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Scientists have been debating for centuries the nature of proper scientific methods. Currently, criticisms being thrown at data-intensive science
are reinvigorating these debates. However, many of these criticisms represent long-standing conflicts over the role of hypothesis testing in science
and not just a dispute about the amount of data used. Here, we show that an iterative account of scientific methods developed by historians and
philosophers of science can help make sense of data-intensive scientific practices and suggest more effective ways to evaluate this research. We use
case studies of Darwin’s research on evolution by natural selection and modern-day research on macrosystems ecology to illustrate this account of
scientific methods and the innovative approaches to scientific evaluation that it encourages. We point out recent changes in the spheres of science

funding, publishing, and education that reflect this richer account of scientific practice, and we propose additional reforms.
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SCientists have been debating for centuries the
nature of proper scientific methods, especially the role
of hypothesis testing in scientific practice (Laudan 1981).
These debates are being reinvigorated as many fields of
science, including high-energy physics, astronomy, public
health, climate science, environmental science, and genom-
ics, are increasingly using data-intensive approaches (Bell
et al. 2009, Baraniuk 2011, Winsberg 2010, King 2011, Porter
et al. 2012, Mattman 2013, Khoury and Ioannidis 2014,
Katzav and Parker 2015). Data-intensive science has been
described as research in which the capture, curation, and
analysis of (usually) large volumes of data are central to the
scientific question; it has also been defined as research that
uses data sets so large or complex that they are hard to pro-
cess and analyze using traditional approaches and methods
(Hey et al. 2009, Critchlow and van Dam 2013).

Although the term data intensive is relatively new, histori-
ans of science point out that scientists have been capturing,
curating, and analyzing large volumes of data for centuries in
ways that have challenged existing techniques (Muller-Wille
and Charmantier 2012). For example, the disciplines of
natural history and taxonomy provide important historical
examples of data-intensive research; as Strasser (2012) put
it, “Renaissance naturalists were no less inundated with new
information than our contemporaries” (p. 85). However,
contemporary data-intensive science is also characterized by
new computational methods and technologies for creating,
storing, processing, and analyzing data and also by the use
of interdisciplinary teams for designing and implementing

research to address complex societal challenges (Strasser
2012, Leonelli 2014). Consequently, in some areas of sci-
ence (e.g., astronomy), there can be particularly sharp
distinctions between historical and current data-intensive
approaches, whereas in other areas of science (e.g., natural
history), there are fewer differences (Evans and Rzhetsky
2010, Haufe et al. 2010, Pietsch 2016).

Contemporary examples of data-intensive science include
collecting evidence for the existence of the Higgs boson,
sequencing the human genome, developing computer mod-
els of climate change and carbon sequestration, and iden-
tifying relationships between social networks and human
behaviors. Despite these high-profile examples and the
increasing availability of large data sets for many science dis-
ciplines, there are concerns that contemporary data-inten-
sive research is bad for science or that it will lead to poor
methodology and unsubstantiated inferences. For example,
data-intensive research has been criticized for being atheo-
retical, being nothing more than a “fishing expedition,”
having a high probability of leading to nonsense results or
spurious correlations, being reliant on scientists who do not
have adequate expertise in data analysis, and yielding data
biased by the mode of collection (Boyd and Crawford 2012,
Fan et al. 2014, Lazer et al. 2014).

Such concerns actually reflect deeper and more wide-
spread debates about the centrality of hypothesis-driven
research that have challenged the scientific community for
centuries. Most contemporary scientific disciplines share
a commitment to a hypothesis-driven methodology (see
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Figure 1. Linear account employed in many descriptions
of the scientific method.

Peters R 1991, Weinberg 2010, Keating and Cambrosio 2012,
Fudge 2014). Definitions for hypotheses vary across disci-
plines (ranging from specific to general and quantitative to
qualitative; Donovan et al. 2015), but we define hypothesis-
driven methodology in terms of the linear process canonized
in many textbooks and represented in figure 1.

Although this linear scientific process continues to be
held up as an exemplar in many textbooks and grant pro-
posal guidelines (Harwood 2004, O’Malley et al. 2009,
Haufe 2013), recent commentaries from scientists and
historians and philosophers of science have argued that his-
torical and contemporary scientific practices incorporate a
much more complex, iterative mixture of different methods
(e.g., Kell and Oliver 2004, Glass and Hall 2008, Gannon
2009, O’'Malley et al. 2010, Forber 2011, Elliott 2012, Glass
2014, Peters DPC et al. 2014, Pietsch 2016). These scholars
argue that focusing primarily on a linear, hypothesis-driven
account of science impoverishes the scientific enterprise by
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encouraging scientists to focus on narrowly defined ques-
tions that can be posed as testable hypotheses. For example,
hypothesis-driven approaches are particularly helpful for
choosing between alternative mechanisms that could explain
an observed phenomenon (e.g., through a controlled experi-
ment), but they are much less helpful for mapping out new
areas of inquiry (e.g., the sequence of the human genome),
identifying important relationships among many differ-
ent variables, or studying complex systems. According to
those who accept an iterative account of scientific methods,
attempting to draw a sharp distinction between hypothesis-
driven and data-intensive science is misleading; these modes
of research are not in fact orthogonal and often intertwine
in actual scientific practice (e.g., O’Malley et al. 2009, Elliott
2012, Peters DPC et al. 2014).

Unfortunately, the historical and philosophical literature
on iterative scientific methods has not been well inte-
grated into recent accounts of data-intensive research, nor
have the implications for evaluating research quality been
fully explored. We address both of these gaps by showing
how data-intensive research can be conceptualized more
effectively using iterative accounts of scientific methods
and by showing how these accounts encourage innovative
approaches for evaluation. We argue that the key to assess-
ing the appropriateness of data-intensive research—and,
indeed, any scientific practice—is to evaluate how it is situ-
ated within broader research practices. Scientific practices
should be evaluated on the basis of the significance of the
knowledge gap that they address and the alignment between
the nature of the gap and the approach or combination of
approaches used to address it. In order to better reflect scien-
tific practices and to accommodate all scientific approaches,
including data-intensive ones, we point out recent changes
and propose additional reforms in the spheres of funding,
publishing, and education.

Debates over scientific methods

Contemporary debates over data-intensive methods are
merely the latest episode in a long-standing conflict over
the proper roles of hypotheses in scientific research. In
the seventeenth century, figures such as Robert Boyle and
Robert Hooke espoused the use of hypotheses, whereas
Francis Bacon and Isaac Newton argued that investigators
could easily be led astray if they proposed bold conjectures
rather than working inductively from the available evidence
(Laudan 1981, Glass 2014). These examples illustrate the
long history during which hypothesis-driven science has
waxed and waned in popularity (figure 2; Laudan 1981).
Most scientists did not favor the use of hypotheses dur-
ing the eighteenth century, but this perspective changed
dramatically over the next 100 years (Laudan 1981). By
the late nineteenth century, largely descriptive disciplines
such as natural history were beginning to be dismissed as a
form of “stamp collecting” (Johnson 2007). Popper’s (1963)
emphasis on the hypothetico-deductive (H-D) method
proved hugely influential during the twentieth century, and
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Figure 2. A depiction of the waxing and waning of hypothesis-driven approaches.

most textbooks continue to focus on hypothesis testing as
the core of the scientific method (see figure 1; Harwood
2004). Although some scientists, publishers, and funders
have remained loyal to a Popper-informed account of the
scientific method that privileges hypothesis-driven research,
many today are questioning this focus and mirroring the
methodological debates embodied in previous time periods
(Hilborn and Mangel 1997, Kell and Oliver 2004, Glass and
Hall 2008, Peters DPC et al. 2014).

In particular, despite the huge potential for new data-
intensive methodologies to generate knowledge (King 2011),
the advent of these techniques has raised questions about
the appropriate relationships between hypothesis-driven
and observationally driven modes of investigation (Kell and
Oliver 2004, Beard and Kushmerick 2009). Again, historians
of science have shown that this debate is not a new one and
that scientists have struggled for centuries with storing, ana-
lyzing, and standardizing large quantities of data (Muller-
Wille and Charmantier 2012). Nevertheless, contemporary
data-intensive science raises additional issues because of its
extensive use of statistical and computer science method-
ologies and interdisciplinary teams (Strasser 2012), thereby
adding further dimensions to debates about appropriate
scientific methods.

A richer account of scientific practice

Many concerns about data-intensive research can be
addressed by defining scientific practice more broadly
(figure 3), as has been argued in recent historical and philo-
sophical studies of scientific methods. Taking this view, the
fundamental goal of science is to address gaps or challenges
facing our current state of knowledge. Hypothesis testing is
one approach for filling these knowledge gaps, but science
proceeds in other ways as well (Chang 2004, Franklin 2005,
O’Malley et al. 2009, Elliott 2012, O’Malley and Soyer 2012).
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Scientists attempt to answer research questions with obser-
vations, field studies, or integrated databases (Leonelli 2014);
they engage in exploratory inquiry or modeling exercises to
detect patterns in available data (Steinle 1997, Burian 2007,
Elliott 2007, Winsberg 2010, Katzav and Parker 2015); or
they create new tools, techniques, and methods (Baird 2004,
O’Malley et al. 2010)—all of which in turn enable them to
test hypotheses, answer questions, or gather additional data
more effectively.

This multiplicity of different research approaches is not
new, but it has become even more prominent in contempo-
rary data-intensive research. Historically, it was often most
efficient for scientists to work from hypotheses that guided
their inquiry in the most promising directions. But with the
advent of high-throughput technologies and data-mining
techniques that make data less expensive to generate and
analyze, other approaches that are more inductive also play
a fruitful role in scientific research (Franklin 2005, Servick
2015). Broad hypotheses or background assumptions may
still provide guidance about what sorts of questions or
exploratory inquiries are likely to be most fruitful, but these
are not the sorts of specific hypotheses envisioned by most
hypothesis-driven accounts of scientific method (Franklin
2005, Leonelli 2012, Ratti 2015). Because it is difficult (often
impossible) for an individual scientist to become an expert
in all of these contemporary approaches and methods, good
science also incorporates the most appropriate disciplines
and collaborators, thus making the development of effec-
tive—and often interdisciplinary—scientific teams more
essential than in the past, and the resulting research reflects
a combination of methods originating from multiple disci-
plines (Cheruvelil et al. 2014, NRC 2015).

An important feature of the scientific methods illustrated
in figure 3 is that they are often employed in an iterative
fashion in order to address complex research challenges
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Figure 3. A representation of scientific practice as an iterative process, with many approaches and links (as depicted

by two-way arrows). The evaluation or assessment of scientific practices is based on the importance of the knowledge
generated, the importance of the gap or challenge addressed, and the alignment of the approaches and methods used
to conduct the science.
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(Chang 2004, O’Malley et al. 2010, Elliott 2012, Leonelli
2012). Although some contemporary data-intensive research
focuses primarily on the repeated use of inductive methods
and machine-learning algorithms (Evans and Rzhetsky
2010, Lazer et al. 2014, Pietsch 2016), much of it involves
a combination of different approaches. O’Malley and col-
leagues (2010) argued that not only data-intensive research
but also scientific practice as a whole should be character-
ized as an iterative interplay between at least four differ-
ent modes of research: hypothesis-driven, question-driven,
exploratory, and tool- and method-oriented. As inquiry
proceeds, initial questions are specified, whereas others are
revised or give rise to new lines of research. In an effort to
address these questions, new equipment and techniques
are often developed and tested, frequently generating new
questions and altering old ones. In the course of investigat-
ing questions and developing new techniques, exploratory
approaches are often central (O’Malley et al. 2010). These
exploratory efforts, which can include experimentation,
data mining, and simulation modeling, often involve the
systematic variation of experimental parameters or analysis
of datasets in search of important regularities and patterns
(Elliott 2007, Winsberg 2010). In many cases, this web of
activities generates the sorts of tightly constrained contexts
in which specific hypotheses can be fruitfully tested, but this
may be just one component of a much broader scientific
context. In fact, the methodological iteration between dif-
ferent approaches results in a process of epistemic iteration
by which our knowledge is gradually altered and improved
(Elliott 2012), as is depicted by the two-way arrows in
figure 3 that highlight the links among knowledge, motiva-
tion, and the multiple approaches employed by scientists.
One of the primary lessons to be learned from the iterative
model of scientific methods is that contemporary research,
and especially data-intensive research, incorporates a wide
variety of different approaches, which gain their significance
primarily from their roles in broader research programs
and lines of inquiry. Therefore, evaluating the quality of this
work requires much more than looking to confirm that it
incorporates a well-formulated hypothesis (Kell and Oliver
2004, Beard and Kushmerick 2009). Instead, it should be
evaluated on the basis of the alignment between the nature
of the knowledge gap or challenge addressed and the com-
bination of approaches or methods used to address the gap.
Research should be evaluated favorably if it incorporates
approaches and methods that are well-suited for addressing
an important gap in current knowledge, even if they do not
focus solely or primarily on hypothesis testing (figure 3).
An iterative model of scientific practice alleviates many
common concerns about data-intensive research. The
potential for generating spurious correlations becomes less
serious when data-generated patterns are identified and
evaluated as part of larger research projects that incorporate
broader research questions, hypotheses, or objectives and
when appropriate techniques and inferences are used to deal
with spurious correlations (Hand 1998). These projects are
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also frequently embedded within conceptual frameworks or
theories that facilitate the investigation of underlying causal
mechanisms. Some proponents of data-intensive science
argue that it can largely replace hypothesis testing, focus-
ing on generating correlations rather than seeking causal
understanding (Prensky 2009, Steadman 2013). In contrast,
we contend that data-intensive science will typically be
most fruitful when it is part of broader inquiries that guide
the collection and interpretation of data and that provide
additional investigations of the correlations that are gener-
ated (Leonelli 2012, Kitchin 2014). Finally, the worry that
individual researchers do not have the skill sets to perform
data-intensive work can be alleviated by the development
of interdisciplinary research teams that can accomplish the
iterative tasks required for many contemporary scientific
research projects. Admittedly, data-intensive methods can
still be used inappropriately, such as when data are collected
without standard approaches or quality metadata or when
data are simply mined for correlative relationships without
attention to spurious correlations (Hand 1998). However, we
argue that this is a matter of improper technique or a poorly
designed research program, which can occur in any form
of scientific practice; it is not a problem inherent in data-
intensive methods themselves.

Examples of iterative data-intensive research
practices

The interplay between multiple research approaches can
be observed across many scientific subdisciplines and time
periods. To illustrate, we present two examples drawn from
the natural sciences. The first example highlights the his-
torical nature of these debates concerning scientific meth-
ods (the study of evolution by natural selection; figure 4a).
It shows that even though contemporary data-intensive
approaches have unique characteristics, historical research
also incorporated iterative and data-intensive components.
The second example highlights how methods from con-
temporary data-intensive ecology are being used to better
understand broad-scale ecological research questions and
environmental problems (the study of macrosystems ecol-
ogy; figure 4b). It also illustrates how contemporary data-
intensive research incorporates greater use of computational
approaches and interdisciplinary teams than did historical
data-intensive research.

The historical study of evolution by natural selection. Darwin’s
development of the theory of natural selection provides
a classic example of research that incorporates multiple
approaches. Despite the efforts of some commentators to
reconstruct Darwin’s research as primarily hypothesis-driven
(Ayala 2009), he spent more than two decades performing
exploratory work in an effort to identify the patterns that he
later explained in The Origin of Species. Driven by curios-
ity and a naturalist’s love for nature, as well as a structured
observational agenda that he learned from scholars like
Humboldt, Cuvier, and Lyell, Darwin’s observations during
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Figure 4. Two examples of iterative scientific efforts using multiple approaches.

his famous voyage aboard the Beagle generated questions
that guided his inductive data collection over subsequent
decades. During that time, he drew upon a wide range of
methods and sources (Hodge 1983), including data pro-
duced by fellow members of the traditional scientific elite
and countless women and other so-called amateurs practic-
ing science outside of the scientific societies and journals of
the nineteenth century. In the Origin, for instance, Darwin
cites animal breeders as an important source of data, and in
Expression of Emotions, mothers provided observations of
their own children to supplement those made by Darwin of
his own family (Harvey 2009, Montgomery 2012).

Darwins use of natural history methods led Frank
Gannon to write a tongue-in-cheek editorial pointing out
that in today’s funding structure Darwins work would be
dismissed as “an open-ended ‘fishing expedition™ (Gannon
2009). However, Darwin also engaged in experiments that
showed how his theory of evolution could explain the details
of sexual form in plant species (Bellon 2013). His combina-
tion of methods and compilation of data from a variety of
sources proved to be extremely fruitful, and works such as
Origin (1859), The Variation of Animals and Plants under
Domestication (1868), The Descent of Man (1871), and
Expression of Emotions (1872) all embody a blend of what
are now often held up as distinct approaches: inductive and
deductive methods, observation and experiment.

Even in Darwin’s own time, he was forced to con-
sciously navigate scientific norms when considering how
to present his multi-modal research. For example, follow-
ing nineteenth-century philosophers of science such as
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William Whewell and John E W. Herschel, Darwin orga-
nized the Origin to conform to the scientific values of the
day—namely, demonstrating the strength of a theory by the
breadth of facts it explained (Ruse 1975). Arguing from anal-
ogy, as Whewell recommended, Darwin began by recogniz-
ing an uncontested phenomenon—that artificial selection
quickly resulted in drastic structural changes in domestic
breeding of animals such as pigeons—and used this accepted
truth to compel the reader to accept his inference that natu-
ral selection accounted for species changes.

Darwin’s use of both inductive and deductive methods also
followed Whewell's methodological recommendations. In
contrast with more recent accounts of hypothesis-driven sci-
ence, Whewell insisted that scientists should move through
a very gradual inductive process to arrive at successively
more general causal laws (Snyder 1999). Only after perform-
ing this inductive process did he think that scientists could
legitimately move on to test these hypotheses. Thus, Whewell
himself encouraged the use of a combination of research
modes, and this is reflected in Darwin’s works. Philosophers
of science have since debated the extent to which Darwin was
influenced by different methodologists (including Francis
Bacon and John Stuart Mill, as well as Whewell and Herschel)
and precisely when Darwin switched from an inductive to
a deductive approach during the 20-plus years of gestation
of the Origin (Ruse 1975, Hodge 1991). Regardless of the
exact year when this switch occurred, it is clear that scientists
today—like Darwin—often move back and forth between
the best aspects of both inductive and deductive logic when
formulating and testing a theory. Similarly—and again like
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Darwin—scientists also often blend laboratory- and field-
work, observation and experiment, and data from multiple
sources rather than conforming to artificially distinct modes
of scientific practice that are sometimes held up as “tradi-
tional” to a particular field of science, despite the long history
of a multimodal reality.

The contemporary study of macrosystems ecology. A contem-
porary example of data-intensive research that involves
multiple and iterative approaches comes from the emerging
subdiscipline of macrosystems ecology (Heffernan et al.
2014). Most traditional ecological research is conducted
by studying organisms and their environments at relatively
small scales—such as individual species, communities, or
ecosystems—using methods such as lab or field experiments,
modeling, field surveys, or long-term studies (Carmel et al.
2013). However, environmental changes such as the spread
of invasive species, climate change, and land-use intensifica-
tion are occurring globally, are the result of relationships
and interactions between human and natural systems,
and may result in widespread but complicated effects. For
example, across regions and continents (at the scales of hun-
dreds of kilometers), there are differences in the direction
and magnitude of environmental changes, the underlying
geophysical and ecological contexts, and social structures.
These differences mean that results from fine-scaled studies
in some regions are not likely to apply to other regions and
that the study of ecological systems at larger scales—such as
regions to continents—is required. Macrosystems ecology
fills this gap by explicitly studying fine-scaled ecological
patterns and processes nested within regions and continents
and employing a variety of methods to do so.

Such multiscaled understanding of ecological systems
cannot be achieved through an individual hypothesis test
or a field experiment, nor can it be achieved by using only
one approach (Heffernan et al. 2014, Levy et al. 2014). For
example, to understand the complex relationships among
tree growth, human disturbance, and regional and global
climate, scientists need to study forests as a whole using
multiple methods within a region rather than at the scale of
individual trees or stands (Chapin et al. 2008). One approach
that ecologists have used to study ecological systems at
regional scales is by quantitatively delineating ecological
regions that represent a measured combination of geophysi-
cal features thought to influence fine-scaled ecological pro-
cesses (Cheruvelil et al. 2013). However, existing ecological
regions have limitations in that they were created for a vari-
ety of purposes, using different underlying geophysical and
human data and using a variety of methods.

For example, lake water quality is related to both climate
and land use. Therefore, scientists have speculated that lake
water quality is likely to strongly respond to changes in both
climate and land uses. However, the response of lake water
quality to such environmental changes is likely to vary among
regions and continents. In fact, Cheruvelil and colleagues
(2008, 2013) had observed that lake water chemistry varied
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regionally but that the variation depended on how the bound-
aries of “regions” were defined. Therefore, they had the
overarching goals of developing new ways to define regional
boundaries that were based on the geophysical features that
are likely important for predicting regional water quality
and its response to climate and land-use change (figure 4b).
Meeting these goals required the iterative use of multiple
research methodologies, data collected by various individuals
and groups, and contributions from multiple disciplines.

An interdisciplinary team was created (sensu Cheruvelil
et al. 2014) that included ecologists, computer scientists,
and experts in geospatial analysis and ecoinformatics to
create a large, multiscaled database by integrating multiple
lake data sources (including field surveys of water quality
conducted by state agency scientists, citizen scientists, and
university researchers) with geospatial data quantified at the
national scale (Soranno et al. 2015). The team used three
data-intensive approaches to meet their goal of developing
new ecological regions for water quality (figure 4b): First,
they developed and tested a clustering algorithm to define
regional boundaries (Yuan et al. 2015); second, they used an
exploratory data-mining analysis to determine which geo-
physical features were correlated with the regional boundar-
ies and might lend insight into the underlying mechanisms
driving regional variation in lake water quality (Cheruvelil,
Lyman Briggs College and Department of Fisheries and
Wildlife, Michigan State University, East Lansing, personal
communication, 9 November 2015); and third, they used
statistical models to quantify how well the regional bound-
aries captured variation in lake water quality for thousands
of lakes in approximately 100 regions (Cheruvelil, Lyman
Briggs College and Department of Fisheries and Wildlife,
Michigan State University, East Lansing, personal commu-
nication, 9 November 2015). Ecological regions were created
with a variety of geophysical features that are related to lake
water quality, many of which are expected to be strongly
affected by changes in climate and land use. Employing
multiple scientific practices, rather than solely a hypothesis-
driven approach, improved their ability to use the regional
scale for understanding, explaining, and predicting ecologi-
cal phenomena across spatial scales.

Lessons learned from examples of iterative data-intensive
research. Together, these two examples illustrate the major
points that we have made in this article. First, they show that
although scientists have been working with challenging quanti-
ties of data for centuries, contemporary data-intensive science
incorporates additional features. For example, whereas Darwin
received data from numerous sources, he worked primarily on
his own (with input from colleagues) to analyze the data. In
contrast, the environmental scientists in the second example
worked with computer scientists and experts in ecoinformatics
in order to make optimal use of contemporary computational
tools for integrating, creating, and analyzing data.

Second, these examples illustrate the power of moving iter-
atively among multiple research methods. What made both
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Table 1. Recommendations for promoting iterative data-intensive science.

Components of

Current norms

Proposed reforms

Recent exemplar of reform

and graduate)

Students are taught linear, non-
iterative scientific methods.

knowledge gaps.

Students should be taught an
iterative account of scientific
methods.

science

Funding Proposals are expected to have an  Proposals should be expected to Several institutes of the NIH have
organizing hypothesis. have alignment between knowledge introduced long-term funding opportunities

gaps and approaches. that allow investigators to pursue more
creative, innovative research projects (e.g.,
http://grants.nih.gov/grants/guide/rfa-files/
RFA-DE-17-002.html and http://grants.nih.
gov/grants/guide/rfa-files/RFA-NS-16-001.
html)
Proposals are expected to describe Proposals should be expected to The Biotechnology and Biological Sciences
a linear, non-iterative approach. describe appropriate iterative use Research Council of the UK describes
of multiple approaches. multiple methods that are integrated into
the systems-biology research it funds
(http://bbsrc.ac.uk/research/systems-
approach).

Publishing Articles are expected to be Articles should be structured to A new journal, Limnology and Oceanography
structured to embody a hypothesis-  convey the alignment between the Letters, requires an explicit statement by
testing approach. identified knowledge gaps and the the authors of the knowledge gaps filled

approaches used. by the study (www.LOLetters.com).
The components of iterative Articles focused on any aspect Recent advent of outlets for a broad range
research are difficult to publish of iterative research should be of research products, such as data journals
on their own (e.g., exploratory publishable based on contribution (e.g., Earth System Science Data, Scientific
analysis, data, methods, code). to knowledge, data, or methods Data, GigaScience, Biodiversity Data Journal),
development online code repositories (e.g., GitHub,
BitBucket), and online data repositories
(e.g., FigShare, Dryad, TreeBASE)

Education Students are taught mainly about Students should be taught multiple  Reformed teaching approaches, such as

(K-12, hypothesis testing. scientific methods and to choose authentic science labs (e.g., Luckie et al.

undergraduate, approaches that best align with 2004, Harwood 2004) and teaching with

case studies (e.g., http://sciencecases.lib.
buffalo.edu/cs/collection, http://www.evo-ed.
org, White et al. 2013).

Dissemination of nonlinear accounts of
scientific methods (e.g., http://undsci.
berkeley.edu/article/howscienceworks_02)

of these research efforts successful is not the fact that they
used a particular approach but rather that the approaches
they chose were well designed for addressing important
knowledge gaps. In Darwin’s case, his research was impor-
tant because he was addressing one of the most fundamental
issues in biology—namely, the processes by which species
have changed over time. Similarly, the scientists in our sec-
ond example were addressing the important societal issue of
the response of water quality to environmental changes at
macroscales. Encouraging scientists to emulate the iterative
approaches embodied in these two examples requires the
development of richer conceptions of scientific practice.

Recommendations for promoting good science in our
data-rich world

A number of reforms should be made to promote not only
iterative data-intensive science but also the scientific enter-
prise more broadly (table 1). First, funding agencies (and
reviewers) should evaluate the quality of proposed research
not based on a uniform requirement that it states a specific
hypothesis but based on the importance of the knowledge
gaps that it identifies and the appropriateness of the methods
proposed for addressing those gaps (O’Malley et al. 2009).
For example, some recent funding initiatives are placing
emphasis on grand challenges (e.g., the human genome
project, brain research, personalized medicine, smart cities)
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that do not lend themselves to solely hypothesis-based
approaches. Therefore, rather than expecting researchers to
shoehorn proposals into a misleading, linear research for-
mat, reviewers should be open to proposals that describe a
more realistic, iterative research trajectory. This reform will
require developing appropriate grant guidelines and review
mechanisms that encourage mixed modes of scientific prac-
tice, such as those recently being used by the US National
Institutes of Health to fund investigators rather than indi-
vidual projects (table 1).

Second, rather than expecting articles to be structured
to embody a linear hypothesis-testing approach, journal
editors and reviewers should be open to publications that
are organized around the full range of methods used to
address knowledge gaps. Allowing journal articles and
other research products to take a greater variety of forms
will help alleviate the discrepancies that a number of
authors have identified between the structure of scientific
articles and the actual practice of research (e.g., Medawar
1996, Schickore 2008). Some journals and online reposito-
ries are providing guidelines and mechanisms for scientists
to disseminate data and computer code, and the science
community as a whole is discussing ways to give scien-
tists credit for a variety of research products that will help
advance a broader view of scientific practices (e.g., Goring
et al. 2014; see also table 1).
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Third, whereas K-12 through graduate science education
currently emphasizes a linear, hypothesis-driven approach
to science, it should be reformed to incorporate more com-
plex models of the scientific method. For example, students
should be taught that hypothesis testing is just one impor-
tant component of a much broader landscape of scientific
activities that need to be combined in creative and interdis-
ciplinary ways to move science forward (Harwood 2004).
Including the history, philosophy, and sociology of science
in science curricula; teaching science in interdisciplinary
ways; and using reformed teaching methods in science
courses (e.g., inquiry-based labs, case studies) can introduce
students to the multiple methods scientists have historically
used—and continue to use—to address significant knowl-
edge gaps (table 1).

Conclusions

The recognition that data-intensive research methods—and
indeed, research practices in all areas of science—need to
be evaluated as part of broader research programs does
much to alleviate common concerns about these and other
non-hypothesis-driven methods. Although data-intensive
and exploratory efforts to identify patterns in large datasets
have the potential to generate spurious results, all methods
have their potential problems when used poorly; when
used properly, such data-intensive approaches can play a
very fruitful role in broader research programs that also
test hypothesized processes and mechanisms. The iterative
research methods that we have described in this article allow
researchers to address more complex questions than they
could with hypothesis testing alone. To make these efforts
successful, changes are needed in the norms for research
funding, publication, and education. In all these areas, more
emphasis should be placed on aligning research methods
with the knowledge gaps that need to be addressed rather
than focusing primarily on hypothesis testing. In addition,
scientific practice should be more explicitly recognized as
an iterative path through multiple approaches rather than
as a linear process of moving through pre-defined steps. Of
course, this does not mean that “anything goes”; rather, it
facilitates more careful thought about how to fund, publish,
and teach the right combinations of methods that will enable
the scientific community to tackle the big issues confronting
society today.
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