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Abstract Exotic ions are negatively charged objects which have been detected in
superfluid helium-4 at temperatures in the vicinity of 1 K. Mobility experiments in
several different labs have revealed the existence of at least 18 such objects. These ions
have a higher mobility than the normal negative ion and appear to be singly charged
and smaller. We summarize the experimental situation, the possible structure of these
objects, and how these objects might be formed.
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1 Introduction

Positively and negatively charged ions in superfluid helium have been studied in many
experiments. The positive ion is a dense cluster of helium atoms [1]. Recent calcula-
tions by Mateo and Eloranta [2] indicate that the positive charge is in the form of a
triatomic He+

3 ion at the center of the cluster. The negative ion is an electron confined
in a cavity in the liquid (“electron bubble”) that, at least at low temperatures, is free of
helium atoms. This structure was first proposed by Careri et al. [3,4] based on earlier
ideas of Ferrell [5], concerning the structure of positronium in liquid helium. The
energy of the electron bubble is the sum of the zero-point energy of the electron, the
surface energy, and, if the liquid is under pressure, the work done against the pressure
in creating the bubble. To a good approximation, the energy of the electron bubble can
be taken to be
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E = h2

8m R2 + 4π R2α + 4π R3

3
P, (1)

where R is the radius, α is the surface tension, m is the mass of the electron, and P is
the applied pressure. Using the measured value of α, [6] the energy of the bubble when
P = 0 is found to be a minimum when R = 19 Å. This estimate of the bubble size
has been confirmed by experimental measurements of the photon energies required to
excite the electron to a higher energy state (1P or 2P) [7,8]. More detailed calculations
of the energy of the electron bubble have been made using density functional methods
[9], and these give a result for the radius differing only slightly from that obtained from
Eq. 1. Measurements have also been made of the effective mass [10–13], again giving
results consistent with the size of the bubble as estimated from Eq. 1. The energy of
the bubble state as given by Eq. 1 when the pressure is zero is

E0 =
√
2παh2

m
= 0.2 eV, (2)

whereas the energy of an electron moving through bulk liquid with uniform density is
1 eV [14].

The mobility of an electron bubble can be determined by introducing electrons
into the liquid helium at the top of a cell in which there is a uniform drift field. The
time taken for these charges to reach a collector electrode at the bottom of the cell
is measured. In the superfluid phase, the mobility of an electron bubble is limited by
the drag exerted on the bubble by thermal excitations, i.e., by phonons and rotons
[15–18]. The measured temperature dependence of the mobility is in agreement with
this assumption. In several of these mobility measurements, other negative ions which
arrive at the collector before the normal electron bubbles (NEB) have been detected.
The first such ion was seen in an experiment performed by Doake and Gribbon in
1969 [19]. This ion has become known as the “fast ion” and has a mobility about
six times higher than the normal electron bubble. Shortly after this, Ihas and Sanders
[20–22] detected several ions with a mobility intermediate between the mobility of
the fast ion and the mobility of the normal electron bubble. These “exotic ions” have
since been studied in more detail [23–30], and in a recent experiment [30], it has
been shown that there are at least 18 such objects. These measurements have been
performed at temperatures in the vicinity of 1 K, where the mobility is primarily
limited by collisions of rotons with the ions. Since at this temperature the rotons have
a mean free path through the liquid which is larger than the dimensions of the bubble,
the drag force should be proportional to R2 and the mobility proportional to R−2.

From this, it follows that the fast ion has a radius of around 8 Å, and the exotic ions
have a radius between this and the radius of the NEB.

Each of the 18 exotic ions just mentioned gives rise to a sharp peak in the collec-
tor current at a time determined by their mobility. Thus, each peak comes from the
simultaneous arrival of some number of ions all of the same size. However, it has been
discovered that in addition to these signals, there is a background signal coming from
ions with a continuous distribution of mobility. This is a remarkable result since this
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Fig. 1 Solid curve shows the current arriving at the collector as a function of time. The temperature is
0.991 K, the drift field is 82.1 V cm−1, and the length of the drift cell is 6.15 cm. The dashed curve shows
the same data with the peaks removed

background signal must come from ions which have a continuous distribution of size.
For a more detailed discussion of this background, see Ref. [30].

In Fig. 1 we show an example of the signal reaching the collector as a function of
the time after ions leave the top of the cell. Each peak in the signal arises from one of
the exotic ions. By removing the contribution to the signal from each of the peaks, the
continuous background mentioned above is revealed (dashed curve).

2 Origin of the Exotic Ions

Despite considerable effort, it has not so far been possible to find a plausible expla-
nation of the structure of the exotic ions [30]. Consider first the possibility that the
ions are impurities. An impurity atom which has an extra electron will form a bubble
which, if the electron affinity has a suitable value, will have a size in the size range
of the exotic ions. The dependence of the bubble size on electron affinity has been
calculated [30,31]. The calculations show that in order for impurities to be the expla-
nation of the exotic ions, the impurities have to have a low electron affinity, i.e., less
than ∼1 eV. A serious difficulty with the impurity model is that the number density
of impurities in liquid helium is expected to be very small. Furthermore, it is hard
to believe that the liquid can contain 18 different impurities in sufficient number and
with electron affinity in the required range. Since each impurity will give rise to an
ion of a particular definite size, it is also obviously impossible for impurities to be the
explanation of the continuous background.
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As a second approach suppose that the exotic ions are negative helium ions. Ions
of both the helium atom [32–36] and the helium dimer have been studied [37–39].
However, these ions have a lifetime much shorter than the time for an ion to pass
through the mobility cell. In mobility experiments performed so far, this time has
been as large as 100 ms. In addition to this problem, helium ions cannot provide an
explanation of the continuous background. In a recent paper, Elser [40] has proposed
that the exotic ions may be an electron bound to a small vortex ring. But it is not yet
clear how this approach can be developed to explain the existence of 18 exotic ions
together with the a continuous background.

To overcome these problems, it has been proposed in the “fission model” [41] that
the exotic ions are bubbles which contain only a fraction of the total wave function of
an electron. An electron entering the liquid will lose energy by collisions with helium
atoms and will have a complicated wave function. Can part of this wave function
sometimes be trapped in one bubble and the remaining part in another? As discussed
in more detail below, a bubble containing only a fraction of the wave function would
be smaller than a normal electron bubble. Let F be the integral of |ψ |2 over the
volume of a bubble. If F can have a continuous range of values, this will lead to
a continuous size distribution of bubbles and provide a simple explanation of the
experimentally observed continuous background. In addition, there is a mechanism
(see detailed description in Ref. [30]), which leads to the formation of bubbles with
particular values of F , thereby providing a possible explanation of the exotic ions with
many particular discrete sizes.

3 Quantum Mechanics and the Exotic Ions

According to quantum mechanics, the state of a system is completely described by
the wave function �. As has been pointed out many times, the theory is remarkable
in that the wave function changes with time by two apparently distinct mechanisms.
The time-dependent Schrödinger equation gives d�/dt in terms of the Hamiltonian
and the instantaneous form of the wave function. But in addition, according to the
Copenhagen interpretation, measurements also result in changes in �. If a quantity g
is measured, the result of the measurement must be one of the eigenvalues {gn} of the
operator ĝ. If the result of the measurement is gn , then the wave function immediately
changes to equal the eigenfunction ξn corresponding to this eigenvalue.

This leads to a number of unresolved issues. The first problem is that there is no
agreement as to what constitutes a measurement. Does a measurement automatically
result from an interaction between the system of interest and any other large compli-
cated system?Ordoes a person (“consciousness”) have to be involved?These questions
were presented long ago in a series of papers by Putnam [42,43], by Margenau and
Wigner [44–46], and by Cooper and Van Vechten [47–49].

A second and equally obvious question concerns relativity [50]. Suppose that at
time t ameasurement is made at a point �r to look for a particle, and the particle is found
to be there. Then the wave function is supposed to immediately collapse and become
zero everywhere except at �r . This requires that news of the measurement travel faster
than the speed of light. A related question concerns the effect of a barrier on collapse.
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Fig. 2 a Initial condition with
part of the wave function inside
a box and with the remainder
outside. b Final condition after a
measurement has found the
particle inside the box

(a) 

(b) 

Suppose that we make a box with thick walls providing a very large potential barrier
preventing passage of the wave function. Then consider an initial condition in which a
part of the wave function of a particle is inside the box and a part outside (Fig. 2a). An
observer inside the box performs an experiment to look for the particle. If the result
of the experiment is that the particle is found, then all of the wave function has to be
inside the box as in Fig. 2b. But how does the part of the wave function that was out of
the box get inside? This question arises in the discussion below of the fission model
as a possible explanation of the exotic ions.

We now consider the general features of the quantum state that is produced when an
electron enters helium, and two bubbles are formed with part of the wave function in
each. The size of each of these bubbles is determined by the outward pressure exerted
by the electron balanced against the surface tension force; this force arises because of
the repulsion between the electron and helium atoms. Rae and Vinen [51] have argued
that, despite this repulsion, when two bubbles are formed one of them will always
collapse. As a particular case, they consider two bubbles each of radius R1/2; for each
bubble, the integral of |�|2 over the bubble volume is 1/2. They emphasize that a
many-body wave function is needed to describe the electron and the helium. They
then propose that this wave function is of the form (their Eq.5)

� = χ(R1/2, R1/2) [c1ψ1 + c2ψ2, ] (3)
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where χ(R1/2, R1/2) describes the helium containing the two holes, andψ1 andψ2 are
wave functions of the electron confined within these holes. They then argue that such
a state would be unstable and would lead to one of the holes in the helium collapsing
and the wave function of the system ending up as a linear combination of two states,
each with only one bubble containing an electron. Unfortunately, it is easy to see that
this choice of wave function is inadequate. The wave function in Eq. 3 is the product
of a function fhel involving only helium coordinates with a function gel of the electron
coordinates. Let us write the Hamiltonian of the entire system as

Ĥ = Ĥhel + Ĥel + Vint, (4)

where Ĥhel involves only helium coordinates, Ĥel involves only electron coordinates,
and Vint is the potential of interaction between the helium and the electron. Then the
Schrödinger equation Ĥ� = E� becomes

(Ĥhel + Ĥel + Vint) fhel gel = E fhel gel . (5)

Then taking note of the variables onwhich the different components of theHamiltonian
act,

(Ĥhel fhel) gel + fhel(Ĥel gel) + Vint fhel gel = E fhel gel , (6)

and so after dividing by fhel gel , we obtain

(Ĥhel fhel)

fhel
+ (Ĥel gel)

gel
+ Vint = E . (7)

The first term on the left hand-side contains only helium coordinates and the second
term only electron coordinates. It follows that Vint has to be the sum of a function of
helium coordinates and a function of electron coordinates, and so, in fact, there is no
interaction between the electron and the helium. Given this, it is not surprising that
the presence of an electron does not prevent holes in the helium from collapsing.

We therefore need a more realistic model that includes the interaction between
the electron and a helium atom and also the interaction between helium atoms. The
simplest approach is to treat the helium–helium interactions in the Hartree approxi-
mation. This leads to the Gross–Pitaevskii (GP) equation [52–55]. After inclusion of
the interaction between the helium and an electron [55,56], the GP equation takes the
form of two coupled differential equations:

i h̄
∂ ψ

∂t
= − h̄2

2M
∇2ψ + (U0 |φ|2 + V0 |ψ |2)ψ, (8)

i h̄
∂ φ

∂t
= − h̄2

2m
∇2φ + U0 |ψ |2 φ, (9)

where ψ describes the state of the helium (|ψ(�r)|2 is the number density of helium
atoms at position �r),φ gives the state of the electron, M is themass of a heliumatom,V0
gives the strength of the potential between two helium atoms, and U0 sets the strength
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of the potential between an electron and the helium. In this simplest version of the GP
equation, both the helium–helium interaction and the electron–helium interaction are
taken to be of short range. An electron at rest in liquid helium with uniform number
density 2.2× 1022 cm−3 is known to have an energy of approximately 1 eV. This sets
the value of U0 as 7.3 × 10−35 in cgs units.

It is well known that, as they stand, these equations do not give quantitatively
correct values for properties of liquid helium. For example, since the helium–helium
interaction in Eq. 8 is entirely repulsive the system has to be under a positive pressure
in order for the equilibrium number density N/V to equal the number density in liquid
helium at zero pressure (2.2 × 1022 cm−3) . As a second example, if V0 is chosen to
give the correct sound velocity, the surface tension α does not have the value found
experimentally. These problems can be fixed through the use of more complicated
models [57–59], for example, models in which the interaction potentials have finite
range. There have been a large number of computer simulations performed using the
GP equation. These include studies of vortex dynamics, the attachment of electron
bubbles to vortices [60], and the changes in shape of electron bubbles due to motion
through the superfluid [59,61] and due to optical excitation [62,63]. In the present
context, since we are just trying to give a qualitative discussion of the physics of the
exotic ions, there is no need to use one of these more improved models.

Consider now the application of the GP equations to the exotic ions. Energy eigen-
states are to be found from the equations

Ehelψ = − h̄2

2M
∇2ψ + (U0 |φ|2 + V0 |ψ |2)ψ, (10)

Eelφ = − h̄2

2m
∇2φ + U0 |ψ |2 φ. (11)

One can see immediately that there are eigenstates in which the density of the helium
is uniform (ψ = √

N/V ), and there is uniform probability density for the electron
(φ = exp(i �k.r)/

√
V ). However, the lowest energy eigenstates are the “normal electron

bubble states,” i.e., states with the electron trapped in a single bubble as already
described. The electron wave function and the variation of the helium density around
the single bubble have been calculated from Eqs. 10 and 11 a long time ago by by
Clark [64], and the same type of calculation has been performed for more complicated
versions of the Gross–Pitaevski model [9,65]. Since the energy of any one of these
states is independent of the bubble position, these states have a high degeneracy. There
must also be a family of eigenstates corresponding to moving bubbles. As far as we
know, there has been no study of other families of eigenstates of the Gross–Pitaevskii
equation.

Consider now the formation of a bubble or bubbles as a result of an electron entering
the liquid. Take the case in which an electron enters the helium and the wave function
evolves in a way such that it has high amplitude in two regions containing fractions
F and 1 − F of the integral of |�|2. We suppose that these regions do not overlap
significantly so that two bubbles will form, bubble A with

∫ |�|2 dV = F and bubble
B with

∫ |�|2 dV = 1 − F , with a region of helium of full density lying between
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them. There will then be a large barrier which will prevent wave function passing
from one bubble to the other. A barrier of height 1 eV results in the wave function of
an electron decaying with distance x as exp(−x/ζ ), where ζ = 1.95 Å. Thus, if we
assume an attempt frequency of 1014 s−1, the time for tunneling through the barrier
reaches 1 s when the shortest path through the liquid between bubbles is about 30 Å. In
this situation, the amount of |�|2 inside each bubble cannot change significantly with
time, at least not as a result of the change in � predicted by Schrödinger’s equation.
However, the form of the wave function can change. As one example, suppose the
wave function in A is not the ground state wave function in the potential provided by
the wall of bubble A, but an excited state. This wave function can transition to the
ground state with emission of a photon; this does not result in a transition of any |�|2
from A to B. There could also be changes in the wave function resulting from the
interaction of the wave function in A with fluctuations of the bubble wall. But again,
since these fluctuations are at the frequencies characteristic of thermal vibrations or
zero-point vibrations of the liquid ( f < 1011 Hz), they cannot excite an electron to a
state of high enough energy to pass over the barrier.

It is important to note that the states just considered are not eigenstates satisfying
Eqs.10 and 11. Because the bubbles differ in size, the pieces of electron wave function
in each bubble will have different energies and so, as one can see from theGP equation,
will oscillate at different frequencies, i.e., the electron wave function will certainly
not oscillate in time as it does in an eigenstate. Let us make this explicit by means of
a simple example. Consider the potential in one dimension as shown in Fig. 3:
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Fig. 3 Sketch of the potential specified by Eq. 12
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V (x) = ∞ x < 0
= 0 0 < x < L1
= Ub L1 < x < L1 + w

= 0 L1 + w < x < L1 + w + L2
= ∞ L1 + w + L2 < x .

(12)

If the height Ub of the barrier is very large and the widths of the two wells are not very
close to being equal, there are two families of eigenstates and eigenvalues:

ψ =
√

2

L1
sin

(
n1πx

L1

)
0 < x < L1 E = π2n2

1h̄2

2mL2
1

(13)

and

ψ =
√

2

L2
sin

(
n2πx

L2

)
L1 + w < x < L1 + w + L2 E = π2n2

2h̄2

2mL2
2

, (14)

with ψ is zero outside of the indicated ranges. These eigenstates are different from
the wave functions proposed for the exotic ions. Taking only the lowest state in each
well, these wave functions are of the form

ψ = √
F

√
2

L1
sin(πx

L1
) exp [−i(ω1t + φ1)] 0 < x < L1

= √
1 − F

√
2

L2
sin(πx

L2
) exp [−i(ω2t + φ2)] L1 + w < x < L1 + w + L2,

(15)
where ω1 = π2h̄/2mL2

1, ω2 = π2h̄/2mL2
2, and the phases φ1 and φ2 can have any

value.

4 Summary

In this paper, we have focused on describing in some detail the type of wave function
that is proposed in the fission model. We argue that if the wave function undergoes
time-development determined by Schrödinger’s equation, then two bubbles separated
by a large distance will be stable objects. If, on the other hand, the helium forming the
boundary of a bubble performs a measurement to determine whether or not the bubble
contains an electron, this measurement will result in “collapse of the wave function”
and only one bubble will survive. Thus, if an experiment can be performed to show
that the exotic ions are indeed bubbles containing a fraction of |�|2, this will provide
interesting information about the quantum measurement process.

It is a great pleasure to contribute this article to this special issue of the Journal of
LowTemperature Physics in honor of HorstMeyer.We thank him for his contributions
to physics, his generous nature, and his great service to the low-temperature physics
community over many years.
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