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Abstract

The telomerase reverse transcriptase synthesizes new telomeres onto chromosome ends by copying from a short template
within its integral RNA component. During telomere synthesis, telomerase adds multiple short DNA repeats successively, a
property known as repeat addition processivity. However, the consequences of defects in processivity on telomere length
maintenance are not fully known. Germline mutations in telomerase cause haploinsufficiency in syndromes of telomere
shortening, which most commonly manifest in the age-related disease idiopathic pulmonary fibrosis. We identified two
pulmonary fibrosis families that share two non-synonymous substitutions in the catalytic domain of the telomerase reverse
transcriptase gene hTERT: V791I and V867M. The two variants fell on the same hTERT allele and were associated with
telomere shortening. Genealogy suggested that the pedigrees shared a single ancestor from the nineteenth century, and
genetic studies confirmed the two families had a common founder. Functional studies indicated that, although the double
mutant did not dramatically affect first repeat addition, hTERT V791I-V867M showed severe defects in telomere repeat
addition processivity in vitro. Our data identify an ancestral mutation in telomerase with a novel loss-of-function mechanism.
They indicate that telomere repeat addition processivity is a critical determinant of telomere length and telomere-mediated
disease.
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Introduction

Telomerase is a specialized DNA polymerase that synthesizes

new telomere repeats onto chromosome ends [1,2]. Telomerase

has two essential conserved components, a catalytic reverse

transcriptase, hTERT, and an RNA component, hTR [3,4].

The RNA component of telomerase contains a template sequence

for the addition of new telomere repeats [5]. In order to synthesize

long telomere tracts, hTERT copies from the RNA template once,

translocates, and then iteratively adds successive repeats [6]. This

property is known as telomere repeat addition processivity [7].

Functional domains within hTR and hTERT, as well as

telomerase-extrinsic factors, have been implicated in repeat

addition processivity [8–10]. However, whether repeat addition

processivity is critical for telomere length maintenance in vivo is not
fully known.

Germline mutations in the essential telomerase components

hTERT and hTR lead to a clinical spectrum of syndromes of

telomere shortening (reviewed in [11]). Affected individuals suffer

from degenerative organ failure in the bone marrow, lung and

liver. In adulthood, syndromes of telomere shortening most

commonly manifest as progressive and irreversible scarring of

the lung in an age-related disorder known as idiopathic pulmonary

fibrosis (IPF) [11]. Mutations in hTERT or hTR underlie the

inheritance in 8–15% of familial forms of pulmonary fibrosis and

1–3% of sporadic cases [12–15]. This mutation frequency along

with the common prevalence of IPF make pulmonary disease the

most common manifestation of germline defects in telomerase

[11]. In severe forms, syndromes of telomere shortening are

clinically recognized in the premature aging syndrome dyskeratosis

congenita where aplastic anemia is the most common cause of

mortality and where there is an increased incidence of acute

myeloid leukemia (AML) [16,17]. AML, both de novo, and in the

setting of myelodysplasia, has also been reported as a first

manifestation of germline mutant telomerase genes [18,19]. A

subset of pulmonary fibrosis patients and families with short

telomeres suffer complications from aplastic anemia and crypto-

genic liver cirrhosis [12,13,20,21]. Insights into telomerase
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genetics as well as their consequences on telomerase function have

therefore become intimately connected with the pathophysiology

of several age-related disorders.

Heterozygous mutations in hTERT and hTR cause telomere

shortening through haploinsufficiency [20–23]. Previously identi-

fied mutations in telomerase have been shown to cause loss-of-

function due to defects in hTR stability, essential catalytic

function, and ribonucleoprotein assembly, but not repeat addition

processivity [13,20,22,24,25]. We identified two families with

familial pulmonary fibrosis where each of the affected index cases

carried two heterozygous variants that predicted non-synonymous

amino acid substitutions in the reverse transcriptase domain of

hTERT. We show that these two families share a common

founder, identifying an ancestral mutation in telomerase. Although

the double heterozygote hTERT did not drastically affect

telomerase’s capacity to add nucleotides within a single repeat, it

had severe defects in repeat addition processivity and was

associated with telomere shortening. Our data indicate that

inherited defects in telomerase processivity may be sufficient to

contribute to telomere shortening and to a familial telomere-

mediated syndrome.

Results

Non-synonymous variants in the reverse-transcriptase
domain of hTERT segregate with the pulmonary fibrosis
phenotype
In a screen of 75 familial pulmonary fibrosis probands for

telomerase mutations, we identified a proband from a family

designated number 13 who carried two single nucleotide variants

in hTERT. The first was a c.2371GRA transition in exon 7, and

the second was c.2599GRA transition in exon 10 (Figure 1A, 1B).

These predicted two non-synonymous substitutions in the reverse

transcriptase domain: V791I and V867M, respectively (Figure 1C).

The single nucleotide variants were absent in 200 ethnically

matched controls, as well as in a multi-ethnic control panel

examining the hTERT gene sequence [23]. To determine whether

these nucleotide substitutions were on the same allele (i.e. in cis)
and whether they were associated with the pulmonary fibrosis

phenotype, we sequenced genomic DNA from affected family

members and examined the segregation. hTERT V791I and

V867M were always present together (11 of 11 individuals across 3

generations) suggesting that they were on the same hTERT

haplotype (Figure 2). The hTERT variants predicting V791I and

V867M segregated with the pulmonary fibrosis diagnosis across

four generations in all the individuals we examined [n= 7, 5

directly sequenced, 1 obligate carrier (13.II.5) and 1 probable

carrier (13.I.1), Figure 2]. The log of the odds ratio (LOD) score of

the mutant hTERT allele segregating with the pulmonary fibrosis

was significant at 3.3. The segregation of the mutations with the

disease phenotype indicated that this double mutant hTERT was

likely disease causing.

Two pulmonary fibrosis families share common ancestry
In an independent screen of 24 pulmonary fibrosis families, we

identified a second kindred, designated family 143, whose proband

carried the identical substitutions in hTERT. In this family,

hTERT V791I and hTERT V867M also co-segregated with the

pulmonary fibrosis phenotype (Figure 2). Since the two variants

were in cis and were rare, we reasoned that Families 13 and 143

may have a single common ancestor. To address this, we carefully

queried the genealogy. Independently, members of the two

families reported lineage to an individual of the same surname

who was born in 1808 in the United States. According to public

census records, this ancestor had grandparents who emigrated in

the eighteenth century from the British Isles. The genealogy

suggested that Families 13 and 143 may be related and that the

putative mutation(s) have been present for at least 6 generations,

possibly with ancestry as far back as the early nineteenth century.

To determine whether Families 13 and 143 shared a common

founder, we genotyped polymorphic microsatellite and minisatel-

lite sequences that flank as well as fall within the hTERT gene

(Figure S1A, S1B). In all the individuals who carried the hTERT
substitutions at 791 and 867 positions, we identified a shared

haplotype block which was both within and flanked hTERT
(Figure S1A, S1B). These data, together with the family histories,

indicated that Families 13 and 143 shared a common ancestor

who carried the double mutant hTERT allele.

hTERT 791I-867M causes defects in repeat addition
processivity in vitro
To determine the functional significance of the hTERT 791 and

867 variants, we first examined the evolutionary conservation of

the hTERT V791 and V867 residues. hTERT V791 fell within

the insertion in finger domain (IFD) between the A and B motifs of

the reverse transcriptase domain [10,26], a telomerase specific

motif (Figure 1B, 1C). hTERT V867 fell within the universal

reverse transcriptase motif C, and was adjacent to the invariant

aspartic acid residues which are essential for the catalytic function

of telomerase and other reverse transcriptases [4] (Figure 1B, 1C).

The sequence alignment from representative species showed that

these two residues are generally conserved as hydrophobic amino

acids in most organisms, and are therefore potentially important

for telomerase function.

To directly examine whether the variant hTERT affects

telomerase activity, we reconstituted the mutant telomerase and

measured enzyme activity in vitro. At standard assay conditions of

1 mM nucleotide concentrations [8,12,13,20,27], the 791I alone

did not have obvious defects in activity or processivity (Figure 3A,

lane 3). A minor inter-repeat pause was present for 867M; this has

been previously suggested to be due to nucleotide affinity defects

Author Summary

Mutations in the essential telomerase components cause a
spectrum of diseases mediated by short telomeres. Most
frequently, these disorders manifest in the lung in an age-
related disease: idiopathic pulmonary fibrosis. Telomerase
synthesizes telomere repeats using a specialized reverse
transcriptase, hTERT, that copies from a short template
within its intrinsic RNA. In order to add long telomere
tracts, telomerase adds a single repeat followed by
additional repeats successively. This property, known as
repeat addition processivity, is unique to the telomerase
polymerase. We identified two families that shared two
unique variants in the catalytic domain of hTERT: V791I
and V867M. The variants co-segregated, indicating they
are on the same allele, and were associated with short
telomeres. Family history suggested the two families may
have a single ancestor, and genetic studies confirmed they
had a common founder. Telomerase reconstitution indi-
cated that, although the double mutant did not signifi-
cantly affect telomerase’s ability to add a single telomere
repeat, hTERT 791I-867M had severe defects in repeat
addition processivity. Our data identify an ancestral
mutation in telomerase; this mutation possesses a unique
loss-of-function mechanism. Defects in telomere addition
processivity are important determinants of telomere
length maintenance and of telomere-associated disease.

Telomerase Ancestral Mutation Impairs Processivity
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[28] (Figure 3A, lane 4). This pause was also present in the 791I-

867M double mutant (Figure 3A, lane 5). However, the overall

activity and processivity of 867M and 791I-867M were not

affected (Figure 3A, lanes 4 and 5). For comparison, we measured

the activity of a known hTERT mutation L55Q previously

identified in a family with pulmonary fibrosis [13]. This mutant

showed a significant decrease in overall activity (Figure 3A, lane 2).

Since the segregation and the genetic evidence supported the 791I-

867M being a pathogenic allele, we assayed its function at

nucleotide concentrations that are closer to the estimated Km for

telomerase [29,30]. The lower concentrations also more closely

mimic estimates of intra-nuclear nucleotide concentrations

(10 mM) [31–33]. Under these conditions, there was little effect

on the synthesis of the first repeat compared with wildtype

telomerase (Figure 3A–3D). We next measured repeat addition

processivity. Notably, hTERT 867M and the double mutant

hTERT had significant decreases in repeat addition processivity

(Figure 3A and 3E). The decreased repeat addition processivity

was not seen for the 55Q and 791I alleles (Figure 3A and 3E). This

decrease was evident by the lower intensity of high molecular

weight repeat products relative to the first product (Figure 3A, lane

6 compared with lanes 9 and 10). For example, by the fourth

Figure 1. Position and conservation of non-synonymous variants in hTERT shared by pulmonary fibrosis families 13 and 143
probands. A,B. Chromatograms of single nucleotide variants predict non-synonymous amino acid substitutions. The first was a c.2371GRA
transition in exon 7 (A), and the second was c.2599GRA transition in exon 10 (B). C. Panel shows conserved hTERT motifs shared with other TERTs.
The non-synonymous amino acid variant residues are indicated within the reverse transcriptase domain. hTERT V791 falls in the IFD domain between
the A and B motifs, and hTERT V867 is adjacent to the invariant motif C aspartic acid residues which are essential for reverse transcriptase function
and are indicated by *. Alignment of TERT sequence across 14 species indicates that both V791 and V867 fall within conserved motifs.
doi:10.1371/journal.pgen.1001352.g001

Telomerase Ancestral Mutation Impairs Processivity
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repeat, both hTERT 867M and 791I-867M had approximately a

10-fold reduction in telomere product compared with wildtype

telomerase (Figure 3E). The decrease in processivity was

independent of the hTERT epitope tag used in affinity purifi-

cation, as we saw the same degree of impairment for 867M and

791I-867M whether a C-terminal HA or N-terminal FLAG

epitope was used (not shown). To exclude the possibility that the

double mutant hTERT may have dominant negative effects, we

performed mixing studies of wildtype and 791I-867M and found

no additional decreases in activity or processivity (not shown).

These data indicated that although hTERT 791I and 867M co-

segregate with the disease phenotype, the 867M mutation appears

to be the pathogenic variant and predominantly affects telomere

repeat addition processivity in vitro.

Mutant TERT is associated with short telomere length
Telomerase haploinsufficiency causes telomere shortening and

the severity of the consequent phenotypes correlates with the

telomere length [20,34]. To examine if the mutant telomerase is

associated with telomere shortening, we measured telomere length

in family members using combined flow cytometry and fluores-

cence in situ hybridization (flow-FISH) [12,13]. In all cases,

mutation carriers had lymphocyte telomere lengths below the 10th

percentile of a normal distribution compared with age-matched

controls (Figure 4). In 6 of 9 mutation carriers, the telomere length

fell below the 1st percentile, a range that is highly specific for the

presence of a germline telomere maintenance defect [12,13,35]

(Figure 4, P,0.001, paired t-test). Therefore the mutant hTERT is

associated with telomere shortening in mutation carriers.

A spectrum of telomere-mediated disease is associated
with ancestral TERT mutation
Syndromes of telomere shortening manifest as degenerative

disease in the lung, liver and bone marrow, and a subset of

pulmonary fibrosis families falls on this spectrum [11,13]. To

examine whether the mutant TERT leads to the full spectrum of

telomere-mediated disease, we characterized the clinical pheno-

types in families 13 and 143. Of the 18 genetically affected

individuals in the two pedigrees, 11 had pulmonary disease. In the

majority of cases (7 of 11, 64%), the interstitial lung disease met

the criteria for usual interstitial pneumonia/IPF (Figure 5A, 5B

and Table S1). In affected individuals, the onset of disease was in

adulthood with a mean age of 56 (range 32–67). There was very

subtle genetic anticipation for the age at death across the

generations we could examine (e.g. age 61 and mean age 56 for

generations I and II respectively in family 13, Table S1). Two

individuals at the age of 50 and 51 reported chronic liver function

abnormalities that were unexplained after a thorough work-up.

We identified subclinical cytopenias in one individual (age 50), and

one individual was diagnosed with AML at age 67 and

subsequently died from complications of interstitial lung disease

(Table S1). We clinically examined the probands and their

relatives for the typical mucocutaneous features of dyskeratosis

congenita but did not identify any signs of skin hyperpigmentation,

nail dystrophy or oral leukoplakia. Therefore the telomerase defect

we identified in families 13 and 143 appears to primarily cause

adult-onset phenotypes. These phenotypes are clinically most

prominent in the lung, but features of the full spectrum of a

telomere syndrome manifest at lower frequency including

subclinical cytopenias, liver function abnormalities and AML.

Unaffected siblings of mutation carriers have short
telomeres
Telomere length is a heritable trait and parental telomere length

determines offspring telomere length even when telomerase is

wildtype [34,36,37]. In a large dyskeratosis congenita family,

siblings of mutation carriers were shown to have short telomeres;

however telomere-related phenotypes in these individuals have not

been previously reported [38]. Since the hTERT 791I-867M

mutation was associated with short telomeres, we examined

whether their non-mutation carrier relatives may also have short

telomeres. In 4 individuals we examined, the lymphocyte telomere

length was below the 10th percentile compared with age-matched

controls, and in two individuals, the telomere length fell at or

below the 1st percentile (Figure 4, P = 0.039, paired t-test). To

determine whether short telomeres may be a risk factor for

developing telomere-mediated disease, we examined the clinical

phenotypes of the individuals who did not carry the hTERT 791I-

867M allele but who had short telomeres. We identified one

patient who presented to our clinic with shortness of breath at the

Figure 2. Four generation pedigrees of pulmonary fibrosis probands from Families 13 and 143 of the Vanderbilt Registry. Mutation
and affected status are indicated by symbols shown in the key and individuals in whom DNA was available are noted by the pedigree number in bold
text. In both families, the hTERT 791I and 867 M variants co-segregate, consistent with the fact that these heterozygous substitutions are on the same
allele in cis. hTERT 791I-867M also segregates with the pulmonary fibrosis phenotype in all the individuals in whom DNA was available. The symbols
are identified in the key, and completely filled symbols indicate clinically affected individuals who carry the double mutant TERT.
doi:10.1371/journal.pgen.1001352.g002
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Figure 3. The ancestral mutant telomerase affects repeat addition processivity in vitro. A. Telomerase activity assay of non-synonymous
hTERT variants identified in family 13 and 143 probands. L55Q was previously identified in a pulmonary fibrosis family and known to compromise
catalysis. Telomerase activity assay at high nucleotide (1 mM) concentrations on the left shows no defects in catalytic activity or processivity for
hTERT V791I and V867M or the double mutant. At lower nucleotide concentration (10 mM), hTERT 867M and hTERT V791I-V867M both show defects
in repeat addition processivity as evidenced by the decreased intensity of the high molecular weight products relative to the first repeat. Low
exposure image of the internal loading control is shown below. B. Low exposure image of the gel shown in (A) is shown to visualize the +1, +2, and
+3 nucleotide bands clearly. C. SDS-PAGE of 35S labeled hTERT used in (A) to monitor the expression of in vitro synthesized hTERTs. D. Quantitation of

Telomerase Ancestral Mutation Impairs Processivity
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age of 53. His history was significant for a lifelong history of

cigarette use (greater than 50 pack-years). The patient’s CAT scan

showed a mixed picture of interstitial lung disease with ground

glass infiltrates and emphysema (Figure 5C, 5D), and lung biopsy

confirmed the presence of interstitial fibrosis on the background of

bronchiolitis. Although cigarette smoke has been shown to be

associated with short telomeres and is known to contribute to the

risk of both emphysema and pulmonary fibrosis [39], it is

intriguing to consider the possibility that parental telomere length

may have contributed to the telomere shortening in this individual

and to his risk of lung disease.

Discussion

Repeat addition processivity is a unique biochemical attribute of

the telomerase reverse transcriptase, and here we show it may be

critical for telomere maintenance in vivo. Telomerase-intrinsic and

extrinsic factors have been implicated in repeat addition

processivity [8–10], and our study suggests that inherited defects

that affect this unique property of the telomerase enzyme may

contribute to telomere length heterogeneity and to telomere-

mediated disease. Although individuals in the two kindreds we

describe carried two in cis variants in hTERT, our biochemical

studies suggest that hTERT 867M is likely the functionally

important mutation. As such, the hTERT 791I rare variant may

serve as a useful genetic marker and, along with the 867M, can

identify other families with shared ancestry to the families we

report herein. Single nucleotide titration studies have implicated

hTERT V867 to be important in telomerase function [28]. Studies

of the Tetrahymena thermophila TERT have also implicated the

orthologous residue adjacent to V867 in repeat addition

processivity [40]. These observations, along with our findings,

indicate that residues within motif C of the telomerase reverse

transcriptase domain are important determinants of telomere

repeat addition processivity. Several mechanisms of telomerase

haploinsufficiency have been previously reported for disease

causing mutations including loss of hTR stability, impaired

association of hTR with hTERT, and loss of catalytic function

[13,20,22,24,25]. In this study, the strong genetic evidence linking

the mutant TERT to a known telomere-mediated disease, and the

evidence of telomere shortening in vivo, indicate that the mutant

TERT affects telomere maintenance. Our in vitro biochemical

studies show that the mutant TERT is defective in repeat addition

processivity, pointing to this as the likely mechanism for the loss of

telomerase function and the consequent organ failure.

We report on an ancestral mutation in hTERT which

manifested independently in two pulmonary fibrosis families. To

our knowledge, hTERT 791I-867M is the most ancient telomerase

mutation, and it is likely that other kindreds with familial

pulmonary fibrosis and other features of telomere syndromes will

be subsequently found to share ancestry with these pedigrees. In

contrast to a family with a functionally null hTERT mutation

where genetic anticipation was striking and caused a two decade

earlier onset of disease across each generation [20], hTERT 791I-

first repeat addition as measured by the total intensity of the +1, +2, +3, and +4 nucleotide bands. Quantitation is based on 3 independent
experiments. * Indicates P-value ,0.01 and error bars indicate standard error of the mean. E. Quantitation of processivity across the first four repeats
(R1, R2, R3 and R4) is shown by the linear regression line.
doi:10.1371/journal.pgen.1001352.g003

Figure 4. Telomere length in mutation carriers in families 13 and 143 have short telomeres compared to age-matched controls.
Panel shows telomere length as measured in lymphocytes by flow-FISH compared to normal distribution of age-matched controls. Percentiles are
based on telomere length data from 400 controls. Squares refer to males and circles refer to females. Individuals refer to pedigree position in Figure 2.
Individual 13III.8 has short telomeres and was diagnosed with an overlap syndrome of emphysema and pulmonary fibrosis.
doi:10.1371/journal.pgen.1001352.g004

Telomerase Ancestral Mutation Impairs Processivity
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867M causes only subtle anticipation across the generation spans

we studied. This observation suggests that the extent of genetic

anticipation may correlate with the degree of telomerase loss-of-

function thus making genetic anticipation more difficult to detect

across consecutive generations in families that carry hypomorphic

mutations. Telomerase preferentially elongates the shortest

telomeres [41,42], and our functional studies which show intact

single repeat synthesis, point to the fact that the ancestral hTERT

791I-867M may have the capacity to add initial telomere tracts,

thus healing the shortest telomeres. However, with successive

telomere repeats, telomere addition is less efficient. Loss of

telomere repeat addition processivity may therefore be a

manifestation of more hypomorphic mutations, and therefore

adult-onset phenotypes, as the shortest telomeres may still be

elongated, albeit with shorter telomere tracts.

In this multi-generation study, although pulmonary fibrosis was

the most common manifestation in mutation carriers, several

individuals had extra-pulmonary manifestations of telomere-

mediated disease. One individual had avascular necrosis and

macrocytosis, two individuals reported history of cryptogenic liver

function abnormalities, and one patient had a history of AML

prior to the diagnosis of interstitial lung disease. Bone marrow

failure, avascular necrosis and cryptogenic liver cirrhosis are all

known complications of dyskeratosis congenita [17], and pulmo-

nary fibrosis families with mutant telomerase genes have been

known to have an increased incidence of aplastic anemia, a

common complication of dyskeratosis congenita [13]. AML, often

arising in the setting of myelodysplasia, has been recently reported

as a first manifestation of mutant telomerase genes [18,19], and it

is possible that families with pulmonary fibrosis due to telomerase

deficiency also have an increased incidence of AML. In 8

consecutive pulmonary fibrosis families with known hTR or

hTERT mutations, including the 2 we report herein, there was a

total of 3 first degree relatives of IPF probands who died with

AML at ages 25, 59, 68. Dyskeratosis congenita patients are

known to have an increased incidence of AML [16]. These

observations highlight the fact that a subset of families with

pulmonary fibrosis falls on the same spectrum as dyskeratosis

congenita and that the diagnosis of telomere syndrome in these

patients is relevant to their clinical work-up and surveillance.

Pulmonary fibrosis patients should be queried about a personal or

family history of AML, along with aplastic anemia, as part of the

screening history for a telomere syndrome.

In summary, an ancestral mutation within the reverse

transcriptase domain of telomerase manifests as familial pulmo-

nary fibrosis and causes defects in telomere repeat addition

processivity. Genetic factors that affect repeat addition processivity

may be important determinants of telomere length heterogeneity

across populations, and can contribute to understanding the

inherited basis of telomere-mediated disease.

Methods

Subjects and ethics statement
Subjects were recruited through the Vanderbilt Familial

Pulmonary Fibrosis Registry and gave written informed consent

[13]. The study was approved by the institutional review boards of

both Vanderbilt and Johns Hopkins Universities. The probands

from Families 13 and 143, and the majority of mutation carrier

and non-carrier relatives were clinically evaluated. Primary

medical records were used to document the diagnoses listed in

Table S1. We used the consensus classification to phenotype the

idiopathic interstitial lung disease [43].

Genotyping and telomere length measurement
Genomic DNA was extracted from peripheral blood using

standard methods. We sequenced hTERT [13] and confirmed

variants bidirectionally. Control DNA was obtained from Corriel

Figure 5. CAT scans from pulmonary fibrosis probands and non-carrier sibling with short telomeres. A,B show lower thoracic CAT scan
images from the probands in family 13 and 143. Both images show basilar honeycombing typical of idiopathic pulmonary fibrosis. C,D are apical and
lower thoracic CAT scan images respectively of sibling with short telomere who does not carry the mutant hTERT (Individual designated 13III.8 in
Figure 2 and Figure 3). This individual has apical changes consistent with centrilobular emphysema as well as lower thoracic ground glass changes
consistent with an interstitial process.
doi:10.1371/journal.pgen.1001352.g005

Telomerase Ancestral Mutation Impairs Processivity
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Repository with self-reported Northern European ethnicity,

similar to the families we studied. We used Merlin to calculate a

single point LOD score [44], under the assumption of autosomal

dominant inheritance and a 1/10,000 population frequency of

idiopathic interstitial lung disease. We determined allele size of

microsatellites D5S1981 (Forward-cctgtaccaatccatgc, Reverse-

gagccatgtgagtgtcc) and D5S2005 (Forward-cctcaggtgggttattgac,

Reverse-cccagggctttacgagt) using fluorescent labeled forward

primers obtained from Qiagen (Valencia, CA). PCR products

were analyzed on the ABI Genome Analyzer instrument (Applied

Biosystems). Pherograms were interpreted manually to determine

allele size. We amplified and genotyped mini-satellites/variable

number of tandem repeats within hTERT: 2–2 (intron 2) and 6–1

(intron 6) as published [45]. We determined the number of tandem

repeats using gel electrophoresis. Telomere length was measured

by flow-FISH on peripheral blood mononuclear cells [13].

Telomerase activity assay
TERT protein alignment was generated using CLUSTALW

followed by BoxShade analysis (v.3.21), and we used NP_937983

for the hTERT protein sequence. TERT sequences were obtained

from http://telomerase.asu.edu [46]. To test the activity and

processivity of the telomerase mutants, we expressed each of them

in vitro and quantified function using a direct telomerase activity

assay as previously described [10]. All telomerase variants were

reconstituted using the TNT (transcription and translation) Quick

Coupled rabbit reticulocyte lysate system (Promega) following

manufacturer’s instructions. Briefly, recombinant N-FLAG tagged

hTERT was expressed in 10 mL of TNT lysate with 35S labeled

methionine at 30uC for 60 minutes. To obtain active telomerase, in
vitro transcribed hTR pseudoknot (nt 32–195) and CR4-CR5 (nt

239–328) fragments were each added to a concentration of 8 mM
and incubated at 30uC for 30 minutes. To avoid variations in the

quality of telomerase reconstituted, the wildtype and variant

hTERT proteins were all expressed from the same batch of TNT

lysate and the reconstituted enzymes were assayed immediately

without freezing. To assay the activity and processivity of each

telomerase variant, a 10 ml reaction was carried out using 3 ml of in
vitro reconstituted telomerase in the presence of 1x PE buffer

(50 mM Tris-HCl, pH 8.3, 50 mM KCl, 2 mM DTT, 3 mM

MgCl2, and 1 mM spermidine) and 2 pmol of 59-32P end-labeled

(TTAGGG)3 telomere primer at 30uC for 1 h. Deoxynucleotides

(dATP, dTTP, and dGTP) were also included at concentrations of

either 1 mM or 10 mM, as indicated. Reactions were terminated

by phenol-chloroform extraction followed by ethanol precipitation

before being resolved on a 10% denaturing polyacrylamide gel. To

quantitate the first repeat product, we measured product intensity

at low exposure to clearly visualize the +1, +2, +3, +4 nucleotides

(as shown in Figure 3B), and normalized to the amount of

unpolymerized oligonucleotide loading control after subtracting

background. Telomerase processivity was calculated by measuring

the intensity of each repeat band, normalized to the intensity of the

first repeat, and plotted against the repeat number [9].

Supporting Information

Figure S1 Pulmonary fibrosis families 13 and 143 share a

common haplotype block flanking and within the hTERT locus. A.

Pedigrees of Families 13 and 143 with numbers below indicate

genotype at microsatellite D5S1981, variable number of tandem

repeats (VNTR) 6–1 in intron 6, and 2–2 in intron 2, as well as

microsatellite D5S2005, respectively from top to bottom. The

shared haplotype block is shown in bold and is shared by all

mutation carriers in families 13 and 143. * Refers to a mutation

carrier who shares the common haplotype block except at

D5S1981 where the allele is shorter by a single dinucleotide

repeat; this may be related to polymerase slippage or a

recombination event. The symbols are identified in the key, and

completely filled symbols indicate clinically affected individuals

who carry the double mutant TERT. B. Schema of hTERT locus

indicating the location of the genotyped micro- and mini-satellites

genotyped in this study. The vertical blocks within the hTERT

locus represent the 16 exons within the hTERT gene.

Found at: doi:10.1371/journal.pgen.1001352.s001 (1.51 MB EPS)

Table S1 Clinical Features of Probands and Mutation Carriers

(n = 18).

Found at: doi:10.1371/journal.pgen.1001352.s002 (0.04 MB

DOC)
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