A Massively Parallel Distributed N-Body
Application Implemented with HPX

Zahra Khatami'®, Hartmut Kaiser!3, Patricia Grubel®3, Adrian Serio® and J. Ramanujam

1

!Center for Computation and Technology, Louisiana State University
2New Mexico State University, Las Cruces, NM
3The STE||AR Group, http://stellar-group.org

Abstract—One of the major challenges in parallelization is the
difficulty of improving application scalability with conventional
techniques. HPX provides efficient scalable parallelism by sig-
nificantly reducing node starvation and effective latencies while
controlling the overheads. In this paper, we present a new highly
scalable parallel distributed N-Body application using a future-
based algorithm, which is implemented with HPX. The main
difference between this algorithm and prior art is that a future-
based request buffer is used between different nodes and along
each spatial direction to send/receive data to/from the remote
nodes, which helps removing synchronization barriers. HPX
provides an asynchronous programming model which results
in improving the parallel performance. The results of using
HPX for parallelizing Octree construction on one node and the
force computation on the distributed nodes show the scalability
improvement on an average by about 45% compared to an
equivalent OpenMP implementation and 28% compared to a
hybrid implementation (MPI+OpenMP) [1] respectively for one
billion particles running on up to 128 nodes with 20 cores per
each.

Index Terms—HPX, High Performance Computing, Parallel
Runtime Systems, N-Body Application, Asynchronous Task Ex-
ecution.

I. INTRODUCTION

The N-Body problem is known to be communication inten-
sive, significantly affecting the execution time, due to message
latencies and overheads [2], [3]. Updating the information
for each of the particles requires accessing to the informa-
tion about all other particles. Various algorithms have been
proposed to improve the parallel scalability of an N-Body
application. The brute-force N-Body algorithm for computing
new positions of all N particles has O(/N?) time complexity.
The Barnes-Hut and Fast Multipole Method (FMM) are well-
known algorithms with O(NlogN) and O(log(1/e)N) time
complexity respectively [4], [5]. These techniques reduce the
number of the computations for each of the particles, resulting
in an increase of the number of the particles that can be
processed in the simulation [1]. In this research the Barnes-Hut
algorithm is used as a basis for studying an N-Body problem.

The typical approach for parallelization is to decompose
the domain space into several sub-domains and to assign each
of those to one of the nodes. OpenMP is usually used for
parallel processing within a node and MPI is usually used for
communication between different nodes. However, local and
global synchronization barriers imposed by the programming
models of OpenMP and MPI impede an optimal parallelization

for N-Body problems [6]. In each time step with this hybrid
model, the node can continue its progress to the next iteration
only after completing updating the information related to
all of its particles, which makes it very difficult to achieve
optimum scaling. So, full parallelization in both space and
time has to be considered to achieve a maximum possible
level parallelism [4]. The future concepts as implemented in
HPX is one possible way of enabling full parallelization in
time and space. HPX allows for the computation to continue
its progress to the next time step instead of waiting for a
node to receive all required information from the remote nodes
and to complete the computations related to its all particles.
In this paper, a future-based request buffer is used between
different nodes that allows to continue the process without
waiting for the previous step to be completed, which results
in removing global barriers and thus improving the parallel
performance. To our knowledge, we present a first attempt of
implementing a distributed N-Body application with HPX and
with using a future-based request buffer for communication
between different nodes.

One of the challenges in updating the particle information
is that the node should know to which of the remote nodes
the information about a particle should be sent. For this
purpose, data distribution across the nodes is designed based
on assigning a unique id provided by HPX for each cube in
an Octree and for each node. This algorithm helps the node
to recognize all cubes ids in the remote nodes and confirms a
destination of the particle. Also, it is shown that the algorithm
minimizes idle nodes and maintains high utilization.

In this paper we show algorithmic and implementation
improvements using HPX to hide communication latencies
and to achieve the desired scalability for an N-body code
by combining task-based parallelism, grain size control, and
prevalently asynchronous execution. We observe similar per-
formance running on one node using both HPX and hybrid
model for the force computation and the Octree construction.
We are however able to obtain a scalability improvement in
using HPX for more number of threads and nodes.

The remainder of this paper is structured as follows: in
Section II, some related research and methods for paralleliza-
tion are explained as well as introducing HPX with the key
feature that separate it from the conventional techniques and
parallel programming models; Section III gives an overview
of an N-Body and its asynchronous parallelization with HPX;

Joint = Global Barrier

‘} et
Master Thread
3 3

Parallel Threads Parallel Threads

Figure 1: Fork-join model. The master thread creates a group
of parallel tasks. Only when all threads complete their tasks the
computation will continue with sequential tasks on the master thread,
causing an implicit global barrier at each join-point.

Section IV presents the experimental tests and the scaling
speedup of the results. Then, we show the significant scal-
ability improvement in HPX comparing to MPI and OpenMP.
The conclusions can be found in Section V.

II. RELATED WORK

Most of the parallelization methods for an N-Body are
based on the fork-join model [4]-[9], which is demonstrated
in Fig.1. In this model, the master thread creates a group
of the parallel tasks in each time step and only when all
the threads complete their tasks, the computation process can
continue to the next time step, causing an implicit global
barrier [10], [11]. The scalability and the efficiency of the
parallel N-Body applications are constrained by conventional
parallel programming when the barrier times dominate.

Distributed N-Body applications are usually parallelized
with hybrid methods, which use OpenMP for parallel pro-
cessing within a node and MPI for communication between
different nodes. Local and global synchronization barriers,
communication overhead and load balancing are the major
challenges in these programs [6], [9], [12]. Communication
between different nodes in MPI often creates large overheads
that degrades the parallel performance [12]. In blocking com-
munication applied using “MPI_ Send()” and “MPI_ Recv()”,
each node must complete its current process before it can
continue to the next step. On the other hand, in non-blocking
communication applied using “MPI_ Isend()” and “MPI_
Irecv()”, communications are not blocked even if the current
process is not yet completed, which allows the other works to
proceed. However, “MPI_ Wait()” or “MPI_ Probe()” should
be used in this method to confirm whether communication
is completed, which avoids achieving an optimum scaling.
Another problem in using MPI within an N-Body is related
to granularity, which is defined as the amount of computation
per each execution block in a task. Fine-grained tasks have
small quantum of work and help in achieving a better load
balancing [7], [13], while on the other hand, coarse-grained
tasks have large amount of computations. In MPI, the coarse-
grained tasks are often chose to obtain optimal efficiency [12],
which avoids having a better load balancing [14].

Integrating OpenMP into MPI is expected to increase the
parallel performance, however the overheads due to the loop
scheduling and synchronization in OpenMP [15] in addition

Figure 2: The Octree data structure used in the described N-Body
application.

to the mentioned difficulties usually avoids having the desired
speedup [6], [16]. Various optimization techniques have been
proposed to improve hybrid programs performance [11], [16]—
[18]. In [1], sorting methods are used to obtain optimal paral-
lelization in an N-Body. Other works such as [9] implement
space filling curves, which achieve better load balancing.

In this paper, HPX is used for both communication between
different nodes and parallel processing within each node to
develop a new parallel distributed N-Body application that
meets these challenges. HPX is a parallel C++ runtime system
that facilitates distributed operations and enables fine-grained
task parallelism, which results in better load balancing and
lower communication overheads. The future construct is used
in HPX and the goal is to let every computation proceed as far
as possible. Therefore, HPX allows the system to start working
on the next time step instead of waiting for all computations
to be completed, which mitigates global barriers and improves
parallel performance.

III. STUDIED MODEL

Here, we briefly describe the steps of the N-Body simula-
tion: Octree construction, Interaction list creation, and Force
computation. Then, we explain how N-Body is simulated and
modeled with HPX.

A. N-Body Problem Overview

1) Octree construction: Fig.2 shows the Octree data struc-
ture used in an N-Body [5], [19]. The parameter Nipreshoid
is an upper bound for the number of the particles within
each cube. Each cube is subdivided into eight equally sized
subcubes if it has more than Nip,eshoid particles and in each
step, each particle is reassigned to one of the newly created
subcubes. In this research, the adaptive Octree is created,
which is able to be modified automatically if the positions
of the particles are changed and it grows to more cubes if
the number of the particles exceeds Nipresholq- The center
of mass for each cube is computed with Eq. 1 based on the
positions of the particles in that cube [7],

n
CM = masSiotq ¥ Z Tp, X MASSp, €))
i=1
where C'M is the center of mass of the cube and mass;otqr
is the sum of those particles masses.

Figure 3: The gravitational potential of a distant group of particles
is approximated as the potential of a single particle located in the
center of mass of all particles in the cube.

Parallelizing an Octree construction is possible if it is
constructed from the root to the leaf, layer by layer. Here,
breadth first search is used for traversing the group of the cubes
in parallel. id assignment eases traversing and constructing the
Octree in parallel. A unique id is assigned to each cube by
considering its parent’s ¢d as follows: if p is the parent’s id,
each subcube has p + 8 x ¢ as its ¢d, where ¢ varies from 1
to 9, the sequence of the parent’s subcubes. For example, in
Fig.2, a cube with ¢d as 1, has eight subcubes with id from
9 to 16. With this method, each cube can also confirm the id
of its neighbors by knowing its parent’s id.

2) Interaction list creation: Once the particles are parti-
tioned into an Octree, the interaction list for each particle
is created by a traversal of the Octree by each sub-Octree
piece. The interaction list of the particle holds the list of the
particles that are near objects to that particle and the cubes that
are modeled as faraway objects to that particle. Fig.3 shows
that the remote cube of the particles is treated as a single
particle only if D is greater than r/0; where D is the distance
between the cube and the particle, r is the radius of the cluster
of the particles, and the parameter 6 controls the error of the
approximation. A smaller ratio produces more accurate results
but increases the execution time. On the other hand, a larger
ratio produces less accurate results but decreases the execution
time.

In the Barnes-Hut method, only the particle-to-particle
interactions list are computed [20], while in the FMM method,
interactions between internal cubes are computed [21], [22].
So in the FMM method, it is not required to study the effect of
all particles in one cube on those in another one, when those
two cubes are considered as being well-separated. As a result,
the interaction list of all particles in a cube is approximated as
a single entry in the interaction list and it is reduced to have
one traversal per subcube. In this paper, Barnes-Hut algorithm
is modified based on this technique of the FMM algorithm.
For example in Fig.4, if c is the parent of b; and by and e is
the parent of d, instead of d sending its information directly
to by and by separately, d sends its information to ¢ and c
provides it to them. Therefore, the time complexity of this
modified model is O(log(1/e)N), which is less than that of
Barnes-Hut algorithm, O(NlogN).

3) Force computation: In the three dimensional N-Body
problem, there are N particle masses m;, moving under the
influence of gravitational attraction. Each particle m; has an
initial position r; with initial velocity v;. We use Newton’s
law of gravity, Eq. 2, for computing the gravitational force

Figure 4: The interaction list scheme used by the fast multi-pole
method (FMM).

felt by the mass m; as it interacts with a single mass m;.
The gravitational force exerted on each particle is computed
by considering all particles and subcubes included in the
interaction list of that particle.

G mymy (ri—

Fy = ri)

2

|y =ri [P
The velocity and the new position of each particle are
computed in Eq.3 and Eq.4 respectively,

F;ixt
Ui:Ui+]7X 3)

m;g

0.5 x t2 X Fij

m;

Ty =T+ U xt+ 4)
where ¢ is a time step. All given pairwise interactions are
computed based on the positions of the related particles.

B. Algorithm Implemented with HPX

In each time step, the particle may need to move to another
cube in the remote node based on the force on it. Sending
one large amount of particles is more efficient than sending
several small ones in parallel. Therefore, it is important to
aggregate all particles needed to be sent to a direction ¢ from
all cubes within a locality and send all of them together. Hence,
we create a request message containing particle information
and store this massage in a sending-buffer that is destined
for that remote locality. Each locality has six sending-buffers
associated with its six remote neighbor localities, defined
as hpx::lcos::local::receive-buffer that contain data shared
between two corresponding localities. Sending and receiving-
buffers are the same. For example, in Fig.5a, when locality i
sends information to locality j, it stores this information in
the buffer ij and locality j gets it from this buffer. After
receiving a new particle from the remote localities, each
locality confirms whether this particle belongs to it or not.
If so, this particle traverses the Octree within that locality to
find its new parent. But if the particle does not belong to that
locality, it will be sent to the buffer of the remote localities
in the same direction. We use hpx::component for accessing
data from the remote localities, which is a C++ object that
can be created remotely and all its member functions can be
remotely invoked [23].

The key implementation technique used in an N-Body dis-
tributed model with HPX, which seperates it from the previous

buffer

(a) The scheme of sending a particle to a remote locality. When locality
¢ sends information to locality j, it stores this information in the buffer
ij and locality j receives that information from this buffer. HPX uses
future based algorithms, which allows the locality to continue its tasks
even if it has not received all needed information from its neighbors
or has not yet sent all the information the remote neighbors require,
which avoids a global barrier synchronization.

Z >z |
"
Y

4 y 4 y
y <y z (x.y.z) =y >y
X Y
o
z <z

(b) The destination locality is chosen based on the particle’s new
POSItion 7; new (Ti,new, Yi,new, Zi,new): if Tinew > Ti,01d, the particle
will be sent to the locality in front of, else to the locality to the back;
if Yi mew > Yi,o1a, the particle will be sent to the locality to the right,
else to the locality to the left; if z; new > zi,01d. the particle will be
sent to the locality above, else to the locality below.

Figure 5: Sending/Receiving data to and from remote localities.

works such as [6] and [24], is the scheme of the sending-
receiving requests that uses future. Each locality continues its
tasks even if it does not receive all needed information from its
neighbors or has not yet sent all the information the remote
neighbors require. In each locality, HPX threads access the
result value of the future by performing a future.get() and they
remain suspended until the future value is computed while the
other threads continue their process. In other words, the system
has already started working on the next time step instead
of waiting for a locality to complete all computations of its
particles. This scheme allows asynchronous execution of HPX
threads, also referred to as asynchronous task execution. What
we achieve here is blurring the global barrier and improving
parallel performance.

The communication cost is decreased by sending a particle
to only one locality instead of broadcasting it to all remote
localities. So here, the destination locality is chosen based
on the particle’s new position 7 new (i new, Yinews Zinew):
if @i pew > Tioid, the particle will be sent to the locality in
front, else to the locality in back; if ¥; new > Yi,old, the particle
will be sent to the locality at right, else to the locality at

Locality 0 Locality 1
‘Rcot| level 1
“““ P
2 (3 le](r]ls e]z (s) level 2
(13 [1a] [15)16 level 3
i' level 4

Figure 6: Data distribution using Eq.5 on 2 localities starting from
level 2 of an Octree.

left; if 2; pew > Zi,01d, the particle will be sent to the locality
above, else to the locality down. Fig.5b shows the general
scheme of sending a particle to the remote locality. One of
the challenges in this figure is that the neighbor localities
of the cubes must be known. In other words, if the particle
doesn’t belong to its current locality anymore, the locality
should know in which direction it should send the particle
to another remote localities. Data distribution in this paper is
designed based on the cubes’ ids that results in recognizing all
cubes’ ids in the remote locality. In this algorithm a unique
id is assigned for each locality that can be retrieved using
hpx::find_here(), and id for each remote localities that can be
queried using hpx::find_all_localities(). A locality in HPX has
a unique global identifier (GID) assigned by AGAS and can be
addressed throughout the global address space; hpx::id_type
[23]. The group of the cubes with id.yp.; are located on
the locality with l; = idjocatsty, Which satisfies the following
equation:

(8x1;)

nl

S

idcube =7+

where nl is the total number of the localities and ¢ varies
from 1 to ol/nl. ol is initialized based on the value of nl
and the level of the Octree. For example, Fig.6 illustrates data
distribution on 2 localities, in which the Octree has 4 levels;
level 1, level 2, level 3 and level 4. If ol is 8 and ol/nl is 4, then
the range of 7 is [1,4]. So with Eq.5, the cubes with id as 1, 2,
3 and 4 will be located at the locality with /; = 0 and the cubes
with ¢d as 5, 6, 7 and 8 will be located at the locality with
[; = 1. Also, all of each cube’s descendants will be located
on the same locality as that cube. With this approach, each
locality can ascertain the ¢d of the cubes distributed on the
other localities with Eq.5 and collaborate with its neighbors
whenever it wants to send the particle to them. In addition,
since data distribution is applied by considering the number
of the nodes, each available node will be used efficiently,
which results in significantly reducing nodes starvation. HPX

Table I: Various HPX API functions used in the described
N-Body application

hpx::id_type

hpx::find_here
hpx::find_all_localities
hpx::register_with_basename

A global address (GID)
Retrieving this’ locality’s id
Finding all localities
Registering a unique GID

API functions that are used in this data distribution model are
described in Table.I.

Fig.7 shows an overview of the N-Body simulated model,
which has been discussed in this Section. According to this
algorithm, after an Octree construction, a unique id is as-
signed to each cube in an Octree by considering its parent’s
id. id of each locality and the remote localities are found
with hpx::find_here() and hpx::find_all_localities respectively.
Cubes and all their descendants are assigned to the locality
using Eq.5. After creating a shared request buffer between each
two remote localities, the gravitational force and the position
of each particle are computed with Eq.2 and Eq.4 respectively.
Then, if a particle does not belong to its current locality, the
remote localities will check if the particle has joined them.
If so, the particle information will be propagated to the old
locality as well as to the new locality. Otherwise, they will send
the particle to the corresponded buffer in the same direction.

IV. EXPERIMENTAL RESULTS

Here, we analyze the scalability of our model described in
the previous section in two parts: HPX scaling on one node
and HPX scaling on multiple nodes. The presented results have
been acquired on LSUs’ SuperMIC machine. It has a total of
382 nodes, two 10-core 2.8 GHz Intel Ivy Bridge-EP nodes
with 64 GB of memory and 500 GB of local HDD storage
each. We have used the version of OpenMP provided by the
GNU g++ compilers version 5.1.0. The results are based on
HPX version 0.9.11 [25].

A. HPX Scaling on one Node

In this section, we study the parallel processing performance
within each node by comparing the execution time and the
strong scaling of the parallel Octree construction for 10°
particles with HPX versus OpenMP. “#pragma omp parallel”
and “#pragma omp for schedule(dynamic)” are used for paral-
lelizing the Octree construction with OpenMP, in which a new
chunk is assigned to a thread as soon as it becomes available.
Using “omp for” spawns several worker threads from the main
thread, which are synchronized with at the end of the parallel
block. This (implicit) synchronization effectively imposes a
global barrier onto the computation.

Two different methods are used for parallelizing the
Octree construction with HPX. In the first method,
hpx::parallel::for_each is used to distribute the tasks in a
parallel loop and construct subcubes from them recursively.
By using hpx::parallel::for_each, HPX is able to automat-
ically control the grain size in the runtime by sequentially
executing 1% of the loop, which creates sufficient parallelism

Initialization Steps:

1) Constructing an Octree

2) Assigning id to each cube

3) Finding each locality’s id with hpx::find-here()

4) Finding remote localities’ td with hpx::find-all-localities()
5) Locating each cube and all its descendants with Eq.5

6) Discovering the neighbors of each locality

7) Creating shared buffers between two neighbor localities

For each time step Do:
8) Computing the force on each particle with Eq.2
9) Computing the new position of each particle with Eq.4
10) Storing p; needed to be sent, in the:
left buffer, if z,, > Tparent
right buffer, if ,, < Zparent
above buffer, if y,, > Yparent
down buffer, if y,, < Yparent
back buffer, if z,, > zparent
front buffer, if 2, < Zparent
11) Receiving p; that doesn’t belong to [;, from
left, then storing it in the right buffer
right, then storing it in the left buffer
above, then storing it in the down buffer
down,then storing it in the above buffer
back, then storing it in the front buffer
front, then storing it in the back buffer
12) Sending data in buffer ¢ in the direction i,
i € { left, right, up, down, back, front }
Loop

Figure 7: Algorithm for the parallel distributed N-Body
simulation used for the implementation based on HPX

by determining the number of the iterations to run on each
thread. However, this method exposes the same disadvantage
as OpenMP, which is the representation of the global barriers
at the end of the loop. In the second method, the subtasks are
explicitly spawned inside the time iteration using hpx::async.
The calls to hpx::async provides a new future instance repre-
senting the result of the function execution, which makes the
invocation of the loop asynchronous and eliminates the global
barrier synchronization.

Fig.8 shows the execution time of the Octree construction
using HPX and OpenMP on one node. It is illustrated that HPX
and OpenMP has by an average the same performance on 1
thread. Fig.9 shows the strong scaling, for which the problem
size is kept the same as the number of threads increases. It
is illustrated that both OpenMP and hpx::parallel::for_each
inhibit the desired scalability due to imposing an implicit
barrier. On the other hand, hpx::async has significantly better
speedup, since it allows threads to continue to execute without
barriers. We are able to obtain a speedup of about 19x on one
locality with 20 cores using hpx::async.

8 —=—hpx::async
7 = OpenMP
=6
B =*=-hpx:parallel:for_each
g5
3
od
=
=

L

(V]

o= o
%

.
‘—h-“"—- A
Lo -l -

0 5 10 15 20
Threads

(]
wn

Figure 8: Comparison results of the runtimes for the Octree con-
struction of 10° particles implemented with two HPX parallelization
methods and OpenMP. The HPX and OpenMP application have
comparable sequential execution times, the HPX application however
shows better scalability for larger number of cores.

25
——hpx::async

200 | == QpenMP

it ===-hpx::parallel::for_each =
5 P
(= e
'§ *ideal ’ e
£ ,-,_j_;__"_.‘i s
“10 =
1/
5 o
//
0
0 5 10 15 20 25

Threads

Figure 9: Comparing results of the strong scaling for the Octree
construction of 10° particles implemented with two HPX paral-
lelization methods and OpenMP. hpx::async exposes significantly
better speedup, since it allows threads to continue to execute without
unnecessary barriers.

B. HPX Scaling on multiple Nodes

In this section, we study the parallel performance of the
distributed N-Body application for a different number of
particles - 10°, 10%, 107, 10%, and 10? - on a different number
of the nodes running the HPX and the hybrid model (MPI
with OpenMP) applications. We use a non-uniform particle
distribution as the initial state of the system. Fig.10 shows
the execution times for the force computations for 107 and
108 particles for 10® time steps. Since the communication
latencies between different nodes increase with an increasing

1000
900 100,000,000
200 60 10,000,000
700 |
%" 40 |
E 600 2 |
E 500 20 4
o -|
E 400 10
= ——
300 9) §
0 20 100 150
200
100
0
0 20 40 60 80 100 120 140
Number of Nodes

Figure 10: Execution times of the distributed N-Body application
imglemented with HPX on up to 128 nodes (20 cores per node) for
10" and 10® particles when executing 10% time steps.

number of nodes, it is usually hard to achieve a good scaling
behavior. However, a close to perfect linear speedup of HPX
is shown in Fig.11 for larger number of particles. It can be
seen that the HPX application is able to scale almost perfectly
from 1 node to 128 nodes with 20 cores on each, which has
128x speedup on 128 nodes for 10° particles. Fig.12 shows
the perfect strong scaling (speedup) of approximately 100%
for 10® and 10° particles calculated with Eq. 6,

L S
(N X tN)

where ¢1 is the execution time running on 1 node and ¢ is
the execution time running on N nodes. It is demonstrated that
when the problem size is large enough, there will be enough
work for all nodes, which allows for hiding the communication
latencies behind useful work and which leads to better parallel
efficiency.

In Fig.13, we compare the strong scaling between the appli-
cations written using HPX and the hybrid model (as described
in [1] and [8]), where MPI is used for communication between
different nodes and OpenMP is used for the parallel processing
within each node. We get the comparable performance for both
HPX and hybrid model when running on one node. Although
non-blocking sends and receives are used in the hybrid N-
Body code, the results illustrate a better performance by HPX
for the larger number of the nodes, which is due to using
a future-based request buffer between the remote nodes that
allows the continuation of the process without waiting for the
previous step to be completed.

Weak scaling experiments are performed to study the effects
of the communication latencies, where the problem size is
increased in proportion to the increase of the number of
the nodes. So, the same amount of time for an N times
larger problem is expected. Nearly ideal weak-scaling of the

Efficiency = x 100% (6)

140
——1,000,000,000
120
-+ -100,000,000
o~
100 || -+--10,000,000 / r
g% —* -1,000,000 JE
2 *+100,000 gl i
o e
40 P
/v‘

0 20 40 60 80
Number of Nodes

Figure 11: Strong scaling of the distributed N-Body application
implemented with HPX on up to 128 nodes (20 cores per node).
It shows a close to perfect HPX scalability for problem size of 10°
particles.

| R 7:
LN =
! & i
Ay -~
L e e e
g . -
2
E 0.8 ——1,000,000,000
) = 100,000,000
0.7 =+ 10,000,000
== 1,000,000
- 100,000
0.6
0 20 40 60 80 100 120 140

Number of Nodes

Figure 12: Weak scaling efficiency for Fig.11 using Eq.6. It shows
that when the problem size is large enough, there will be enough
work for all nodes, which hides the communication latencies behind
useful work.

distributed N-Body problem with HPX for up to 128 nodes
is shown in Fig.14. The results illustrate that HPX avoids
unnecessary communication overheads and enables seamless
overlap of communication with communication.

V. CONCLUSIONS

In this paper, we presented the efficient performance of
a parallel distributed N-Body application, in which HPX
was used to implement both, the communication between
different nodes and the parallel processing within each
node. A future-based request buffer was used to decouple

——1,000,000,000HPX --*--1,000,000,000 Hybrid

140
—e— 100,000,000 HPX --#--100,000,000 Hybrid

120
—*—10,000,000 HPX

--#--10,000,000 Hybrid

100

80

Speedup

60

40

20

100 120 140

Processors

Figure 13: Comparison results of the strong scaling between HPX
and a hybrid model (OpenMP/MPI), with up to 128 nodes (20 cores
per node). The results illustrate a better performance for the HPX
application for larger number the nodes, which is due to using a
future-based request buffer between the remote nodes.

50
—*—ideal
~hpx
~ 48 .
g "
= A
g J\ .
E b
¥ |
g v
=46
44
0 20 40 60 80 100 120 140

Processors

Figure 14: Weak scaling for the distributed N-Body application
implemented with HPX on up to 128 nodes (20 cores per node),
which shows the perfect overlap of computation with communication
enabled by HPX.

overall application progress between different nodes and
along each spatial direction in order to send and receive
data to/from a remote node. This enables progress without
waiting for all nodes to complete the previous step, which
effectively resulted in removing the global barrier after each
time step. Moreover, particles were distributed across the
nodes by considering the number of the nodes to determine
the destination node of the particle, which also reduced the
node starvation significantly. Furthermore, it was shown that
the fine-grained workload used in HPX helped in having a

better load balancing and lower overheads when compared
to the hybrid model. We showed the excellent scalability of
an N-Body with 128x speedup on 128 distributed nodes for

10°

particles using HPX that indicates it has the potential to

continue to scale on more even cores.

Acknowledgements

We would like to thank Bryce Adelstein-Lelbach from
Lawrence Berkeley National Laboratory for the invaluable and
helpful comments and suggestions to improve the quality of
the paper. This works was supported by NSF awards 1447831
and CCF-111798.

[1

—

[3

=

[4

=

[5

=

[6]

[7

—

[8

[t}

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

Robert Speck, Lukas Arnold, and Paul Gibbon. Towards a petascale
tree code: Scaling and efficiency of the PEPC library. Journal of
Computational Science, 2(2):138-143, 2011.

YongChul Kwon, Dylan Nunley, Jeffrey P Gardner, Magdalena Bal-
azinska, Bill Howe, and Sarah Loebman. Scalable clustering algorithm
for N-body simulations in a shared-nothing cluster. In Scientific and
Statistical Database Management, pages 132—150. Springer, 2010.

Kei Simon Pedersen and Brian Vinter. Java PastSet: A Structured
Distributed Shared Memory System. In Software, IEE Proceedings-,
volume 150, pages 147-153. IET, 2003.

Robert Speck, Daniel Ruprecht, Rolf Krause, Matthew Emmett, Michael
Minion, Mathias Winkel, and Paul Gibbon. A massively space-time
parallel N-body solver. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
page 92. IEEE Computer Society Press, 2012.

Jaswinder Pal Singh, Chris Holt, Takashi Totsuka, Anoop Gupta, and
John Hennessy. Load balancing and data locality in adaptive hierarchical
N-body methods: Barnes-Hut, fast multipole, and radiosity. Journal of
Parallel and Distributed Computing, 27(2):118-141, 1995.

Rocco Aversa, Beniamino Di Martino, Nicola Mazzocca, and Salvatore
Venticinque. Performance analysis of hybrid OpenMP/MPI n-body
application. In Shared Memory Parallel Programming with Open MP,
pages 12—18. Springer, 2004.

Chirag Dekate, Matthew Anderson, Maciej Brodowicz, Hartmut Kaiser,
Bryce Adelstein-Lelbach, and Thomas Sterling. Improving the scalabil-
ity of parallel N-body applications with an event-driven constraint-based
execution model. International Journal of High Performance Computing
Applications, 2012.

Mathias Winkel, Robert Speck, Helge Hiibner, Lukas Arnold, Rolf
Krause, and Paul Gibbon. A massively parallel, multi-disciplinary
Barnes—Hut tree code for extreme-scale N-body simulations. Computer
physics communications, 183(4):880-889, 2012.

Alexander Shirokov and Edmund Bertschinger. GRACOS: Scalable and
load balanced P3M cosmological N-body code. arXiv preprint astro-
ph/0505087, 2005.

Rolf Rabenseifner, Georg Hager, Gabriele Jost, and Rainer Keller.
Hybrid MPI and OpenMP parallel programming. In PVM/MPI, page 11,
2006.

Ashay Rane and Dan Stanzione. Experiences in tuning performance of
hybrid MPI/OpenMP applications on quad-core systems. In Proc. of
10th LCI Int’l Conference on High-Performance Clustered Computing,
2009.

LA Smith. Mixed mode MPI/OpenMP programming. UK High-End
Computing Technology Report, pages 1-25, 2000.

Patricia Grubel, Hartmut Kaiser, Jeanine Cook, and Adrian Serio. The
Performance Implication of Task Size for Applications on the HPX
Runtime System. In Cluster Computing (CLUSTER), 2015 IEEE
International Conference on, pages 682-689. IEEE, 2015.

David S Henty. Performance of hybrid message-passing and shared-
memory parallelism for discrete element modeling. In Proceedings of
the 2000 ACM/IEEE conference on Supercomputing, page 10. IEEE
Computer Society, 2000.

J Mark Bull. Measuring synchronization and scheduling overheads in
OpenMP. In Proceedings of First European Workshop on OpenMP,
volume 8, page 49, 1999.

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Olga Pearce, Todd Gamblin, Bronis R de Supinski, Tom Arsenlis, and
Nancy M Amato. Load balancing n-body simulations with highly
non-uniform density. In Proceedings of the 28th ACM international
conference on Supercomputing, pages 113-122. ACM, 2014.

Rolf Rabenseifner, Georg Hager, and Gabriele Jost. Hybrid
MPI/OpenMP parallel programming on clusters of multi-core SMP
nodes. In Parallel, Distributed and Network-based Processing, 2009
17th Euromicro International Conference on, pages 427-436. 1EEE,
2009.

Lorna Smith and Mark Bull. Development of mixed mode MPI/OpenMP
applications. Scientific Programming, 9(2-3):83-98, 2001.

Hari Sundar, Rahul S Sampath, and George Biros. Bottom-up construc-
tion and 2: 1 balance refinement of linear octrees in parallel. SIAM
Journal on Scientific Computing, 30(5):2675-2708, 2008.

Tiankai Tu, David R O’Hallaron, and Omar Ghattas. Scalable parallel
octree meshing for terascale applications. In Supercomputing, 2005.
Proceedings of the ACM/IEEE SC 2005 Conference, pages 4—4. IEEE,
2005.

Emmanuel Agullo, Bérenger Bramas, Olivier Coulaud, Eric Darve,
Matthias Messner, and Toru Takahashi. Task-based fmm for multicore
architectures. SIAM Journal on Scientific Computing, 36(1):C66—C93,
2014.

Emmanuel Agullo, Bérenger Bramas, Olivier Coulaud, Eric Darve,
Matthias Messner, and Toru Takahashi. Task-based fmm for hetero-
geneous architectures. Concurrency and Computation: Practice and
Experience, 2015.

Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio,
and Dietmar Fey. HPX: A Task Based Programming Model in a Global
Address Space. In Proceedings of the 8th International Conference on
Partitioned Global Address Space Programming Models, page 6. ACM,
2014.

Michael S Warren and John K Salmon. A parallel hashed oct-tree n-
body algorithm. In Proceedings of the 1993 ACM/IEEE conference on
Supercomputing, pages 12-21. ACM, 1993.

Hartmut Kaiser, Thomas Heller, Agustin Berge, and Bryce Adelstein-
Lelbach. =~ HPX VO0.9.11: A general purpose C++ runtime sys-
tem for parallel and distributed applications of any scale, 2015.
http://github.com/STEIIAR-GROUP/hpx.

