Mark M. Plecnik’

Biomimetic Millisystems Lab,
Department of Electrical Engineering
and Computer Sciences,

University of California,

Berkeley, CA 94720

e-mail: mplecnik@berkeley.edu

Finding Only Finite Roots
to Large Kinematic
Synthesis Systems

In this work, a new method is introduced for solving large polynomial systems for the

Ronald S. Fearing
Professor

Biomimetic Millisystems Lab,
Department of Electrical Engineering
and Computer Sciences,

University of California,

Berkeley, CA 94720

e-mail: ronf@eecs.berkeley.edu

1 Introduction

The kinematic synthesis of linkages often requires finding the
finite isolated roots of large polynomial systems. The size of a
polynomial system is measured by its number of roots, of which
its degree provides a maximum. It is interesting that the kinematic
design of relatively simple mechanical systems involves formulat-
ing polynomial systems with degrees beyond 100,000. For exam-
ple, to find all of the four-bar linkages which can pass a coupler
point through nine arbitrary points in the plane involves solving a
polynomial system with degree 286,720 [1]. Furthermore, more
complex mechanical systems seem to result in exponential growth
of the degree of their design equations [2,3].

This growth arises from additional design parameters that
increase the number of dimensions in a nonlinear design space.
Finding complete solution sets to the polynomial systems which
comprise kinematic design equations is a major challenge which
tends to demand large-scale computations. Many methods have
been devised, which avoid computing complete solution sets [4],
however, the advantage of obtaining complete sets is to provide a
full survey of design options that might not be found through
methods based on optimization or differential evolution. The
state-of-the-art for solving large polynomial systems is polyno-
mial homotopy continuation. Homotopy algorithms compute all
the roots to general polynomial systems in time proportional to
the degree of the system. These methods are quite powerful but
still have practical limits based on available computing resources.

Although kinematic polynomial systems tend to have large
degrees, they also tend to have sparse monomial structures that
indicate the number of finite roots they possess is much smaller
than their degree. Returning to the four-bar example, it has been
shown in Ref. [1] that 8652 of 286,720 roots are finite and repre-
sent linkage designs. The polynomial degree totals the number of
finite roots, infinite roots, and their multiplicities. For engineering
purposes, only finite roots are sought. Observations of the mono-
mial structure of a system can often be made in order to intelli-
gently multihomogenize a system and remove many roots at
infinity leading to a new multihomogeneous root count. For
smaller systems, this strategy can eliminate all the roots at infinity,
but for larger systems it is not always clear how the multihomoge-
nization should proceed. Eliminating roots at infinity is important
when applying homotopy algorithms because each root requires a
path tracking computation. Counting the percentage of infinite
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kinematic synthesis of linkages. The method is designed for solving systems with degrees
beyond 100,000, which often are found to possess quantities of finite roots that are orders
of magnitude smaller. Current root-finding methods for large polynomial systems
discover both finite and infinite roots, although only finite roots have meaning for engi-
neering purposes. Our method demonstrates how all infinite roots can be precluded in
order to obtain substantial computational savings. Infinite roots are avoided by generat-
ing random linkage dimensions to construct startpoints and start systems for homotopy
continuation paths. The method is benchmarked with a four-bar path synthesis problem.
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roots for the four-bar example, it is estimated that 97% of the
computational effort is dedicated to discovering roots at infinity,
which are filtered out in the end.

In this work, we introduce a new method built on homotopy
continuation termed Finite Root Generation (FRG) that obtains
all or most of the finite roots of kinematic polynomial systems
while avoiding all computations of roots at infinity. Traditionally,
homotopy proceeds with a single start system and multiple
startpoints, whereas FRG uses multiple start systems each with
one startpoint, which are constructed from random linkage dimen-
sions so that each startpoint is guaranteed to track to a finite root.
Since startpoints are randomly generated, the possibility exists for
tracking to a nonsingular finite root multiple times. This duplica-
tion rate is modeled by the coupon collector problem from proba-
bility theory and can be used to estimate the number of finite roots
without actually computing all of them.

We apply FRG to a numerically general target system that is
suitable for constructing parameter homotopies such that an FRG
solution set only needs to be computed once for a particular fam-
ily of polynomial systems. Parameter homotopies provide a means
for efficiently solving all subsequent systems belonging to that
family. Applying FRG to the benchmark four-bar path generator
problem found over 95% of the roots in 26,658 homotopy paths
and 99.988% of the roots in 87,549 paths. This is compared to
286,720 for the best known multihomogeneous homotopy [1] and
152,224 for the best known regeneration homotopy [5]. The
benchmark slightly underperformed expectations calculated from
modeling roots as equally probable coupons.

2 Literature Review

Continuation methods were pioneered by Roth and Freuden-
stein [6], who developed the bootstrap method for solving the
nonlinear path synthesis equations of a geared five-bar. They were
motivated to provide an alternative to the Newton—Raphson
method which required a good initial approximation in order to
converge. In their work, the authors indeed constructed continua-
tion startpoints from arbitrary starting mechanisms. Since then,
the field of numerical algebraic geometry has flourished resulting
in sophisticated homotopy continuation algorithms [5,7-10] that
apply to general polynomial systems where startpoints are con-
structed by combinatoric procedures that are advantageously blind
to the physical systems represented by the equations. In this work,
we return to the schema of constructing startpoints by arbitrary
mechanisms, but instead of finding one or two mechanism solu-
tions, we aim to find complete root sets of numerically general
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synthesis systems. These general root sets are suitable for con-
structing parameter homotopies to efficiently solve later synthesis
systems of the same family [11], a concept that appeared 26 years
after Roth and Freudenstein [6].

Other solution techniques used to solve polynomial equations
include resultant elimination methods, Grobner bases, and interval
analysis. Resultant elimination methods include modifications of
Sylvester’s dialytic elimination method [12] and involve proce-
dures to transform root finding into a generalized eigenvalue prob-
lem. Su and McCarthy [13] showed how to use this method to
solve a synthesis problem with 64 roots. Masouleh et al. [14] used
Grobner bases combined with resultants to compute 220 roots for
the forward kinematics of a spatial parallel manipulator. Grobner
bases transform multivariate root finding into root finding for a
sequence of univariate polynomials. Interval analysis takes
advantage of interval arithmetic to find roots within a range of the
solution space. Lee et al. [15] provided an example of interval
analysis applied to the synthesis of an RRR spatial serial chain.

There have been modifications of homotopy methods to elimi-
nate unwanted solutions. Tari et al. [16] appended additional
equations to synthesis systems to eliminate degenerate solutions,
but their method does not improve computation times. Tsai and
Lu [17] devised a procedure for nine-point path synthesis of a
four-bar where startpoints were constructed from five-point
solutions without attempting to obtain the complete solution set.
Perhaps today’s most powerful method is called regeneration.
Regeneration can greatly reduce the number of homotopy paths to
track by solving a system “equation by equation” and discarding
singular and infinite roots along the way [5]. However, regenera-
tion still requires many roots at infinity to be tracked. Plecnik and
McCarthﬁy [2] used regeneration to approximate a solution set of
1.5 x 10" roots.

In this work, we introduce a method which constructs
startpoints and start systems from randomly generated mecha-
nisms in order to avoid tracking homotopy paths to infinite roots.
We benchmark FRG on the four-bar path synthesis problem and
find that the rate at which finite roots are collected is predicted by
the coupon collector problem of probability theory, providing a
means for estimating the size of the root set being discovered.
Finally, we use the parameter homotopy method to apply the
obtained root set to an example linkage design problem.

3 Description of Finite Root Generation

The FRG method generates startpoints and start systems
that track to the finite roots of a target system using polynomial
homotopy continuation. In order to ensure this is the case, a start
system must possess a monomial structure that is no more or no
less general than the target system, and a startpoint must be a
finite root to that start system. These features are ensured for a sin-
gle startpoint/start system pair by constructing the startpoint from
a randomly generated linkage and constructing the start system
from the motion of that linkage. A parameter homotopy then
tracks that startpoint to a single finite root of the target system.

In order to find another finite root to the target system, a
new random linkage can be generated so that another startpoint/
start system pair is constructed and tracked to (hopefully) another
finite root of the target system. If there are N finite roots of the
target system to be discovered, and there is equal probability
of happening upon any root, then the probability of the second
iteration happening upon a different finite root from the first is
(N —1)/N, which for large N are good odds. If the root of the sec-
ond iteration duplicates the first, then it is discarded, or if it is
unique, then it is stored along with the root from the first iteration.
The goal is to obtain all or most of the finite roots of the target
system. Iterations (also called trials) continue in this manner as
illustrated in Fig. 1 until a sufficient number of roots have been
collected. As more and more roots are collected, the possibility of
finding another unique root decreases, indicating a situation of
diminishing returns. By tracking the rate of success of finding new
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Fig. 1 Flowchart of the Finite Root Generation method

roots between iterations, the size of the total root set can be
estimated.

3.1 Root Collection. The decreasing probability of finding
new roots is modeled by the coupon collector problem from
probability theory [18]. That is, given a set of N unique coupons,
how many trials Ty of picking random single coupons are
expected in order to obtain all the coupons. Coupons are sampled
with replacement and we assume all the coupons have equal prob-
ability of being picked. The problem statement is slightly modi-
fied to ask how many trials T, are expected to obtain n coupons
where n <N. In our case, T, is the number of homotopy paths and
n is the number of finite roots we wish to obtain.

Once n—1 roots have been collected, the probability p, of
collecting the nth root is

N—(n-1)

Pn=—p M

Let X,, denote the expected number of trials to take place in the
interval between finding n — 1 roots and »n roots. Because X, is a
random variable with a geometric distribution, it is computed as

1

Xp=— (@3]
Pn

That means, it is expected that N trials will be dedicated solely to
finding the final root. By substituting Eq. (1) into Eq. (2) and sum-
ming X, the expected number of trials to obtain the nth finite root
can be expressed as

n n N
T,,:;Xk:;]vgi “=D ©)

The variance of T, is computed as

n k o
Yy

Equation (3) provides an estimation of the expected number of tri-
als to collect 7 roots when the total number N is known.

It is useful to approximate Eq. (3) with a form that excludes
summations. To obtain this, first rewrite Eq. (3) as

() (&) o
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The resulting summations are harmonic numbers which can be
approximated by removing the higher order terms from Euler’s
asymptotic expansion [19]

=1

N
Z ~7y+InN (6)
k=1

where y is the Euler—-Mascheroni constant. Apply Eq. (6) to
Eq. (5) and simplify to obtain
N
7
N—n) @)

3.2 Estimation Procedure. For large polynomial systems of
interest, N is not known but can be estimated by the ratio of
success o of finding new roots defined as

T, ~ Nln(

o= ®)

where 7 is the number of roots collected, and T, is the total num-
ber of trials it took to collect those roots. As the probability of
finding new roots decreases, o tends to decrease. The aim is to
derive an expression for estimating the percentage of roots
obtained by the success ratio a. First, replace T, in Eq. (8) with its
approximation from Eq. (7). Then, substitute 7 = n/N as the per-
centage of finite roots found. The result is

©)

where N has been eliminated from the calculation. Inversion of
Eq. (9) requires the principle branch of the Lambert function W

and takes the form
R | Y
n=aWl|——e=+)+1
o

Equation (10) provides an estimation of the percentage of roots
obtained 7 from the current success ratio o during the FRG solu-
tion process. Note that this equation only provides an estimate of
the number of finite roots based on the success ratio, unlike
Bézout numbers which provide conclusive statements on the
upper bound of finite roots. FRG estimates might indicate smaller
root sets, but without certainty.

10)

4 Benchmark

In order to benchmark the FRG method, it was applied to the
nine-point path synthesis problem for four-bar linkages. The com-
plete solution to this problem involves finding 8652 finite roots
but the smallest known formulation of this system counts 286,720
roots (including infinite roots). Multihomogeneous homotopy has
been applied to solve this problem by tracking 286,720 homotopy
paths to discover the 8652 finite roots [1] (see Fig. 2). As an
improvement, regeneration homotopy finds all the finite roots
while only tracking 152,224 paths [5]. From Eq. (3), it is expected
for FRG to find 95% of the roots in 25,922 paths and 100% in
83,430 paths (see Figs. 3 and 4). In other words, the expectation is
for 31% of the computational effort to find 95% of the roots and
70% of the effort to find the final 5% of the roots. In this section,
we formulate the synthesis equations and test the expectations.

4.1 Formulation of Four-Bar Path Synthesis. The objective
of path generation is to find a four-bar linkage that can move a
trace point attached to its coupler link through m points P;,
j=0,...,m— 1. As shown in Fig. 5, the locations of the four-bar’s
ground pivots are represented by A=A, +A,i and B=B,+B,i.
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Fig. 2 Multihomogeneous homotopy applied to the four-bar
benchmark problem tracks 97% of the paths to roots at infinity
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Fig. 3 The expected results of FRG found 95% of the roots in
91% less paths than multihomogeneous homotopy applied to
the four-bar benchmark problem
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Fig. 4 The expected results of FRG found 100% of the roots in
71% less paths than multihomogeneous homotopy applied to
the four-bar benchmark problem

The locations of the moving pivots in position j=0 are repre-
sented by C=C,+C,i and D =D, + D,i. The rotations of links
AC, BD, and CDP from position 0 to j are measured by ¢;, 1/, and
0;, respectively. Using the exponential rotation operators

Sj = e‘i'///, T/‘ = €i6[

Q; =€, (11)
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Fig.5 A four-bar path generator displaced to position j

two loop equations are formulated for each position j

A+Qi(C—-A)+Tj(Py—C)=Pj, 12)

B+S;(D—B)+Tj(Po—D)=P;, j=1,...m—1 (13)
As well, the rotation operators necessarily satisfy

0,0, =1, (14)

$i8; =1, (15)

TTi=1, j=1,...,m—1 (16)

where the overbar denotes the complex conjugate. Unknowns Q;
are eliminated by solving for them in Eq. (12) and substituting
into Eq. (14). Similarly, S; is eliminated by solving Eq. (13) and
substituting into Eq. (15). These substitutions obtain

(ll;j ébj T,‘ N ff —aa — bjl;j
CL?/' Ed/‘ fj B gg —cC — djd]’

d=P0*C, bj:A*P]‘, fZC*A7
¢c=Py—-D, d;=B-P;, g=D—B,

(17)
where
(18)

Finally, solving Eq. (17) for (T},T;), substituting into Eq. (16),
clearing the denominator, and factoring, we obtain the polynomial
system 7°

7: a'bbla—c'ddic=0, j=1,..,8 (19)
where
a(gg — cc) bj
) c(ff — aa) —d;
- ) j = = s
a —bid;d;
J_J J (20)
C b}'bjdj

ac bfgi
c=< _ o, d= '— )
ac —b;d,

Equation (19) contains the eight unknowns {A, B, C, D,
A, B, C, D} and represents a square system of eight equations for
the case m=9.

021005-4 / Vol. 9, APRIL 2017

Our formulation is similar to those presented in Refs. [1] and
[5], which provide additional information on the maximum num-
ber of roots in order to determine the number of homotopy paths
to be tracked. Advantageously, FRG paths are tracked without
the knowledge of root ceilings, similar to the regeneration
method. For the sake of comparison, sorting the variables of 7°
into groups {A,A}, {B,B}, {C,C}, and {D,D} finds a four-
homogeneous Bézout number of 645,120, which was the same
calculated in Ref. [5]. In Ref. [1], intermediate variables were
introduced to further reduce the multihomogeneous Bézout
number to 286,720.

4.2 Methods. FRG begins by creating a target system for
which it is intended to find all the roots. The target system is con-
structed to be numerically general rather than represent a specific
synthesis task. The reason for this is that the target system is
intended to be solved once where thereafter the target system and
its roots can be used to construct parameter homotopies that effi-
ciently solve specific synthesis systems. For the numerical experi-
ment, the target system was constructed by generating 18 random
complex numbers within the box defined by corners (—1 —1i,
1 + 1), assigning these numbers to P; and Pj, j=0,...,8,

Py = 0.776874 — 0.642684i, Py =0.873111 + 0.292468i,
P =0.549479 + 0.418241i, Py = 0.689034 — 0.944901i,
Py = —0.261986 — 0.403618i, P, = 0.854109 — 0.482044i,

P3 =0.767234 — 0.378801i, P3 = —0.268805 — 0.865098i,
Py = —0.068090 + 0.919907i, P, = —0.263339 — 0.451987i,

Ps = —0.221326 + 0.775947i,

Ps = 0.055654 + 0.675009i,
P = —0.134960 — 0.424099i,
P7; = —0.239858 + 0.0410431,

Pg =0.635501 — 0.474101,

Ps = 0.165736 + 0.319065i,
P =0.248468 + 0.077381i,

Py = 0.342355 — 0.501518i
@n

and then substituting these parameters into 7. To obtain a numeri-
cally general system, conjugate relationships were broken.

FRG requires the construction of startpoints and start systems
from randomly generated mechanisms, which is accomplished by
generating five random complex numbers within the box defined
by (—=0.5—-0.5, 0.5+ 0.5/). Four of these numbers define a
startpoint

s, ={A,B,C,D,A,B,C.D} (22)
and the fifth is assigned to P,. Here, conjugate relationships
remain intact so that these five numbers define a four-bar mech-
anism. Eight configurations are selected from this mechanism
with disregard to whether they belong to the same circuit.
These eight configurations define points (P;,P;),j=1,...,8,
which along with (Py,Pg) are substituted into 7 to obtain a
start system that corresponds to s,. Random distributions were
uniform.

Path tracking was completed using the algorithm within the
software BERTINI [20]. This path tracking algorithm utilizes ran-
dom numbers to form projective patches and defines homotopies
based on a random parameter y [5] (unrelated to the constant of
Eq. (6)). Occasionally, BERTINI would experience a path tracking
failure, e.g., reaching a minimum step size. In these cases, an
FRG iteration would be considered invalid. Table 1 shows a few
startpoints and start system parameters used to find roots of the
target system defined by the parameters of Eq. (21).
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Table 1 Startpoints and start system parameters used to track homotopies to roots of the target system defined by parameters
shown in Eq. (21). Homotopies for the roots below were constructed with y = 0.573937 + 1.472072i.

Root 1 Root 2 Root 3

—0.185931 —0.490157i
—0.441407 —0.138234i
0.064826 +0.359267i

0.226527 —0.447966i
0.416623 —0.1438951
—0.023306 —0.024924i

0.296386 —0.339809i
0.037220 —0.462856i
—0.476241 —0.281314i

Startpoints

—0.477876 +0.440497i —0.344134 —0.420386i —0.044317 +0.028224:
—0.185931 4-0.490157i 0.226527 4-0.447966i 0.296386 +0.339809i
—0.441407 +0.138234i 0.416623 +0.143895: 0.037220 +0.4628561

0.064826 —0.359267i —0.023306 +0.024924i —0.476241 +0.281314i
—0.477876 —0.440497i —0.344134 +0.4203867 —0.044317 —0.028224i

—0.155698 —0.422040i

0.273905 —1.211253i
—0.064827 —1.195472i
—0.086717 4-0.118875i
—0.025993 —0.630360:

0.404738 —0.750646i
—0.736730 —0.262438i
—0.100214 —0.501486i
—0.340800 +0.386734i
—0.155698 +0.422040i

0.273905 +1.211253i
—0.064827 +-1.195472i
—0.086717 —0.118875i
—0.025993 +0.630360i

0.404738 +0.750646i
—0.736730 40.262438i
—0.100214 +0.501486i
—0.340800 —0.386734i

1.363042 4-0.327298i
—0.236355 —0.424120i
0.744465 —0.469276i
0.939745 -0.691008:

Start system parameters —0.207946 +0.369011i
—0.115369 +0.351828i

0.393717 —0.190376i
—0.312109 +0.319537i
—0.608101 —0.973176i
—1.065637 —0.419560i
—0.754964 —0.722653i
—1.022605 —0.077858i
—0.778031 —0.906804i
—0.207946 —0.369011i
—0.115369 —0.351828i

0.393717 +0.190376i
—0.312109 —0.319537i
—0.608101 +0.973176i
—1.065637 +0.4195601
—0.754964 +0.722653i
—1.022605 +0.077858i
—0.778031 +0.906804i

1.208688 —0.064110i
0.229275 +0.728512i
1.149090 —0.376585i
0.724958 —0.465222i

0.384005 +0.244221i
—0.321480 —0.783846i
—0.042075 —1.265047i
—0.524641 —0.489862i

1.141800 —0.508283i
—0.329956 +0.122805¢
—0.152737 —0.865539i

0.224757 —0.522349i

0.152844 —0.7286611

0.384005 —0.244221i
—0.321480 +0.783846i
—0.042075 +1.265047i
—0.524641 +0.489862i

1.141800 +0.508283i
—0.329956 —0.122805i
—0.152737 +0.865539i

0.224757 4+0.522349i

0.152844 +0.728661i

—0.278014 —3.903201i
—2.851690 —4.0282167
—0.356765 -3.870173i
—2.452992 -3.479546i

Roots obtained

0.322662 —0.323042i 0.942263 —5.099374i 0.026897 —0.657391i
—0.968032 +1.383404i —5.662954 —2.3678031 —0.079412 —0.799504i
0.512174 +0.503870i 2.411689 -5.258779i 0.931018 4-0.261914i

(w/ieis N lwRe N At ;U\\'"IU\;U\;U\;U\;U\;U\:U\;U\;U:U;U,;U;U;U;U:U;U SOmET O D>

—1.469395 +0.697904i —5.912599 -3.042769i —1.178260 -0.792065i

5 Results

The FRG method was applied to find all 8652 roots of a
numerically general version of 7. The algorithm was executed for
100,000 trials. By the 87,549th trial, the algorithm found 8651
roots, but did not find the final root beyond that. The expectation

was to find all the roots on the 84,430th trial within a standard
deviation of 11,092 trials. Curtailing results before the brunt of
diminishing returns, the algorithm found 95% of the roots by
26,658 trials, underperforming the expected value by 736 trials.
Similar to expectations, FRG found over 95% of the roots in 30%
of the iterations required to find 99.988% of the roots. This is
depicted in Fig. 6, which shows the number of roots obtained as
trials progressed. Roots accumulated quickly in the beginning
leading to a diminishing rate of returns such that at least 70% of
the calculations were dedicated for obtaining the final 5% of the
roots. Table 2 gives the number of trials performed versus
expected to acquire various percentages of the complete
solution set.

As trials progressed, an estimate of the percentage of roots
obtained was calculated from the success ratio using Eq. (10).
This is a useful feature for systems in which the total number of
roots is unknown. These estimates are compared to the actual
percentages for the known benchmark in Table 2, and the run-
ning difference between the two is graphed in Fig. 7. Estimation
error was greatest at the beginning of FRG, however, as the
number of sample trials that comprise the calculation of the suc-
cess ratio increased, the estimation became more accurate. Pre-
dictions of the total number of roots are given in Table 2. The
success ratio as a function of the percentage of roots obtained
for the benchmark is shown in Fig. 8 compared to the theoreti-
cal function from Eq. (9). This function illustrates the sharp

8000

6000

4000

Roots obtained

2000

70%

40000 60000 80000

Trials

20000

Fig. 6 The number of roots obtained as FRG trials progressed
for the four-bar benchmark problem. Vertical lines mark trials
that resulted in a new root. Their frequency forms a solid col-

ored section at the beginning of the algorithm. The computa-
tional effort to find 95% of roots and the final 5% of roots are
dimensioned as percentages of the total number trials needed
to find 99.988% of roots.
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decrease in success near the end of FRG, tending toward zero
for systems with more roots.

The error estimates of this paper are based on the assumption
that roots appear with equal probability. Conducting Pearson’s
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Table 2 Trials required to find various percentages of roots versus the expectation for the benchmark problem, and estimations of

the total root count based on the success ratio

Percentage of Roots Trials Trials Standard deviation Success Estimated percentage Estimated total
roots obtained obtained performed expected of trials expected ratio of roots obtained root count
10.009% 866 905 912 7.1 95.691% 8.493% 10,196
20.007% 1731 1918 1931 15.2 90.250% 18.844% 9186
30.005% 2596 3083 3086 24.9 84.204% 29.834% 8701
40.002% 3461 4446 4420 36.7 77.845% 40.767% 8490
50.000% 4326 6068 5997 51.5 71.292% 51.313% 8431
60.009% 5192 8063 7929 71.1 64.393% 61.554% 8435
70.007% 6057 10,477 10,418 98.9 57.812% 70.420% 8601
80.005% 6922 14,179 13,925 143.8 48.819% 80.952% 8551
90.002% 7787 20,085 19,919 240.7 38.770% 90.249% 8628
95.007% 8220 26,658 25,922 3722 30.835% 95.479% 8609
96.001% 8306 28,617 27,840 423.7 29.025% 96.388% 8617
97.006% 8393 31,105 30,341 499.5 26.983% 97.282% 8627
98.000% 8479 34912 33,824 623.7 24.287% 98.250% 8630
99.006% 8566 40,990 39,846 903.8 20.898% 99.129% 8641
99.965% 8649 84,632 67,568 4601.1 10.220% 99.994% 8649
99.977% 8650 87,384 70,452 5430.0 9.899% 99.996% 8650
99.988% 8651 87,549 74,778 6942.2 9.881% 99.996% 8651

chi-squared test on tabulated root appearances revealed that this
was not the case. Nonetheless, Figs. 6-8 and Table 2 demonstrate
reasonable accuracy of the estimates. The path failure rate was
5% for the benchmark.

6 Example

The motivation behind FRG is to obtain solution sets to large
polynomial systems for kinematic design. In this paper, the
method is introduced and only applied to four-bar path synthesis
for benchmarking. In order to bridge FRG with tangible kinematic

2%
20000 40000 60000 80000
0% [ : :
W Trials
—2%

—4%

Estimation error

-6%
—8%

Fig. 7 Difference between the estimated and actual percentage
of roots obtained as trials progressed
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20% Y= Tn(-n)
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Percentage of roots obtained, 7

Fig. 8 The success ratio « plotted against the percentage of
roots obtained n for both the benchmark experiment and theo-
retical curve
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design, this section presents an example. The objective is to
design a linkage that traces a D-shaped path potentially for a
walking mechanism.

To begin, nine points were selected

Py =0-0.0625i, P3=0.95+0.2i, Ps = —0.95 +0.2i,
Py =0.5-0.05, P4=0.35+04, P; =—1+0i,
Py, =1-0i, Ps = —-0.3540.4i, Pg=—-0.5-0.05

(23)

Note that the straight portion of the “D” was curved (Figs. 9
and 10) in the hope that this would result in four bars with smaller
link lengths. Substituting Eq. (23) into 7 forms a synthesis system
which was solved by a parameter homotopy constructed from the
8651 roots obtained in Sec. 5. The results include 554 roots that
represent physical link geometry of which 16 were found to be
free of branch and circuit defects. Note that a finite root is neces-
sary but not sufficient for a solution to represent physical geome-
try. In other words, the number of finite roots provides a bound
for useful engineering solutions.

The number of linkage solutions found should be divisible by
six because of known symmetries in the synthesis system. This
was not the case due to a path failure rate of 7% during parameter
homotopy. Solutions should exist in symmetric pairs with values
A < B and C < D swapped, as well as in sets of three cognates
[21], creating a six-way symmetry. With this in mind, the bench-
mark problem may be reduced to collecting N =1442 sets of
roots.

Examples of defect-free and defective linkages are given in
Figs. 9 and 10. The linkage shown in Fig. 9(a) has the potential to
be used as a walking mechanism although its large link lengths
are not ideal. The linkages shown in Fig. 10 are similar to Cheby-
shev cognate linkages, which are known to trace a similar “D”. A
third Chebyshev-like linkage was found as well, which is the hori-
zontal mirror of Fig. 10(a). The linkage shown in Fig. 10(b) is
branch-defective meaning it cannot be actuated from a base joint.
Linkage designs were analyzed for branch and circuit defects by
computing mechanism singularities and ranges of motion. This
analysis did not consider order defects. The lack of strong design
candidates from the example’s results motivates a search into
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A=—4.36990108+3.35134391;
B=0.00000000+7.69998496i 6
C=-3.72188302+3.99620930i
D=0.15854011+3.81874248i

20

A=0.00000000+1.06678345i
B=0.61969979+0.35152494i
Vae C=-0.47297099+0.50214173i
D=0.15328088+0.8898664 11

-05L

(b)

Fig. 9 (a) A defect-free mechanism and (b) a mechanism with a
branch defect

more complex linkage topologies, which is out of the scope of this
paper.

7 Conclusion

The FRG technique was introduced for solving large polyno-
mial systems for the kinematic design of linkages. The tech-
nique provides a means of generating homotopy continuation
startpoints that track to the finite roots of a numerically general
target system, precluding infinite roots which often consume
the large majority of computations. The rate at which FRG
accumulates unique roots is modeled as a coupon collector
problem which also provides means for estimating the entire
root set. Applying FRG to a benchmark four-bar design prob-
lem found all but one root in 42% less paths than the best
known regeneration method. Characteristic of FRG is a dimin-
ishing rate of returns for finding the final roots. FRG found
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.11109964-2.51747715i
.00000000—2.37201222i
.56208286—2.57651978i
.94560890—1.21725611i

oy R
oS —

?Q
o -

A==1.11109964-2.51747715i
1~ B=1.11109964-2.51747715i
(=0.45098322-0.00345737i
D=-0.45098322-0.00345737i

Fig. 10 Synthesis results that resemble Chebyshev linkages:
(a) a defect-free mechanism and (b) a mechanism with a branch
defect

95% of roots in 82% less paths than the best known regenera-
tion method. The results of the algorithm were applied to
design a few four bars.
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