1	inbreeding risk, avoidance and costs in a group-living primate, Cebus capucinus
2	Irene Godoy ^{1,2,3,4} , Linda Vigilant ⁴ , and Susan E. Perry ^{1,2,3}
3	
4	¹ Department of Anthropology
5	University of California-Los Angeles
6	341 Haines Hall
7	375 Portola Plaza
8	Los Angeles, CA 90095-1553
9	USA
10	
11	² Center for Behavior, Evolution, and Culture
12	University of California-Los Angeles
13	341 Haines Hall
14	375 Portola Plaza
15	Los Angeles, CA 90095-1553
16	USA
17	
18	³ Lomas Barbudal Capuchin Monkey Project
19	Proyecto de Monos
20	Apdo. 5
21	Bagaces, GTE
22	Costa Rica
23	

⁴Department of Primatology

25 Max Planck Institute for Evolutionary Anthropology

26 Deutscher Platz 6

27 04103 Leipzig

28 Germany

Correspondence: I. Godoy, Department of Anthropology, University of California, Los

Angeles, CA 90095-1553, U.S.A. (email: irene.godoy@gmail.com)

Abstract: Documenting inbreeding and its potential costs in wild populations is a complicated matter. Early infant death before genetic samples can be collected limits the ability of researchers to measure fitness costs, and pedigree information is necessary to accurately estimate relatedness between breeding individuals. Using data from 25 years of research from the Lomas Barbudal Capuchin Monkey Project, and a sample of 109 females that have given birth, we find that despite frequent co-residency of adult opposite-sexed individuals, capuchins produce offspring with close kin (i.e. related at the half sibling level or higher) less often than would be expected in the absence of inbreeding avoidance. We do not find support for alternative, non-behavioral explanations for this pattern and thus argue for mate choice. Furthermore, we find evidence for fitness costs among inbred animals in the form of delayed female age at first birth, but not significantly higher juvenile mortality. Further research is necessary in order to determine the mechanisms by which individuals develop sexual aversion to close kin.

Keywords: inbreeding avoidance, inbreeding depression, primates, capuchin monkeys

48

49

50

51

52

53

Significance Statement: Through a combination of demographic records, maternal pedigrees, and genetically determined paternity, this study provides a detailed study of inbreeding and inbreeding avoidance in a well-studied mammal population. This study provides (1) evidence that capuchin monkeys avoid mating with close kin at both the level of daughter-father and half sibling, and (2) evidence of fitness costs to inbreeding in the form of delayed first age at reproduction.

54

55

Acknowledgments

56 The following field assistants contributed observations to the data sets used in this 57 manuscript: C. Angyal, B. Barrett, L. Beaudrot, M. Bergstrom, R. Berl, A. Bjorkman, L. 58 Blankenship, T. Borcuch, J. Broesch, D. Bush, J. Butler, F. Campos, C. Carlson, S. Caro, M. 59 Corrales, C. DeRango, C. Dillis, N. Donati, G. Dower, R. Dower, K. Feilen, J. Fenton, A. Fuentes 60 Jiménez, M. Fuentes Alvarado, C. Gault, H. Gilkenson, I. Gottlieb, J. Griciute, L. Hack, S. 61 Herbert, C. Hirsch, A. Hofner, C. Holman, J. Hubbard, S. Hyde, M. Jackson, E. Johnson, L. 62 Johnson, K. Kajokaite, M. Kay, E. Kennedy, D. Kerhoas-Essens, S. Kessler, S. Koot, W. 63 Krimmel, T. Lord, W. Lammers, S. Lee, S. Leinwand, S. Lopez, S. MacCarter, M. Mayer, W. 64 Meno, M. Milstein, C. Mitchell, Y. Namba, D. Negru, A. Never, C. O'Connell, J.C. Ordoñez J., N. 65 Parker, B. Pav, R. Popa, K. Potter, K. Ratliff, K. Reinhardt, E. Rothwell, J. Rottman, H. Ruffler, 66 S. Sanford, C.M. Saul, I. Schamberg, C. Schmitt, S. Schulze, A. Scott, J. Shih, S. Sita, K. Stewart, 67 W.C. Tucker, K. van Atta, L. van Zuidam, J. Vandermeer, V. Vonau, J. Verge, A. Walker Bolton, 68 E. Wikberg, E. Williams, J. Williams, D. Works, and M. Ziegler. We are particularly grateful to 69 H. Gilkenson, W. Lammers, M. Corrales, C. Dillis, S. Sanford, R. Popa, and C. Angyal for

managing the field site. K. Kajokaite, W. Lammers, K. Otto, E. Wikberg, and S. Wofsy helped to compile the data. Costa Rica. Colleen R. Stephens provided input and support on statistical analyses. Joseph H. Manson provided constructive feedback on an earlier draft of this paper. We thank Ronald Noë and two anonymous referees for helpful comments.

Graduate support for IG was provided though a Eugene V. Cota-Robles Fellowship, Ford Predoctoral Diversity Fellowship, National Science Foundation Graduate Research Fellowship, UCLA NSF AGEP Competitive Edge Summer research award, UCLA IRSP research award, and a UC DIGSSS Summer Research Mentorship award. Dissertation research support for IG was provided by grants from the International Society for Human Ethology, the Wenner Gren Foundation (grant: 443831), the L.S.B. Leakey Foundation (grant: 20120195), the National Science Foundation (grant: BCS-1232371), and two UCLA Anthropology research grants. This project is also based on work supported by the Max Planck Institute for Evolutionary Anthropology, and by grants to SEP from the National Geographic Society (grants: 7968-06, 8671-09, 20113909), the National Science Foundation (grants: BCS-0613226, BCS-0848360), the L.S.B. Leakey Foundation (grants: 20060592, 20082262, 20112644), and the UCLA Academic Senate. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of any of the funding agencies.

We thank the Costa Rican park service (SINAC), the Area de Conservacion

Tempisque-Arenal (MINAET), Hacienda Pelon de la Bajura, Hacienda Brin D'Amor, and the residents of San Ramon de Bagaces for permission to work on their land.

INTRODUCTION

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Ever since Charles Darwin's time, attention has been drawn to the deleterious effects associated with inbreeding (Darwin 1868, 1876). Studies across taxa ranging from angiosperms to birds and mammals have illustrated a range of potential costs that can arise when close kin produce offspring (Charlesworth and Charlesworth 1987; Pusey and Wolf 1996; Crnokrak and Roff 1999; Keller and Waller 2002). For example, a review of breeding records in captive primate colonies found higher infant mortality of inbred offspring in 15 of the 16 colonies investigated (Ralls and Ballou 1982). Studies of wild mammal populations also often show higher costs (e.g. lower juvenile weight or lower juvenile survivorship) than those found in captive populations (Crnokrak and Roff 1999). For instance, inbred white-footed mice, *Peromyscus leucopus noveboracensis*, in a mark-release capture experiment had higher mortality rates than non-inbred individuals, and inbred males showed continual weight loss throughout the experiment even though inbred and non-inbred individuals did not differ in weight at the time of their release (Jiménez et al. 1994). In the hermaphroditic land snail, *Arianta arbustorum* (L.), inbred and outbred land snails did not differ in their survival when kept in laboratory conditions, but when raised in a garden, inbred offspring suffered significantly higher mortality than outbred offspring (Chen 1993).

In general, inbreeding in the wild has been considered maladaptive (Pusey and Wolf 1996), particularly for mammalian females who bear a higher cost than males if offspring are not viable, because of their greater initial investment in each offspring (Trivers 1972). However, models based on evolutionary theory also predict that there is an optimal degree of similarity between parents that helps keep co-adapted genes in a population together

('optimal outbreeding', Bateson 1983), and that some degree of inbreeding should be allowed or tolerated when the inclusive fitness benefits of mating with kin or the costs of finding alternative mates outweigh any potential costs to infant fitness (Parker 1979; Smith 1979; Waser et al. 1986; Lehmann and Perrin 2003; Kokko and Ots 2006; Jamieson et al. 2009; Puurtinen 2011; Lehtonen and Kokko 2015). Thus, evolutionary theory can also predict a tolerance for, or even a preference for, some forms of kin as mating partners. Some studies do show such preferences. For example, Japanese quail, *Coturnix japonica*, prefer unfamiliar first cousins over familiar and unfamiliar siblings, as well as over unfamiliar unrelated partners (Bateson 1982), and African cichlids, *Pelvicachromis taeniatus*, also show mate preferences for unfamiliar close kin over nonkin (Thünken et al. 2007).

Investigation of the prevalence and impact of inbreeding in wild populations is challenging. Pedigree information is often lacking for individuals because of unknown or genetically unsampled parents. Though inferences of family relationships via the use of microsatellite-derived metrics in the absence of known pedigrees are common, studies using these may underestimate the impact of inbreeding depression, because microsatellite-derived metrics have a high rate of misclassification of dyadic relationships (Pemberton 2004, 2008; Szulkin et al. 2013). Even when relationships can be accurately classified, inbreeding avoidance would only be expected in cases where there is a high variance in relatedness among potential parent dyads (Szulkin et al. 2013).

A further hindrance in estimating the impact of inbreeding in the wild is the large proportion of offspring that die before genetic samples can be collected. For example, in savannah baboons, 35% of pregnancies end in either miscarriage or early infant death

(Beehner et al. 2006a, b). In song sparrows, *Melospiza melodia*, offspring produced by close kin (i.e. full siblings) are less likely to survive their first year (Keller 1998). If inbred offspring are less viable than outbred offspring, early fetal losses and infant deaths before genetic sample collection takes place can mask many of the costs to inbreeding, and inflate the apparent frequency of inbreeding avoidance.

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

White-faced capuchin monkeys, *Cebus capucinus*, are an excellent species in which to study inbreeding avoidance for several reasons. In capuchins, socially dominant alpha males achieve a virtual monopoly on reproduction, at least during the early stages of their tenures (Jack and Fedigan 2006; Muniz et al. 2006, 2010; Godoy et al. 2016). These males also often retain their top rank for tenures exceeding five years, which corresponds to the age at which their daughters reach reproductive age. Importantly, long male alpha tenures facilitate co-residency of paternal half siblings and full siblings of varied ages, as natal males are less likely to migrate out of their group if there is stability in the alpha position (Jack et al. 2011) and if their fathers are still present (Perry et al. 2017). Although male migration from natal groups decreases the likelihood of inbreeding by siblings, adult and sub-adult males often do co-reside with their sexually mature sisters (Godov 2010), and males have been known to become alphas of their own natal groups (Perry et al. 2012). Inbreeding avoidance in capuchins has been documented between females and alpha males (Muniz et al. 2006, 2010; Godoy et al. 2016), with female relatedness to alpha males (i.e. whether they are a daughter or granddaughter) as the largest factor negatively affecting the probability that an alpha male is the sire of an infant (Muniz et al. 2010; Godoy et al. 2016). Whether inbreeding avoidance extends to more distant kin, however, is still unknown, as are the possible fitness costs to inbreeding in the population. The availability

of 25 years of demographic data, maternal pedigrees, and genetic paternity information from the Lomas Barbudal Capuchin Monkey Project allow us to investigate inbreeding and its avoidance in this wild primate population.

First, we look at how often breeding-age females reside with adult male kin in order to assess the potential for inbreeding in the population. Second, we investigate whether inbreeding avoidance is limited by the level of relatedness between potential mates. We predict more pronounced inbreeding avoidance at higher levels of relatedness, since costs to inbreeding will presumably be attenuated at lower levels or relatedness.

Third, we test alternative non-behavioral explanations for the lower than expected occurrences of inbreeding between alpha males and their female kin in capuchins. If fetal loss or early infant death of non-genotyped inbred infants explained the rarity of close inbreeding events, then one would predict (1) higher infant mortality rates among infants born to females residing in groups where the alpha is a close relative, and/or (2) longer inter-birth intervals for females residing in groups where the alpha is a close relative, since miscarriages would increase the time between infant births.

Finally, we look for evidence of fitness costs to inbreeding, to test the hypothesis that inbreeding is costly in capuchins. Specifically we test whether there are higher juvenile mortality rates and/or delayed female age at first birth, for inbred versus outbred individuals.

METHODS

Field site and study species

The subjects of this study are individually recognized, habituated white-faced capuchin monkeys from the Lomas Barbudal Biological Reserve and adjacent public and

private lands in Guanacaste, Costa Rica (hereafter referred to as 'Lomas Barbudal'). This wild population has been under observation since 1990 with continuous monitoring since 2002 (Perry 2012; Perry et al. 2012). Behavioral data were available from 11 study groups: four groups were originally habituated, and seven additional groups formed by fissions (Fig. 1). It was not possible to record data blind because our study involved focal animals in the field.

Estimating degrees of relatedness using pedigrees

Paternity information was available from previous work (Muniz et al. 2006; Godoy et al. 2016). Briefly, we have genotyped 334 capuchins from the Lomas Barbudal population using 18 microsatellites (Muniz and Vigilant 2008) and DNA obtained primarily through non-invasively collected faecal samples and occasional sampling of tissue samples from dead capuchins. We have determined paternity for 253 individuals in our study population, and for 248 individuals we knew the identity of both their parents. See Supplementary Information Table S1 for information on the pedigree depth of genotyped individuals from our study groups (n=310).

Although microsatellite markers can be reliably used to determine parent-offspring relationships, they are insufficient for identifying other types of kin relationships, such as half-siblings, because of the higher variance in the number of alleles shared per locus (Csilléry et al. 2006; Van Horn et al. 2008). The mean number of alleles per locus in our population is 5.33 (range: 3-9) (Godoy et al. 2016). This level of polymorphism even in a population such as the great weed warbler, *Acrocephalus arundinaceus*, with a relatively high variance in relatedness, is estimated to explain only a small proportion of the variance (~0.05) in marker-based relatedness estimates (Csilléry et al. 2006). We therefore used

pedigree information to calculate estimated coefficients of relatedness for our dyads using the DESCENT software (http://itb.biologie.hu-berlin.de/~hagen/Descent/).

When two members of a group are genotyped, we can be confident as to whether or not they are a parent-offspring dyad, but all other kinship categories require more information on the parentage of the members of the dyad. Since incomplete pedigrees (particularly for older natal females born before habituation of their natal groups) limit our ability to generate precise coefficients of relatedness, we binned each dyad into one of four relatedness categories and treated them as categorical variables (Supplementary Information Fig. S1). These included one nonkin category and three categories of kin.

Category 0 included all dyads with inferred coefficients of relatedness of 0. Immigrant males of unknown origin were considered unrelated to natal females, unless genetic paternity assignment showed otherwise. However, some immigrant males that were assigned as nonkin of females may in fact have been paternal uncles (or more distant kin) of females residing in groups with their alpha father, since male white-faced capuchins typically emigrate with natal kin (Jack and Fedigan 2004a,b; Perry et al. 2008, 2012; Perry 2012; Wikberg et al. 2014).

Category 1 included dyads with inferred coefficients of relatedness greater than 0 but lower than 0.25. Dyads with estimated coefficients of relatedness equal to zero, but where both members of the dyad were born in the same natal group, were also conservatively binned into this category. This compensates for the tendency to miscategorize individuals related at less than the half sibling level as unrelated as a result of the use of incomplete pedigrees of fewer than four generations (Csilléry et al. 2006).

Category 2 included dyads with inferred coefficients of relatedness greater than or equal to 0.25 but lower than 0.5. Half-sibling identification requires some parentage information for a dyad (two generation pedigree), while identification of grandparents, grandoffspring, full nephew/nieces, full uncles/aunts, and double full first cousins requires some information on grandparents (three generation pedigree). We do note that we have yet to detect any double first full cousins in our population.

Category 3 included dyads with inferred coefficients of relatedness equal to or greater than 0.5. This category consists of parent-offspring and full sibling dyads. Parent-offspring identification requires only that both members of a dyad are genotyped (one generation pedigree), while full sibling identification requires some parentage information for a dyad (two generation pedigree).

Group composition during infant conception windows

For dates prior to July 2006, census data were extracted from the daily behavioral data files of observers who were in the field. Starting in July 2006, observers systematically kept census records of which individuals were present in a group during an observation day, and noted any wounds, suspected pregnancies, and births.

Using the known gestation lengths of wild capuchins (avg: 158, std. dev: 8 days, Carnegie et al. 2011), we generated conservative conception windows for births. These windows were three standard deviations (i.e. 24 days) before and after each estimated conception date. Thus, these 49-day windows covered the period 182 to 134 days prior to the known or estimated birth dates for infants. We determined which males were present in a study group during each conception window, and thus which males were available as potential mates for each infant's mother. All males six years of age or older were

considered potential sires of infants, since the youngest sire in the Lomas Barbudal population was 6.25 years old at the time of his infant's conception (Godoy et al. 2016).

Inbreeding risk

We assembled group composition data on 391 conceptions, 343 of which occurred during periods with no turnover at the alpha male position (i.e. during stable alpha tenures). These datasets were used to determine the availability of male kin for females during the conception windows of their infants. Because only the relationship between the mother and potential mates was of interest for assessing paternity risk, our analysis was not constrained by whether or not infants were genotyped. We used this dataset to determine the availability of male kin during the first half of the female reproductive career to see how frequently adult females reside with close adult male kin.

Inbreeding avoidance

There were 193 genotyped infants of known parentage that were conceived during periods of stability at the alpha male position. We used this information to determine the effect of categorical relatedness on the probability that an alpha male is the father of an infant, and on the probability that a subordinate male is the father of an infant.

Inbreeding costs

Juvenile mortality

In a sample of 399 pregnancies, 107 (26.8%) ended either in miscarriage or with infant death before genetic samples could be collected, but only 5.6% (n=6) of these may have died at an age of older than one year. Therefore, we did not consider infants that died during their first year of life in our assessment of juvenile mortality rates. This was in order to avoid potential biases in the dataset due to non-genotyped infants, as well as to avoid

inclusion of infant deaths due to infanticide after changes of the alpha male. Juvenile mortality was instead measured as the proportion of infants that survived from one year of age into their fourth year of life (before male migration from groups was likely to bias our mortality data).

Our dataset consisted of 186 infants born before 2011 that survived their first year of life and for which we knew the identity of their father and mother. We used this data to test for higher mortality in inbred juveniles.

Female age at first birth

We had a sample of 58 females for which we could estimate age at first birth with an accuracy of plus or minus 90 days. We used this dataset to look for costs of inbreeding in the form of delayed age at first reproduction.

Generalized linear mixed models

Statistical analyses were run in R v.3.2.0 (R Core Team 2015) using the glmer or lmer function from the lme4 package (Bates et al. 2014). To assess the significance of our predictor variables, we ran Generalized Linear Mixed Models (GLMM, Baayen 2008) 1) with binomial error structure and logit link function on all our models involving a binomial response ('yes'/'no') or 2) with Gaussian error structure on models involving a continuous response. We included random slopes where possible. We confirmed model stability by excluding all levels of all random effects one by one and comparing the estimates with estimates derived from the model based on the full data set. We checked for the presence of strong collinearity between our predictor variables by calculating Variance Inflation Factors (Field 2005), which measure the degrees to which variance of the estimated regression coefficients are inflated compared to when the predictor variables are not

collinear. The highest VIF in any model was 1.478 suggesting no problems. In order to establish the significance of the test predictors, we conducted a full versus null model comparison (Forstmeier and Schielzeth 2011) using a likelihood ratio test (Dobson and Barnett 2008). The null comprised all terms in the full model except the test predictors. P-values for individual predictors were also obtained using likelihood ratio tests.

RESULTS

Prevalence of male kin during the first half of the female reproductive career

Co-residence with male kin

Of the 95 females for which we had group composition data during their fifth year of life, 42.1% still lived with their fathers at age five years, while 31.6% lived with at least one adult paternal half brother (Supplementary Information Table S2). Even at 10 years of age, 20.3% of females still co-resided with their father and 42.3% with a paternal half brother. During the early part of their breeding careers (ages 5-15), females continued to live with adult male kin, particularly males related to them at the half sibling level.

Co-residence with alpha male kin

Because alpha males sire the majority of infants in capuchin groups, we looked at how often females (during the early part of their reproductive careers) resided with alpha males that were related to them. We found that a large proportion of the females at Lomas Barbudal had the potential to breed with related alpha males, particularly fathers and paternal half brothers (Supplementary Information Table S3). For example, at five years of age, 30.1% of females lived with an alpha father and 9.5% with an alpha paternal half brother. Co-residency with alpha fathers decreased over time, while co-residency with alpha paternal half brothers remained relatively constant and co-residency with unrelated

alpha males increased through the first half of the female reproductive career (i.e ages 5-15).

Distribution of male kin during conceptions

Most conceptions occurred while related (r > 0) adult males were co-resident with the females; out of 391 conceptions for which we had group composition data, 290 (74.2%) occurred when the mother had adult male kin in the group. Females resided with at least one paternal half brother in 30.2% of cases and with their father in 16.4% (Table 1, column a).

Risk of inbreeding with alpha males

Of the 391 conceptions in our dataset, 343 (87.7%) occurred during stable alpha tenures. Of these conceptions, 37.9% (130 of 343) occurred when the female was related to the alpha male (Table 1, column b). Since alpha males are the primary breeding males in capuchins, this means that approximately one in every three conceptions during stable alpha tenures had the potential to result in an inbred offspring. Furthermore, for 31.5% (n = 41) of the situations where females were related to the alpha male, there were no unrelated (n = 4) adult males available to females.

Effect of categorical relatedness on probability that an alpha male is the father of an infant

Having established that females commonly have adult male kin available in their groups, we next used our dataset of 193 conceptions during stable alpha tenures and for which the infants were genotyped to investigate the share of paternities to alpha males when the mother is a relative or not. Alpha males sired 141 (73.1%) of the 193 genotyped infants that were conceived during stable periods, including 90.1% (109 of 121) of

offspring born to unrelated females. For infants born to related females, the percentage sired was less and varied by categorical relatedness (Table 2). In 40.6% (n=13 of 32) of the cases of inbreeding between females and alpha males, there were no unrelated males available for the female to choose from.

Furthermore, we used a GLMM to explore the significance of categorical relatedness on the probability of an alpha male being the sire of an offspring. Our dataset was comprised of conceptions involving 69 mothers and 23 alpha males from nine groups. The response variable was whether or not an alpha male was the father of an infant ('yes'/'no'). The identities of the mother and alpha male were included as random effects. We included random slopes where possible. The predictor variables were whether or not the mothers of infants were related to the alpha male at the level of a) 0 < r < 0.25, b) $0.25 \le r < 0.5$, or c) $r \ge 0.5$. The number of adult males and number of adult females in a group were included as control variables in our model because previous research had shown the possible influence of each variable on alpha paternity (Muniz et al. 2010). However, due to a limited dataset in the Muniz et al. study, both variables could not be included in the same model. The full model was significantly different from the null model, which consisted of only control variables and random effects (χ 2 3=46.747, P<0.0001).

Relative to the r=0 relatedness category, alpha males sired significantly fewer offspring with females in the $r\geq 0.5$ and $0.25\leq r<0.5$ categories (Table 3). Alpha males were not significantly less likely to sire offspring with females in the 0< r<0.25 category than they were to sire infants with unrelated females.

Effect of categorical relatedness on probability that a subordinate is the father of an infant

Since subordinate males also sire offspring, we investigated the pattern of conceptions by females and subordinate males. We analyzed data for only those conceptions during stable alpha periods where a subordinate male was the sire of the infant (n=52 infants) and we excluded the alpha males from the analysis. There was no inbreeding between females and subordinate males related at the level of $r \ge 0.5$ (Table 4), though there were 20 such dyads (n=14 unique) in our dataset (sons: n=8, fathers: n=2, full brothers: n=10).

We used a GLMM to explore the significance of categorical relatedness on the probability of a subordinate male being the sire of an offspring. From our 52 subordinate-sired infants, we generated a dataset of 313 dyads formed between 30 females and 59 subordinate adult males. The response variable was whether or not a subordinate male was the father of an infant ('yes'/'no'). The identities of the mothers, subordinate males, and infants were included as random effects. The predictor variables were whether or not the mothers of infants were related to the subordinate male at the level of a) 0 < r < 0.25, b) $0.25 \le r < 0.5$, or c) $r \ge 0.5$. The number of adult males and number of adult females in a group were included as control variables. Random slopes were included where possible. The full model was significantly different from the null model, which consisted of only control variables and random effects ($\chi^2_3=10.557$, P<0.0144).

Relative to the r=0 relatedness category, subordinate males sired significantly fewer offspring with females in the $r \ge 0.5$ and $0.25 \le r < 0.5$ categories, after controlling for the number of adult males and adult females in the group (Table 5). Subordinate males were not significantly less likely to sire offspring with females in the 0 < r < 0.25 category

than they were to sire infants with unrelated females, but there was a trend in that direction.

Alternative, non-behavioral explanations for paternity patterns

The significantly lower occurrence of offspring produced by relatives can be explained as an outcome of inbreeding avoidance or, alternatively, a scenario in which matings between kin do occur, but resultant progeny are less fit and die either early during gestation or soon after birth before genetic samples can be collected for paternity determination. This scenario predicts that age at first birth should be higher and inter-birth intervals longer for females residing with a related alpha male as compared to when the alpha male is unrelated, as a result of higher incidences of miscarriages resulting from inbreeding events. Furthermore, first year infant mortality rates should be higher for cases in which females were co-resident with a related alpha male (i.e the primary breeding male) as compared to when the alpha male is unrelated. Such a result would suggest higher infant mortality rates for inbred offspring (before genetic samples could be collected). However, we found no support for these three possibilities and thus no support for the alternative (non-behavioral) explanation for paternity patterns (See Supplementary Information Table S4, S5, and S6).

Inbreeding in the population

Looking at all genotyped individuals (regardless of alpha status or group stability) for whom we knew their father and mother (n=248 infants), 21.4% (n=53) were the product of some degree of inbreeding (Table 6). For 52 out of 53 of the inbred offspring, we had information on the group composition around the time of their conception. In 44.2% (n=23) of the inbreeding cases, the mothers did not have any unrelated (r = 0) males

available in their group. For the remaining 29 cases, 20 of the infants were sired by the alpha of the group (69.0%) and the remaining 9 were sired by males that were either more distantly related to the mother (n=8) or as equally related to the mother (n=1) as was the alpha male.

Out of 22 known instances of inbreeding between paternal half siblings, 63.6% (n=14) were cases where the brother was also the alpha male of the group at some point during the infant conception window. Similarly, all five parent-offspring inbreeding events involved a male who was confirmed or likely to have been the alpha during the infant conception window. There was one case of mother-son inbreeding. It involved a male that migrated into and became the alpha of a fission product of his natal group where his mother still resided. The four cases of father-daughter inbreeding involved two dyads, which each produced offspring twice.

We have documented only one instance of extra-group paternity in Lomas Barbudal. Even in this case, the father of her infant was a familiar paternal half brother (he emigrated from her natal group) that was the alpha male in a nearby group. Thus, it appears that extra-group paternity is extremely rare at Lomas Barbudal and does not constitute an alternative female reproductive strategy for preventing inbreeding.

Potential costs to inbreeding

Mortality in inbred versus non-inbred juveniles

With our sample of 186 infants of known parentage, we tested for higher mortality in inbred versus non-inbred individuals. We found that mortality rates doubled for juveniles in the $0.25 \le r < 0.5$ and $r \ge 0.5$ categories compared to the r=0 category, but that mortality rates for the 0 < r < 0.25 were comparable to those of the r=0 category (Table 7).

However, the numbers of individuals dying before the age of four were small and a GLMM incorporating the identity of each infant's mother as a random effect revealed only a marginal effect of relatedness on mortality between ages one and four when comparing $r \ge 0.25$ to r < 0.25 ($\chi^2_1 = 2.916$, P = 0.0877).

Delayed age at first birth in inbred versus non-inbred females

With our sample of 58 females with accurate estimates of their ages at first birth, we tested for older ages at first birth in inbred females compared to outbred females. To do this we ran a GLMM with female age as the response variable. Since our sample sizes were small, our test variable was relatedness at any level between the parents of inbred offspring. The identity of each female's group of residence was added in as a random effect. The full model was significantly different from the null model (χ^2_1 =7.046, P=0.0079). In other words, inbred females (age_{avg}=6.73, SE=0.177, n=12) gave birth significantly later than did non-inbred females (age_{avg}=6.246, SE=0.08, n=46) (Fig. 2).

DISCUSSION

Overall, we find that females in the Lomas Barbudal population of capuchins frequently co-reside with close adult male kin, that behavioral avoidance of close inbreeding occurs between individuals related at the half-sibling and higher level, and that there is a cost associated with inbreeding.

Alpha males co-residing with close adult female kin (i.e. at the half sibling level and higher) sired far fewer offspring with them than would be expected in the absence of some form of behavioral inbreeding avoidance (see also Muniz et al. 2006, 2010; Godoy et al. 2016). The same results were found when looking at subordinate males. Only 2% of genotyped infants were a product of inbreeding at the $r \ge 0.5$ level. Co-resident kin at the

level of $0.25 \le r < 0.5$ (i.e. half sibling level) also produced fewer offspring than expected by chance, but this effect was weaker than inbreeding avoidance at the $r \ge 0.5$ (i.e. father-daughter) level. In over a third of the cases of inbreeding, the females had no non-kin adult male groupmates available as potential mates. Age at first birth did not vary as a function of female relatedness to the alpha male, and extra-group paternity was extremely rare, suggesting that neither delaying reproduction nor mating outside the group were viable alternative female strategies. Co-resident male-female pairs related at 0 < r < 0.25 bred less often than unrelated pairs, but this difference was not significant.

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

In collared flycatchers, *Ficedula albicollis*, inbreeding pairs have lower hatching rates than outbreeding pairs, and the offspring that are produced have lower fledging skeletal weight and higher post-fledging mortality rates than outbred offspring (Kruuk et al. 2002). In theory, the reduced viability, early mortality and consequent absence of inbred offspring in a population may lead to the inference that such individuals are not produced at all, potentially leading to the inference of behavioral inbreeding avoidance by related parents. If matings between close kin do occur at higher than apparent frequencies in capuchins, but result in either early stage fetal loss or early infant death (i.e. before genetic samples can be collected), then higher infant mortality rates and markers for miscarriages should be evident among potentially inbreeding pairs. However, we found that infant mortality rates in stable groups (i.e. where no alpha turnover took place) did not significantly vary according to the relatedness between mothers and alpha males. Additionally, both (1) female age at first birth and (2) the lengths of inter-birth intervals for females living with their alpha male relatives did not differ from those of females living with non-kin alphas. These results are consistent with those from a smaller sample

analyzed in Muniz et al. (2006). These findings together provide further evidence against apparent inbreeding avoidance patterns being the result of fetal loss or early infant mortality, and instead are suggestive of mate choice.

That there would be mechanisms in place to prevent inbreeding between father-daughter pairs makes sense in this particular population, given than over 42.1% of our females resided with their fathers at the age when they reached sexual maturity (i.e. in their fifth year of life). Furthermore, selection may be particularly strong for father-daughter inbreeding avoidance in capuchins because if no mechanism were in place, multiple-generations of inbreeding could occur given that in some cases adult females are also resident with their grandfathers. Indeed, another primate with high male reproductive skew toward one dominant and long dominance tenures is the mountain gorilla (*Gorilla beringei beringei*), and this species also engages in father-daughter inbreeding avoidance in the wild (Vigilant et al. 2015).

Inbreeding at the level of paternal half siblings (8.2% of births) and more distantly related kin (10.2%) was more common than inbreeding at the full-sibling level (2%). Dyads related at $0.25 \le r < 0.5$ appeared to avoid inbreeding, but to a more limited degree than parent-offspring and full sibling dyads, whereas the dyads related at 0 < r < 0.25 did not differ significantly from unrelated dyads. While this may reflect an inability to accurately detect more distant kin categories, it may also reflect a reduced cost to inbreeding at these lower coefficients of relatedness. In the house mouse, *Mus musculus domesticus*, the offspring of full-sibling pairs showed lowered resistance to experimentally induced *Salmonella* infections compared to outbred offspring, having higher mortality and lower bacterial clearance; interestingly though, the offspring of full first cousin pairs did not differ

from outbred individuals in their resistance to *Salmonella* infection, at least not while under laboratory conditions (Ilmonen et al. 2008).

If parent-offspring matings produce less viable young, then father-daughter inbreeding avoidance may be a form of reproductive concession that, while reducing the overall level of reproductive skew toward dominant males, does not negatively impact overall alpha male reproductive success. This would, however, be a larger reproductive trade-off for alpha males less closely related to the females in their group, since (1) any costs of inbreeding would theoretically be lower and (2) males would have less inclusive fitness benefits from the offspring born to more distantly related females. Alpha males may also benefit from not inbreeding with their daughters because of the added benefit of having reproductively available females as incentives for male allies to remain in the group (Perry 2012).

Our current data suggest that there is a cost to inbreeding, as inbred females have a later age at first birth than do non-inbred females. Delayed age at first birth in inbred females has also been documented in captive Barbary sheep (*Ammotragus lervia sahariensis*) (Cassinello and Alados 1996). Contrastingly, in semi-free ranging mandrills (*Mandrillus sphinx*) age at first conception is accelerated, not delayed, in inbred females (Charpentier et al. 2006). To our knowledge, our results are the first evidence of delayed female reproduction as a consequence of inbreeding in non-human primates. In the hermaphroditic land snail, the number of eggs laid by outbred and inbred pairs (full-sibling pairs) do not differ significantly, but the proportion of eggs that hatch and the number of hatchlings produced is significantly lower for inbreeding pairs (Chen 1993). It may be that in capuchins, inbred and outbred females do not differ in when they first become pregnant,

but instead differ in the likelihood of a successful pregnancy. Whether the reproductive delay in inbred capuchins is the result of slowed sexual maturation, or the result of early miscarriages is unknown. Future research comparing the interbirth intervals of inbred versus non-inbred females would help differentiate between the two possibilities, as would hormonal monitoring of female reproductive states. At present we do not have sufficient data on interbirth intervals or the onset of cycling in inbred females to address these issues.

Although not statistically significant, our findings give some suggestion of more severe costs to inbreeding in the form of higher juvenile mortality for inbred offspring. Interestingly, in wild cactus finches, *Geospiza scandens*, inbred individuals show lower juvenile survivorship compared to noninbred individuals, but only when looking at years with low rainfall (low food availability) or large population sizes (higher competition) (Keller et al. 2002). Other studies have also found environmental-specific costs to inbreeding (e.g. Jiménez et al. 1994; Keller et al. 1994; Henry et al. 2003). The population growth dynamics of wild capuchins are known to be susceptible to environmental stressors such as rainfall deficits accompanying El Niño events (Campos et al. 2015). Future models of inbreeding depression in capuchins may benefit from the incorporation of measures of environmental stressors.

To date, genetic analyses of paternity in our population are indicative of avoidance of close inbreeding, particularly at the level of parent-offspring, and perhaps a tolerance for, but not preference for, inbreeding with more distant kin. Admittedly though, our ability to generate accurate estimated coefficients of relatedness below the level of half siblings is limited. Future research analyzing the mate preferences of dyads with deeper known

pedigrees may help shed light on the precise limits to inbreeding avoidance in this population. Furthermore, researching potential mechanisms of kin recognition in capuchins will also help establish a clearer picture of why matings between certain categories of kin (i.e. paternal half siblings) is more common than others.

555	Funding: Research support was provided by grants from the International Society for
556	Human Ethology, the National Geographic Society (grants: 7968-06, 8671-09, 20113909),
557	the Wenner Gren Foundation (grant: 443831), the Leakey Foundation (grants:
558	20060592, 20082262, 20112644, 20120195), the National Science Foundation (grants:
559	BCS-0613226, BCS-0848360, BCS-1232371), the UCLA Department of Anthropology, the
560	Max Planck Institute for Evolutionary Anthroplogy, and the UCLA Academic Senate.
561	Conflict of Interest: The authors declare that they have no conflict of interest.
562	Ethical Approval: All applicable international, national, and/or institutional guidelines for
563	the care and use of animals were followed. The UCLA Institutional Animal Care and Use
564	Committee (IACUC), known as the Chancellor's Animal Research Committee (ARC),
565	approved the protocol (ARC # 2005-084).

566 REFERENCE LIST 567 Baayen RH (2008) Analyzing linguistic data. Cambridge University Press, Cambridge, UK 568 Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using 569 lme4. J Stat Softw 67:1-48 570 Bateson P (1982) Preferences for cousins in Japanese quail. Nature 295:236-237 571 Bateson P (1983) Optimal outbreeding. In: Bateson P (ed) Mate choice. Cambridge University Press, Cambridge, pp 257–277 572 573 Beehner IC. Nguyen N. Wango EO. Alberts SC. Altmann I (2006a) The endocrinology of 574 pregnancy and fetal loss in wild baboons. Horm Behav 49:688–699 575 Beehner JC, Onderdonk DA, Alberts SC, Altmann J (2006b) The ecology of conception and 576 pregnancy failure in wild baboons. Behav Ecol 17:741–750 577 Campos F, Manson JH, Perry S (2007) Urine washing and sniffing in wild white-faced 578 capuchins (*Cebus capucinus*): testing functional hypotheses. Int J Primatol 28:55–72 579 Campos FA, Jack KM, Fedigan LM (2015) Climate oscillations and conservation measures 580 regulate white-faced capuchin population growth and demography in a 581 regenerating tropical dry forest in Costa Rica, Biol Conserv 186:204-213 582 Carnegie SD, Fedigan LM, Ziegler TE (2011) Social and environmental factors affecting fecal 583 glucocorticoids in wild, female white-faced capuchins (Cebus capucinus). Am J 584 Primatol 73:861-869 585 Cassinello J, Alados CL (1996) Female reproductive success in captive Ammotragus lervia 586 (Bovidae, Artiodactyla). Study of its components and effects of hierarchy and 587 inbreeding. J Zool 239:141–153 588 Charlesworth D, Charlesworth B (1987) Inbreeding Depression and its Evolutionary

589	Consequences. Annu Rev Ecol Syst 18:237–268
590	Charpentier M, Setchell JM, Prugnolle F, et al (2006) Life history correlates of inbreeding
591	depression in mandrills (Mandrillus sphinx). Mol Ecol 15:21–28
592	Chen X (1993) Comparison of inbreeding and outbreeding in hermaphroditic Arianta
593	arbustorum (L.) (land snail). Heredity 71:456-461
594	Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270
595	Csilléry K, Johnson T, Beraldi D, et al (2006) Performance of marker-based relatedness
596	estimators in natural populations of outbred vertebrates. Genetics 173:2091–101
597	Darwin C (1876) The effects of cross and self fertilization in the vegetable kingdom. John
598	Murray, London
599	Darwin C (1868) Variation of animals and plants under domestication. John Murray,
600	London
601	Dobson AJ, Barnett A (2008) An introduction to generalized linear models. CRC Press, Boca
602	Raton, FL
603	Field A (2005) Discovering statistics using IBM SPSS statistics. Sage, London
604	Forstmeier W, Schielzeth H (2011) Cryptic multiple hypotheses testing in linear models:
605	overestimated effect sizes and the winner's curse. Behav Ecol Sociobiol 65:47-55
606	Godoy I (2010) Testing Westermarck's Hypothesis in a Wild Primate Population: Proximity
607	During Early Development as a Mechanism of Inbreeding Avoidance in White-Faced
608	Capuchin Monkeys (<i>Cebus capucinus</i>). (Master's thesis), University of California, Los
609	Angeles
610	Godoy I, Vigilant L, Perry SE (2016) Cues to kinship and close relatedness during infancy in
611	white-faced capuchin monkeys, Cebus capucinus. Anim Behav 116:139-151

612	Henry PY, Pradel R, Jarne P (2003) Environment-dependent inbreeding depression in a
613	hermaphroditic freshwater snail. J Evol Biol 16:1211-1222
614	Ilmonen P, Penn DJ, Damjanovich K, Clarke J, Lamborn D, Morrison L, Ghotbi L, Potts WK
615	(2008) Experimental infection magnifies inbreeding depression in house
616	mice. J Evol Biol 21:834-841
617	Jack KM, Fedigan L (2004a) Male dispersal patterns in white-faced capuchins, Cebus
618	capucinus: Part 1: patterns and causes of natal emigration. Anim Behav 67:761-769
619	Jack KM, Fedigan L (2004b) Male dispersal patterns in white-faced capuchins, Cebus
620	capucinus: Part 2: patterns and causes of secondary dispersal. Anim Behav 67:771-
621	782
622	Jack KM, Fedigan LM (2006) Why be alpha male? Dominance and reproductive success in
623	wild white-faced capuchins (<i>Cebus capucinus</i>). In: Estrada A, Garber PA, Pavelka M,
624	Luecke L (eds) New Perspectives in the Study of Mesoamerican Primates:
625	distribution, ecology, behavior, and conservation. Springer Science & Business
626	Media, New York, pp 367–386
627	Jack KM, Sheller C, Fedigan LM (2011) Social factors influencing natal dispersal in male
628	white-faced capuchins (<i>Cebus capucinus</i>). Am J Primatol 74:359–365
629	Jamieson IG, Taylor SS, Tracy LN, et al (2009) Why some species of birds do not avoid
630	inbreeding: insights from New Zealand robins and saddlebacks. Behav Ecol 20:575-
631	584
632	Jiménez JA, Hughes KA, Alaks G, Graham L, Lacy RC (1994) An experimental study of
633	inbreeding depression in a natural habitat. Science 266:271-273
634	Kardos M, Luikart G, Allendorf FW (2015) Measuring individual inbreeding in the age of

635	genomics: marker-based measures are better than pedigrees. Heredity 115:63-72
636	Keller LF (1998) Inbreeding and its fitness effects in an insular population of song
637	sparrows (Melospiza melodia). Evolution 52:240-250
638	Keller LF, Arcese P, Smith JNM, Hochachka WM, Stearns SC (1994) Selection against inbred
639	song sparrows during a natural population bottleneck. Nature 372:356-357
640	Keller LF, Grant PR, Grant BR, Petren K (2002) Environmental conditions affect the
641	magnitude of inbreeding depression in survival of Darwin's finches. Evolution
642	56:1229-1239
643	Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol
644	17:230–241
645	Kokko H, Ots I (2006) When not to avoid inbreeding. Evolution 60:467-475
646	Kruuk LE, Sheldon BC, Merilä J (2002) Severe inbreeding depression in collared
647	flycatchers (Ficedula albicollis). Proc R Soc Lond B 269:1581-1589
648	Lehmann L, Perrin N (2003) Inbreeding avoidance through kin recognition: choosy females
649	boost male dispersal. Am Nat 162:638–652
650	Lehtonen J, Kokko H (2015) Why inclusive fitness can make it adaptive to produce less fit
651	extra-pair offspring. Proc R Soc B 282:20142716
652	Muniz L, Perry S, Manson JH, Gilkenson H, Gros-Louis J, Vigilant L (2006) Father-daughter
653	inbreeding avoidance in a wild primate population. Curr Biol 16:R156-R157
654	Muniz L, Perry S, Manson JH, Gilkenson H, Gros-Louis J, Vigilant L (2010) Male dominance
655	and reproductive success in wild white-faced capuchins (Cebus capucinus) at Lomas
656	Barbudal, Costa Rica. Am J Primatol 72:1118–1130
657	Muniz L, Vigilant L (2008) Isolation and characterization of microsatellite markers in the

658	white-faced capuchin monkey (Cebus capucinus) and cross-species amplification in
659	other New World monkeys. Mol Ecol Resour 8:402–405
660	Parker GA (1979) Sexual selection and sexual conflict. Sexual Selection and Reproductive
661	Competition in Insects. p. 123-166
662	Pemberton J (2004) Measuring inbreeding depression in the wild: the old ways are the
663	best. Trends Ecol Evol 19:613–615
664	Pemberton JM (2008) Wild pedigrees: the way forward. Proc R Soc Lond B 275:613-
665	621Perry S (1998a) A case report of a male rank reversal in a group of wild white-
666	faced capuchins (Cebus capucinus). Primates 39:51–70
667	Perry S (1998b) Male-male social relationships in wild white-faced capuchins, <i>Cebus</i>
668	capucinus. Behaviour 135:139–172
669	Perry S (2012) The behavior of wild white-faced capuchins: demography, life history, social
670	relationships, and communication. Adv Stud Behav 44:135–181
671	Perry S, Godoy I, Lammers W (2012) The Lomas Barbudal Monkey Project: two decades of
672	research on <i>Cebus capucinus</i> . In: Kappeler PM, Watts DP (eds) Long-Term Field
673	Studies of Primates. Springer Science & Business Media, Berlin, Germany, pp 141–
674	163
675	Perry S, Godoy I, Lammers W, Lin A. 2017. Impact of personality traits and early life
676	experience on timing of emigration and rise to alpha male status for wild male
677	white-faced capuchin monkeys (Cebus capucinus) at Lomas Barbudal Biological
678	Reserve, Costa Rica. Behaviour 154:195-226.
679	Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends Ecol Evol 11:201–206
680	Puurtinen M (2011) Mate choice for optimal (k) inbreeding. Evolution 65:1501–1505

681	R Core Team (2015) R: A language and environment for statistical computing. R
682	Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/
683	Ralls K, Ballou J (1982) Effects of inbreeding on infant mortality in captive primates. Int J
684	Primatol 3:491–505
685	Smith RH (1979) On selection for inbreeding in polygynous animals. Heredity 43:205–211
686	Szulkin M, Stopher KV, Pemberton JM, Reid JM (2013) Inbreeding avoidance, tolerance, or
687	preference in animals? Trends Ecol Evol 28:205–211
688	Taylor HR, Kardos MD, Ramstad KM, Allendorf FW (2015) Valid estimates of individual
689	inbreeding coefficients from marker-based pedigrees are not feasible in wild
690	populations with low allelic diversity. Conserv Genet 16:901-913
691	Thünken T, Bakker TCM, Baldauf SA, Kullmann H (2007) Active inbreeding in a cichlid fish
692	and its adaptive significance. Curr Biol 17:225-229
693	Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual
694	selection and the descent of man, 1871-1971. Aldine-Atherton, Chicago, pp 136–179
695	Van Horn RC, Altmann J, Alberts SC (2008) Can't get there from here: inferring kinship from
696	pairwise genetic relatedness. Anim Behav 75:1173–1180
697	Vigilant L, Roy J, Bradley BJ, Stoneking CJ, Robbins MM, Stoinski TS (2015) Reproductive
698	competition and inbreeding avoidance in a primate species with habitual female
699	dispersal. Behav Ecol Sociobiol 69:1163–1172
700	Waser PM, Austad SN, Keane B (1986) When should animals tolerate inbreeding? Am Nat
701	128:529–537
702	Wikberg EC, Jack KM, Campos FA, Fedigan LM, Sato A, Bergstrom ML, Hiwatashi T,
703	Kawamura S (2014) The effect of male parallel dispersal on the kin composition of

groups in white-faced capuchins. Anim Behav 96:9-17

FIGURES

Fig. 1 Study groups. Shown are four groups and their seven fission products

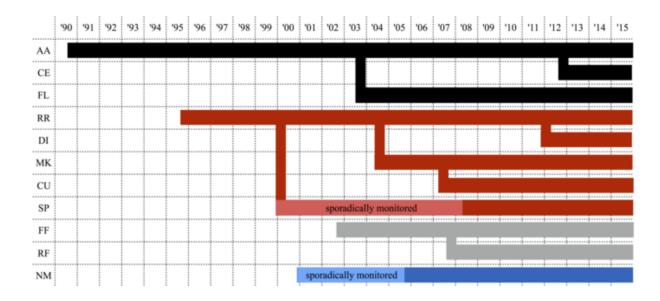
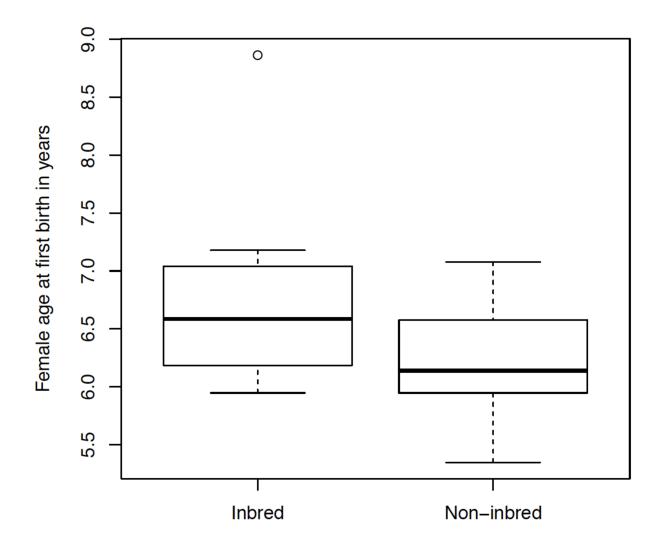



Fig. 2 Female age at first birth, categorized by whether or not females are inbred.

The boxes plot the first, second (median), and third quartiles. The whiskers indicate the minimum and maximum values falling within 1.5 times the interquartile range.

Table 1 Availability of adult male kin during conception windows and the risk of inbreeding between females and alpha males. The table shows (a) the number of conceptions (from a total pool of n=391) for which females had at least one adult male available that fit into a particular relatedness or kinship category, and (b) conceptions during stable alpha tenures (n=343), categorized by categorical relatedness and kinship between mothers and alpha males

Relatedness or kinship	No. of conceptions (%)			
	(a) Availability of male kin	(b) Inbreeding risk with alpha		
Relatedness Category				
0: r = 0	349 (89.3)	213 (62.1)		
1: 0 < r < 0.25	203 (51.9)	41 (12)		
2: $0.25 \le r < 0.5$	173 (44.2)	42 (12.2)		
3: r ≥ 0.5	123 (31.5)	47 (13.7)		
Kinship Category				
Non-kin	349 (89.3)	213 (62.1)		
Grandfather	6 (1.5)	5 (1.5)		
Paternal half brother	118 (30.2)	32 (9.3)		
Maternal half brother	41 (10.5)	2 (0.6)		
Full brother	30 (7.7)	0 (0)		
Son	48 (12.3)	2 (0.6)		
Father	64 (16.4)	45 (13.1)		

718 Table 2 Percentage of offspring sired by alpha males, categorized by categorical relatedness between infants'

719 mothers and alpha males. Data come from 193 conceptions during stable alpha tenures

Relatedness	Percentage	N	Inbreeding events where females did not
category			have unrelated subordinate males available
0: r = 0	90.1	109 of 121	
1: $0 < r < 0.25$	78.9	15 of 19	6 of 15 (40.0 %)
2: $0.25 \le r <$	65.0	13 of 20	7 of 13 (53.9 %)
0.5			
3: $r \ge 0.5$	12.1	4 of 33	0 of 4 (0 %)

Table 3 Final GLMM results on probability of alpha males siring infants

Fixed effects Estimate SE df LRT Pr(Chi)
--

(Intercept)	6.411	1.692			
Predictor variables					
1: $0 < r < 0.25$	-1.014	1.110	1	0.798	0.3717
2: $0.25 \le r < 0.5$	-2.837	1.097	1	9.101	0.0026
$3: r \ge 0.5$	-5.422	1.289	1	45.195	< 0.0001
Control variables					
# of adult males	-0.381	0.161	1	4.595	0.0321
# of adult females	-0.168	0.170	1	0.971	0.3244

Significant effects are shown in boldface.

Table 4 Percentage of offspring sired by subordinate males, categorized by the categorical relatedness between infants' mothers and subordinate males. Data come from 52 conceptions during stable alpha tenures where a subordinate male was the sire of the infant

Relatedness category	Percentage	N
0: r = 0	65.4	34 of 52
1: $0 < r < 0.25$	17.3	9 of 52
2: $0.25 \le r < 0.5$	15.4	8 of 52
3: $r \ge 0.5$	0.0	0 of 52

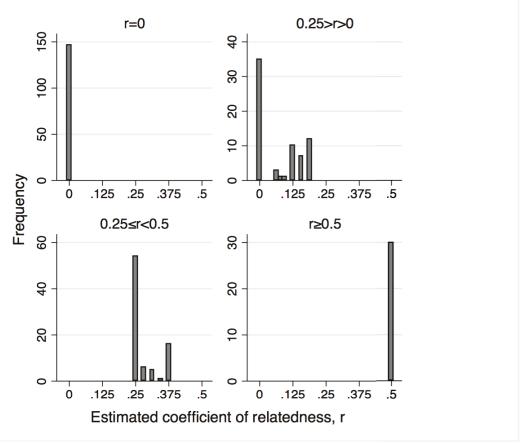
Table 5 Final GLMM results on probability of subordinate males siring infants

Fixed effects	Estimate	SE	df	LRT	Pr(Chi)
(Intercept)	-1.429	0.972			
Predictor variables					
1: $0 < r < 0.25$	-0.982	0.607	1	2.713	0.0995
2: $0.25 \le r < 0.5$	-1.579	0.572	1	7.688	0.0056
3: $r \ge 0.5$	-17.087	a	1	5.742	0.0166
Control variables					
# of adult males	-0.275	0.133	1	3.824	0.0505
# of adult females	-0.077	0.114	1	0.449	0.5026

^a Standard error not shown because it is meaningless as a result of complete separation Significant effects are shown in boldface.

Table 6 Genotyped infants, categorized by kinship and relatedness between their parents.

Relatedness category of parents	# of infants	Percentage
0: r = 0	195	78.6
1: $0 < r < 0.25$	25	10.1
2: $0.25 \le r < 0.5$	23	9.3
3: $r \ge 0.5$	5	2.0
Kinship category of parents	# of infants	Percentage
Non-kin	195	78.6
Other kin	25	10.1
Full niece-uncle	1	0.4
Full aunt-nephew	0	0.0
Granddaughter-grandfather	0	0.0
Paternal half siblings	22	8.9
Maternal half siblings	0	0.0
Full siblings	0	0.0
Mother-son	1	0.4
Daughter-father	4	1.6


Table 7 Juvenile mortality, by categorical relatedness of parents

Relatedness category	Deaths	N	Mortality
0: r = 0	17	135	12.6 %
1: $0 < r < 0.25$	3	25	12.0 %
2: $0.25 \le r < 0.5$	6	22	27.3 %
3: $r \ge 0.5$	1	4	25.0 %

SUPPLEMENTARY INFORMATION

742
Table S1 Pedigree information for genotyped individuals of known sex. Information is not
 shown for 6 infants who died before their sexes were determined.

No. of known		emales n=137)	Males (r	n=173)
ancestors	No.	%	No.	%
Parents				
0	11	8.0	39	22.5
1	14	10.2	4	2.3
2	112	81.8	130	75.1
Grandparents				
0	37	27.0	68	39.3
1	23	16.8	18	10.4
2	39	28.5	30	17.3
3	8	5.8	12	6.9
4	30	21.9	45	26.0
Great- grandparents				
0	79	57.7	110	63.6
1	36	26.3	33	19.1
2	16	11.7	25	14.5
3	5	3.6	2	1.2
4	0	0	3	1.7
5	1	0.7	0	0
6-8	0	0	0	0

Figure S1 Distribution of the estimated coefficients of relatedness in a sample of 327 unique dyads, which are binned into four relatedness categories. Incomplete pedigrees mean that the actual coefficients of relatedness can be higher than the estimated values. The dyads represented in this figure come from the data used in the analyses seen in Tables 2-5. Note that there are several cases in the 0.25 > r > 0 category, where dyads were estimated to have a coefficient of relatedness equal to zero because of incomplete pedigrees; these dyads were cases where both individuals were born into the same natal group.

Table S2 Male kin availability across the first half of the female breeding career. The table shows the number of females of each age who was co-resident with at least one adult male kin from a particular kinship category

Kinship Category	Female age in years										
	5	6	7	8	9	10	11	12	13	14	15
	N=95	N=89	N=74	N=69	N=64	N=59	N=52	N=43	N=34	N=29	N=22
Non-kin (r = 0)	86	82	70	64	60	58	52	43	34	28	21
	90.5%	92.1%	94.6%	92.8%	93.8%	98.3%	100%	100%	100%	96.6%	95.5%
Distant kin (r < 0.25)	33	37	24	28	27	24	19	15	15	13	5
	34.7%	41.6%	32.4%	40.6%	42.4%	40.7%	36.5%	34.9%	44.1%	44.8%	22.7%
Grandfather	3	3	2	2	1	1	1	1	0	0	0
	3.2%	3.4%	2.7%	2.9%	1.6%	1.7%	1.9%	2.3%	0%	0%	0%
Paternal half	30	35	35	30	33	25	20	13	11	9	7
brother	31.6%	39.3%	47.3%	43.5%	51.6%	42.4%	38.5%	30.2%	32.4%	31%	31.8%
Maternal half	4	3	1	3	6	7	5	5	4	3	4
brother	4.2%	3.4%	1.4%	4.3%	9.4%	11.9%	9.6%	11.6%	11.8%	10.3%	18.2%
Full brother	6	3	2	7	9	9	6	5	6	4	3
	6.3%	3.4%	2.7%	10.1%	14.1%	15.3%	11.5%	11.6%	17.6%	13.8%	13.6%
Son	0	0	0	0	0	0	0	3	5	10	6
	0%	0%	0%	0%	0%	0%	0%	7%	14.7%	34.5%	27.3%
Father	40	33	21	18	15	12	7	5	4	3	2
	42.1%	37.1%	28.4%	26.1%	23.4%	20.3%	13.5%	11.6%	11.8%	10.3%	9.1%

Table S3 Availability of alpha male kin across the first half of the female breeding career.

Table shows the number of females at each age that lived in a group where an alpha male fell into a particular kinship category

Kinship Category	Female age in years										
	5	6	7	8	9	10	11	12	13	14	15
	N=95	N=89	N=74	N=69	N=64	N=59	N=52	N=43	N=34	N=29	N=22
Non-kin (r = 0)	51	50	45	45	44	44	39	31	28	25	19
	53.7%	56.2%	60.8%	65.2%	68.8%	74.6%	75%	72.1%	82.4%	86.2%	86.4%
Distant kin (r < 0.25)	10	12	8	9	8	4	4	2	0	0	0
	10.5%	13.5%	10.8%	13%	12.5%	6.8%	7.7%	4.7%	0%	0%	0%
Grandfather	2	2	1	1	1	1	0	0	0	0	0
	2.1%	2.2%	1.4%	1.4%	1.6%	1.7%	0%	0%	0%	0%	0%
Paternal half	9	9	6	7	9	8	9	6	5	4	4
brother	9.5%	10.1%	8.1%	10.1%	14.1%	13.6%	17.3%	14%	14.7%	13.8%	18.2%
Maternal half	1	1	1	0	0	0	0	0	0	0	0
brother	1.1%	1.1%	1.4%	0%	0%	0%	0%	0%	0%	0%	0%
Full brother	0	0	0	0	0	0	0	0	0	0	0
	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Son	0	0	0	0	0	0	0	0	0	0	0
	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Father	29	23	17	12	11	7	5	5	4	3	1
	30.5%	25.8%	23%	17.4%	17.2%	11.9%	9.6%	11.6%	11.8%	10.3%	4.5%

Alternate, non-behavioral explanations for paternity patterns

Female-alpha relatedness and female age at first birth

We looked at a small subset of females (n=37) whose age at first birth was known to be accurate to within 3 months, and who lived in a group containing a stable alpha from age 4.5 (presumably before commencing cycling) through to their first infant's conception (Table S4). We ran a GLMM to assess whether categorical relatedness between females and the alpha males of their groups positively impacted the age at which females had their first-born offspring (i.e. delayed age at first birth). Such a result would suggest that inbreeding does occur but that pregnancies result in miscarriage. Our dataset included data on 13 alpha males from seven social groups. Our response variable was each female's age at first birth. Our test variables were the levels of relatedness between the infants' mothers and the alpha males; 0 < r < 0.25, $0.25 \le r < 0.5$, and $r \ge 0.5$. The identities of the alphas, females, and groups of residence were included as random effects. The full model was not significantly different from the null model (χ^2_3 =2.657, P=0.4477). In other words, we did not find evidence for miscarriages. Similar results were found when condensing all r > 0 categories together (i.e. a kin versus non-kin comparison) (χ^2_1 =0.299, P=0.5843).

Table S4 Female age at first birth, categorized by female relatedness to alpha.

Relatedness Category	Avg. age	Std. Dev.	SE	N	[95% Conf. Interval]
0: r = 0	6.079	0.369	0.091	13	[5.882 6.277]
1: 0 < r < 0.25	5.946	0.523	0.147	6	[5.569 6.324]
2: $0.25 \le r < 0.5$	6.255	0.375	0.127	6	[5.929 6.580]
3: r ≥ 0.5	6.208	0.488	0.152	12	[5.874 6.541]

Female-alpha relatedness and inter-birth intervals

To further investigate the possibility of miscarriages driving our results of apparent inbreeding avoidance, we also analyzed a subset of inter-birth intervals (n=91), for which the following criteria were met; 1) the first infant survived its first year of life, 2) the alpha male, during the conception window of the subsequent infant, was the same male that was alpha during the first infant's conception window, and 3) the IBI estimate was accurate to within 3 months (**Table S2**). We dropped one IBI outlier, which was more than 5 standard deviations higher than the population mean (mean: 749 days, st.dev: 145, Perry et al. 2012).

We ran a GLMM to test for a positive effect of categorical relatedness between females and alpha males on the inter-birth intervals for females (i.e. longer inter-birth intervals). Such a result would suggest that inbreeding occurs but that pregnancies end in miscarriage. Our dataset comprised 52 mothers and 14 alpha males from nine social groups. Our test variables were the levels of relatedness between the infants' mothers and the alpha males; 0 < r < 0.25, $0.25 \le r < 0.5$, and $r \ge 0.5$. We included the identities of females, alphas, and groups of residence as random effects. The full model was not significantly different from the null model ($\chi^2=4.339$, P=0.2271), meaning we found no evidence for miscarriages. Similar results were found when condensing all r > 0 categories together and comparing kin versus non-kin ($\chi^2=0.0985$, P=0.7536).

Table S5 Inter-birth intervals (days), categorized by female relatedness to alpha.

Relatedness category	Avg. IBI	Std. Dev.	SE	N	[95% Conf. Interval]
0: r = 0	753.0	132.6	18.6	51	[715.7 790.2]
1: 0 < r < 0.25	804.7	118.9	37.6	10	[719.7 889.7]
2: $0.25 \le r < 0.5$	871.0	139.5	38.7	13	[786.7 955.3]
3: r≥ 0.5	743.2	126.6	31.6	16	[675.7 810.6]

Female-alpha relatedness and probability of infant death

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

There was a sample of 246 births (105 of which were not genotyped) where the alpha male position remained stable from the estimated conception window of the infant through to either 1) the end of the infant's first year of life or 2) the infant's death (**Table S3**). Inclusion of ungenotyped infants allowed for us to avoid possible sample bias if inbred offspring died more often before genetic samples could be collected from them. We ran a GLMM to test the effect of relatedness between infants' mothers to the alpha male on the probability of an infant dying during early infancy. A positive relationship (i.e. higher infant mortality) would suggest that inbreeding does occur but that the offspring are less viable. Our dataset was comprised of 89 mothers and 24 alpha males from 11 social groups. Our response variable was whether an infant died before reaching the age of one (yes/no). Our test variables were the levels of relatedness between the infants' mothers and the alpha males: 0 < r < 0.25, $0.25 \le r < 0.5$, and $r \ge 0.5$. The identities of mothers, alphas, and groups of residence were included as random effects. The full model was not significantly different from the null model (χ^2 ₃=1.860, P=0.6020). Similar results were found when combining all r > 0 categories and comparing kin versus non-kin (χ^2_1 =0.591, P=0.4419). Thus, we found no evidence for our inbreeding avoidance patterns actually being the result of a prevalence of inbred offspring that died before genetic sample collection.

Table S6 First year infant mortality rates, categorized by mother's relatedness to alpha.

Relatedness category	Deaths	N	Mortality
0: r = 0	33	151	21.9 %
1: 0 < r < 0.25	10	31	32.3 %
2: 0.25 ≤ r < 0.5	8	28	28.6 %
3: r≥0.5	6	36	16.7 %