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Abstract 

Lake depth is an important characteristic for understanding many lake processes, yet it is unknown for the vast majority 
of lakes globally. Our objective was to develop a model that predicts lake depth using map-derived metrics of lake and 
terrestrial geomorphic features. Building on previous models that use local topography to predict lake depth, we hy-
pothesized that regional differences in topography, lake shape, or sedimentation processes could lead to region-specific 
relationships between lake depth and the mapped features. We therefore used a mixed modeling approach that included 
region-specific model parameters. We built models using lake and map data from LAGOS, which includes 8164 lakes 
with maximum depth (Zmax) observations. The model was used to predict depth for all lakes ≥4 ha (n = 42  443) in the 
study extent. Lake surface area and maximum slope in a 100 m buffer were the best predictors of Zmax. Interactions 
between surface area and topography occurred at both the local and regional scale; surface area had a larger effect in 
steep terrain, so large lakes embedded in steep terrain were much deeper than those in flat terrain. Despite a large 
sample size and inclusion of regional variability, model performance (R2 = 0.29, RMSE = 7.1 m) was similar to other 
published models. The relative error varied by region, however, highlighting the importance of taking a regional 
approach to lake depth modeling. Additionally, we provide the largest known collection of observed and predicted lake 
depth values in the United States.
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Introduction

Lake depth is known to interact with and control many 
physical, chemical, and biological processes in lakes. For 
water quality, lake depth is particularly important because it 
influences the relationship between water quality stressors 

(e.g., land use change) and responses (e.g., phosphorus con-
centration; Taranu and Gregory-Eaves 2008). Mean lake 
depth is related to lake volume and residence time and 
improves predictions of internal processing and retention of 
phosphorus in lakes (Vollenweider 1975, Brett and 
Benjamin 2008). Maximum lake depth (Zmax) in part 
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determines whether a lake stratifies (Gorham and Boyce 
1989) and is subsequently correlated to many physical and 
biological processes, such as hypolimnetic oxygen 
depletion (Charlton 1980) and the likelihood of winterkill 
(Barica and Mathias 1979). Lake depth data over broad 
spatial extents are rare, however, despite abundant data on 
other lake features, because lake bathymetric data (on 
which lake depths are often based) are often stored as paper 
maps or in diverse electronic file types, no methods 
currently exist to measure lake depth using remote sensing 
technology, and no central repository exists for lake depth 
information. For macroscale limnology research, the lack of 
depth information may be overcome by (1) scouring paper 
and digital maps, records, and individual lake databases to 
find depth information, which is inefficient but precise; or 
(2) using terrestrial topography and other widely available 
landscape features to predict lake depth, which is efficient 
but imprecise (Hollister et al. 2011, Sobek et al. 2011). 
Even if all available lake depth information is compiled, 
bathymetric data for small and remote lakes are typically 
rare. If the study area includes thousands of lakes, model 
prediction of lake depth is the only pragmatic solution until 
other technologies are developed. 

Current models for predicting lake depth use 
topographic information of the land surrounding a lake as 
the predictor; however, these models only explain 36–50% 
of the variability in Zmax (Hollister et al. 2011, Sobek et al. 
2011, Heathcote et al. 2015). For example, Sobek et al. 
(2011) tested dozens of map-derived metrics (related to 
topography, lake morphology, and land cover/land use) on 
>6000 lakes, and the top predictors (lake area and maximum 
slope) explained 36% of the Zmax variability. A variety of 

mechanistic and modeling processes may explain the 
inability to predict lake depth using terrestrial topography. 
Hollister et al. (2011) suggested that accounting for erosion 
and sedimentation processes, which would cause the lake 
basin shape to deviate from the surrounding landscape, 
would improve lake depth prediction. Furthermore, sedi-
mentation processes are shape-dependent, and lake shape is 
known to vary by region (Carpenter 1983). Other lake char-
acteristics such as surface area also exhibit regional 
differences (McDonald et al. 2012). Although including 
region did not improve depth predictions in Sweden (Sobek 
et al. 2011), regional differences in the relationship between 
terrestrial topography and maximum depth were reported in 
northeastern United States (Hollister et al. 2011) and 
Quebec (Heathcote et al. 2015) lakes. Based on first 
principles, an interaction between surface area and 
topography could occur at the local or regional scale, where 
in steep landscapes an increase in surface area should lead 
to a larger increase in maximum depth relative to flat 
landscapes (Fig. 1; Winslow 2014). This topographical 
effect may limit performance of a simple linear model, 
which does not account for regional variability, to define the 
relationship between lake depth and surface area across 
diverse landscapes. 

We expect regional differences in the relationship 
between predictors (e.g., surface area) and lake depth due 
to both first principles (Fig. 1) and processes that are more 
difficult to quantify, such as lake formation, sedimentation, 
and erosion. The objectives of this work were to  
(1) improve on existing predictive models of lake depth by 
leveraging a mixed model approach that captures the hy-
pothesized regional differences in the relationship between 
predictors and lake depth by allowing slopes and intercepts 
to vary regionally; and (2) use the model to predict lake 
depth for lakes without depth measurements in our study 
extent and provide this information to the research 
community. We used a database of >50 000 lakes with 
terrestrial and lake metrics that spanned the Midwest and 
northeastern United States to create a predictive model of 
lake depth for this lake-rich and geomorphologically 
diverse region of North America. Our goal was to gain a 
mechanistic understanding of regional differences in lake 
depth and to understand where a geomorphology model 
was most appropriate to predict depth. 

Methods

Data source and study extent

All data are from LAGOS (LAke multi-scale GeOSpatial 
and temporal database), an integrated database of lake 
ecosystems made up of 2 modules. The lake depth data are 
from LAGOSLIMNO 1.040.0, which integrates existing 
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Fig. 1. The hypothesized interaction between lake surface area and 
terrain as it relates to lake depth. Lakes with the same surface area 
will be much deeper in steep versus flat terrain (top). In the Zmax 
model, we expect this relationship to appear as both local (bottom 
left) and regional (bottom right) interaction terms. At the lake scale, 
this relationship will be modeled as interactions between the fixed 
predictors. At the regional scale, the region-specific coefficients for 
surface area will be related to regional terrain metrics.
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field-based measurements of lake nutrients and physical 
properties (lake depth, water clarity) from government 
(local, state, federal, tribal) and university organizations 
for a subset of lakes in the region. The geospatial data are 
from LAGOSGEO, a collection of spatially referenced 
measurements of climate, land use/land cover, terrain, 
surface water connectivity, and surficial geology that 
describe the geographical context of each of the 51 009 
lakes in the study area. LAGOSGEO contains a complete 
census of lakes ≥4 ha with corresponding geospatial 
information for a 17-state region of the United States. (Fig. 
2). Soranno et al. (2015) provide a detailed description of 
metric derivation and how LAGOS was built. 

Of the 51 009 lakes in the population, 8458 had Zmax 
measurements and 3780 had mean depth. Zmax is likely 
more abundant in LAGOS because Zmax is easier to 
measure and calculate from a bathymetric map compared 
to mean depth. Additionally, when lake depth is unknown, 
water chemistry is often measured at the center of the lake, 
where the deepest hole is assumed to be located; therefore, 
we chose to model Zmax. We excluded lakes >1000 ha (n = 
371), as Sobek et al. (2011) did, because lake depth is 
known for most of these lakes in LAGOS (79% compared 
to 16% of lakes <1000 ha) and therefore does not need to 
be predicted. Lakes were included in the analysis if they 
had complete records for all predictor variables and met 
our size criteria (n = 42 443 without depth data; n = 8164 
with depth data). Some variables were highly skewed and 
subsequently loge transformed (Table 1). Predictors were 
centered and scaled by subtracting the mean and dividing 

by the standard deviation (Table 1). A random subset of 
10% of the observations (n = 817), stratified by loge Zmax, 
were withheld during model fitting and used for model 
validation (Fig. 2). 

Observation-level predictors

Previous predictive models of lake depth showed that 
metrics describing the terrain (e.g., slope) surrounding the 
lake, as well as lake-specific metrics such as surface area, 
were the best predictor of lake depth (Sobek et al. 2011). 
For our analysis, we used lake and terrestrial geomorphic 
metrics from LAGOS calculated at multiple spatial scales 
(Table 1). Observation-level predictors (i.e., predictors 
measured for each lake) tested in our model included 
metrics that describe the terrestrial landscape, including 
slope, terrain ruggedness index (TRI), and the ratio of 
watershed area to lake surface area (WSA:LA). The 
watershed area excludes the watershed of upstream lakes 
≥10 ha. Slope and TRI metrics were both calculated using 
the gdaldem tool (http://www.gdal.org/gdaldem.html) in 
the Geospatial Data Abstraction Library (GDAL). The 
input raster was the National Elevation Dataset (NED) at 
10 m resolution. Slope was reported in degrees and 
calculated using Horn’s formula (Horn 1981), in which 
the output value for a focal cell represents the slope 
between the focal cell and its 8 nearest neighbors. TRI 
was calculated as the mean of the absolute difference 
between elevation in the focal cell and neighboring cells 
(Wilson et al. 2007). Values were greater than zero, and 

Fig. 2. Locations of lakes used to train (blue triangles; n = 7347) and validate (black dots; n = 817) the model and all lakes ≥4 ha in the study 
region that met our model inclusion criteria (gray dots; n = 50 607). The light gray regions correspond to HUC 4 regions.
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Variable and spatial extent Reason for elimination Transformation, mean (SD)
Lake-specific

Zmax ln

Area ln, 3.80 (1.28)

Perimeter correlated 
SDI ln, 0.63 (0.39)

WSA:LA ln, 2.32 (1.36)

100 m buffer

S100,mean low predictive ability
S100,sd low predictive ability

S100,max ln, 3.03 (0.42)

S100,min zero-inflated 
TRI100,mean low predictive ability

TRI100,sd low predictive ability
TRI100,max correlated
TRI100,min zero-inflated 

500 m buffer

S500,mean low predictive ability
S500,sd low predictive ability

S500,max no effect in full model
S500,min zero-inflated 

TRI500,mean low predictive ability
TRI500,sd low predictive ability

TRI500,max correlated
TRI500,min zero-inflated 

Watershed

SWS,mean low predictive ability
SWS,sd low predictive ability

SWS,max no effect in full model
SWS,min zero-inflated 

TRIWS,mean low predictive ability
TRIWS,sd low predictive ability

TRIWS,max correlated
TRIWS,min zero-inflated 

Region (HUC 4)

SHUC4,mean NA, 3.88 (2.14)

SHUC4,sd low predictive ability
SHUC4,max low predictive ability
SHUC4,min zero-inflated 

TRIHUC4,mean low predictive ability
TRIHUC4,sd low predictive ability

TRIHUC4,max low predictive ability
TRIHUC4,min zero-inflated

Relative depth NA, 1.22 (0.27)

Depth ratio low predictive ability
Max Zmax low predictive ability

Table 1. Variables considered as predictors in the linear mixed model to predict Zmax. SDI is the shoreline development index, WSA:LA is the 
ratio of the watershed area to lake surface area, S is slope, and TRI is the terrain roughness index. Subscripts on predictor variables describe 
the measured spatial extent of the metric (100 m buffer, 500 m buffer, watershed, region) and the summary statistic used (mean, maximum, 
minimum, standard deviation). Reason for elimination describes why predictor variables were removed from the model. Predictor variables 
included in the final model are bolded. Variables were first excluded if they had a zero-inflated distribution, then if they had low predictive 
ability relative to the other variables at the same spatial extent, and finally if they were highly correlated to other predictor variables. Variables 
were also excluded if they had no effect after the full model was built. Regional-level predictors were eliminated if they were not related to 
any of the random effects in the mixed model. For variables included in the final model, transformation describes if the data were untrans-
formed (NA) or log transformed (ln). Predictors were centered and scaled after transformation by subtracting the mean and dividing by the 
standard deviation.
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larger values were interpreted as representing a more 
rugged (or variable) terrain. From the slope and TRI 
layers, summary statistics included mean, standard 
deviation, maximum, and minimum of all pixels at a given 
spatial scale (100 m buffer, 500 m buffer, watershed, or 
region). Naming conventions for predictor variables 
summarized the topography metric, spatial scale, and 
summary statistic. For example, mean slope in the 100 m 
buffer was abbreviated as S100,mean. 

Lake-specific morphometry metrics included surface 
area (area) and perimeter (P), extracted from the National 
Hydrography Dataset (NHD; http://nhd.usgs.gov/), and 
shoreline development index (SDI), a derived measure of 
shoreline complexity calculated as:

                                             P
                         

SDI =
  2×√π×Area

 .                              
(1)

Large values of SDI can be interpreted as lakes with more 
convoluted (less circular) shorelines. 

Regional-level predictors

We expected lake morphology to exhibit regional autocor-
relation; that is, lakes within regions have more similar 
morphological characteristics than lakes across regions, 
and this phenomenon may help predict lake depth. We 
delineated our regions using the US Geological Survey 
National Hydrography Dataset (NHD) Watershed 
Boundary Dataset (WBD) delineation of river watersheds 
(Seaber et al. 1987). The WBD delineation is a nested and 
hierarchical regionalization shown to effectively group 
lakes for water quality modeling (Cheruvelil et al. 2008, 
2013). The HUC 4 (4 digit hydrologic unit code) scale in 
the WBD divides the entire United States into 222 
watersheds with an average size of ~44 000 km2. We chose 
the HUC 4 scale (Fig. 2) because it is small enough to 
capture important regional differences in lakes but large 
enough to have many lakes with Zmax data per region 
(mean = 126). Under the hypothesis that regional 
differences in lake and terrestrial morphology would lead 
to region-specific relationships between Zmax and the 
observation-level predictors, we tested if the random 
slopes and intercepts in the mixed model were related to 
regional variables that describe lake shape and terrestrial 
morphology.

For each region, we used the mean of the lake 
morphology metrics to describe regional lake shape, 
except in regions with poor sample size (n < 10), where 
the mean of lakes across all regions was used. Lake shape 
can be variously described (e.g., Häkanson 1981), but in 
the absence of bathymetric information, we were limited 
to derived metrics that use available limited descriptive 

data: Zmax, mean depth (for a subset of lakes), P, and 
surface area. Relative depth (RD; Häkanson 1981) is 
calculated as:

    
                   (2)

where small deep lakes will have the largest RD values, 
and large shallow lakes will have the smallest values. The 
depth ratio (DR) is mean depth divided by Zmax and 
approaches one for lakes with steep sides and flat bottoms. 
Additionally, we used the maximum Zmax value in each 
region as a surrogate for the depth to bedrock, which may 
represent a regional constraint on Zmax. Terrain metrics 
(described earlier: slope, TRI) summarized at the regional 
scale were also used as region-level predictors. 

Modeling approach overview

To predict Zmax we used a mixed modeling approach that 
included observation-specific (level 1) and region-specific 
(level 2) predictors. This approach allowed local relation-
ships between predictors and response (region-specific 
slopes and intercepts) to vary with regional characteristics 
(i.e., cross-scale interactions; Soranno et al. 2014). 

All models were fitted using the lmer function in the 
package lme4 (Bates et al. 2014) in R (R Core Team 
2014). The observation-level of our model used lake-spe-
cific metrics to predict Zmax in each lake:

loge (Zmax )i~N(αj[i] + βj[i]Xi σy
2 ), for i = 1,…n,    (3)

where loge (Zmax )i is the natural log of Zmax in lake i; αj is 
the intercept for the jth region; βj is the slope of the rela-
tionship between Zmax and observation-level predictor X in 
region j; and σy

2 is the residual variance. The second level 
of our model used regional covariates to model the 
variability in region-specific slopes and intercepts as:

(4)

where γ0
a  and γ1

α are the estimated intercept and slope, 
respectively, for the relationship between aj and the 
regional covariate Zj; γ0

β and γ1
β are the estimated intercept 

and slope, respectively, for the relationship between βj and 
Zj; σα

2 and σβ2 are conditional variance estimates; and ρ is 
the correlation between slopes and intercepts. 
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Model selection

Mixed model selection is not straightforward, largely 
because of the difficulty in determining the effective 
number of parameters (West et al. 2014), so we initially 
reduced the number of possible predictor variables in the 
final model (Table 1). We chose to keep all lake 
morphology metrics in the running for the final model but 
reduced the number of potential terrain metrics using the 
following procedures. First, predictors were excluded if 
they had a zero-inflated distribution. To ensure all observa-
tion-level predictors were important for predicting Zmax 
independently, each variable was tested separately by 
building a mixed model with one predictor (fixed effect) 
and allowing slopes and intercepts to vary by region 
(random effects). If the 95% confidence interval of the 
estimated fixed effect coefficient overlapped with zero, the 
predictor was excluded from analysis in the final model. 
Next, predictor variable performance was assessed using a 
metric of percent variance explained. Both a marginal (R2

m; 
percent variance explained by fixed effects) and a 
conditional (R2

c; percent variance explained by fixed and 
random effects) R2 were used to rank variables according 
to their ability to predict Zmax (Nakagawa and Schielzeth 
2013). The top predictor from each scale (100 m, 500 m, 
and watershed) and each predictor type (slope or TRI) were 
retained for potential inclusion in the final model (Table 1). 

The top-ranked predictor variables were then assessed 
to exclude highly correlated variables. A variance inflation 
factor (VIF) was used to detect multicollinearity, and 
variables were excluded if VIF >5 (corresponds to R2 = 
0.8) using a step-wise selection process that, in each 

iteration, excluded the variable with the highest VIF. 
Variables at the same spatial scale were highly correlated, 
so in some cases, the variable with the second highest VIF 
was excluded if it performed more poorly in the model 
than the metric at the same spatial scale. This selection 
process left 5 observation-level predictors to be tested in 
the full model (Table 1).

Following previous works (e.g., DeWeber and Wagner 
2015), a full model was fitted that allowed all observation-

Parameter Description Mean Standard error
Observation-level

γ0
α Intercept 1.96 0.02
γ0

β1 Area 0.18 0.02
μβ2 SDI −0.06 0.01
μβ3 S100,max 0.23 0.01
μβ4 WSA:LA −0.11 0.01
b Area*S100,max 0.06 0.01
b Area*SDI 0.03 0.01
b SDI*WSA:LA −0.04 0.01
σα2 Intercept variance 0.02
σ2
β1 Area slope variance 0.01

Regional-level

γa
1 Relative depth 0.13 0.02
γ1
β1 SHUC4,mean 0.09 0.02

Table 2. Estimated coefficients from the final mixed effects model. Note that coefficients are from transformed, centered, and standardized data 
(see Table 1).

Fig. 3. The distribution of lake surface area in the population (light 
gray; n = 51 009) and sample of lakes with known Zmax (dark gray; 
n = 8458). Values above the arrows represent the geometric mean 
lake surface area in the population (left) and sample (right).
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level predictors to vary by region (random slopes and 
intercepts). Two-way interactions between all fixed effects 
were sequentially added and retained if the 95% 
confidence interval for the estimated coefficient did not 
overlap with zero. Two-way interactions were not allowed 
to vary among regions. Once the interaction terms were 
included in the model, the region-specific slopes and 
intercepts (random effects) were evaluated. A random 
effect was kept in the model if >10% of the region-spe-
cific estimates and the fixed estimate had nonoverlapping 
95% confidence intervals. All region-level variables were 
tested as covariates of random effects in the model; a re-
gion-level predictor was included in the model if the 
estimated coefficient was different from zero and 
explained the most variance in the region-specific effects 
relative to other region-level predictors. 

Model performance

The final mixed effects model was evaluated based on the 
proportion of variance explained by fixed and fixed plus 
random effects (Nakagawa and Schielzeth 2013). The 
predict function in the package lme4 (Bates et al. 2014) in 
R (R Core Team 2014) was used to generate predicted 
values for the 10% of withheld data and the remaining 
lakes in our study region where Zmax was unknown. Root 
mean squared error (RMSE) was calculated for both the 
training and validation data and summarized by region to 
assess whether model performance varied spatially. 
Relative RMSE (rRMSE) was also calculated as the 
regional RMSE divided by the regional mean Zmax. Both 
the predicted and observed depth values are available for 
download (Oliver et al. 2015).

Results

Lakes with known Zmax were not evenly distributed 
across the study region, and 6 of 65 regions did not have 
any depth observations (Fig. 2). Lake depth in these 
regions was predicted using the global (rather than 
region-specific) coefficients. Additionally, the size distri-
bution of lakes with known Zmax was different from that 
of the whole population; large lakes were oversampled 
relative to their abundance (Fig 3).

The final mixed effects model included a single 
terrain metric (maximum slope at the 100 m scale), lake 
area, WSA:LA, and SDI (Table 2). Lake area and S100,max 
had the largest effect size and interacted; the positive 
interaction term indicated that lakes of similar size are 
deeper if they are situated in steep versus flat terrain 
(Fig. 4a). Lakes were also deeper if they had simple 
shorelines, particularly if the lakes were small (Fig. 4b). 
The interaction between WSA:LA and shoreline 
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Fig. 4. Representation of the interaction terms between (a) lake 
surface area and S500,max, (b) lake surface area and SDI, and (c) SDI 
and WSA:LA. The dashed and solid lines represent the value of (a) 
S500,max, (b) SDI, and (c) WSA:LA at the 0.25 and 0.75 quartiles, re-
spectively. Gray bars represent the 95% confidence interval for the 
predicted Zmax.
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The RMSE was 7.1 m for both the training and 
validation data (Fig. 6a). The distribution of Zmax for the 
population of lakes was different from that of the 
modeled lakes; the predicted geometric mean Zmax of the 
population was 5.8 m compared to 7.4 m for the observed 
values (Fig. 6b). The fixed effects accounted for most of 
the total variance explained by the model (R2

m = 0.24, R2
c 

= 0.29). RMSE was variable across regions and was 
related to the regional mean Zmax (Fig. 7), so we 
calculated relative RMSE (regional RMSE/regional 
mean Zmax), which ranged from 0.19 to 1.21 across 
regions (Fig. 7). 

development revealed that shoreline complexity is more 
important for determining depth of lakes with large 
watersheds relative to surface area (Fig. 4c). Lakes with 
complex shorelines were much shallower if they were 
situated in a large watershed. 

The region-specific intercepts and area slopes (Table 
2) were included in the final model because 24 and 32% 
of region-specific estimates, respectively, differed from 
the estimated fixed effect. The region-specific intercepts 
and slopes were both related to region-level predictors 
(Fig. 5). The random intercepts were positively 
correlated with relative depth, where regions with high 
Zmax relative to surface area had higher intercepts (Fig. 
5a). Variation in the region-specific slope of the relation-
ship between surface area and depth were positively 
correlated with SHUC4,mean (Fig. 5b). 

Fig. 5. The relationship between the region-specific effects and 
regional predictors. (a) The region-specific intercepts were related to 
relative depth, and (b) the region-specific slope of the relationship 
between lake surface area and Zmax was related to mean slope at the 
HUC 4 scale.

Fig. 6. (a) The relationship between observed and predicted Zmax 

from the training (gray dots) and validation (black crosses) data. The 
dashed line represents a 1:1 relationship. (b) The distribution of Zmax 
in the population (light gray) and sample of lakes with known Zmax 
(dark gray).
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Discussion

Our goal was to predict maximum depth for thousands of 
lakes across a large and topographically diverse landscape 
to improve existing models of lake depth by using a mixed 
effects model that characterizes variance at the regional 
scale. We hypothesized that differences in topography, 
formation processes, or sedimentation and erosion 
processes would lead to region-specific relationships 
between lake and terrestrial morphology. The region-spe-
cific slopes and intercepts in our model were related to 
regional lake and terrestrial geomorphic metrics (Fig. 5), 
which suggests mechanistic links to the regional scale. The 
mechanism may be regional geomorphology that 
constrains lake shape, which would create region-specific 
relationships between surface area and Zmax. Additionally, 
first-order processes were evident in the model; lakes of a 
given size are deeper in steep versus flat terrain (Fig. 1), a 
process evident at both the local (Fig. 4a) and regional 
scale (Fig. 5b). Although we were not able to pinpoint the 
mechanism that creates region-specific relationships 
between lake depth and the predictors, our model revealed 
that lake depth is not simply a function of lake size or the 
immediate terrestrial landscape, but that regional 
differences in lake and terrestrial geomorphic metrics are 
critical to consider. The regional variability in relative 
RMSE (Fig. 7) highlights areas where the model is 
well-suited for depth prediction (e.g., Missouri), despite 
poor performance overall.

Differences in sedimentation processes across lakes 
may be driving the lake basin to deviate from the 
surrounding topography (Carpenter 1983, Hollister et al. 
2011). We attempted to capture variability in sedimenta-
tion rates using 2 local predictors viewed as surrogates for 
sedimentation potential. WSA:LA represents the potential 
for allochthonous input to the lake, where a large drainage 
area relative to lake area has the highest allochthonous 
input potential (Kortelainen 1993, Sobek et al. 2003). SDI 
may represent the mode of entry for allochthonous 
material; more complex shorelines (high SDI) have more 
connectivity per lake area to the terrestrial landscape. In 
our model, the shallowest lakes occurred when SDI and 
WSA:LA were high (Fig. 4c), which may point to those 
lakes with the highest sedimentation rates. Regardless of 
the amount of material delivered to lakes, sedimentation 
rates can vary across lake shapes and types; small, 
productive lakes will fill more rapidly (Carpenter 1983, 
Downing et al. 2008). Incorporating more sophisticated 
estimates of sedimentation rates or lake age may improve 
future lake depth models.

Our results suggest that the local terrain is the strongest 
predictor of lake shape. The slope metric at the smallest 
spatial scale (100 m) in our model had the largest effect 
size. Likewise, Sobek et al. (2011) found that the maximum 
slope in a small (50 m) buffer was the best predictor (after 
surface area) of Zmax. Heathcote et al. (2015) varied the 
buffer size with lake size and tested different scaling 
factors and found that metrics summarized at the smallest 

Fig. 7. Relative root mean squared error (rRMSE) of predicted Zmax in each region. The regional error in the model was related to the average 
lake depth in each region (inset), so RMSE was standardized by dividing by the regional mean Zmax. One outlier (RMSE = 8 m, mean Zmax = 
27.4 m) is not shown in the inset. Darker colors represent higher error in the prediction, which ranged from 0.19 to 1.21 across the study extent.
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buffer scale were always the best predictors of lake depth. 
Lake bathymetry is apparently a close reflection of the 
immediate terrestrial landscape, and lake depth prediction 
does not require knowledge of the watershed. Although 
WSA:LA was in our model, it had a small effect size 
relative to slope and surface area (Table 2). Additionally, 
both our study and Sobek et al. (2011) found that the 
maximum slope was the best predictor of Zmax, an 
unexpected finding given that maximum metrics represent 
a single “neighborhood” in the entire spatial extent. An 
extreme predictor may be best in this case because Zmax is 
itself an extreme point in the lake basin, and the most 
rugged or steep places in a buffer may be a surrogate for 
depth potential in the adjacent lake basin. 

Recently, Heathcote et al. (2015) presented an 
improved model for predicting lake depth and were able 
to explain half of the variability in Zmax for 400 lakes in 
Quebec. The Heathcote et al. (2015) model had higher 
precision than similar efforts for a variety of reasons (this 
study; Sobek et al. 2011, Hollister et al. 2011), but 
principally because their study extent covered a relatively 
small, geologically uniform ~2 × 105 km2 area compared 
to the ~4.5 × 105 km2 study extent in Sobek et al. (2011) or 
the >18 × 105 km2 total area covered in this study. Similar 
to this study, model performance was region-specific 
(Heathcote et al. 2015) and performed poorly in one 
region with flat terrain. Additionally, their terrain metrics 
were calculated in a buffer proportional to lake surface 
area, so presumably noninformative terrain was excluded 
for each lake. Because we expanded our analysis to 
predict depth for >40 000 lakes, calculating a variable 
rather than standard buffer size would be computationally 
expensive. Although we did not test the same approach, 
our buffer sizes of 100 and 500 m would have been the 
selected buffer sizes in the Heathcote et al. (2015) method 
for lakes with surface areas of 12.6 and 314 ha, respec-
tively, and 71% of the lakes used in our model fell 
between these size classes. Finally, we cannot rule out that 
the terrestrial metric used by Heathcote et al. (2015; mean 
elevation in the buffer divided by the elevation of the lake 
surface) would improve our model performance because 
we did not derive this metric. 

The LAGOS database provides an unprecedented 
amount of lake depth data, which is valuable both on its 
own and for validation of a depth prediction model. In this 
case, however, more data did not translate to better 
predictive ability relative to studies with far fewer obser-
vations (e.g., Heathcote et al. 2015), most likely because 
of the large spatial extent of LAGOS and the heterogene-
ous landscape that it covers. The lack of predictive ability 
despite more data was also true across regions in our 
model; regions with many observations did not have lower 
prediction error than those regions with fewer observa-

tions (data not shown), a result that emphasizes the 
importance of lake depth observations. More troubling is 
the systemic bias in the commonly studied lakes; small 
lakes are under-sampled relative to their abundance across 
the landscape (Fig. 3; Wagner et al. 2008). Small lakes are 
functionally different from large lakes in many ways 
(Hanson et al. 2007, Downing et al. 2008, Read et al. 
2012), and measuring their cumulative regional or global 
importance is dependent on assumptions related to lake 
morphology (Winslow et al. 2015). High error in depth 
prediction for small lakes, combined with the error 
associated with quantifying small lakes across the 
landscape, leads to high uncertainty in the volume of 
small lakes and any upscaled volume-dependent processes 
(e.g., McDonald et al. 2013). LAGOS demonstrates that, 
collectively, the scientific community has information on 
lake depth, but that these data are not readily available in a 
centralized database. We encourage organizations and 
researchers collecting bathymetric or depth measurements 
to share their data to a central repository such as 
Bathybase (http://www.bathybase.org/) where information 
is freely available to the broader community so existing or 
new models can be developed to better predict lake depth 
in the absence of in situ data.
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