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Since the 1800s, natural gas has been extracted fromwells drilled into conventional reservoirs. Today, gas is also
extracted from shale using high-volume hydraulic fracturing (HVHF). These wells sometimes leak methane and
must be re-sealedwith cement. Some researchers argue thatmethane concentrations, C, increase in groundwater
near shale-gas wells and that “fracked” wells leak more than conventional wells. We developed techniques to
mine datasets of groundwater chemistry in Pennsylvania townships where contamination had been reported.
Values of C measured in shallow private water wells were discovered to increase with proximity to faults and
to conventional, but not shale-gas, wells in the entire area. However, in small subareas, C increasedwith proxim-
ity to some shale-gas wells. Data mining was used to map a few hotspots where C significantly correlates with
distance to faults and gaswells. Near the hotspots, 3 out of 132 shale-gaswells (~2%) and 4 out of 15 conventional
wells (27%) intersect faults at depths where they are reported to be uncased or uncemented. These results dem-
onstrate that even though these data techniques do not establish causation, they can elucidate the controls on
natural methane emission along faults and may have implications for gas well construction.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In the U.S.A., the usage of natural gas has increased markedly due to
new techniques in developing gas directly from shale. Since 2014, this
so-called “unconventional” resource has been estimated to comprise
about 50% of the total proven U.S.A. gas reserves (U.S. Energy
Information Administration, 2014). Extraction of gas from shale has be-
comepossible due to improvements in directional drilling and high-vol-
ume hydraulic fracturing (HVHF) (Vidic et al., 2013a). The rapid
development in the use of HVHF in the U.S.A. since the 1990s has some-
times led to water quality impacts that have caused concern, including
leakage of methane out of gas wells due to well integrity problems
(Vidic et al., 2013a). Such problems have been particularly controversial
in theMarcellus gas play because this shale formation underlies 8 highly
populous northeastern states. One state regulator, the Pennsylvania De-
partment of Environmental Protection (PA DEP), reported, for example,
that the most common type of water quality impact related to oil/gas
activity by companies developing “unconventional” wells – i.e. wells
completed with HVHF – is methane contamination (Brantley et al.,
2014). The frequency of well integrity problems (Brantley, 2014) for
wells completed with or without HVHF – i.e., “fracking” – is important
given that leakage into drinking water resources entails explosion
.edu (S.L. Brantley).
hazards when concentrations approach 10 ppm and methane in
groundwater can result in secondary contamination (Vidic et al.,
2013a). In addition, eventual release of methane into the atmosphere
increases greenhouse warming (Howarth et al., 2011). According to
PA DEP records, 3.4% of gas wells were cited for well construction prob-
lems before 2013 (Vidic et al., 2013a). Of these, 16 wells (0.24%) were
cited for allowing gas to migrate into groundwater. This methane leak-
age rate in theMarcellus playmay have changedwith time as operators
learned better practices (Brantley, 2014). However, the leakage rate,
which is difficult to quantify, has become controversial for HVHF be-
cause some have claimed that natural gas leaks more readily from
wells in unconventional formations than from “conventional” wells
(Howarth et al., 2011; Ingraffea et al., 2014).

One way to investigate leakage is to determine if the concentration
of methane in groundwater, C, varies with distance from gas wells.
However, such studies depend on howmanywaterwells are investigat-
ed. For example, an early investigation concluded that C increased in
~60 waters sampled within 1 km of unconventional wells located in
Pennsylvania (U.S.A.) (Osborn et al., 2011). This claimhas been disputed
(Davies, 2011; Molofsky et al., 2011; Schon, 2011; Jackson et al., 2011;
Molofsky et al., 2013) at least partly because C can be high in groundwa-
ter due to natural processes (Reese et al., 2014; Baldassare et al., 2014).
In a second investigation of the same area with 141 samples, C once
again was observed to increase near gas wells (Jackson et al., 2013a).
However, both the original and extended studies included observations
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around Dimock PA where investigators have concluded a few gas wells
contaminated 18water supplywells in the early days of shale gas devel-
opment (Brantley et al., 2014). In contrast, an analysis of N11,000 water
samples in northeastern PA revealed no correlation between C and
proximity to unconventional wells (Siegel et al., 2015). Apparently,
higher C values may have been present in the larger dataset but not de-
tectable because of the large number of non-impacted groundwater
samples. None of these datasets have been released in entirety because
of concerns about homeowner confidentiality.

In this paperwe analyze a newly published data set from the PA DEP
(1690 water samples from shallow, private water wells) from Bradford
County, Pennsylvania (Shale Network, 2015) to learn how to interpret
environmental datasets of different size. We hypothesized that large
datasets, on average, mightmask contamination that could be observed
in smaller datasets. We also sought to understand the importance of
conventional versus unconventional wells and the effect of local geolo-
gy onmethane emission. Our analysis focused on five townships where
impacts to groundwater from methane were reported. We developed
strategies to use large groundwater datasets to highlight and under-
stand possible sites of methane emission with respect to local condi-
tions. Our new technique relies on the use of large datasets and
should be broadly applicable to other environmental data where pat-
terns in distribution of contaminationmay allow for better environmen-
tal practices.

2. Analyzed data

To determine environmental patterns using data mining requires
the availability of large numbers of analyses. Large datasets generally re-
quire that environmental data be pooled frommany sources. The strat-
egy of using large datasets and data mining is therefore predicated on
the assumption that fundamental patterns can be gleaned from large
datasets even though such sets may be characterized by variable data
quality. We implicitly test that proposition here.

The water samples we analyze were collected by independent envi-
ronmental consultants paid by gas companies before drilling and mea-
sured in commercial analytical laboratories that support extensive
quality control and assurance measures (see Suppl. Information). The
analyses are released to the state regulator to protect the gas company
from future liability if water issues are reported. Given this end use, bi-
asing samples or analyses toward lower methane concentrations (for
example by allowing volatilization) is likely to be counter-productive.

Water samples were collected prior to treatment, filtration or water
softening using U.S. Geological Survey protocol. Samples were collected
and analyzed in accordance with Pennsylvania code § 78.52 which
states, “(c) The survey shall be conducted by an independent certified
laboratory. A person independent of the well owner or well operator,
other than an employee of the certified laboratory, may collect the sam-
ple and document the condition of the water supply, if the certified lab-
oratory affirms that the sampling and documentation is performed in
accordance with the laboratory's approved sample collection, preserva-
tion and handling procedure and chain of custody.”

Following a data sharing agreement between PADEP and Pennsylva-
nia State University, we analyzed data from Bradford County for five
townships (Fig. 1). No attempt was made to analyze variation in C
with time at each location because very few water wells were sampled
more than once. The waters were sampled from water wells (average
depth 54 m; ranging from 2 to 250 m) before drilling the new gas
wells over a period of a fewyears. However, because thewater sampling
generally occurred near already-drilled gas wells, the datawere investi-
gated here with respect to gas wells that had already been drilled in
conventional or unconventional formations. Each water analysis (i.e.,
sample site) was paired with the closest previously drilled unconven-
tional well using data on the PA DEP Oil and Gas Reporting Website as
of April 2015 (Murphy, 2012). Distances were determined for the clos-
est already-drilled well (i.e., spud date prior to water sampling) within
both the targeted and nearby townships. Of the original 1240 uncon-
ventional wells considered for the region, sample sites were paired
with 132 unconventional gas wells spudded from June 2008 through
July 2012. Likewise, of the 113 conventional gas wells in the overall re-
gion, samples were paired with 15 conventional wells: 13 spudded be-
tween 1932 and 1983 but now abandoned, and two spudded in 2009
and still active. The number of analyses and wells included in this
dataset is intermediate between the previously discussed published
datasets (Osborn et al., 2011; Jackson et al., 2013a; Siegel et al., 2015)
and this allowedus to test how the size of the dataset affects conclusions
about methane migration. In addition, the dataset reported here is the
only one published with locations (Shale Network, 2015). More details
are described in the Suppl. information (SI).

3. Methods

We analyzed the full dataset and then used increasingly finer spatial
resolution by employing the following steps. First, we plotted C versus
the distance to the nearest already-drilled unconventional or conven-
tional well for the entire dataset.We quantified the correlation between
C (i.e., dependent variable y) and distance (i.e., independent variable x).
However, many statistical measures are not applicable because of the
multiple reporting limits (i.e., detection limits) (Siegel et al., 2015;
Helsel, 2011). For example, Pearson correlation and linear regression
are not suitable; furthermore, Spearman correlation is only suitable for
data with one reporting limit. Therefore, we used three measures that
are appropriate for censored data with multiple reporting limits: Ken-
dall rank correlation, Akritas-Theil-Sen (ATS) regression, and logistic re-
gression (see SI for more details).

We next subdivided our study area into three subregions (A, B and
C), which were selected to produce three clusters largely delineated
by townships, each with at least 350 analyses (Fig. 1). The correlation
statistics were then re-calculated for samples collected within each
subregion.

To learn to analyze subregions of these environmental data random-
ly, we then developed a new sliding window approach inspired by the
spatiotemporal exploratory model (Fink et al., 2010). We scanned the
whole region using a “sliding window” of size 5 km × 5 km that was
stepped over themap in 200m increments. For each slidingwindowob-
servation at each location separated by 200 m, we tested for Kendall
rank correlation for the data in the window. The window was marked
as +1 if the correlation is significantly positive and −1 if significantly
negative (significance level of 5%). A spatially-normalized significance
value was assigned to each location as defined by the sum of all win-
dows covering the location divided by the total number of windows
covering the location. The spatially-normalized significance values,
plotted every 200 m, were then used to generate correlation maps
showing regions of higher positive or negative correlations.

With the correlation maps, we explored the relationship between
hot spots and the underlying geologic structure using maps of known
faults in the area. The hot spots are the locations showing negative cor-
relations between methane concentration and distance to well, i.e.,
higher dissolved methane concentrations closer to the well. For the
wells locatednear hot spotswe also investigated thewell characteristics
(e.g., casing and cementing). Finally, because all the unconventional
wells had not been hydraulically fractured by the time of water sam-
pling, we also repeated our methodology on the subset of wells that
were completed by HVHF prior to water sampling.

4. Results and discussion

Fig. 2 shows scatter plots of C versus distance to the nearest already-
drilled unconventional well before and after log transforming the data.
These plots are visually misleading because a high percentage of sam-
ples cluster near the reporting limits of 1, 5 and 26 ppb (Siegel et al.,
2015). A binned plot of the same data (Fig. 3) documents that such



Fig. 1. Location map for the study area in Bradford County in north-central PA (U.S.A.). Site locations for 1690 water samples are shown as blue symbols for the five townships (labelled).
Green and yellow triangles represent the locations of conventional (15) and unconventional (1240) gas wells, respectively, as of April 2015. Water samples were collected from 12/20/
2010 to 11/23/2012. Symbols range from light blue, indicating C not above the reporting limit, to the darkest blue, indicating the highest C = 46 ppm CH4. All data have been
published (Shale Network, 2015). The study region was also partitioned into three subregions cut off at longitudes −76.65 (−76 deg 39′) and −76.5 (−76 deg 29′) as shown: 579
samples in Region A, 730 in B, and 381 in C. All data released to us by PA DEP for the townships are shown, including a few water samples released mistakenly for other townships.
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low methane concentrations are found at all distances from gas wells
but values of C N 6000 ppb CH4 are only identified in sites locatedwithin
the 3 km perimeter of an unconventional well. The broad spatial distri-
bution of low values of C in the study area is consistent with many sites
of emission of methane due to natural processes (e.g., Molofsky et al.,
2011; Molofsky et al., 2013). As described below and in Methods, we
tested several hypotheses to understand the distribution.

4.1. Concentrations versus gas wells for the whole region

All three statistical measures show C decreases with distance from
an unconventional well – but none of the negative correlations are sta-
tistically significant at the 95% confidence level (i.e., p-values N 0.05):
Kendall rank correlation value is −0.01537 with p-value = 0.32632;
ATS slope is −0.00523 with p-value = 0.32635; the logistic regression
fitted coefficient (in distance) is −0.00012 with p-value = 0.05305.
Like the conclusions reached previously for such large datasets (Siegel
et al., 2015), C does not correlate with proximity to unconventional
wells when using all 1690 samples.

In contrast to unconventionalwells, for the 15 conventionalwells as-
sociatedwithwater samples, all three statistics yield significant correla-
tions indicating C increases with proximity to the well (i.e., p-
values b 0.05): Kendall rank correlation value is −0.06398 with p-
value = 4.43672e−05; ATS slope is −0.01402 with p-value =
4.43672e−05; the logistic regression fitted coefficient (in distance) is
−0.00012 with p-value = 2.14783e−05. This is discussed further
below.

4.2. Correlation versus unconventional wells in subregions

After partitioning the study area into three subregions, only subre-
gion B shows significant correlations with proximity to unconventional
wells for all three measures (Table 1). The significant negative correla-
tions indicate higher C closer to unconventional wells. For every
100m closer to a pre-existing unconventional well, the dissolvedmeth-
ane concentration is 4 ppb higher in the groundwater samples. While
the increase in C does not come close to superseding regulatory recom-
mendations for action, correlations with respect to proximity to gas
wells are analyzed here to develop machine-learning strategies to find
problematic wells. The technique shows that significant correlations
exist in subregions that are masked in the larger region.

It is possible that a different regional partitioning might not reveal
correlations. This is why we developed a new approach (see Methods)
to test this by using sliding windows to calculate correlation maps
(Fig. 4). Such “heat maps,” as they are often named, indicate locations
with dark coloring (red in Fig. 4a) where the majority of the windows
covering those locations show significant correlations. Here, the red col-
oring indicates correlations that are negative and that indicate C



Fig. 2.Plots ofmethane concentrations vs. distance to thenearest already-drilledunconventional gaswell (a, b) or conventionalwell (c, d). All 1690methane analyses for samples collected
between 12/20/2010 and 11/23/2012 are plotted (see also Fig. 1). Log-transformed data plots (b, d) emphasize that methane was often not detected above one of three reporting limits
depending upon the commercial laboratory chosen for analysis: 1 ppb (11 samples), 5 ppb (512), and 26 ppb (575).
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increases nearer gas wells. Consistent with Table 1, themaps document
that only subregion B shows significant negative correlations.

These maps are not made with a contouring algorithm. Colors show
averages for each point located every 200 m: averages were calculated
over all the correlations for the 2500 windows that included each
point. The colors show correlations only when they are calculated to
be statistically significant for a given window. Correlations depend
upon both the values of C and their locations as well as the density of
data points.
Fig. 3.Boxplots showing binnedmethane concentrations (x axis) plotted versus distance to the n
for the distance to gas well: the minimum, first quartile, median, third quartile and maximum
Symbols indicate outliers, i.e., measurements within the range (Q3,Q3+1.5× IQR), where
concentrations (lighter blue boxes) are observed at all distances from gas wells. High concentr
The sliding window technique (Fig. 4a) documents the most likely
reason why previous researchers (Jackson et al., 2013a; Siegel et al.,
2015) came to discrepant conclusions: they used datasets that were
vastly different in size. The correlations between methane and shale
gas wells in this sample of data are infrequent and localized and the in-
cidence of problems is not statistically detectable in very large datasets
without using a data mining technique.

The sliding window technique was also applied to the ~1600 water
analyses to determine spatially significant correlations with the 15
earest already-spuddedunconventional gaswell (y axis). Eachbox shows non-outlier data
of all distance values are indicated as horizontal bars from bottom to top, respectively.
Q3 is the third quartile and IQR is the interquartile range (IQR=Q3−Q1). Very low
ations are only observed within 3 km of wells (i.e., the horizontal line).



Table 1
Correlation statisticsa for subregions.

Region A Region B Region C

Kendall rank correlation 0.01943 −0.06121⁎ 0.01169
Akritas-Theil-Sen (ATS) 0.004864 −0.03912⁎ 0.01156
Logistic regression −0.00001 −0.00028⁎⁎ 0.00011

a Each correlation measures the relationship between distance to the nearest already-
drilled unconventional well (the x-variable in meters) and dissolved methane concentra-
tion (the y-variable in ppb). For example, the negative ATS correlation coefficient in region
B of−0.03912 suggests that on average, for every 100 m closer to a pre-existing uncon-
ventional well, the dissolved methane concentration is 4 ppb higher in the groundwater
samples. No waters approached recommended action limits (see SI and discussion of
Fig. S1).
⁎ Indicates 5% significance level.
⁎⁎ Indicates 1% significance level.
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conventional gas wells. Once again, areas of both positive and negative
correlation were observed and are discussed below.

4.3. Concentrations versus faults

Although C varies with proximity to gas wells, correlation does not
prove causation. In northern PA, for example, faults sometimes channel-
ize naturally emittingmethane into groundwater – completely unrelat-
ed to oil/gas development (Molofsky et al., 2011; Molofsky et al., 2013;
Reese et al., 2014; Baldassare et al., 2014; Llewellyn, 2014). This gas
often derives from the underlying Upper Devonian Catskill and Lock
Fig. 4.Maps showing statistically significant correlations calculated for C in sliding windows fo
unconventional wells. Water samples were included in the analysis in (a) when sampling dat
for all sampling dates because sampling was always after the spud date of the convention
indicates locations with significant negative (red) or positive (blue) correlations between C an
samples are colored grey. White indicates no significant correlations or # of significant positiv
defined as points separated by 200 m and correlations were calculated for 2500 sliding windo
The color intensity at a location shows the relative frequency of windows with significant corr
are shown in green that lack cemented casing at the depth interval where they intersect the n
indicate faults extrapolated from depth. Triangles on lines indicate direction of dip. From north
unnamed fault that runs along Towanda Creek in Bradford County, an unnamed thrust fault d
Purdy, 1981; Woodrow, 1968; Berg et al., 1980; Vidic et al., 2013b).
Haven Formations (Molofsky et al., 2013). Biological sources also emit
methane naturally (Baldassare et al., 2014).

We identified the large faults in the study area (Pohn and Purdy,
1981; Faill, 1998). These faults are low angle, east-west striking, north-
west- or southeast-dipping. Negative correlations were calculated be-
tween C and distance to faults across the entire area (logistic
regression: −0.00006, p-value 0.01472; Kendall and ATS have p-
values N 5%). Thus, C shows a tendency to increase in waters near fault
traces but remain well below regulatory recommendations. Since the
thrust faults generally outcrop along valleys (Fig. 4c), these results are
consistent with other research showing that C is higher in the lowlands
of northeastern PA (Molofsky et al., 2011; Llewellyn, 2014).

We also applied the sliding window method to faults (Fig. 4c). Al-
most all the colors and locations of hotspots on the fault map are also
seen on the unconventional well map, although with consistently
higher values of significance in Fig. 4c than Fig. 4a. One possible expla-
nation for this observation is that methane emits naturally along faults,
and that gaswells are somewhat aligned along fault-parallel valleys and
ridgelines. In this case, the explanation for the overall stronger correla-
tions in Fig. 4c as compared to Fig. 4a is that C slightly increases in prox-
imity to unconventional wells not because gas wells leak but because
gas wells are preferentially located near faults that are natural zones
of gas emission.

As a partial test of this idea,we analyzed correlations betweenmeth-
ane and inorganic water chemistry. Often, natural thermogenic meth-
ane in PA is accompanied by dissolved salts (Molofsky et al., 2011;
r distance to: (a) unconventional wells, (b) conventional wells, (c) faults, (d) completed
e was after spud date for an unconventional gas well, in (b) for all sampling dates, in (c)
al wells, and in (d) when sampling date was after date of completion by HFHV. Color
d the distance to the nearest location of the independent variable. Regions with no water
e correlations (blue) ⋍ # of significant negative correlations. On the map, locations were
ws that included each point; therefore no contouring algorithm was used for coloration.
elation values that cover the location (see text and SI). In (a), three unconventional wells
earby fault. Black solid lines indicate observed surface traces of thrust faults; dashed lines
to south, the faults are the Bridge Street, Towanda, and three without names: a putative
escribed in the literature (Llewellyn, 2014), and an additional unnamed fault (Pohn and
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Molofsky et al., 2013; Llewellyn, 2014; Warner et al., 2012) because
thermogenic methane is dissolved in fault-channelized porewaters
which are chemically similar to highly diluted Appalachian Basin brines
(Dresel and Rose, 2010; Poth, 1962). The fault waters are also higher in
pH and alkalinity and lower in dissolved oxygen (Reese et al., 2014;
Llewellyn, 2014). As discussed in the SI, we observed significant correla-
tions consistent with methane co-existing with salt-containing fluids
along the faults.

4.4. Concentrations versus well completion

Potential issues related to correlations on Fig. 4a, b, c could be due to
drilling rather than HVHF. In fact, in our analysis of unconventional
wells so far, we paired each water sample with the closest already-
drilled well (sampling date after spud date). However, it is not uncom-
mon for an unconventional well to be drilled (i.e., spud date) long be-
fore completion with HVHF (completion date). For example, for the
1690 total water samples plotted in Fig. 4a, b, c, we found the dates of
HVHF for 111 of the 132 gas wells (Fink et al., 2010; Llewellyn, 2014).
To analyze our data with respect to completion date, we therefore lim-
ited our analysis to a water database that contained only 1497 of the
1690 originally reported water samples. Of these, 392 of these waters
were sampled before HVHF.

With this smaller dataset of 1105waters sampled after HVHF, we re-
calculated correlations and correlation maps (see SI and Fig. 4d). If
hotspots of correlation observed in Fig. 4d are indicators of methane
leakage, this leakage could have occurred after HVHF.

4.5. Using data mining to highlight potentially problematic wells

In several hotspots on the unconventional (Fig. 4a, d) and conven-
tional (Fig. 4b) well maps, the significance of correlations is higher
than on the fault map (Fig. 4c). We hypothesize that methane from
gas wells near these hotspots may be leaking. The most prominent of
these hotspots is in subregion B in the southern part of the intersection
Fig. 5.Wells colored to indicate operators. The prominent hotspot from Fig. 4a ismapped onto a
intense hotspots in Fig. 4b indashed red. Orange triangles showconventionalwells. Unconventi
(associated with 165 water samples, 12 gas wells), B (400, 17), C (1115, 98), and D (10, 2).
of Franklin and Burlington townships (Fig. 4a). To test whether the data
mining technique might be useful in identifying problematic practices
by gas companies, we inspected company reports of wells in those
hotspots. Because we hypothesized that the correlations in Fig. 4b can
be attributed to movement of methane along faults, we particularly
sought to understand how the wells were constructed where the bore-
holes crossed the fault near the hotspot in subregion B.

Well construction issues with respect to casing and cementing are
the most common reason for subsurface fugitive gas migration (Vidic
et al., 2013a; Gorody, 2012). Three of the four operators in the study re-
gion (Fig. 5) have been cited for such well issues (Breiman et al., 1984).
Casings are metal tubes that line a well from the surface to various
depths, eachwith progressively smaller diameter. Conductor casing sta-
bilizes the unconsolidated sediment. Surface casing, cemented along its
entire length, prevents contamination of shallow groundwater. Inter-
mediate casing isolates the borehole at intermediate depths where
wells sometimes intersect hydrocarbon-bearing formations, abnormal-
ly pressured, or fractured zones (American Petroleum Institute, 2009).
Production casing is cemented in the zone of gas production. Regula-
tions for cement and casing vary around the world: in PA prior to
2011, intermediate casing was only required if aquifers were encoun-
tered below the depths of surface casing (Harvey Consulting LLC,
2009) or for some cases of blowout preventer support. If the borehole
is left uncemented or uncased, thermogenic gas at intermediate depths
(Molofsky et al., 2013; Baldassare et al., 2014) can enter or leave a sec-
tion of a borehole and travel vertically to aquifers (Llewellyn et al.,
2015).

Different operators use different techniques for casing and cementa-
tion. The operator that drilled the largest number of wells over the
whole study region mostly did not emplace intermediate casings
(Schoell, 1980). Three other operators in the area (Fig. 5) used surface
(to ~600 ft (~180 m)), intermediate (~2000 ft (~610)) and production
casings (~9550 ft (~2900 m)). We used online company-recorded data
(Schoell, 1980) to find if any of the boreholes were reported to lack
cemented or cased intervals at depths of fault intersection.We assumed
digital elevationmap (10) as a red solid-line circle (at value 0.5) alongwith the threemost
onalwells drilled by different operators are indicated as described in the legend: operator A
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the faults in Fig. 4 dip at 20–25o (Pohn and Purdy, 1981). This assump-
tion was corroborated for one fault in Terry township where we could
compare our geometric calculations based on the assumed dip (Table
S3) with seismic data (Llewellyn et al., 2015).

Using this geometric analysis (Table S3),we identified 30unconven-
tional wells that are likely to intersect the faults in subregions A and B
(Fig. 1). For 6 of these 30 wells near the most intense hotspot in Fig.
4a, we foundno reports of casing or cementing across thedepth of inter-
section with a fault. Of these, 3 are associated with water samples in
blue areas on Fig. 4a near Granville Summit (see discussion in SI). Al-
though they could be related to problems, the slidingwindow approach
is unlikely to be helpful in pinpointing potentially problematic wells in
such an area where C decreases near gas wells.

This left 3 gas wells, colored green in Fig. 4a, which fulfill two
criteria: i) they are associated with water samples in the red hotspot
and ii) they are not associated with reports of casing or cementing in
the interval of intersection with the Towanda or next most southern
fault (see Table S3: permit numbers 015-20116, 015-21353, 015-
20612). The first and last of these were completed with HVHF before
water sampling. One of the wells is reported to lack intermediate casing
entirely (the middle green well in Fig. 4a (015-20116). For the other
two wells, intermediate casing was not reported to extend to the
depth of the fault. If the production casing in those two wells is
cemented adequately across the fault-borehole intersection, or if man-
agement practices are being utilized to manage the casing pressure,
then those wells are likely not allowing gas migration to aquifers. We
foundno public information to assess these possibilities (Schoell, 1980).

For the hotspot at the southern part of the intersection of Franklin
and Burlington townships, we thus conclude that if any of the uncon-
ventional wells are leaking, the most likely are the wells colored green
on Fig. 4a. In particular, gas could be moving in or along the boreholes
and thenmoving into the fault and travelling updip to emit into ground-
waters to the south. The unconventional wells highlighted by this anal-
ysis have not received well integrity violations from the regulator
(Breiman et al., 1984); therefore, if emission is occurring, it could be
continuing today. For example, the gas well without intermediate cas-
ingwas spudded on 1/13/2009 and completed on5/19/2009. The values
of very slightly highermethane (C N 5000 ppb (n=7))were sampled in
nearby waters between June 2011 and January 2012, 2 to 3 years after
spudding.

We also similarly looked at company data for the very small set of
conventional wells near hotspots in Fig. 4b: four were identified that
do not report casing or cement at depths where they cross a fault
(Table S4). Of thesewells, 3 are abandoned. One of thesewas an orphan
well drilled in 1932. Such older wells may be of particular note since
methane is known to emit from somewells thatwere not completed ac-
cording to modern standards (Kang et al., 2014). Consistent with this, C
weakly correlates with time since drilling of these wells (Table S5, Fig.
S4). Although the number of conventional wells in our target area is
very small, our results point to the need for analysis of such legacy
wells. A relatively large fraction of the ~350,000 oil and gaswells drilled
in Pennsylvania could lack needed casing or cement (Pennsylvania
Department of Environmental Protection, 2011).

4.6. Implications

Using a large publicly available dataset, we showed that methane
concentrations in groundwaters in northeastern PA, C, tend to increase
with proximity to unconventional wells in small subregions (730 anal-
yses in ~100 km2) although they always remain much, much lower
than regulatory recommendations. The correlation with gas wells is
not statistically significant when calculated over a larger region
(~1000 km2)with 1690 analyses. In contrast, C values show a small ten-
dency across the entire region to increase with proximity to conven-
tional wells, as well as to geological faults. Using groundwater datasets
to understand the nature and frequency of methane impacts is thus
characterized by a “Goldilocks” problem: datasets must be large but
not too large since impacts are rare, but the size of the required dataset
is not known before screening. This type problem is not unusual when
analyzing regional environmental data.

To solve such problems of environmental data analysis, we devel-
oped a new “sliding window” technique that allows the researcher to
find rare, localized spatial correlations without making biased or ad
hoc choices. Using the technique we discovered that maps of correla-
tions between C and proximity to gas wells or faults are similar.
Where C appears to increase near gas wells in this study area, we there-
fore concluded that the correlation is mostly explained by the rough
alignment of gas wells along faults where methane naturally emits.
Our purely statistical approach therefore corroborates previous re-
searchers who identified natural emission of methane along faults in
PA (Molofsky et al., 2011; Molofsky et al., 2013; Reese et al., 2014;
Baldassare et al., 2014; Llewellyn, 2014).

However, we also discovered one hotspot where C increases (while
remaining well below regulatory recommendations) near unconven-
tional gas wells and which does not appear on the map for faults. This
map in turn led us to discover that cemented casing may be lacking at
depths where 3 gas wells intersect a large fault near the hotspot.
Hotspots on the correlation map for conventional wells are also cen-
tered near 4 gas wells that lack casing or cement where they intersect
a fault. Three of these gaswells are now abandoned: this may be impor-
tant because we also observed a very weak but significant increase in C
with time since drilling of conventional wells. The fraction of these gas
wells that lack cemented casing across faults and that are associated
with hotspots is much lower for the 132 unconventional (~2%) than
the 15 conventional wells (27%) associated with water analyses.

Further research should target gas wells that are uncased and/or
uncemented where they intersect large faults because our statistical
analysis shows that such boreholes are associated with slightly higher
methane concentrations in a very small number of nearby groundwater
wells. Our statistical approach thus highlights small areas that are rare
and that have very low C values that statistically correlate with very
small numbers of gas wells. A multiple lines of analysis approach
(Molofsky et al., 2011; Breen et al., 2005; Révész et al., 2010) is needed
to determine if gas migration is indeed occurring in the hotspots. Given
the expense of such studies, however, our approach is a significant ad-
vance in that it highlights fundamental controls on methane emission
(faults) while simultaneously pointing investigators toward potential
problems in gas well construction (lack of cement or casing along bore-
holes intersecting faults).

More generally, our study emphasizes the utility of data mining and
the importance of publication of groundwater data in regions of anthro-
pogenic impacts. This is particularly important in cases such as hydrau-
lic fracturing where impacts have created public controversy. New
techniques of data mining, including the novel sliding window tech-
nique used here, are only possible when datasets are large. Such data
mining could also be used for investigation of temporal effects in large
sets of data, an analysis beyond the scope of the currentwork. Datamin-
ing can help scientists evaluate low-frequency environmental issues
that can result in deleterious but localized impacts.

Acknowledgements

This work was funded from a gift to Penn State for the Pennsylvania
State University General Electric Fund for the Center for Collaborative
Research on Intelligent Natural Gas Supply Systems and was funded
by National Science Foundation IIS Award # 1639150. S. Pelepko, W.
Kosmer and J. Lichtinger of the PA DEP are acknowledged for providing
the data to the Shale Network through an agreement facilitated by S.
Perry (PA DEP) with Pennsylvania State University (managed by
S.L.B.). Shale Network is funded by National Science Foundation RCN-
SEES funding (OCE-11-40159) to S.L.B., Penn State, and the Consortium
of Universities for the Advancement of Hydrologic Science, Inc.



30 Z. Li et al. / Journal of Contaminant Hydrology 195 (2016) 23–30
(CUAHSI). Datamanagementwas facilitated by J.Williams, J. Ritzman, L.
Brazil, and P. Grieve. D. Yoxtheimer, G. Llewellyn, T. Engelder, D. Fisher,
M. Arthur, D. Oakley, and R. Slingerland are acknowledged for
discussions.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jconhyd.2016.10.005.

References

American Petroleum Institute, 2009. API Guidance Document HF1: Hydraulic Fracturing
Operations-Well Construction and Integrity Guidelines. Washington DC.

Baldassare, F.J., McCaffrey, M.A., Harper, J.A., 2014. A geochemical context for stray gas in-
vestigations in the northern Appalachian Basin: implications of analyses of natural
gases from Neogene-through Devonian-age strata. AAPG Bull. 98 (2), 341–372.

Berg T, Edmunds W, Geyer A, Glover A, Hoskins D, MacLachlan D, Root S, Sevon W,
Socolow A, & Miles C (1980) Geologic Map of Pennsylvania: Pennsylvania Geological
Survey, 4th Series. (Map).

Brantley, S.L., 2014. Drinking water while fracking: now and in the future. GroundWater
53 (1), 21–23.

Brantley, S.L., Yoxtheimer, D., Arjmand, S., Grieve, P., Vidic, R., Pollak, J., Llewellyn, G.T.,
Abad, J., Simon, C., 2014. Water resource impacts during unconventional shale gas de-
velopment: the Pennsylvania experience. Int. J. Coal Geol. 126, 140–156.

Breen, K.J., Revesz, K., Baldassare, F.J., McAuley, S.D., 2005. Natural gases in ground water
near Tioga junction, Tioga County, north-Central Pennsylvania-occurrence and use of
isotopes to determine origins. Geological Survey (US) 2007 2328-0328.

Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A., 1984. Classification and Regression Trees.
CRC Press.

Davies, R.J., 2011. Methane contamination of drinking water caused by hydraulic fractur-
ing remains unproven. Proc. Natl. Acad. Sci. 108 (43), E871.

Dresel, P.E., Rose, A.W., 2010. Chemistry and origin of oil and gas well brines in western
Pennsylvania. Open-File Report OFOG, p. 01.00.

Faill, R.T., 1998. A geologic history of the north-central Appalachians; part 3, the
Alleghany orogeny. Am. J. Sci. 298 (2), 131–179.

Fink, D., Hochachka,W.M., Zuckerberg, B., Winkler, D.W., Shaby, B., Munson,M.A., Hooker,
G., Riedewald, M., Sheldon, D., Kelling, S., 2010. Spatiotemporal exploratory models
for broad-scale survey data. Ecol. Appl. 20 (8), 2131–2147.

Gorody, A.W., 2012. Factors affecting the variability of stray gas concentration and com-
position in groundwater. Environ. Geosci. 19 (1), 17–31.

Harvey Consulting LLC, 2009. New York State (NYS) Casing Regulation Recommenda-
tions. Report to National Resources Defense Council.

Helsel, D.R., 2011. Statistics for Censored Environmental Data Using Minitab and R. John
Wiley & Sons.

Howarth, R.W., Santoro, R., Ingraffea, A., 2011. Methane and the greenhouse-gas footprint
of natural gas from shale formations. Clim. Chang. 106 (4), 679–690.

Ingraffea, A.R., Wells, M.T., Santoro, R.L., Shonkoff, S.B., 2014. Assessment and risk analysis
of casing and cement impairment in oil and gas wells in Pennsylvania, 2000–2012.
Proc. Natl. Acad. Sci. 111 (30), 10955–10960.

Jackson, R., Osborn, S., Warner, N., Vengosh, A., 2011. Responses to Frequently Asked
Questions and Comments About the Shale-gas Paper by Osborn et al. Center on Glob-
al Climate Change, Duke University, Durham, NC (June 13).

Jackson, R.B., Vengosh, A., Darrah, T.H., Warner, N.R., Down, A., Poreda, R.J., Osborn, S.G.,
Zhao, K., Karr, J.D., 2013a. Increased stray gas abundance in a subset of drinking
water wells near Marcellus shale gas extraction. Proc. Natl. Acad. Sci. 110 (28),
11250–11255.

Kang, M., Kanno, C.M., Reid, M.C., Zhang, X., Mauzerall, D.L., Celia, M.A., Chen, Y., Onstott,
T.C., 2014. Direct measurements of methane emissions from abandoned oil and gas
wells in Pennsylvania. Proc. Natl. Acad. Sci. 111 (51), 18173–18177.

Llewellyn, G.T., 2014. Evidence and mechanisms for Appalachian Basin brine migration
into shallow aquifers in NE Pennsylvania, USA. Hydrogeol. J. 22 (5), 1055–1066.

Llewellyn, G.T., Dorman, F., Westland, J., Yoxtheimer, D., Grieve, P., Sowers, T., Humston-
Fulmer, E., Brantley, S.L., 2015. Evaluating a groundwater supply contamination inci-
dent attributed to Marcellus Shale gas development. Proc. Natl. Acad. Sci. 112 (20),
6325–6330.

Molofsky, L.J., Connor, J.A., Farhat, S.K., Wylie, A.S., Wagner, T., 2011. Methane in Pennsyl-
vania water wells unrelated to Marcellus shale fracturing. Oil & Gas Journal 109 (19),
54.

Molofsky, L.J., Connor, J.A., Wylie, A.S., Wagner, T., Farhat, S.K., 2013. Evaluation of meth-
ane sources in groundwater in northeastern Pennsylvania. Groundwater 51 (3),
333–349.

Murphy, K.P., 2012. Machine Learning: A Probabilistic Perspective. MIT Press.
Osborn, S.G., Vengosh, A., Warner, N.R., Jackson, R.B., 2011. Methane contamination of

drinking water accompanying gas-well drilling and hydraulic fracturing. Proceedings
of the National Academy of Sciences 108 (20), 8172–8176.

Pennsylvania Department of Environmental Protection, 2011. Oil and Gas Well Drilling
and Production in Pennsylvania.

Pohn, H., Purdy, T.L., 1981. A major (?) thrust fault at Towanda, Pennsylvania: an example
of faulting with some speculation on the structure of the Allegheny Plateau. Geology
of Tioga and Bradford Counties,Pennsylvania. Guidebook for the 46th Annual. Field
Conference of Pennsylvania Geologists, Harrisburg, Bureau of Topographic and Geo-
logic Survey, pp. 45–56.

Poth, C.W., 1962. The occurrence of brine in western Pennsylvania. Pennsylvania Geolog-
ical Survey Bulletin M47, 1–53.

Reese, S.O., Negoba, V.V., Pelelpko, S., Kosmer, W.J., Beattie, S., 2014. Groundwater and pe-
troleum resources of Sullivan County, Pennsylvania, Water Resource Report 71. In:
Resources D.o.C.a.N. (Ed.), Pennsylvania Geological Survey.

Révész, K.M., Breen, K.J., Baldassare, A.J., Burruss, R.C., 2010. Carbon and hydrogen isotopic
evidence for the origin of combustible gases in water-supply wells in north-central
Pennsylvania. Appl. Geochem. 25 (12), 1845–1859.

Schoell, M., 1980. The hydrogen and carbon isotopic composition of methane from natu-
ral gases of various origins. Geochim. Cosmochim. Acta 44, 649–661.

Schon, S.C., 2011. Hydraulic fracturing not responsible for methane migration. Proc. Natl.
Acad. Sci. 108 (37), E664.

Shale Network (2015). doi:10.4211/his-data-shalenetwork.
Siegel, D.I., Azzolina, N.A., Smith, B.J., Perry, A.E., Bothun, R.L., 2015. Methane concentra-

tions in water wells unrelated to proximity to existing oil and gas wells in northeast-
ern Pennsylvania. Environmental Science & Technology 49 (7), 4106–4112.

U.S. Energy Information Administration, 2014. Annual Energy Outlook, DOE/EIA-0383.
Vidic, R., Brantley, S., Vandenbossche, J., Yoxtheimer, D., Abad, J., 2013a. Impact of shale

gas development on regional water quality. Science 340 (6134), 1235009.
Vidic, R.D., Brantley, S.L., Vandenbossche, J.M., Yoxtheimer, D., Abad, J.D., 2013b. Impact of

shale gas development on regional water quality. Science 340, 826 (810.1126/
science.1235009).

Warner, N.R., Jackson, R.B., Darrah, T.H., Osborn, S.G., Down, A., Zhao, K., White, A.,
Vengosh, A., 2012. Geochemical evidence for possible natural migration of Marcellus
Formation brine to shallow aquifers in Pennsylvania. Proc. Natl. Acad. Sci. 109 (30),
11961–11966.

Woodrow, D.L., 1968. Stratigraphy, structure, and sedimentary patterns in the upper De-
vonian of Bradford county, Pennsylvania. Bureau of Topographic Geologic Survey,
General Geology Report.


