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a  b  s  t  r  a  c  t

Telomerase  is  a reverse  transcriptase  specialized  in the  addition  of  telomeric  DNA  repeats  onto  the
ends  of  chromosomes.  Telomere  extension  offsets  the  loss  of  telomeric  repeats  from  the failure  of  DNA
polymerases  to  fully  replicate  linear  chromosome  ends.  Telomerase  functions  as  a ribonucleoprotein,
requiring  an  integral  telomerase  RNA (TR)  component,  in  addition  to the  catalytic  telomerase  reverse  tran-
scriptase  (TERT).  Extensive  studies  have  identified  numerous  structural  and  functional  features  within  the
TR  and TERT  essential  for activity.  A  number  of accessory  proteins  have  also  been  identified  with  various
is congenita
fibrosis

functions  in  enzyme  biogenesis,  localization,  and  regulation.  Understanding  the  molecular  mechanism
of  telomerase  function  has  significance  for the  development  of therapies  for telomere-mediated  disor-
ders  and  cancer.  Here  we  review  telomerase  structural  and  functional  features,  and the  techniques  for
assessing  telomerase  dysfunction.

© 2011 Elsevier B.V. All rights reserved.
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 telomere-mediated disorders such as dyskeratosis con-
C), aplastic anemia (AA), and idiopathic pulmonary fibrosis
0]. Additionally, the vast majority of cancer cells have
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rase is important for understanding the basis of many
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erase enzymatic properties

erase is unique among RTs by functioning as a ribonu-
in [12–14]. The catalytic core of telomerase is minimally
d of the telomerase reverse transcriptase (TERT, also
s TRT and Est2) and the integral telomerase RNA (TR,
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Fig. 1. A model of the human telomerase reaction cycle. The telomerase reaction is divided between nucleotide addition (left) which is common to all polymerases and
template translocation (right, pale-blue box), a unique property of telomerase. After assembly of the telomerase catalytic core, composed of TERT (grey) and TR (green),
with the DNA primer (blue), six nucleotides (violet) are sequential added in a template-dependent manner (dark-grey arrows). The template is then regenerated though a
multi-step late r
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Fig. 2. TR and TERT motifs and domain organization. Top, the TR is composed of three
functional domains. The template/pseudoknot (pale-green box) and CR4/5 (pale-
violet box) domains bind to TERT and are essential for enzymatic activity. While
the  H/ACA domain (grey box) is dispensable for activity, it is essential for in vivo
biogenesis,  accumulation, and RNP assembly. Additionally there is the RHAU RNA
helicase binding to the G-quadruplex structure (orange) at the 5′ end and the TBE
composed of helix P1b (blue) located upstream of the template. Bottom, the TERT
protein is composed of 4 independently folding domains. The TEN domain (green)
and TRBD (v
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Fig. 3. A model of telomerase RNP biogenesis. Active telomerase localizes to the telomere through a complex pathway. TERT protein expression follows the canonical
eukaryotic transcription, RNA maturation, and nuclear export to the cytoplasm (pale-red) for translation. The TERT protein (grey) is then imported back into the nucleus and
localizes  to the nucleolus (pale-violet) prior to assembly with the TR (black). The TR precursor, synthesized by RNA polymerase II and TMG  capped, is bound by two  copies
of  the protein complex formed by dyskerin (red), NOP10 (violet), NHP2 (green), and GAR1 (yellow) for 3′ end processing and internal modifications. The RHAU RNA helicase
(light-blue) for loc
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irect activity assay for detecting and characterizing tel-
activity relies on the extension of an oligonucleotide,
a telomeric sequence, by the telomerase enzyme in
nce of triphosphate nucleosides, often radiolabeled for
. The pattern of telomerase-elongated products directly
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