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Abstract—Computer scientists and programmers face the dif-
ficultly of improving the scalability of their applications while
using conventional programming techniques only. As a base-line
hypothesis of this paper we assume that an advanced runtime
system can be used to take full advantage of the available parallel
resources of a machine in order to achieve the highest parallelism
possible. In this paper we present the capabilities of HPX — a
distributed runtime system for parallel applications of any scale
— to achieve the best possible scalability through asynchronous
task execution [1].

OP2 is an active library which provides a framework for the
parallel execution for unstructured grid applications on different
multi-core/many-core hardware architectures [2]. OP2 generates
code which uses OpenMP for loop parallelization within an
application code for both single-threaded and multi-threaded
machines. In this work we modify the OP2 code generator to
target HPX instead of OpenMP, i.e. port the parallel simulation
backend of OP2 to utilize HPX. We compare the performance
results of the different parallelization methods using HPX and
OpenMP for loop parallelization within the Airfoil application.
The results of strong scaling and weak scaling tests for the Airfoil
application on one node with up to 32 threads are presented.
Using HPX for parallelization of OP2 gives an improvement in
performance by 5%-21%.

By modifying the OP2 code generator to use HPX’s parallel
algorithms, we observe scaling improvements by about 5% as
compared to OpenMP. To fully exploit the potential of HPX, we
adapted the OP2 API to expose a future and dataflow based
programming model and applied this technique for parallelizing
the same Airfoil application. We show that the data flow oriented
programming model, which automatically creates an execution
tree representing the algorithmic data dependencies of our
application, improves the overall scaling results by about 21%
compared to OpenMP. Our results show the advantage of using
the asynchronous programming model implemented by HPX.

Index Terms—High Performance Computing, HPX, OP2,
Asynchronous Task Execution.

I. INTRODUCTION

Today, achieving adequate parallel application scalability is
one of the major challenges for everyday programmers, espe-
cially when using conventional programming techniques [3],
[4]. To achieve efficient utilization of compute resources, it is
needed to take full advantage of all available parallel resources.
Using a programming model can help to overcome this
challenge and enables significant improvements of levels of
parallelism by intrinsically avoiding resource starvation, hiding
latencies, and as a result reducing overheads. Parallelization

is often implemented by decomposing the domain space into
several sub-domains and assigning each of them to a group of
the processors. However, the overhead time imposed due to the
required communication between processors may inhibit the
application’s scalability. As a results, in addition to space, time
should be considered as a factor helping to get a maximum
possible parallelism level [5], [6]. So the parallelization should
be done in both space and time domains.

HPX [7] helps overcoming these difficulties by exposing a
programming model which intrinsically reduces the SLOW
factors [8]. The SLOW factors are the main reasons for
reduced parallel scalability due to a) poor utilization of re-
sources caused by lack of available work (Starvation); b) the
time-distance delay of accessing remote resources (Latencies);
c) the cost for managing parallel actions (Overhead); d)
the cost imposed by oversubscription of shared resources
(Waiting) [5].

HPX is a parallel C++ runtime system for applications of
any scale that aims to use the full parallelization capabilities of
today’s and tomorrow’s hardware available to an application.
HPX implements the concepts of the ParalleX execution model
[9]-[11] on conventional systems including Windows, Macin-
tosh, Linux clusters, XeonPhi, Bluegene/Q, and Android. HPX
enables asynchronous task execution, which results in enabling
parallelization in both space and time domains. As a result, it
removes global barrier synchronization and improves parallel
application performance. In this paper, HPX is used to improve
the performance of the applications’ codes generated by OP2
that result in increasing the parallel application scalability and
performance.

OP2 provides a framework for the parallel execution of
unstructured grid applications [2]. It’s design and development
is presented in [12], [13]. With OP2, applications can be tar-
geted to execute on different multi-core/many-core hardware
[12], [14]. To achieve further performance gains with OP2 on
modern multi-core/many-core hardware, some optimizations
should be applied to improve performance for different parallel
applications. This can be obtained by avoiding the SLOW
factors as much as possible. Originally, OpenMP is used for
loop parallelization in OP2 on a single node and on distributed
nodes, where it is used in conjunction with MPI. However, the
#pragma omp parallel for used for loop paralleliza-
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Figure 1: A mesh example that illustrates the code used to
describe OP2’s API in Figure 2

tion in OP2 causes an implicit global barrier at the end of loop,
which prevents achieving an adequate application speedup.
The use of HPX’s parallelization methods instead of OpenMP
helps eliminating these SLOW factors and enables extracting
more parallelism for the parallel applications.

This paper describes the results from porting the parallel
simulation backend of OP2 to utilize HPX. We study scalabil-
ity and performance of Airfoil application when targeting the
OP2 code generator for OpenMP and HPX. We compare the
achievable scalability and performance of the HPX backend
when using the original (unchanged) API of OP2 and an
adapted version of the OP2 API. The analysis is performed
using a standard unstructured mesh finite volume computa-
tional fluid dynamics (CFD) application, called Airfoil, which
uses OP2’s API and it is written in C++.

The remainder of this paper is structured as following:
Section II briefly introduces OP2 and an overview of HPX,
highlighting the key features distinguishing it from conven-
tional techniques; Section III presents the Airfoil application
used in this research and gives details of using HPX for loop
parallelization as by the developed OP2 code generator. Then,
the experimental test setup, the performance and strong scaling
results are presented in Section IV. Conclusions are provided
in Section V.

II. BACKGROUND INFORMATION
A. OP2

This paper presents the results of an optimization study of
the OP2 “active” library [2]. OP2 utilizes source-to-source
translation to generate code for different target configurations
[12], [14], [15], which include serial applications, multi-
threaded applications using OpenMP, CUDA applications,
or heterogeneous applications based on MPI, OpenMP, and
CUDA [15].

The OP2 API has been developed for unstructured grids,
which their algorithms require four different operations: sets,
data on sets, mapping connectivity between sets, and compu-
tation on the sets [12], [16]. Sets can be nodes, edges, faces, or

op_par_loop_save_soln("save_soln", cells,
op_arg_dat (p_gq,-1,0P_1ID, 4, "double",OP_READ),
op_arg_dat (p_gold,-1,0P_1ID, 4, "double",OP_WRITE)) ;

op_par_loop_adt_calc("adt_calc",cells,
op_arg_dat (p_x,0,pcell, 2, "double", OP_READ),
op_arg_dat (p_x, 1,pcell, 2, "double", OP_READ),
op_arg_dat (p_x, 2,pcell,2,"double", OP_READ),
op_arg_dat (p_x, 3,pcell, 2, "double", OP_READ),
op_arg_dat (p_gq,-1,0P_1ID, 4, "double",OP_READ),
op_arg_dat (p_adt,-1,0P_ID, 1, "double",OP_WRITE));

Figure 2: The OP2 API functions op_par_loop_save_soln
and op_par_loop_adt_calc represent loops from the Airfoil
application. op_par_loop_save_soln creates a direct loop and
op_par_loop_adt_calc creates an indirect loop.

other elements representing the required computational space.
Figure 1 shows a mesh example that includes nodes and faces
as sets. The data associated with each set is shown below each
set that contains the values and the parameters. The mesh is
represented by the connections between sets.

There are two different kinds of loops defined in OP2:
indirect and direct loops. A loop is an indirect loop if
data is accessed through a mapping. Otherwise it is a direct
loop. In this research, we study the Airfoil application, which
is a standard unstructured mesh finite volume computational
fluid dynamics (CFD) code, presented in [17], which has
both direct and indirect loops. We demonstrate OP2 loops
in Figure 2, which includes op_par_loop_save_soln
and op_par_loop_adt_calc loops from Airfoil:
op_par_loop_save_soln is a direct loop that applies
save_soln on cells based on the p_g and p_gold
arguments, and op_par_loop_adt_calc is an indirect
loop that applies op_par_loop_adt_calc on cells based
on p_x, p_qg, and p_adt arguments passed to the loop. The
function op_arg_dat creates an OP2 argument based on
the information passed to it. These arguments passed to loops
in OP2 explicitly indicate that how each of the underlying
data can be accessed inside a loop: OP_READ (read only),
OP_WRITE (write) or OP_INC (increment to avoid race
conditions due to indirect data access) [2]. For example, in
op_arg_dat (p_x,0,pcell, 2, "double", OP_READ)
from Figure 2, OP_READ marks the data as read_only. This
argument is created from its inputs, where p_x is the data,
0 indicates that the data is accessed indirectly, pcell is
the mapping between the data, 2 is the data dimension, and
double is the data type.

OP2 is designed to achieve near-optimal scaling on multi-
core processors. In [14], [15], it was demonstrated that OP2 is
able to produce a near-optimal performance in parallel loops
for different frameworks without application programmer in-
tervention. However, starvation, latencies, and communication
overheads in parallelization using conventional techniques
usually hinders scalability. Most of the conventional paral-
lelization methods are based on the fork-join model, where
the computational process is stopped if the results from the



previous step are not completed yet. As a result, there is always
a (implicit) global barrier after each step.

#pragma omp parallel for isused in the code gen-
erated by OP2 for both single-threaded and multi-threaded
applications. #pragma omp parallel for has an im-
plicit global barrier that avoids extracting optimal parallelism
from a parallel application. In this research, HPX is used for
loop parallelization instead of using OpenMP. HPX allows
automatic creation of an execution tree for an application,
which represents a dependency graph. This enables HPX to
asynchronously execute tasks as soon as all data dependencies
for this task have been satisfied. The performance of HPX is
explained in more details in Section II-B.

Both direct and indirect loops with the Airfoil application
are parallelized with OpenMP. An optimization of Airfoil
using HPX for parallelizing loops, directly generated by OP2
is discussed in more detail in Section III. The source-to-source
code translator for OP2 is written in Matlab and Python [14].
In this research, a Python source-to-source code translator is
modified to automatically generate parallel loops with HPX
instead of OpenMP.

B. HPX

HPX is a parallel C++ runtime system that facilitates dis-
tributed operations and enables fine-grained task parallelism.
Using fine-grained tasks results in better load balancing, lower
communication overheads, and better system utilization. HPX
has been developed to overcome conventional limitations such
as global barriers and poor latency hiding [8] by embracing
a new way of coordinating parallel execution. It has been de-
veloped for different architectures, such as large Non Uniform
Memory Access (NUMA) machines, SMP nodes, and systems
using Xeon Phi accelerators. Also, HPX uses the light-weight
threads, which have extremely short context switching times
that results in reducing latencies even for very short operations.

In HPX, asynchronous function execution is the fundamen-
tal bases of asynchronous parallelism. HPX’s design focuses
on parallelism rather than concurrency, which is defined to
have several simultaneously concurrent computations touching
the same data, while on the other hand, by parallelism we
refer to simultaneous execution of independent tasks [18]. This
makes HPX to expose both, time and spatial parallelization [7]
due to using future, which enables asynchronous execution
of tasks.

A future is a computational result that is initially unknown
but becomes available at a later time [19]. The goal of using
future is to let every computation proceed as far as possible.
Using future enables to continue with the execution without
waiting for the results of the previous step to be completed,
which eliminates the global barrier at the end of the execution
of the parallel loop. future based parallelization provides
rich semantics for exploiting higher level parallelism available
within each application that may significantly improve scaling.
Figure 3 shows the scheme of future performance with 2
localities, where a locality is a collection of processing units
(PUs) that have access to the same main memory. It illustrates

Locality 1 /

future get() '
suspend thread 1 )

" / Locality 2

execute thread 2

reactivate thread 1
|

Figure 3: The principle of operation of future in HPX. Thread 1 is
suspended only if the results from locality 2 are not readily available.
Thread 1 access the future value by performing a future.get(). If
results are available Tread 1 continues to complete execution.

that other threads do not stop their progress even if the thread,
which waits for the value to compute, is suspended. Threads
access the future value by performing a future.get(). When
the result becomes available, the future resumes all HPX
suspended threads waiting for the value. It can be seen that
this process eliminates the global barrier synchronizations at
the end of application parallelization while only those threads
that depend on the future value are suspended. With this
scheme, HPX allows asynchronous execution of threads.

III. AIRFOIL APPLICATION WITH HPX

For our evaluation we choose the Airfoil application
[17], which wuses an unstructured grid and consists
of five parallel loops: op_par loop_save_soln,
op_par_loop_adt_calc, op_par_loop_res_calc,
op_par_loop_bres_calc, op_par_loop_update,
of  which the op_par_loop_save_soln and
op_par_loop_update loops are direct loops and the
others are indirect loops. Figure 4 shows the sequential loops
used in the Airfoil application within Airfoil.cpp. Saving
old data values, applying the computation on each data value
and updating them are implemented within these five loops.
Each loop iterates over a specified data set and performs the
operations with the user’s kernels defined in a header file for
each loop: save_soln.h, adt_calc.h, res_calc.h,
bres_calc.h and update.h. Additionally, the OP2 API
provides a parallel loop function allowing the computation
over sets through op_par_loop for each loop in Figure 4.

Figure 5 shows the loop of the
op_par_loop_adt_calc function from Figure 4 parsed
with OP2, which illustrates how each cell updates its data
value by accessing the blockId, offset_b, and nelem



op_par_loop_save_soln("save_soln",
op_arg_dat (data_al0, ...), ...,
op_arg_dat (data_an, ...);

cells,

op_par_loop_adt_calc("adt_calc",cells,
op_arg_dat (data_b0, ...), ...,
op_arg_dat (data_bn, ...);

op_par_loop_res_calc("res_calc",edges,
op_arg_dat (data_c0, ...), ...,
op_arg_dat (data_cn, ...);

op_par_loop_bres_calc("bres_calc",bedges,
op_arg_dat (data_d0, ...), ...,
op_arg_dat (data_dn, ...);

op_par_loop_update ("update",cells,
op_arg_dat (data_e0, ...), ...,
op_arg_dat (data_en, ...);

Figure 4: Five loops are used in Airfoil.cpp for saving old
data values, applying the computation, and updating each data value.
save_soln and update loops are direct loops and the others are
indirect one.

data elements. The value of blockId is defined based on the
value of blockIdx captured from the OP2 APIL. offset_bDb
and nelem are computed based on the value of blockId.
The arguments are passed to the adt_calc user kernel
subroutine, which does the computation for each iteration
in the inner loop from offset_b to offset_b+nelem
for each iteration of the outer loop from 0 to nblocks.
More details about the Airfoil application and its computation
process can be found in [17].

#pragma omp parallel for

for (int blockIdx=0; blockIdx<nblocks; blockIdx++) {

int blockId = //based on the blockIdx in OP2 API
int nelem = //based on the blockId

int offset_b = //based on the blockId

for ( int n=offset_b; n<offset_b+nelem; n++ ) {
adt_calc(...);

}

Figure 5: #pragma omp parallel for is used for loop par-
allelization in OP2, for the Airfoil application, on one node and on
distributed nodes using MPL.

As shown in Figure 5, #pragma omp parallel for
is used for each loop passed with op_par_loop in OP2
for parallelizing the loops on one node and on distributed
nodes. However, scalability is limited due to sequential time
as described by Amdahl’s Law caused by an implicit barrier
between the parallel loops in the fork-join model [20]. HPX
parallelization methods are used here instead of OpenMP to
achieve optimal parallelization of the loops generated by OP2.

In this research we use two different HPX parallelization

methods: A) By modifying the OP2 code generator while using
the original OP2 API, and B) By changing the OP2 API to
use the HPX future and data flow methods. The comparison
results of these two methods to OpenMP can be found in
Section IV.

A. HPX Parallel Algorithms (modifying code generator)

In this Section, we study two different HPX parallelization
methods on the Airfoil application by modifying the OP2 code
generator to use HPX parallel algorithms while using the orig-
inal OP2 APIL In Section III-Al, parallel::for_each
with par as an execution policy is used for parallelizing
both direct and indirect loops. In Section III-A2, async
and for_each with par is used for parallelizing the
direct loops, and for the indirect loops, for_each with
par (task) as an execution policy is implemented .

1) for_each: In this method, we implement one of
the execution policies of HPX to make the loops shown
in Figure 4 execute in parallel. The list of the execution
policies can be found in [21] and [l]. par as an exe-
cution policy is used while implementing for_each. We
modified the OP2 source-to-source translator with Python to
automatically produce for_each instead of using #pragma
omp parallel for for the loop parallelization. In this
method Airfoil.cpp (Figure 4) and the OP2 API remain
unchanged.

This example exposes the same disadvantage as the
OpenMP implementation, which is the representation of fork-
join parallelism that introduces the global barriers at the end of
the loop. By using for_each, HPX is able to automatically
control the grain size during execution. Grain size is the
amount of time a task takes to execute. As discussed in
Section II-B, HPX enables fine-grained task parallelism and
controls the grain size to distribute tasks to all available
threads. Grain size, chunk_size within HPX, is determined
by the auto-partitioner algorithm, that estimates the chunk size
by sequentially executing 1% of the loop. So for_each
helps creating sufficient parallelism by determining the num-
ber of iterations to run on each HPX thread that reduces
communication overheads [6]. Figure 6 shows the loop of
op_par_loop_adt_calc function parsed with OP2.

However, it should be considered that if the computational
time of a loop is too large, using an auto-partitioner algorithm
within HPX will not be efficient. Since for the large loops, 1%
execution time of a loop used for determining a grain size will
affect the application’s scalability, HPX provides another way
to avoid degrading the scalability while using for_each.
Grain size can be specified as a static chunk size with
for_each (par.with (scs)) before executing a loop;
scs is defined by static_chunk_size scs(SIZE).
Figure 7 shows the loop of op_par_loop_adt_calc
function with static chunk_size implemented with
static_chunk_size scs(SIZE). The experimental re-
sult for the Airfoil application is discussed in Section IV.

2) async and for._each: Here, we implement two
different parallelization methods for the loops based on their



auto r = boost::irange (0, nblocks);
hpx::parallel::for_each (par,
r.begin(), r.end(), [&] (std::size_t blockIdx) {

int blockId
int nelem =
int offset_b =

= //based on the blockIdx in OP2 API
//based on the blockId
//based on the blockId
for ( int n=offset_b;

n<offset_b+nelem; n++ ) {

édt_calc(...);
}
1)

return async (hpx::launch::async, [adt_calc, set,arg0
;...,argnl] () {

auto r=boost::irange (0, nthreads);
hpx::parallel::for_each(par, r.begin(),
, [&] (std::size_t thr) {

r.end()

int start =//based on the number of threads;
int finish =//based on the number of threads;

for ( int n=start;
save_soln(...);
}

b

n<finish; n++ ){

Figure 6: Implementing for_each for loop parallelization in OP2.
HPX is able to control the grain size in this method. As a result, it
helps in reducing processor starvation caused by the fork-join barrier
at the end of the execution of the parallel loop.

static_chunk_size scs(SIZE);

auto r=boost::irange (0, nblocks);

hpx::parallel::for_each(par.with(scs),r.begin(),r.
end (), [&] (std::size_t blockIdx) {

int blockId =//based on the blockIdx in OP2 API
int nelem =//based on the blockId
int offset_b =//based on the blockId
for ( int n=offset_b;

n<offset_b+nelem; n++ ) {

adt_calc(...);
}
1)

Figure 7: Implementing for_each for loop parallelization in
OP2. HPX is able to avoid degrading the scalability for small
loops by defining a static grain size with dynamic_chunk_size
scs (SIZE) before the parallel loop execution.

types. For the direct loops, async and for_each with
par as an execution policy is used. For the indirect loops,
for_each with par (task) as an execution policy is
implemented. The calls to async and par (task) provide
a new future instance, which represents the result of the
function execution, making the invocation of the loop asyn-
chronous. Asynchronous task execution means that a new
HPX-thread will be scheduled. As a result it eliminates the
global barrier synchronization when using for_each in
Section III-Al.

In Figure 8, async and for_each with par is used
for op_par_loop_save_soln, which is a direct loop
and returns a future representing the result of a function.
In Figure 9, for_each with par (task) is used for
op_par_loop_adt_calc, which is an indirect loop and
it also returns a future representing the result of a function.
The futures returned from all direct and indirect loops
allow asynchronous execution of the loops.

Figure 8: Implementing async and for_each with par for a
direct loop parallelization in OP2. The returned future representing
the result of a function.

auto r=boost::irange (0, nblocks);

hpx::future<void> new_data;

new_data=hpx::parallel::for_each (par (task),
(), r.end(), [&] (std::size_t blockIdx) {

r.begin

int blockId =//based on the blockIdx in OP2 API

int nelem =//based on the blockId

int offset_b =//based on the blockId

for ( int n=offset_b; n<offset_b+nelem; n++ ) {
adt_calc(...);

}
b

Figure 9: Implementing for_each with par (task) for an
indirect loop parallelization in OP2. The returned future repre-
senting the result of a function.

In this method OP2 API is not changed but Airfoil.cpp
is changed as shown Figure 10. Each kernel function within
op_par_loop returns a future stored in a new_data.
Each future depends on a future in a previous step. So,
new_data.get () is used to get all futures ready before
the next steps. The placement of new_data.get () depends
on the application and the programmer should put them
manually in correct place by considering the data dependency
between loops. In the next Section, we address this problem.
OP2 source-to-source translator with Python is modified and
it automatically produces async and for_each with par
for each direct loops and for_each with par (task)
for each indirect loops within the Airfoil application. The
experimental results of this Section can be found in Section
IVv.

B. HPX with the modified OP2 API

To fully exploit the potentials of the emerging technology,
we modify the OP2 API to use a future based model. In



new_datal=op_par_loop_save_soln("save_soln",cells,
op_arg_dat (data_al0, ...), ...,
op_arg_dat (data_an, ...);

new_data2=op_par_loop_adt_calc_("adt_calc",cells,
op_arg_dat (data_b0, ...), ...,
op_arg_dat (data_bn, ...);

new_data2.get () ;

new_data3=op_par_loop_res_calc("res_calc",edges,
op_arg_dat (data_c0,...), ...,
op_arg_dat (data_cn, ...);

new_datad4=op_par_loop_bres_calc("bres_calc",bedges,
op_arg_dat (data_d0, ...), ...,
op_arg_dat (data_dn, ...);

new_data3.get () ;
new_data4d.get ();

new_datab=op_par_loop_update ("update", cells,
op_arg_dat (data_e0, ...), ...,
op_arg_dat (data_en, ...);

new_datal.get ();
new_datab.get () ;

Figure 10: Airfoil.cpp is changed while using async and
par (task) for loop parallelization in OP2. new_data is re-
turned from each kernel function after calling op_par_loop and
new_data.get () is used to get futures ready before the next
steps.

Figure 2, op_arg_dat creates an argument that is passed
to a kernel function through op_par_loop. The modified
OP2 API passes the argument as a future created with the
modified op_arg_dat, which uses dataflow. In using
dataflow, if an argument is a future, then the invocation
of a function will be delayed. Non-future arguments are passed
through. Figure 11 shows the schematic of a Dataflow object.
A Dataflow object encapsulates a function F'(iny,ins, ..., iny)
with n inputs from different data resources. As soon as the last
input argument has been received, the function F' is scheduled
for execution [5]. The main advantage of a data-flow based ex-
ecution is minimizing the total synchronization by scheduling
overheads and executing a function asynchronously.

Figure 12 shows the modified op_arg_dat and dat
expressed at the last line of the code invokes a function only
once it gets ready. unwrapped is a helper function in HPX,
which unwraps the futures for a function and passes along the
actual results. All these future arguments are passed to the
kernel functions through op_par_loop.

dataflow with for_each is implemented for a loop
parallelization that makes the invocation of the loop asyn-
chronous. In Figure 13, dataflow returns a future
of arg.dat representing the result of a function and
produces asynchronous execution of loops. Based on the
Dataflow performance shown in Figure 11, the invocation of
op_par_loop_adt_calc in Figure 13 will be delayed
until all of the future arguments become ready. All arguments
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Figure 11: A Dataflow object encapsulates a function
F(iny,ing,...,in,) with n inputs from different data re-
sources. As soon as the last input argument has been received,
the function F' is scheduled for an execution [5].

using hpx::lcos::local::dataflow;
using hpx::util::unwrapped;

return dataflow (unwrapped([&] (op_dat dat) {
//same as op_arg_dat in an original OP2 API
return arg;

}
}),dat);

Figure 12: op_arg_dat is modified to create an argument as a
future, which is passed to a function through op_par_loop.

using hpx::lcos::local::dataflow;
using hpx::util::unwrapped;

return dataflow (unwrapped([&adt_calc,set] (set,
op_arg arg0, ... , op_arg argn2) {

auto r=boost::irange (0, nblocks);
hpx::parallel::for_each(par, r.begin(),
, [&] (std::size_t blockIdx) {

r.end()

int blockId =//based on the blockIdx in OP2
int nelem =//based on the blockId

int offset_b =//based on the blockId

for ( int n=offset_b; n<offset_b+nelem; n++ ) {
adt_calc(...);

}
return argb5.dat;
}),arg0,...,argn2);

Figure 13: Implementing for_each within dataflow for loop
parallelization in OP2 for the Airfoil application. It makes the
invocation of the loop asynchronous and return future, which is
is stored in new_data. dataflow allows automatically creating
the execution graph which represents a dependency tree.



p_adt[t]=
op_arg_datl (p_x[t-1

=op_par_loop_adt_calc("adt_calc",cells,
0,pcell, 2, "double", OP_READ),

] 4
op_arg_datl (p_x[t-1],1,pcell,2,"double", OP_READ),
op_arg_datl (p_x[t-1],2,pcell,2,"double", OP_READ),
op_arg_datl (p_x[t-1],3,pcell,2,"double", OP_READ),
op_arg_datl (p_glt-1],-1,0P_ID, 4, "double",OP_READ),
op_arg_datl (p_adt[t-1],-1,0P_ID,1"double"OP_WRITE))

p_res[t]=
op_arg_datl (p_x[t-1
op_arg_datl (p_ [t 1
op_arg_datl (p_glt
op_arg_datl (p_glt- 1
op_arg_datl (p_ adt[t
op_arg_datl (p_adt [t
( [t-
( [t-

=op_par_loop_res_calc("res_calc",edges,

,0,pedge, 2, "double",OP_READ),
,1 pedge, 2, "double", OP_READ),
,0,pecell, 4, "double", OP_READ),
,1,pecell, 4,"double",OP_READ),
,0,pecell, 1, "double", OP_READ),
,1,pecell, 1, "double",OP_READ),
11,0,pecell, 4, "double", OP_INC)
11,1,pecell, 4"double"OP_INC)) ;

op_arg_datl (p_res
op_arg_datl (p_res

Figure 14: Airfoil.cpp is changed while using dataflow for
loop parallelization in OP2. data[t] is returned from each kernel
function after calling op_par_loop using data[t-1].

passed to each kernel functions are future except the name of
a function and op_set passed to a loop. for_each (par)
is used here for a loop parallelization within each kernels. It
should be noted that the function represented in this Section
is the same as a function in Section III-A1 but asynchronous.
The futures returned represent the results as a dependency
tree, which represents the execution graph that is automatically
created. As aresult, a modified OP2 API and dataflow gives
the ability of asynchronous task execution.

In this method Airfoil.cpp is changed. Figure
14 shows only op_par_loop_adt_calc and
op_par_loop_res_calc from Airfoil.cpp. Each
kernel function returns an output argument as a future
stored in data[t], where ¢ is a time step, and this future
depends on the futures from a previous step, which is
datal[t-1]. We can see that the problem of manually
putting new_data.get () addressed in Section III-A2
is solved here. Moreover, dataflow provides a way of
interleaving execution of indirect loops and direct loops
together. Interleaving execution of direct loops can be
done during compile-time, however it is almost difficult to
interleave indirect loops during compile-time. Using future
based techniques in HPX such as dataflow enables having
indirect loop interleaving during a run-time.

OP2 source-to-source translator with Python is modified
here and dataflow with for_each is automatically pro-
duced for each loop within the Airfoil application instead of
#pragma omp parallel for. The experimental result
is presented in detail in Section IV.

IV. EXPERIMENTAL RESULTS

The experiments for this research are executed on a the test
machine that has two Intel Xeon E5-2630 processors, each
with 8 cores clocked at 2.4GHZ and 65GB. Hyper-threading
is enabled. The OS used by the shared memory system is 32

bit Linux Mint 17.2. OpenMP linking is done through version
5.1.0 GNU compiler. The HPX version 0.9.11 [1] is used here.

Fig.15 shows the execution time of the Airfoil applica-
tion using #pragma omp parallel for, for_each,
async and dataflow. It is illustrated that HPX and
OpenMP has by an average the same performance on 1 thread.
We are however able to improve a parallel performance in
using async and dataflow for more number of threads.

To evaluate the HPX performance for loop paralleliza-
tion generated with OP2, we perform strong scaling and
weak scaling experiments. For the speedup analysis, we
use strong scaling, for which the problem size is kept
the same as the number of cores are increased. Figure 16
shows the strong scaling data for the following three loop
parallelization methods: #pragma omp parallel for
and for_each (par) with automatically determination of
chunk_size for all loops and with static chunk_size for
the large loops within the Airfoil application as explained in
Section III-Al. Figure 16 illustrates that for_each (par)
with the static chunk_s1ize for the large loops has better per-
formance than automatically determining chunk_size for
all loops, since for the large loops, automatically determining
their grain size will affect the application‘s scalability. Also,
it can be sen that OpenMP still performs better than HPX in
this example.

Figure 17 shows strong scaling comparison results
for #pragma omp parallel for and async with
for_each (par (task)) from Section III-A2. The perfor-
mance is better for async with for_each (par (task)),
which is the result of the asynchronous execution of loops
through the use of futures.

Figure 18 shows the strong scaling comparison re-
sults for #pragma omp parallel for and dataflow.
for_each (par) is used for the loop parallelization
dataflow as discussed in Section III-B. Figure 18 illus-
trates better performance for dataflow which is due to
the asynchronous task execution through the use of futures.
dataflow automatically generated an (implicit) execution
tree, which represents a dependency graph and allows execu-
tion of functions asynchronously. Asynchronous task execution
removes unnecessary global barriers and as a result improves
scalability for parallel applications. The goal of using future
is to enable the computation to continue as far as possible and
to eliminate global barriers when using for_each (par)
and #pragma omp parallel for. As a result, using
futures allows the continuation of the current computations
without waiting for the computations of the previous step,
if the results are not needed. Figures 17 and 18 show that
removing the global barrier synchronizations improves the
parallelization performance.

By considering the above results, we can see the improve-
ment in the performance over the OP2 (initial) version. For 32
threads in Figure 17, async with for_each (par (task))
improves the scalability by about 5% and in Figure 18,
dataflow improves the scalability by about 21% compared
to #pragma omp parallel for. These results show
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Figure 15: Comparison results of execution time between #pragma
omp parallel for, for_each, async and dataflow used
for the Airfoil application.
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Figure 16: Comparison results of strong scaling between #pragma
omp parallel for and for_each (par) with automatically
determined and static chunk_size used for the Airfoil application
with up to 32 threads. HPX allows controlling a grain size while using
for_each to improve scalability. It shows a better performance
for for_each with the static chunk_size compared to the auto
chunk_size for small loops. Hyperthreading in enabled after 16
threads.
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Figure 17: Comparison results of strong
#pragma omp parallel for and async with
for_each (par (task)) wused for the Airfoil application
with up to 32 threads. It shows a better performance for async due
to the asynchronous task execution. Hyperthreading in enabled after
16 threads.
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Figure 18: Comparison results of strong scaling between
dataflow and #pragma omp parallel for used for the
Airfoil application with up to 32 threads. It illustrates a better
performance for dataflow for the larger number of threads, which
is due to the asynchronous task execution. dataflow automatically
generated an execution tree, which represents a dependency graph
and allows asynchronous execution of functions. Hyperthreading in
enabled after 16 threads.
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Figure 19: Comparison results of weak scaling between #pragma
omp parallel for, for_each, async and dataflow used
for the Airfoil application. It illustrates a better performance for
dataflow, which shows the perfect overlap of computation with
communication enabled by HPX. Hyperthreading in enabled after 16
threads.

good scalability achieved by HPX and indicates that it has the
potential to continue to scale on a larger number of threads.
To study the effects of communication latencies, we perform
weak scaling experiments, where the problem size is increased
in proportion to the increase of the number of cores. Figure
19 shows weak scaling in terms of efficiency relative to
the one core case using #pragma omp parallel for,
for_each (par), async with for_each (par (task))
and dataflow for a loop parallelization. dataflow with
the modified OP2 API has better parallel performance, illus-
trating the perfect overlap of communication with computa-
tion, enabled by HPX. Also, it can be seen when the problem
size is large enough, there will be enough work for all threads,
hiding the communication latencies behind useful work. So
for the larger problem size, more parallelism can be extracted
from the application which results in better parallel efficiency.

V. CONCLUSION

The work presented in this paper shows how the HPX
runtime system can be used to implement C++ application
frameworks. We changed the OP2 python source-to-source
translator to automatically use HPX for task parallelization
generated by OP2. The Airfoil simulation written in OP2 is
used to compare the HPX performance with OpenMP that
is used in OP2 parallel loops by default. Airfoil had the
same performance using HPX and OpenMP running on 1
thread of the various test application cases, but we were able
to obtain 5% scalability improvement in using async and
21% scalability improvement in using dataflow for loop
parallelization compared with OpenMP running on 32 threads.

HPX is able to control a grain size at runtime by using
for_each and as a result the resource starvation is reduced
as well. However using par as an execution policy introduces
the global barriers at the end of the loop same as OpenMP,
which inhibits having a desired scalability. It was shown that
the global barrier synchronization was removed by a future
based model used in for_each (par (task)), async
and dataflow, which results in significantly improving
a parallelism level. future allows the computation within
a loop to be processed as far as possible. Also, for using
dataflow, OP2 API is modified to take full advantage of
all available parallel resources through HPX. It was shown
that dataflow implemented in the modified OP2 API gives
a capability of automatically interleaving consecutive direct
and indirect loops together during a runtime. As a result, it
decreases the effects of SLOW factors and enables seamless
overlap of communication with communication, which helps
in extracting the desired parallelism level from an application.
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