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ABSTRACT

Autonomous driving can effectively reduce traffic congestion
and road accidents. Therefore, it is necessary to implement
an efficient high-level, scene understanding model in an em-
bedded device with limited power and sources. Toward this
goal, we propose ApesNet, an efficient pixel-wise segmenta-
tion network, which understands road scenes in real-time,
and has achieved promising accuracy. The key findings in
our experiments are significantly lower the classification time
and achieve a high accuracy compared to other conventional
segmentation methods. The model is characterized by an
efficient training and a sufficient fast testing. Experimentally,
we use the well-known CamVid road scene dataset to show
the advantages provided by our contributions. We compare
our proposed architecture’s accuracy and time performance
with SegNet. In CamVid dataset training and testing, our
network, ApesNet outperform SegNet in eight classes ac-
curacy. Additionally, our model size is 37% smaller than
SegNet. With this advantage, the combining encoding and
decoding time for each image is 1.45 to 2.47 times faster than
SegNet.

1. INTRODUCTION

In the last four years, deep learning and Convolutional
neural networks (CNN) [1] has gained significant success in
visual and audio recognition problems such as handwritten
digit recognition, large-scale image and audio classification [2].
Motivated by this huge success, deep CNN were adopted
to solved semantic segmentation, action recognition [3] and
so on. Recent studies show that the network depth and
width have crucial influence on classification accuracy. For
example, many state-of art results on ImageNet Challenge
contribute to very deep neural network models [4, 5, 6].
Whole-image classification has been done successfully. The
next step is heading to pixel-wise semantic segmentation
which means making prediction for every pixel; we are moving
from image-label to pixel-wise label. However, the network
will be inefficient if we directly use conventional deep learning

architecture. The main obstacle is that there are too much
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information for training. The recent studies show that there
is still room for improvement on accuracy and segmentation
time. It is still a challenging problem for learning more
complex information from pixel-wise labeling.

Until now, semantic segmentation is an ongoing hot topic.
There are many image segmentation methods that has been
done. However, due to the model size, it is not feasible
to be implemented on an embedded device for real-time
segmentation. For example, Alex Kenall et al. proposed Seg-
Net, a deep convolutional encoder-decoder architecture [7].
Although SegNet has competitive performance on class ac-
curacy, it does not achieve real-time performance. Our mo-
tivation for segmentation comes from the remaining issue,
processing time. In this paper, we proposed a novel approach
of pixel-wise object class segmentation for use in area of road
scene understanding and autonomous driving. Our ultimate
goal is to implement a segmentation neural network in an
inexpensive embedded system with minimum hardware and
software supply.

To achieve this, our model should be small, computational
efficient and real-time. We experimentally analyze the rela-
tionship between processing time and each layer. We find
that, it is not necessary to symmetrically align encoder and
decoder. Inspired by ResNet [8], we insert shortcut connec-
tions to encoder part. We present comprehensive experiments
on CamVid dataset [9] to show the processing time problem
and evaluate our method. Additionally, for the considera-
tion of safety, the network has a better distinguish accuracy
on smaller objects,such as sign, pedestrian, bicyclist. For
example, SegNet-basic can only achieve 16.4% and 36.2%
accuracy on the segmentation of bicyclist and sign. ApesNet
can achieve 46.1% and 52.3% respectively.

The remainder of the paper is structured as follows. In
Section 2, the related work is given. In section 3, we describe
the proposed method. In section 4, we explain the experi-
mental setup, results, discussion and evaluation. In Section
5, we discuss the conclusion and future work.

2. RELATED WORK

The semantic segmentation has been widely studied with
a variety of methods. There were many breakthrough results
that were done. Most of them combined other algorithms
with convolution neural network (CNNs) which outperform
many conventional algorithms. For example, Conditional
Random Fields (CRF) [10] were adopted for image segmen-
tation. CRF effectively assigned appropriate class labels
and constructed semantic-level regions. The hierarchical fea-
tures were extracted to explain the meaning in the image.
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Figure 1: The proposed encoder-decoder architecture of ApesNet and the inner structure of ConvBlock and

ApesBlock.

It is worth mentioning that Farabet et al. used multiscale
convolutional network for pixel-wise labelling, by combining
CNNs with Conditional Random Fields (CRF) model on
many datasets [11]. However, an unavoidable disadvantage
was that the information of mid-level features was lost by
using spatial pooling. Recent approach uses encoder-decoder
network architecture such as SegNet. Since that SegNet is
based on VGG16 architecture, it is not applicable for embed-
ded devices. Even though the result is fascinating, the class
accuracy and segmentation time is not satisfactory.

3. DESIGN ANALYSIS

As our goal is to accelerate the network testing without
losing accuracy, our basic idea is to reduce the operations
which are relatively time consuming but with less contribu-
tion to the segmentation accuracy, and then improve the
accuracy by adding efficient operations. We ran a time
profiling for a popular network, AlexNet [1] which includes
convolution, max-pooling, ReLLU, local contrast normaliza-
tion (LRN), dropout and full-connection. We added batch-
normalization [12] between convolution and dropout. The
recent proposed module of shortcut [8] is also studied, and
we find its time consumption is mainly dependent on the con-
volution branch. Therefore, we will discuss the convolution
instead of the shortcut module in this section. Our GPU
device is NVIDIA TITAN X and cuDNN v5 [13] is adopted.
The time spent on ReLLU, LRN, batch-normalization and
dropout is trivial which is shorter than 2ms for each oper-
ation in our experiment. The running time of max-pooling
and full-connection is increased with the size and number
of feature maps, but still less than 4ms for each operation.
As more recent CNNs [14, 15] goes deeper, the ratio of layer
number of these two types to total number becomes lower,
we do not focus on these layers. Actually, the feature maps
can be rescaled by setting the stride size of a convolutional
layer bigger than 1, instead of using the pooling layers in a
CNN, as suggested by [16]. We tried to remove the pooling
layers in this manner, however, the final segmentation accu-
racy is significantly degraded in our experiment. A possible
explanation is that average-pooling can be replaced by the

convolution with stride bigger than 1 as in [16], but the
biologically inspired max-pooling cannot. For AlexNet, the
convolution occupies most of the running time. Specifically,
the first convolution takes about 10ms, while the last takes
only 4ms, i.e., convolution layers with larger feature maps
are the main time consumers.

Another design issue of networks used for pixel-wise ap-
plications (e.g., image segmentation) is how to make the
resolution of the output prediction map the same as that
of the input image. Inspired by the auto-encoder architec-
ture [17], the popular CNNs for segmentation, e.g., FCN [18],
SegNet-Basic [7, 19] and EDeconvNet [20], adopt symmetric
encode and decoder to gradually restore the shrunk feature
maps to the original size of the input, and their differences lie
in the implementation of up-sampling. However, more recent
methods [21, 22] keeps the encoder (e.g., VGG) unchanged
while use a shallow decoder or a full-connected layer to get
the output prediction vector corresponding to each pixel in
the input image. We tried to replace the decoder of SegNet-
Basic and EDeconvNet with that of [21, 22]. The testing
time decreased by significantly around 11ms at cost of only
averagely 1% accuracy drop in segmentation accuracy. Note
that the total testing time of SegNet-Basic is 63ms using
TITAN X with cuDNN v5. We further tried to gradually
shrink the encoder by removing convolutional layers while
keep the decoder unchanged. The obtained results showed
more than 10% decreased accuracy, indicating a deep encoder
is probably necessary for extracting expressive visual features
to distinguish semantic classes of objects.

4. ARCHITECTURE

Based on our above analysis of time profiling and encoder-
decoder architecture, we adopt the following two strategies.
First, the number of large feature maps in convolutional
layers are decreased for acceleration compared to previous
methods [18, 19, 20, 21, 22]. Here, "large feature maps”
indicates the maps in the first ConvBlock and the last Con-
vBlock in our network as shown in Figure 1. Respectively
16 and 8 feature maps are used for these two ConvBlock.
For simplicity, we do not tune the feature map numbers of



Table 1:

Segmentation results on CamVid testing set.
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SegNet-Basic | 75.1% 83.1% 88.3%  80.2%  36.2%  91.4% 56.2% 46.1% 44.1% 74.8% 16.4% | 62.9%  46.2%
ApesNet | 76.0% 80.2% 95.7% 84.2% 52.3% 93.9% 59.9% 43.8% 42.6% 87.6% 46.1% | 69.3% 48.0%

Table 2: Comparison on testing speed with 360x480
input.

SegNet-Basic ApesNet

Model Size 5.40MB 3.40MB
GTX 760M 181ms 73ms
GTX 860M 170ms 70ms
TITAN X 63ms 40ms
Tesla K40 58ms 39ms
GTX 1080 48ms 33ms

other convolutional layers. Second, we will use an asymmet-
ric network structure with a deep encoder and a relatively
shallow decoder. The deep encoder lies in adding convolu-
tional layers with relatively small feature maps, i.e., two
ApesBlock as shown in Figure 1, in order to improve the
accuracy. The convolution kernel size of these two ApesBlock
is 5 X 5 to extract features at a finer scale, compared to the
kernel size 7 of all other modules in our network. Ablation
studies in Section 5.2 will show the contributions of above
two strategies in details. Figure 1 shows the architecture
of ApesNet, and two basic modules in it (ConvBlock and
ApesBlock). Our network consists of an encoder and a de-
coder. The ConvBlock (M, k, r) is adopted for both the
encoder and decoder, which includes a convolutional layer
with k X k kernel and M feature maps, batch-normalization,
ReLU activation, and drop-out with ratio r. The ApesBlock
(M,k,r) is used only for the encoder and inspired by the
ResNet [8]. Two branches, i.e., the shortcut connections
and two convolutional layers with batch-normalization and
ReLU, are combined by element-wise add, which is followed
by ReLLU and dropout with ratio r. The 1 x 1 convolution
in the ApesBlock serves as an identity mapping. As shown
in Figure 1, an input image will be passed through three
pairs of ConvBlock and max-pooling, and then two repeated
ApesBlock in the encoder. The kernel size of all the first three
ConvBlock is 7 x 7, while that of the latter two ApesBlock
is smaller, 5 x 5. The max operator is over a 2 X 2 region
with stride 2. In addition, all the modules in the encoder
has 64 feature maps except the first ConvBlock with fewer
(i-e., 16) maps. The max-pooing indices in the encoder are
used to up-sample the feature maps of the corresponding
un-pooling layer in the decoder, therefore the upsampling
operator is also over a 2 x 2 region with stride 2. The decoder
is comprised of three pairs of un-pooling and ConvBlock, and
a final 1x1 convolutional layer as a classifier. The kernel
size of all three ConvBlock in the decoder is 7 X 7, however,
their feature map numbers vary: 64, 16 and 8. The output
map size is the same as input, and each pixel in the input
image corresponds to a vector of length C' where C' is the
number of semantic classes. The cross-entropy is used as

the objective function for training. As the pixel number of
each semantic class is not balanced, the loss of each class is
weighted according to median frequency balancing [23].

S. EXPERIMENTS

We will evaluate the accuracy and testing speed of our
method using a popular image segmentation dataset. Ab-
lation studies of our improvements on accuracy and speed
as stated in Section 3 will be shown. With consideration
of physical constraints of embedded hardware, a fixed-point
version of our network and the corresponding performance
will be provided.

5.1 ApesNet on CamVid

The CamVid is a road scene segmentation dataset, con-
sisting of 367 training and 233 testing RGB images (day and
dusk scenes) with 11 semantic classes of manually labeled
objects, e.g., car, tree, road, fence, pole, building etc. [9].
The original image resolution is 720x 960, while we down-
sample all images to 360x480. Two popular measures of
segmentation performance are used: Class Average Accuracy
(Class Avg.) which is the mean of the predictive accuracy
over all classes, and Mean Intersection over Union (Mean
IoU) as used in the Pascal VOC12 Challenge [24].

Our method will be compared with SegNet-Basic [7] as
its model scale is similar with ours. Both of SegNet-Basic
and our model are initiated using He et al. [25], and trained
with stochastic gradient descent with a fixed learning rate of
0.1 and momentum of 0.9. The quantitative comparison on
accuracy and testing speed is respectively shown in Table 1
and Table 2. Our method achieves better accuracy (Class
Avg. and Mean IoU) and faster speed with smaller model size.
As shown in Table 1, our method obtains higher per-class
accuracy on eight of all eleven classes of object. In addition,
the traditional SegNet-Basic severely biases towards certain
classes of small-scale objects, e.g., bicyclist, while our method
keeps a better balance of accuracy among classes of object.
An explanation is that two ApesBlock with smaller kernel
size (5x5) are used in our method, therefore small objects
will benefit from our convolutional feature extractor at finer
scale. Six examples of visualized segmentation results are
shown in Figure 2. Images from the first to the fourth column
are respectively input image, SegNet-Basic, our method and
ground-truth, which further validates our advantage. On
the testing speed as listed in Table 2, the performance gap
between mobile-based GTX 760M and PC-based GTX 1080
for SegNet-Basic is 133ms, however, the gap is only 40ms for
our method. This indicates that our acceleration strategy
does not heavily rely on the advance of GPU hardware itself
compared with SegNet-Basic. Therefore, our method can be
further speed up using NVIDIA’s techniques such as Dynamic



Figure 2: Examples of segmentation results. From the first to the fourth column are: Input image, SegNet-

Basic, ApesNet and ground-truth.

Parallelism and Hyper-Q [26].

5.2 Ablation Studies

The contribution of two components in our method will be
discussed: ApesBlock and decreased number of large feature
maps. As shown in Figure 1, our asymmetric encoder-decoder
architecture lies in that there are two ApesBlock at end
of the encoder (before the first up-sampling layer). The
large feature maps we will discuss here are those in the

ConvBlock at start of the encoder (ConvBlock-1) and the
ConvBlock at end of the decoder (ConvBlock_6) in Figure 1.
As stated in Section 3, adopting ApesBlock will improve
the segmentation accuracy without significantly increasing
the testing time, while decreased large feature maps will
improve the testing speed without significantly degrading
the segmentation accuracy.

Table 3 lists the ablation study on ApesBlock. Two Apes-
Block improves the Class Avg. and Mean IoU respectively by



Figure 3: Comparison of segmentation results with no ApesBlock (2nd column), one ApesBlock (3rd column)
and two ApesBlock (4th column). The first column is the original images, and the 5th column is the ground-

truth.

7.2% and 4.2% compared to the first row where no ApesBlock
is used while the running time only increases 4ms. Three
examples of visualized segmentation results are shown in
Figure 3. Images from the first to the fifth column are: In-
put image, No ApesBlock, One ApesBlock, Two ApesBlock
and Ground-Truth. The segmentation results in the fourth
column (Two ApesBlock) are more smooth than those in the
second column (No ApesBlock).

Table 4 lists the ablation study on decreased number of
large feature maps. The ”ConvBlock-1: 64", for instance,
indicates that there are 64 feature maps in ConvBlock_1. The
comparison of the first and the fourth row show that running
time significantly reduces by 12 ms while the Class Avg. and
Mean IoU only decrease respectively by 0.8% and 0.7%.

5.3 Fixed Point

Typical embedded devices prefer algorithms with lim-
ited numerical precision. Therefore, we truncate our 32-bit
floating-point network to 16-bit and 8-bit fixed-point net-
works. The quantization process is executed after a floating-
point network is trained. Table 5 lists the segmentation accu-
racy based on 16-bit and 8-bit fixed-point network. Compare
to our floating-point network as listed in Table 1, the 16-bit
network only loses Class Avg. and Mean IoU respectively
by 3.1% and 1.1%. Six examples of visualized segmentation
results are shown in Figure 4. Images from the first to the
fourth column are: Input image, Our floating-point network,
Our 16-bit fixed-point network and Ground-Truth. The sec-
ond column (floating-point) is slightly better than the third
column (fixed-point).

6. CONCLUSIONS

We proposed a semantic segmentation network model,

Table 3: Ablation Study on ApesBlock.
Class Avg. Mean IoU Speed

ApesNet without ApesBlock 62.1% 43.8% 29ms
ApesNet with one ApesBlock 66.4% 46.3% 31ms
ApesNet with two ApesBlock 69.3% 48.0% 33ms

Table 4: Ablation Study on Decreased Number of
Large Feature Maps.

Class Avg. Mean IoU Speed

ApesNet (ConvBlock_1: 64,

ConvBlock_6: 64) 70.1% 48.7% 45ms
ApesNet (ConvBlock_1: 16,
ConvBlock_6: 64) 69.8% 48.5% 4lms
ApesNet (ConvBlock_1: 64,
ConvBlock_6: 8) 69.5% 48.1% 37ms
ApesNet (ConvBlock_1: 16, 69.3% 48.0% 33ms

ConvBlock_6: 8)

Table 5: Segmentation results of our fixed-point net-
works.

Class Avg. Mean IoU

16-bit ApesNet 66.2% 46.9%
8-bit ApesNet 15.2% 5.06%

ApesNet, which can process images in real-time. We expect
this network will have a wide range application on embedded
GPU or any sources limited embedded devices. ApesNet has
been test on 6 different GPUs, all the result proves that our
network has significant advantages on class accuracy and
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