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Abstract. Macroscale studies of ecological phenomena are increasingly common because stressors such
as climate and land-use change operate at large spatial and temporal scales. Cross-scale interactions (CSIs),
where ecological processes operating at one spatial or temporal scale interact with processes operating
at another scale, have been documented in a variety of ecosystems and contribute to complex system
dynamics. However, studies investigating CSIs are often dependent on compiling multiple data sets from
different sources to create multithematic, multiscaled data sets, which results in structurally complex, and
sometimes incomplete data sets. The statistical power to detect CSIs needs to be evaluated because of their
importance and the challenge of quantifying CSIs using data sets with complex structures and missing
observations. We studied this problem using a spatially hierarchical model that measures CSIs between
regional agriculture and its effects on the relationship between lake nutrients and lake productivity. We
used an existing large multithematic, multiscaled database, LAke multiscaled GeOSpatial, and temporal
database (LAGOS), to parameterize the power analysis simulations. We found that the power to detect
CSIs was more strongly related to the number of regions in the study rather than the number of lakes
nested within each region. CSI power analyses will not only help ecologists design large-scale studies
aimed at detecting CSIs, but will also focus attention on CSI effect sizes and the degree to which they are
ecologically relevant and detectable with large data sets.
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INTRODUCTION if multiscaled relationships are ignored (Peters

et al. 2004, 2007, Heffernan et al. 2014, Soranno

Ecological systems are shaped by processes et al. 2014). These complex, multiscaled relation-

operating at multiple temporal and spatial
scales, and this hierarchical structure can make
it challenging to understand ecological dynam-
ics (Levin 1992). Cross-scale interactions (CSIs),
whereby ecological processes operating at one
spatial or temporal scale interact with processes
operating at another scale, can promote ecologi-
cal complexity and lead to unexpected patterns
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ships can make it difficult to manage systems
and predict how they may respond to broadscale
drivers of change such as climate change and
land-use conversion.

As multiscale perspectives develop, atten-
tion toward CSls, and their potential influence
on ecological complexity, will likely continue to
grow among various disciplines in ecology (Cash
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et al. 2006, Vergara and Armesto 2009, Koo et al.
2014, Menge et al. 2015). For example, CSIs are
hypothesized to be critical to understand com-
plex forest ecological dynamics in the face of
multiscaled disturbance regimes, climate change,
and management actions (Becknell et al. 2015). In
aquatic systems, broadscale ecosystem charac-
teristics and fine-scale microhabitat character-
istics likely interact to influence littoral benthic
communities (Stoffels et al. 2005). Further, CSIs
are important not only to biological and biogeo-
chemistry responses in systems but also to dis-
turbance phenomena such as fire regime, which
are influenced by multiscaled spatial and tempo-
ral factors and processes (Falk et al. 2007).

Empirical evidence for the presence of CSIs is
also growing across different ecological systems.
For example, in terrestrial systems red spruce
growth is influenced by an interaction between
local-scale topography and regional-scale cli-
matic factors (Koo et al. 2014). In aquatic systems,
CSIs are shown to influence ecological responses
such as brook trout Salvelinus fontinalis occupancy
(DeWeber and Wagner 2015), marine intertidal
community composition (Menge et al. 2015), and
lake water chemistry (Fergus et al. 2011). There
is also evidence that the well-studied empirical
relationships between lake phosphorus and chlo-
rophyll 2 (CHL; a measure of lake primary pro-
duction) concentrations are influenced by CSIs
with regional agriculture and wetland presence
(Wagner et al. 2011, Filstrup et al. 2014), which
may help reconcile differences in relationships
among different studies.

Although CSIs may be conceptually and eco-
logically important to understand ecological
complexities, there are data demands and analyt-
ical challenges for quantifying these relationships
(Soranno et al. 2014). To quantify CSIs, there is a
need for multithematic data sets that span poten-
tially extensive spatial and/or temporal scales,
depending on the ecological phenomena of inter-
est (Koo et al. 2014, Soranno et al. 2014, Keane
et al. 2015). Because these sorts of data sets are
rare, frequently multiple data sets from different
sources are compiled to create a multithematic,
multiscaled data set to examine CSIs (Soranno
et al. 2015). The consequences of this approach
are “messy” data sets with complex (e.g., uneven
numbers of observations across spatial or tempo-
ral extents) and multilevel data structures.
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Hierarchical models represent one analytical
approach that can accommodate the multilevel
data structures observed in multithematic, mul-
tiscaled data sets and that can be used to estimate
CSIs. In fact, hierarchical models have been used
to quantify CSIs in both the ecological and social
sciences (Mathieu et al. 2012, Soranno et al. 2014,
Dixon Hamil et al. 2016). Although factors affect-
ing the statistical power of hierarchical models
generally (Scherbaum and Ferreter 2009) and
specifically related to detecting CSls (Snijders
and Bosker 1993, Mathieu et al. 2012) have been
studied, these investigations have not been in
ecological disciplines. To the best of our knowl-
edge, the effect of such multilevel data structures
on the statistical power to detect CSIs has yet to
be evaluated within the context of macroscale
investigations of ecological CSls.

In this study, we examine the ability to detect
CSIs under different scenarios that may be
encountered with multiscaled, compiled data sets
(e.g., spatially varying sample sizes, varying CSI
effect sizes, and different variance parameters).
We studied this problem using a spatially hierar-
chical model that measures CSIs between driver
variables (as described in Soranno et al. 2014).
These types of CSIs have an interaction between a
higher-level variable (e.g., regional agriculture) on
a lower-level driver variable (e.g., lake nutrients)
on the response (e.g., lake chlorophyll concentra-
tions). We focused on evaluating CSIs between
regional agricultural land use and the effects of
lake nutrients (i.e., phosphorus and nitrogen) on
lake chlorophyll concentrations (a measure of pri-
mary producer biomass) because previous work
has demonstrated the potential for regional land
use to mediate the effects of lake nutrients on pri-
mary producer biomass, resulting in a CSI (Wagner
et al. 2011, Filstrup et al. 2014). Specifically, pre-
vious studies have demonstrated a CSI between
regional agricultural land use and the rate at which
chlorophyll concentrations increase with increas-
ing nutrients, such as phosphorus concentrations
(Wagner et al. 2011). The mechanisms for this CSI
are hypothesized to be due to simultaneous nitro-
gen and phosphorus enrichment and to the export
of more biologically available forms of nutrients
in agriculturally dominated regions compared to
regions with other land cover types (Filstrup et al.
2014). We used a spatially extensive lake water
chemistry database, LAke multiscaled GeOSpatial
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and temporal database (LAGOS; Soranno et al.
2015), to parameterize the power analysis simula-
tions. This type of power analysis can help inform
study designs to formally examine such complex,
multiscaled relationships in ecology. We also sug-
gest that a power analysis for CSls is important for
understanding what CSI effect sizes are ecologi-
cally relevant and detectable.

METHODS

Lake and land-use data

Data used to derive estimates for parameteri-
zing power analysis simulations came from
the LAGOS database, a multithematic lake data-
base that integrates lake water chemistry data
(LAGOS; ivino) and geospatial data (LAGOSggo)
across the Midwest and Northeast regions of the
United States (Soranno et al. 2015). We used
LAGOS; pyino  Version 1.0541 and LAGOSggo
version 1.03 for our analyses.

We used a subset of lakes (>4 ha and <10,000 ha
in surface area) from LAGOS that had measure-
ments for CHL, total phosphorus (TP; n = 3781
lakes), and total nitrogen (TN; n = 3107 lakes). To
reduce intraseasonal variation in nutrients within
lakes, we used summer epilimnetic (15 June-15
September) average nutrient concentrations for
data collected between 2002 and 2011 (the 10 most
recent years of data available), which resulted in
one observation per lake. The number of years that
were sampled for each lake ranged from 1 to 10 yr
for both TP and TN, with a median number of
years of two for TP and one for TN. The standard
deviation in annual TP for lakes that were sampled
more than one year ranged from 0 to 518 ug/L,
with a median of 3.5 pg/L. The standard deviation
in annual TN for lakes that were sampled more
than one year ranged from 0 to 5155 ug/L, with a
median of 116 ug/L. The U.S. Geological Survey
four-digit Hydrologic Unit (HU), which is based
on river basins (Seaber et al. 1987), was used as a
regionalization framework to group lakes on the
landscape. The proportion of agricultural land
use in each region was calculated from the 2006
National Land Cover Dataset (Fry et al. 2011).

Statistical model: CSls between regional agriculture

and the effect of nutrients on lake productivity
Quantifying CSIs requires multiscale analytical

frameworks such as spatially explicit landscape
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models, systems models, and statistical models
(Koo et al. 2014, Nash et al. 2014, Dixon Hamil et al.
2016, Keane et al. 2015). Hierarchical models are
one statistical approach to quantify CSIs among
driver variables, as defined in Soranno et al. (2014).
Hierarchical models are well suited to study CSls
among driver variables because they partition
variation in ecological responses among hierarchi-
cally structured spatial units that can be related to
multiscaled drivers and CSIs among these drivers
(Soranno et al. 2014, Dixon Hamil et al. 2016).

We defined CSIs similar to previous studies
(Filstrup et al. 2014, Soranno et al. 2014, DeWeber
and Wagner 2015) using a varying intercept,
varying slope hierarchical model that included
predictor variables at two levels (Level 1: obser-
vation level [lake level] and Level 2: group level
[region level] of the hierarchical model). The basic
data structure for this CSI model specification is
multiple observations of response and predictor
variables of interest for individual systems (e.g.,
lakes) grouped spatially in an ecologically rele-
vant manner using a regionalization framework
(Cheruvelil et al. 2013). Each lake had at least one
observation for each of the three lake chemistry
variables, TP, CHL, and TN, and was grouped
spatially into regions. The varying intercepts in
the hierarchical model allowed the group of lakes
in each region to have their own mean CHL that
might differ from the mean CHL for groups of
lakes in other regions, while the varying slopes
allowed the each region’s lakes to differ in the rela-
tionship between TP (or TN) and CHL from that
of other regions. A CSI exists if the region-specific
slopes in the TP (or TN)-CHL relationship varies
predictably with a region-specific predictor vari-
able(s), indicating an interaction between a lake-
level (Level 1) and region-level (Level 2) predictor
variable whereby the effects of local predictor
variables are mediated by this larger scale phe-
nomenon, a CSI. Although more complex model
specifications are possible, we focused on a rela-
tively simple, yet ecologically relevant, model:

Level 1: yi~N<(xj(i)+[3j(i)-xi, 05), fori=1, ...n

Level 2: <°‘f > ~MVN<< T >
B Yo+ Vp1%

03 Oup )
Gy o2 , forj=1,...]
o i
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where y; is the response variable (e.g., log, CHL
for lake i), x; is the standardized (mean = 0,
SD = 1) lake-level predictor (e.g., log. TP [or
log. TN] for lake i), a; and {3; are group-specific
(e.g., region-specific) intercepts and slopes, and
o2 is the model error term variance. The region-
specific intercepts and slopes are assumed to
come from a multivariate normal distribution
(MVN), where v, is the grand mean intercept and
vp and vg, are the intercept and slope describing
the relationship between the region-level predic-
tor variable, z; and the slopes in the relationship
between x and y. The parameters ¢2, Gé, and o,
are the variances among intercepts and slopes,
and the covariance, respectively. The parame-
ter yg; describes the CSI. We fitted TP-CHL and
TN-CHL models with the percentage of agricul-
ture land use in each region as the region-level
predictor (z;). These models provided parameter
estimates used in the data-generating process for
the power analysis simulations (see Power anal-
ysis simulations below). All analyses were per-
formed using the Imer function in the program
R (Bates et al. 2014: R library Ime4, R Core Team
2015).

Power analysis simulations

We used a simulation approach to assess the
statistical power to detect CSIs. This process con-
sisted of two steps: a data-generating step and an
estimation step. For the data-generating step, the
varying intercept, varying slope model (Eq. 1)
was used as the data-generating model. All
parameters in this model, as well as the number
of observations, 1, and number of regions, ], used
to generate simulated data sets could be manipu-
lated to assess their relative influence on the
power to detect CSls. For example, one important
question related to detecting CSIs is: “How large
of an effect size for the CSI can we detect given
the variability observed across the landscape and
given the number of ecosystems and regions with
data?” Within the simulation context, this ques-
tion is addressed by holding all parameters at
their estimated values (i.e., the values estimated
from the LAGOS database) and increasing or
decreasing the value we assume for the CSI (e.g.,
change the value of yg; used in the data-generating
step) to examine the effects on power.

The estimation step of the power analysis con-
sisted of fitting the varying intercept, varying
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slope model to 1000 simulated data sets and
determining whether the CSI was detected (i.e.,
if 95 was statistically discernible from zero).
Because the data were generated assuming a
slope for the CSI that differed from zero, the null
hypothesis of a zero slope is false, and power was
estimated as the percentage of simulations (of
1000) that rejected the null hypothesis (Wagner
et al. 2007, see Appendix S1: Data S1 for R code).
Because we simulated positive CSIs in all power
analyses, the estimated CSI was considered sig-
nificant if the lower bound of the 95% confidence
interval (CI) for Yp1 exceeded zero. For the rare
cases (£7% of the 1000 simulations) when some
simulated data sets resulted in small sample
sizes with fitted models that failed to converge
(i.e., parameter estimates were not deemed reli-
able), those simulations were not used to calcu-
late power.

Power analysis scenarios

For both the TP-CHL and TN-CHL analyses,
we investigated the extent to which the follow-
ing factors affected the ability to detect a CSI:
(1) increasing CSI effect size, Vg1, (2) increasing
the number of regions, ], sampled across the land-
scape, (3) increasing the mean number of lakes, 7,
sampled within each region, (4) increasing and
decreasing the conditional standard deviation,
0p, in the CSI regression, and (5) increasing and
decreasing the standard deviation o,. For (1), we
examined the range of region-specific responses
of CHL to increases in TP and TN (;s from the
estimates using LAGOS) to determine a range of
CSI effect sizes to include in the power analyses.
This approach provided a range of percentage
increases in CHL that corresponded to a 1%
increase in TP or TN, which helped place some
ecological bounds on what kind of CHL response
might be anticipated when a CSI was present.

Because of the way we defined a CSI, a region-
alization framework must be used as the second-
level grouping factor in the hierarchical model
(i.e., Level 2 of Eq. 1). The choice of regionaliza-
tion framework, and the resulting number of
regions in the data set, is particularly important
when estimating CSIs; as the number of regions
increases or decreases, the sample size, |, in
the second level of the hierarchical model also
correspondingly increases or decreases, which
is the level where the CSI is being estimated.
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This fact is important because power necessar-
ily increases with increasing sample size (Steidl
et al. 1997). Therefore, we evaluated (2) by con-
sidering scenarios where the number of regions
was 10, 15, 20, 35, 40, 50, or 100 in order to span
a reasonable range that might be encountered
in macrosystems ecology research interested in
estimating CSls.

The number of lakes within a region is also
an important consideration when thinking
about detecting CSIs, that is, how many sys-
tems need data within a region to achieve ade-
quate power? In most cases, all systems in a
population of interest cannot be sampled due
to logistical and resource constraints (i.e., we
cannot perform a complete census). In addition,
because many macrosystem investigations into
large-scale phenomena like CSIs are contingent
on compiled data from many sources (e.g., com-
piling data from many state agencies and uni-
versities; Soranno et al. 2015), we examined the
effect of changing the mean number of lakes per
region (3) by generating within-region sample
sizes as a negative binomial random number,
with the mean of the negative binomial (1) set
to the value of interest and the scale parameter
set to the value estimated from the observed
data. Simulating within-region sample sizes in
this manner resulted in most regions with sam-
ple sizes near the mean and a few regions with
larger sample sizes, which mimicked the struc-
ture of the LAGOS data. For example, for lakes
with TP-CHL data the distribution of within-
region sample sizes was right-skewed (min =1,
25th percentile = 14, median = 36, mean = 62, 75th
percentile = 89, max = 297).

Lastly, we examined how changing the (4) con-
ditional standard deviation, og, in the CSI regres-
sion and the (5) residual standard deviation,
o,, influenced power. The conditional standard
deviation, o, represents the residual variation
in the Level 2 CSI (i.e., the unexplained “noise”
around the CSI regression), whereas the residual
standard deviation, o, represents the residual
variation in the Level 1 TP or TN-CHL relation-
ship (i.e., the unexplained “noise” around the TP
or TN-CHL regression). Because we did not have
any values of interest a priori, we evaluated the
effect of changing these standard deviations by
setting them to their estimated values and to the
lower and upper 95% confidence interval values.
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Parameters not being changed in any given sim-
ulation were held at estimated values.

REsuLTs

CSls between regional agriculture and the effect of
nutrients on lake productivity

LAGOS summary statistics. —For the TP-CHL
analysis, there were 3781 lakes located within 61
regions (HU-4s; Seaber et al. 1987). The number
of lakes per region ranged from 1 to 297, with a
mean of 62 lakes per region (Fig. 1). Mean TP
was 38.7 pg/L and ranged from 1 to 1122 ug/L,
whereas mean CHL was 15.8 ug/L and ranged
from 0.03 to 549 ug/L. The mean percentage
agricultural land use across the 61 regions was
37.4% and ranged from 1.7% to 78.6%. For the
TN-CHL analysis, there were 3107 lakes located
in 62 regions (Fig. 1). The number of lakes per
region ranged from 1 to 284, with a mean of 49
lakes per region. TN ranged from 55 to
11,860 pg/L, with a mean of 849.2 ug/L. Mean
CHL was 16.3 ug/L and ranged from 0.15 to
307 ug/L. The mean percentage agricultural land
use across the 62 regions was 36.8% and ranged
from 1.7% to 78.6%.

Statistical models. —LAGOS data revealed a
positive relationship between TP (and TN) and
CHL; those relationships were spatially variable,
although the relationship between TP and CHL
was less variable both within and across regions
than the TN-CHL relationship (Fig. 2, Table 1).
There was a significant CSI for the TP-CHL
relationship (4 = 0.003 [95% CI = 0.001, 0.005]),
with increasing regional agriculture land use
resulting in an increasing rate of response of CHL
to increasing TP (Fig. 2B). For example, at 0%
agricultural land use in a region, a 1% increase in
TP resulted in a 0.85% increase in CHL. However,
in a region with 75% agricultural land use, a 1%
increase in TP results in a 1.1% increase in CHL
(Fig. 3). Although the CSI effect size is relatively
small, it could promote shifts in phytoplankton
community composition if increases in agri-
cultural land use result in lower water clarity so
that additional chlorophyll is required to capture
the available light energy. This relatively small
CSI effect size may also have more biological
significance once its effects (e.g., on carbon
fixation) are scaled up to subcontinental or
continental scales. The CSI for the TN-CHL
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Map of study lakes. Blue circles indicate lakes with total phosphorus and chlorophyll 2 (CHL) data

(n=23781), and red circles indicate lakes with total nitrogen and CHL data (1 = 3107).

relationship was small and not different than
zero, with the 95% CI overlapping zero
(Y1 = 0.0008 [-0.003, 0.004]; Fig. 2D, Table 1).

Power analysis

The patterns of the relationships between sta-
tistical power and changes in effect size, sample
size, and model error term variance align with
expectations (Mathieu et al. 2012). However, the
power analyses provided important insight into
the actual magnitude of the CSI effect sizes that
could be detected under different sampling sce-
narios and the influence of Levels 1 and 2 sample
sizes and variance terms on detecting macroscale
CSIs in freshwater inland lake ecosystems
(Table 2). For the TP-CHL analysis, power
increased with increasing effect size and number
of regions (Fig. 4A). Statistical power was low
(less than the conventional 0.8 deemed as
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adequate power and used as a reference in these
analyses; Peterman 1990) when the CSI effect size
was low (yg; = 0.001), regardless of how many
regions were used in the analysis. For the CSI
effect size that we estimated from LAGOS
(vp1 = 0.003), power did not reach 0.8 until the
number of regions was approximately >50. For
large effect sizes (yg; 2 0.005), power was high
regardless of the number of regions used in the
analysis. A similar pattern in power was observed
for the TN-CHL analysis (Fig. 4C); however,
power was lower across all effect sizes and num-
ber of regions due in part to larger residual vari-
ances (as illustrated in Fig. 2C). Although
increasing the mean number of lakes sampled
within each region increased power, this effect
was small compared with increasing the number
of regions or increasing the effect size, for both
TP-CHL and TN-CHL analyses (Fig. 4B, D).
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Fig.2. Relationship between total phosphorus (TP) and chlorophyll 2 (CHL; A) and total nitrogen (TN) and

CHL (C). Solid circles in A and C are data points, the thick blue line is the overall relationship between TP or
TN and CHL across all lakes, and thin gray lines are region-specific relationships. Panels B and D illustrate the
cross-scale interaction between the percentage of agricultural land use in a region and the relationship between
TP or TN and CHL (i.e., the relationship between regional percent agriculture and the slopes [ﬁj] of the TP or
TN-CHL relationships). Points are estimated means, vertical bars are +1 SE, and solid line is hierarchical

regression model fit.

Changing the conditional standard deviation,
op, influenced power in a predictable manner,
with increasing among-region variability in
the relationship between TP-CHL and TN-
CHL resulting in decreased power (Fig. 5A, C),
although the increase in power was negligible
for the TN-CHL analyses when the CSI effect
size was small (Fig. 5C). Changing the model

error term standard deviation, o, (i.e., the Level
1 residual standard deviation), had minimal
influence on power for both analyses (Fig. 5B,
D); however, this pattern partly reflected the
parameter values that were used in the analyses
(i.e., we chose the estimated value and upper
and lower 95% CI as values to investigate, and
the residual standard deviation estimate from

Table 1. Estimated parameters used to parameterize power analysis simulations from a varying intercept,
varying slope hierarchical model, followed by 95% confidence intervals in parentheses.
Parameters
Model 9 9 5 6 8, 8
TP-CHL 2.0 (1.92,2.09) 0.85(0.77,0.94)  0.003 (0.001,0.005)  0.68 (0.66, 0.69) 0.27 (0.21,0.34) 0.14 (0.09, 0.19)

TN-CHL  2.19 (2.03,2.34) 0.80 (0.64, 0.96)

0.0008 (-0.003, 0.004)

0.76 (0.74,0.78)  0.59 (0.48,0.72)  0.30 (0.23, 0.37)

Notes: Separate models were fitted for log, total phosphorus (TP)-log, chlorophyll a (CHL) and log, total nitrogen (TN)-log,
CHL relationships. Note that {4 is the estimated cross-scale interaction.
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Fig.3. Effect of increasing the percentage agricultural land use in a region on the rate of increase in chlorophyll a
(CHL) in response to a 1% increase in total phosphorus (TP; A) or total nitrogen (TN; B) across a range of cross-scale
interaction (CSI) effect sizes (yp). Effect sizes labeled in figures and corresponding solid lines represent CSI effect
sizes examined in power analyses. yg; = 0.003 represents the CSI estimated from the data for the TP-CHL
relationship. The lowermost solid line in panel B corresponds to the estimated CSI in the TN-CHL relationship
(v1 = 0.0008), which is shown for comparative purposes, but was not used in the power analyses. A horizontal line
ata 1.2% and 1.6% increase in CHL in response to a 1% increase in TP or TN was added to aid in comparing panels.

LAGOS had a relatively narrow CI). However,
additional analyses (not reported herein)
showed low sensitivity of the power to detect
CSlIs in response to larger changes in the resid-
ual standard deviation, o, as compared to the
other factors investigated.

DiscussioN

Our analysis highlighted several important
points. First, estimating CSIs using a hierarchical
model requires consideration of sample size at
both the level of the individual “system” (e.g.,
number of lakes within regions) and the level of
the region (number of regions). Second, detect-
ing CSIs was much more sensitive to the number
of regions used in the analysis as compared to
the average number of lakes within regions. This
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is because the number of regions used in the
analysis is the sample size for the second level of
the hierarchical model where the CSI is esti-
mated. Thus, expending resources to sample
many systems in all regions may not be neces-
sary and resources could be better spent sam-
pling fewer systems across more regions. The
relative insensitivity to within-region sample
size is likely influenced by the fact that hierarchi-
cal models are able to accommodate the spatial
imbalance in the number of lakes within each
region through the effects of partial pooling
(Gelman and Hill 2007). Partial pooling allows
estimates of regions to borrow strength from the
entire ensemble of data by shrinking the region-
specific estimates that are supported by relatively
sparse data toward the common mean. In our
case study, there were always some regions with
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Table 2. Parameter values used in simulation scena-
rios for estimating the statistical power to detect

cross-scale interactions (CSIs).

Scenario

Parameter value

1. CSl effect size (yp;)

2. Level 1 mean sample size (i1)
3. Level 2 standard deviation (op)
4. Level 1 standard deviation (Oy)

vp1 = 0.001, 0.003, 0.004,
0.006, 0.008, 0.01

=10, 20, 40, 60, 80, 100
0p=0.228,0.298, 0.374
0,=0.738,0.756, 0.778

Notes: See Eq. 1 for descriptions of model parameters.
Parameter values not changed during a simulation were held
at estimated values (see Table 1). All scenarios were
performed across a range of number of regions, /, where
J =10, 15, 20, 35, 40, 50, 100. Scenarios 2—4 were performed
with a CSI effect size (yp) of 0.001 and 0.003.

many lakes (even if the mean number of lakes
per region was small) that helped inform the esti-
mates for data-poor regions.

We also documented the importance of
considering within-region and between-region

WAGNER ET AL.

variabilities with respect to detecting CSls. The
power to detect CSIs was sensitive to changes in
the variability in the nutrient-CHL and the CSI
(slope-regional agriculture) relationships (i.e.,
the Levels 1 and 2 standard deviations). As with
the sample size results, statistical power was
more sensitive to changes in regional (Level 2)
variability as compared to within-region (Level 1)
variability. Thus, if detecting CSIs is the objec-
tive of a study, then the allocation of resources
in terms of how the landscape is sampled is an
important consideration. This type of trade-off
is similar to that observed for other ecological
questions, such as detecting regional temporal
trends in a variable of interest. The trade-off in
this case is whether to devote more resources to
obtain a precise estimate of each system’s status
in each year or to obtain less precise estimates of
status and sample more systems in each year. If
regional trend detection is the goal, resources are
better spent on sampling more systems versus
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Fig. 4. Power curves for detecting cross-scale interactions (CSIs) with increasing trend magnitude (yg;) and
mean number of lakes (i) sampled within each region for the total phosphorus (TP)-chlorophyll a (CHL; A, B)
and total nitrogen (TN)-CHL relationships (C, D) across a range of region numbers. The CSI is the effect of
increasing the proportion of regional agricultural land use on the slope of the TP-CHL and TN-CHL relationships.
In panels B and D, the upper set of curves are for yg; = 0.003 and the lower set of curves are for yg; = 0.001.
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Fig. 5. Power curves for detecting cross-scale interactions (CSIs) with increasing conditional standard devi-
ation (0p) in the CSI regression in the total phosphorus (TP)-chlorophyll 2 (CHL; A) and total nitrogen (TN)-CHL
(C) models and residual variation (o) (B: TP-CHL; D: TN-CHL) across a range of region numbers. The CSI is the
effect of increasing the proportion of regional agricultural land use on the slope of the TP-CHL and TN-CHL
relationships. The upper set of curves are for yg; = 0.003 and the lower set of curves are for yg; =0.001.

obtaining a more precise estimate of each system
(Wagner et al. 2007).

Estimating CSlIs at macroscales is becoming
increasingly possible due to the availability of
diverse data sets on ecosystem components and
satellite and aircraft-collected high-resolution
data that allow for potential driver variables
to be quantified at multiple spatial scales. We
suggest that the use of CSI power analyses will
not only help ecologists design large-scale stud-
ies aimed at detecting CSIs, but will also focus
attention on explicitly considering ecologically
relevant CSI effect sizes—what an ecologically
relevant effect size is for any given system and
the ability to detect the effect with some level
of confidence. Such studies are only possible
through the creation and integration of var-
ied data sources, with data quantified at mul-
tiple spatial extents, which is challenging and
labor-intensive (Soranno et al. 2015). Because
CSIs are likely important for extrapolation and

ECOSPHERE « www.esajournals.org

scaling up local-scaled results to continental and
global-scaled inferences, such integration efforts
and power analyses will become increasingly
important for future continental- and global-
scaled analyses of ecosystem change.
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