinson et al. (2007)
M21 10 + 010 25 1,05 1.50x1071¢ - Gémez Martin et al. (2007)
M22 1,0, M 10 +10 1.00x10'2 -9770 Ordéiiez et al. (2012)
M23 1,0; 2 010 +1 2.50x10™ -9770 Ordéiiez et al. (2012)
M2 L0, L2010 3.80x1072 - Kaltsoyannis and Plane (2008)
M25  INO; L 14NO, 9.94x10'7 -11859  (McFiggans et al., 2000)
M2 INOs 510 +NO, 2.10x10%° -13670  Kaltsoyannis and Plane (2008)
M27  10+CIO —1+0CIO 2.59x10712 280 Atkinson et al. (2007)
M28  10+CIO —1+Cl+02 1.18x107 12 280 Atkinson et al. (2007)
M29  10+CIO —ICl+ 0y 9.40x107 1 280 Atkinson et al. (2007)
M30  Cl+HCOOH — HCl +CO2 + H,O 2.00x1071% - Sander et al. (2011)
M31 Cl+ CH302— CIO + CH20 + HO(%) 1.60x10710 - Sander et al. (2011)
M32  Cl+CH3O0H — HCl+ CH50, 5.70x107 1 - Sander et al. (2011)
M33  Cl+CyHg— HCl+ CoH502 7.20x107 1 -70 Sander et al. (2011)
M34  Cl+CHs502=> ClO + HO2+ ALD2 (%) 7.40x107 11 - Sander et al. (2011)
M35 Cl+EOH — HCl + ALD2 (<)) 9.60x10~ 1" - Sander et al. (2011)
M36  Cl+CH3C(0)OH — HCl+ CH302,+CO2  2.80x107* - Sander et al. (2011)
M37  Cl+CsHs— HCI+ A302 7.85x1071 -80 Sander et al. (2011)
M38  Cl+C3Hs — HCl+B302 6.54x107 11 - Sander et al. (2011)
M39  Cl+ACET — HCI + ATO2 7.70x107 11 1000 Sander etal. (2011)
M40 Cl+ISOP — HCI + RIO2 7.70x10~ ! 500 Sander et al. (2011)
M4l Cl+MOH — HCl + CH>0 + HO, 5.50x10~ ! - Sander et al. (2011)
M42 CHBr3 + OH — 3Br + CO 1.35x10712 -600 Sander et al. (2011)
M43 CHaBr2 + OH — 2Br + CO 2.00x10712 -840 Sander et al. (2011)
M44  CH;3Br+OH — 3Br+CO 2.35x10712 1300 Sanderetal. (2011)
M4s Br+ O3 — BrO + Oz 1.60x10 1 -780 Sander et al. (2011)
M46 Br+ CH,0 — HO; + CO 1.70x10~ 1 -800 Sander et al. (2011)
M47 Br+HOs — HBr+ O, 4.80x10712 =310 Sander et al. (2011)
M48 Br+ CH3;CHO — CH3CO3 1.30x10 1 360 Atkinson et al. (2007)
M49 Br + (CH3)2CO — CH3C(0)CH200 1.66x101° -7000 King et al. (1970)
M50 Br+ CyHg — C2H500 2.36x1071° -6411 Seakins et al. (1992)
M51 Br+ C3Hs — C3H700 8.77x107 1 -4330 Seakins et al. (1992)
M52 Br+BrNOjz — Bry + NO3 4.90x107 1 0 Orlando and Tyndall (1996)
MS3  Br+NOj — BrO + NO, 1.60x107 1 0 Sander et al. (2011)
M54 HBr+OH — Br+H,0 5.50x10712 200 Sander et al. (2011)
M55 BrO+NO — Br+NO, 8.80x10712 260 Sander et al. (2011)
MS56  BrO+OH — Br+HO, 1.70x107 1 250 Sander et al. (2011)
M57  BrO+BrO — 2Br+ O, 2.40x10712 40 Sander et al. (2011)
M58 BrO+BrO — Bry + O 2.80x107 1 860 Sander et al. (2011)
M59  BrO+HO; — HOBr+ O, 4.50x10712 460 Sander et al. (2011)
M60  Bry +OH — HOBr + Br 2.10x107 1" 240 Sander et al. (2011)
M61 Cl+ ALK4 — HCI + R402 2.05x1071° - Atkinson et al. (2006)
M62  Cl+PRPE — HCI + PO2 3.60x10712 - Atkinson et al. (2006)
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Table 7. Termolecular halogen reactions included in the scheme. This includes reactions from previous updates to halogen chemistry in

GEOS-Chem (Eastham et al., 2014; Parrella et al., 2012; Schmidt et al., 2016; Sherwen et al., 2016), and those detailed in section 2. The

lower pressure limit rate (ko) is given by: Ag - (%)z. The high pressure limit is given by k. Fc characterises the fall off curve of the

reaction as described by Atkinson et al. (2007).

RxnID Reaction Ao x koo Fc Citation

1 1

cm® molecules™2 s~ cm® molecules™!s~

Tl 1+No L INO 1.80x10~32 1 1.70x10~ %! 0.6  Atkinson et al. (2007)
T2 I+NO, 2L INO, 3.00x1073% 1 6.60x107 1! 0.63  Atkinson et al. (2007)
T3 10 + NOy 24 INO; 7.70x1073! 5 1.60x10~ 1! 0.4  Atkinson et al. (2007)
T4 Br+ NO, -5 BrNO, 4.20x1073! 24 270x107 M 0.6  Sander et al. (2011)
TS BrO + NOy 25 BrNOs 5.20x1073! 32 6.90x10712 0.6  Sander et al. (2011)
T5 BrO + NO, 25 BrNOs 5.20x1073! 32 6.90x10712 0.6  Sander et al. (2011)
T6 Cl+ ALK4 25 HCI + R402  4.00x10~28 0  2.80x1071° 0.6 Atkinson et al. (2006)
T7 Cl+ 0, 2L cl100 2.20x10733 0 1.80x10710(%) 0.6  Sander et al. (2011)
T8 Cl1,0, 2L 2c10 9.30x10~° 2 1.74x1015 (%) 0.6  Sander et al. (2011)
T9 Cl0 + C10 24 C1,0, 1.60x10~2! 2 3.00x10712(%) 0.6  Sander et al. (2011)
T10 ClO + NO, 2L CINO; 1.80x1073! 1.9  1.50x107 (%) 0.6  Sander et al. (2011)
T11 C100 25C1 + 0, 3.30x107° 0 2.73x10™(¥) 0.6  Sander et al. (2011)

Table footnote: . (*) koo (T) for reactions T7-T11 have a form of koo (T) = koo ( % )~ "™, where m = 3.1, 4.5, 4.5, 3.4 and 3.1 respectively. Abbreviations for tracers are

expanded in footnote 3.
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Table 8. Halogen multiphase reactions and reactive uptake coefficients ()
ID Reaction Reactive uptake coefficient () Note Reference
1 HCl — CI7 (SSA) 4.4 x 107 %exp(2989K /T Sea saltonly ~Ammann et al. (2013)
2  HBr— Br (SSA) 1.3 x 10~ % exp(4290K/T) Sea salt only ~Ammann et al. (2013)
3 HI — I(aerosol) 0.1
4 CINO3 — HOCl+ HNOs3 0.024 Hydrolysis Deiber et al. (2004)
5 BrNO3 — HOBr + HNO3 0.02 Hydrolysis Deiber et al. (2004)
6 INO3z — 0.85IC1+ 0.151Br + HNO3z  0.01 Sea salt only
7 INO; — 0.85IC1 + 0.15IBr + HNOs  0.02 Sea salt only
8 HOBr + Cl™ (aq) — BrCl See text Ammann et al. (2013)
9 HOBr + Br~ (aq) — Bra See text Ammann et al. (2013)
10  HOI — 0.85IC1+ 0.15IBr 0.01 Sea salt only
11 CINOs+Br~(aq) — BrCl+HNO3  See text Ammann et al. (2013)
12 O3+ Br~(aq) — HOBr See text Ammann et al. (2013)
13 1,02 — I(aerosol) 0.02
14 1,03 — I(aerosol) 0.02
15 1,04 — I(aerosol) 0.02
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Table 9. Henry’s law coefficients and molar heats of formation of iodine species. Where Henry’s law constant equals infinity a very large
values is used within the model (1 x 10?° M atm™'). The INO, Henry’s law constant is assumed equal to that of BrNOs, from Sander
(2015), by analogy. For I2Ox (x = 2,3,4) a Henry’s law constant of infinity is assumed by analogy with INOg. (x) Effective Henry’s law of

HX is calculated for acid conditions through K7 (T) = K (T) x (1+ [gil ).

Species  Henry’s Law  Reference d(In H) Reference
Constant (H) d(1/T)
at 298K
M atm™* K
HOBr 6.1x103 Frenzel et al. (1998) 6.01x10®>  McGrath and Rowland (1994)
HBr(*)  7.1x10%3 Frenzel et al. (1998)  1.02x10*  Schweitzer et al. (2000)
BrNO:; 0.3 Frenzel et al. (1998) - -
BrNOs oo Sander (2015) - -
Bra 0.76 Dean (1992) 3.72x10°  Dean (1992)
HOCl  6.5x10° Sander (2015) 5.9x10°  Sander (2015)
HCIl(*)  7.1x10%° Sander (2015) 5.9x10%  Sander (2015)
CINO3s o Sander (2015) - -
BrCl 0.97 Sander (2015) - -
I1C1 1.11x10° Sander (2015) 2.11x10°  Sander et al. (2006)
IBr 2.43x10" Sander (2015) 4.92x10°  Sander et al. (2006)
HOI 1.53x10* Sander (2015) 8.37x10°  Sander et al. (2006)
HI (%) 7.43x1013 Sander (2015) 3.19x10%  Sander et al. (2006)
INO3 00 Vogt et al. (1999) 3.98x10*  Kaltsoyannis and Plane (2008)
1202 o0 see caption text 1.89x10*  Kaltsoyannis and Plane (2008)
Is 2.63 Sander (2015) 7.51x10%  Sander et al. (2006)
INO> 0.3 see caption text 7.24x10%  Sander et al. (2006)
1,03 0o see caption text 7.70x10®  Kaltsoyannis and Plane (2008)
1504 00 see caption text 1.34x10* Kaltsoyannis and Plane (2008)
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Table 10. Tropospheric burden of species and families with (“Cl+Br+I") and without halogens (“NOHAL”), and % change. Burdens are

considered in elemental terms ( e.g Gg S/N/C) and species masses for OH, HO2, H2O2 and O3 Families are defined in footnote 3

“NOHAL” “CHBr+I” % A

NO3 1.23 1.23 -17.8
O3 415843.25 355123.69 -14.6
N2Os5 9.38 8.02 -14.5
H202 3229.09 2828.80 -12.4
C2Hs 3258.84 2855.31 -12.4
HNO4 19.84 17.63 -11.1
C3Hg 609.76 550.68 -9.7
>C4 alkanes 488.35 441.96 -9.5
HO-» 27.55 25.37 -19
PPN 15.82 14.65 -14
PAN 202.89 194.70 -4.0
CH3C(O)CH3 753351 7289.92 -3.2
OH 0.28 0.27 -2.9
NO2 123.53 120.35 -2.6
CH20 389.55 380.88 2.2
PMN 0.68 0.67 -1.8
NOx 171.01 168.15 -1.7
SO4 on SSA 1.97 1.94 -1.6
NH3 126.61 126.28 -0.3
NOy 1374.56 1371.59 -0.2
Acetaldehyde 184.93 184.59 -0.2
NH,4 270.93 271.43 0.2
>C3 ketones 186.99 188.11 0.6
SOx 398.98 401.59 0.7
SO4 397.01 399.65 0.7
NO 47.48 47.80 0.7
>C3 alkenes 97.93 98.79 0.9
PROPNN 7.46 7.55 1.1
HNO3 463.49 470.69 1.6
VOCs 148193.29  151283.71 2.1
>C4 alkylnitrates  64.60 65.99 22
SO2 286.11 294.17 2.8
Cco 134654.88 13847776 2.8
MMN 3.15 3.26 32
CH3NO2 13.80 14.25 33
Isoprene 788.55 815.73 34
HNO> 2.76 2.92 5.5
ISOPN 0.65 0.69 6.2

Abbreviations for tracers are expanded in footnote 3.
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