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Abstract Using the notion of multivariate lower set interpolation, we construct nodal
basis functions for the serendipity family of finite elements, of any order and any
dimension. For the purpose of computation, we also show how to express these func-
tions as linear combinations of tensor-product polynomials.
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1 Introduction

The serendipity family of C0 finite elements is commonly used on cubical and paral-
lelepiped meshes in two and three dimensions as a means to reduce the computational
effort required by tensor-product elements. The number of basis functions of a tensor-
product element of order r in n dimensions is (r +1)n , while for a serendipity element
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it is asymptotically ∼ rn/n! for large r , which represents a reduction of 50% in 2D
and 83% in 3D. In this paper, we construct basis functions for serendipity elements of
any order r ≥ 1 in any number of dimensions n ≥ 1 that are interpolatory at specified
nodes and can be written as linear combinations of tensor-product polynomials (see
Eq. (21)). The benefits and novelty of our approach are summarized as follows:

– Flexible node positioning. Our approach constructs nodal basis functions for any
arrangement of points on the n-cube that respects the requisite association of
degrees of freedomwith subfaces. In particular, we allow a symmetric arrangement
of points that remains invariant under the symmetries of the n-cube.

– Tensor-product decomposition. The basis functions we define can be written as
linear combinations of standard tensor-product basis functions, with coefficients
prescribed by a simple formula based on the geometry of a lower set of points
associated with superlinear monomials.

– Dimensional nesting. The restriction of our basis functions for a n-cube to one of
its s-dimensional faces coincides with the definition of our basis functions for an
s-cube.

Serendipity elements have appeared in various mathematical and engineering texts,
typically for small n such as n = 2 and n = 3, and for small r (see [2,4,9,10,12,
14,17,18,20]). A common choice for the basis functions is a nodal (Lagrange) basis,
which is an approach that has also been studied in the approximation theory literature.
For example, Delvos [6] applied his ‘Boolean interpolation’ to construct a nodal basis
for the case n = 3 and r = 4. Other bases have been considered, such as products of
univariate Legendre polynomials, as in the work of Szabó and Babuška [18].

It was relatively recently that the serendipity spaces were chacterized precisely for
arbitrary n and r , by Arnold and Awanou [1]. They derived the polynomial space
and its dimension and also constructed a unisolvent set of degrees of freedom to
determine an element uniquely. For the n-dimensional cube I n , with I = [−1, 1],
they defined the serendipity spaceSr (I n) as the linear space of n-variate polynomials
whose superlinear degree is at most r . The superlinear degree of a monomial is its
total degree, less the number of variables appearing only linearly in the monomial.
For a face f of I n of dimension d ≥ 1, the degrees of freedom proposed in [1] for a
scalar function u are of the form

u �−→
∫
f
uq, (1)

for q among some basis ofPr−2d( f ). Here,Ps( f ) is the space of restrictions to f of
Ps(I n), the space of n-variate polynomials of degree ≤ s. These degrees of freedom
were shown to be unisolvent by a hierarchical approach through the n dimensions:
The degrees of freedom at the vertices of I n are determined first (by evaluation),
then the degrees of freedom on the one-dimensional faces (edges), then those on the
two-dimensional faces, etc., finishing with those in the interior of I n .

The approach of [1] has the advantage that the degrees of freedom on any face f of
any dimension d can be chosen independently of those on another face, of the same
or of different dimension. Implementing a finite element method using these degrees
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of freedom, however, requires a set of ‘local basis functions’ that are associated with
the integral degrees of freedom in some standardized fashion. The lack of simple
nodal basis functions for this purpose has limited the broader use and awareness of
serendipity elements.

The purpose of this paper is to show that by applying the notion of lower set
interpolation in approximation theory and choosing an appropriate Cartesian grid in
I n , a nodal basis can indeed be constructed for the serendipity space Sr (I n) for any
n and r . The interpolation nodes are a subset of the points in the grid. The restrictions
of the basis functions to any d-dimensional face are themselves basis functions of the
same type for a d-cube, yielding C0 continuity between adjacent elements.

If we keep all the nodes distinct, it is not possible to arrange them in a completely
symmetric way for r ≥ 5. However, lower set interpolation also applies to derivative
data, and by collapsing interior grid coordinates to the midpoint of I , we obtain a
Hermite-type basis of functions that are determined purely by symmetric interpolation
conditions for all n and r .

Lower set interpolation can also be expressed as a linear combination of tensor-
product interpolants on rectangular subsets of the nodes involved [7]. We derive an
explicit formula for the coefficients in the serendipity case, which could be used for
evaluation of the basis functions and their derivatives.

2 Interpolation on Lower Sets

A multi-index of n nonnegative integers will be denoted by

α = (α1, α2, . . . , αn) ∈ N
n
0 .

For each j = 1, . . . , n, choose grid coordinates x j,k ∈ R for all k ∈ N0, not necessarily
distinct. These coordinates determine the grid points

xα := (x1,α1 , x2,α2 , . . . , xn,αn ) ∈ R
n, α ∈ N

n
0 . (2)

The left multiplicity of α ∈ N
n
0 with respect to the x j,k is defined to be the multi-index

ρ(α) := (ρ1(α), . . . , ρn(α)) ∈ N
n
0,

where
ρ j (α) := #{k < α j : x j,k = x j,α j }. (3)

Thus ρ j (α) is the number of coordinates in the sequence x j,0, x j,1, . . . , x j,α j−1 that
are equal to x j,α j . For each α ∈ N

n
0, we associate a linear functional λα as follows.

Given any u : Rn → R, defined with sufficiently many derivatives in a neighborhood
of xα , let

λαu := Dρ(α)u(xα).
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We call a finite set L ⊂ N
n
0 a lower set if α ∈ L and μ ≤ α imply μ ∈ L . The partial

ordering μ ≤ α means μ j ≤ α j for all j = 1, . . . , d. We associate with L the linear
space of polynomials

P(L) = span{xα : α ∈ L}, (4)

where
xα := xα1

1 . . . xαn
n , (5)

for any point x = (x1, . . . , xn) ∈ R
n .

Polynomial interpolation on lower sets has been studied in [3,5–8,11,13,15,16,19],
and the following theorem has been established in various special cases by several
authors.

Theorem 1 For any lower set L ⊂ N
n
0 and a sufficiently smooth function u : Rn → R,

there is a unique polynomial p ∈ P(L) that interpolates u in the sense that

λα p = λαu, α ∈ L . (6)

The theorem leads to a basis of P(L) with the basis function φα ∈ P(L), α ∈ L ,
defined by

λα′φα = δα,α′ , α ∈ L , (7)

where δα,α′ is 1 if α = α′ and 0 otherwise. We can then express p as

p(x) =
∑
α∈L

φα(x)λαu.

3 Serendipity Spaces

The serendipity spaceSr (I n) can be described and partitioned using the language of
lower sets. The standard norm for a multi-index α ∈ N

n
0 is

|α| :=
n∑
j=1

α j ,

which is the degree of the monomial xα in (5). We will define the superlinear norm
of α to be

|α|′ :=
n∑
j=1

α j≥2

α j ,

which is the ‘superlinear’ degree of xα from [1]. Using this, we define, for any r ≥ 1,

Sr := {
α ∈ N

n
0 : |α|′ ≤ r

}
. (8)
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Observe that Sr is a lower set since |α|′ ≤ |β|′ whenever α ≤ β. Recalling (4), we let
Sr = P(Sr ), which coincides with the definition of Sr in [1].

We now partition Sr and hence Sr (I n), with respect to the faces of I n . We can
index these faces using a multi-index β ∈ {0, 1, 2}n . For each such β, we define the
face

fβ = I1,β1 × I2,β2 × · · · × In,βn ,

where

I j,β j :=

⎧⎪⎨
⎪⎩

−1, β j = 0;
1, β j = 1;
(−1, 1), β j = 2.

(9)

Since I can be written as the disjoint union I = {−1} ∪ {1} ∪ (−1, 1), we see that I n

can be written as the disjoint union

I n =
⋃

β∈{0,1,2}n
fβ.

Hence, there are 3n faces of all dimensions. The dimension of the face fβ is

dim fβ = #{ j : β j = 2},

and the number of faces of dimension d is

#
{
fβ ⊆ I n : dim fβ = d

} = 2n−d
(
n

d

)
. (10)

The 2n vertices of I n correspond to β ∈ {0, 1}n , the 2n−1n edges correspond to β

with exactly one entry equal to 2, and so forth, up to the single n-face, f(2,2,...,2), the
interior of I n . To partition Sr according to these faces, write Sr as the disjoint union

Sr =
⋃

β∈{0,1,2}n
Sr,β , (11)

where

Sr,β = {
α ∈ Sr : min(α j , 2) = β j , for j = 1, . . . , n

}
.

We use this partition to compute the dimension of Sr and confirm that it agrees with
the dimension of Sr given in [1]. Fix β ∈ {0, 1, 2}n and let d = dim fβ . Letting N2
denote natural numbers ≥ 2, we see that

#Sr,β = #
{
α ∈ N

d
2 : |α| ≤ r} = #{α ∈ N

d
0 : |α| ≤ r − 2d

}
.
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Fig. 1 For n = 2, the geometry of the lower set Sr is shown for r = 2, 3, . . . , 7. Treating each figure as
a set of unit squares with the lower left corner at the origin in R

2, the corners of each square indicate the
points of N2

0 that belong to Sr

Therefore,

#Sr,β =
{(r−d

d

)
, r ≥ 2d;

0, otherwise.
(12)

Using (10), we thus find

#Sr =
n∑

d=0

2n−d
(
n

d

)
#Sr,β =

min(n,�r/2
)∑
d=0

2n−d
(
n

d

)(
r − d

d

)
,

which is the formula for dimSr in [1, Equation (2.1)]. A table of values of dimSr

for small values of n and r is given in [1]. Figures 1 and 2 show the set Sr for
r = 2, 3, . . . , 7 in 2D and 3D, respectively.

4 Basis Functions

We now apply Theorem 1 to the lower set L = Sr to construct a nodal basis for
Sr (I n) for arbitrary r, n ≥ 1. To do this, we choose the grid coordinates x j,k, j =
1, . . . , n, k = 0, . . . , r , in a manner that respects the indexing of the faces of I n .
Suppose that for j = 1, . . . , n,

x j,0 = −1 and x j,1 = 1,

and

x j,k ∈ (−1, 1), k = 2, . . . , r,

(not necessarily distinct). Then, for eachβ ∈ {0, 1, 2}n , xα ∈ fβ if and only ifα ∈ Sr,β .
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Fig. 2 For n = 3, the geometry of the lower set Sr is shown for r = 2, 3, . . . , 7. Treating each figure as
a set of unit cubes based at the origin and viewed from first octant in R3, the corners of each cube indicate
the points of N3

0 that belong to Sr

Suppose further that the grid coordinates x j,k, k = 2, . . . , r , are distinct. In this
case, the interpolation conditions of Theorem 1 are of Lagrange type:

p(xα) = u(xα), α ∈ Sr , (13)

giving the basis {φα : α ∈ Sr } forSr (I n) defined by

φα(xα′) = δα,α′ , α, α′ ∈ Sr .

Weconsider two choices of such distinct coordinates. The first choice is to distribute
them uniformly in I in increasing order:

x j,k = −1 + 2(k − 1)

r
, k = 2, . . . , r, (14)

as illustrated in Fig. 3a. This configuration of nodes is, however, only symmetric for
r ≤ 3. Next, to obtain a more symmetric configuration, we reorder the interior grid
coordinates in such a way that they are closer to the middle of I :

x j,r−2s = 1 − 2(s + 1)

r
, s = 0, 1, 2, . . . , �(r − 2)/2
,

x j,r−2s−1 = −1 + 2(s + 1)

r
, s = 0, 1, 2, . . . , �(r − 3)/2
. (15)

as illustrated in Fig. 3b. This yields a symmetric configuration for r ≤ 4, but not for
r ≥ 5. This lack of symmetry motivates the third choice of letting all interior grid
coordinates coalesce to the midpoint of I , i.e.,
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(a) (b) (c)

Fig. 3 Three choices of x j,k , 2 ≤ k ≤ 5, for n = 2, r = 5. The first two choices are Lagrange-like, while
the third is Hermite-like

x j,k = 0, k = 2, . . . , r, (16)

as indicated in Fig. 3c. This gives interpolation conditions that are symmetric for all
n and r , but the trade-off is that these conditions are now of Hermite type rather than
Lagrange. In this Hermite case, all the points xα in the face fβ are equal to the mipoint
of that face, which we denote by yβ . The interpolation conditions of Theorem 1 then
become

Dρ p(yβ) = Dρu(yβ), β ∈ {0, 1, 2}n, ρ ∈ Kr,β , (17)

where
Kr,β := {

ρ ∈ N
n
0 : |ρ| ≤ r − 2d with ρ j = 0 if β j < 2

}
. (18)

Thus, p can be expressed as

p(x) =
∑

β∈{0,1,2}n

∑
ρ∈Kr,β

Dρu(yβ)φβ,ρ(x),

where

{
φβ,ρ : β ∈ {0, 1, 2}n, ρ ∈ Kr,β

}

is a basis forSr defined by

Dρ′
φβ,ρ(yβ ′) = δβ,β ′δρ,ρ′ , for any β ′ ∈ {0, 1, 2}n, ρ′ ∈ Kr,β .

Figure 4 illustrates these interpolation conditions for r = 2 through r = 5 in the case
n = 3.

5 Tensor-Product Formula

In this last section, we explain how the interpolant can be expressed as a linear combi-
nation of tensor-product interpolants over various rectangular subgrids of the overall
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Fig. 4 Hermite-like interpolation conditions in 3D for r = 2, 3, 4, 5. A dot indicates that a basis function
will interpolate the value of the function at that location. A dot on an edge enclosed by � sets of parentheses
indicates that basis functions will interpolate each partial derivative along the edge at the location of the
dot, up to order �. A dot in the interior enclosed by � circles indicates that basis functions will interpolate
all partial derivatives at the location of dot, up to total order �

grid. This applies also to the basis functions and so gives a simple method of evalu-
ating these functions and their derivatives. To do this, we apply the formula recently
obtained in [7]. Suppose again that L ⊂ N

n
0 is any lower set as in Sect. 2 and consider

the interpolant p to u in Theorem 1. For any α ∈ L , define the rectangular block

Bα = {
μ ∈ N

n
0 : μ ≤ α

}

and let pα ∈ P(Bα) denote the tensor-product interpolant to u satisfying the interpo-
lation conditions (6) for μ ∈ Bα . Further, let χ(L) : Nn

0 → {0, 1} be the characteristic
function defined by

χ(L)(α) =
{
1 if α ∈ L;
0 otherwise.
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It was shown in [7] that
p =

∑
α∈L

cα pα, (19)

where
cα =

∑
ε∈{0,1}n

(−1)|ε|χ(L)(α + ε), α ∈ L . (20)

This in turn gives a formula for each basis function φβ ∈ P(L), i.e.,

φβ(x) =
∑
α∈L
α≥β

cαφβ,α, (21)

where φβ,α ∈ P(Bα) denotes the tensor-product basis function associated with the
index β, defined by

λβ ′φβ,α = δβ,β ′ , β ∈ Bα.

For a general lower set L , many of the integer coefficients cα are zero, and so in order
to apply (19) to evaluate p, we need to determine which of the cα are nonzero, and
to find their values. With L = Sr , we could do this in practice by implementing the
formula (20). However, we will derive a specific formula for the cα . We call α ∈ L a
boundary point of L if α + 1n /∈ L , where 1n = (1, 1, . . . , 1) ∈ N

n
0. Let ∂L denote

the set of boundary points of L . As observed in [7], if α is not a boundary point, then
cα = 0.

Consider now the formula (19) when L = Sr . Note that |α|′ is a symmetric function
of α: It is unchanged if we swap α j and αi for i �= j . It follows that χ(Sr )(α) is also
symmetric in α, and therefore, cα is also symmetric in α. We can thus determine the
boundary points α ∈ ∂Sr and their coefficients cα according to how many zeros and
ones α contains. For any α ∈ N

n
0 letmi (α) denote the multiplicity of the integer i ≥ 0

in (α1, . . . , αn), i.e.,

mi (α) = #{α j = i}.

Lemma 1 If α ∈ ∂Sr and m0(α) ≥ 1 then cα = 0.

Proof By the symmetry of cα , we may assume that α1 = 0, and from (20), we can
express cα as

cα =
∑

ε∈{0}×{0,1}n−1

(−1)|ε|
(
χ(Sr )(α + ε) − χ(Sr )(α + e1 + ε)

)
,

where e1 = (1, 0, . . . , 0) ∈ N
n
0. Since α1 = 0, both

(α + ε)1 ≤ 1 and (α + e1 + ε)1 ≤ 1,
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and so

|α + ε|′ = |α + e1 + ε|′,

and therefore,

χ(Sr )(α + ε) = χ(Sr )(α + e1 + ε),

and so cα = 0. ��
In view of Lemma 1, we need only to consider points α ∈ ∂Sr ∩ N

n
1.

Lemma 2 Let α ∈ Sr ∩ N
n
1 and m1 = m1(α). Then α ∈ ∂Sr if and only if

|α|′ > r − (n + m1).

Proof By the definition of Sr , α ∈ ∂Sr if and only if |α + 1n|′ > r . Since α ∈ N
n
1,

#{α j ≥ 2} = n − m1,

and we find

|α + 1n|′ = 2m1 + |α|′ + (n − m1) = |α|′ + n + m1,

which proves the result. ��
In view of Lemma 2, we need only consider points α ∈ N

n
1 such that

|α|′ = r − k, k = 0, 1, . . . , n + m − 1, (22)

where m = m1(α).

Theorem 2 Let α ∈ N
n
1 be as in (22). If m < n then

cα = cm,k :=
m∑
i=0

(−1)k+i
(
m

i

)(
n − m − 1

k − 2i

)
, (23)

with the convention that
( l
j

) = 0 if j < 0 or j > l.

Proof Let ε ∈ {0, 1}n , and let

i1 = #{ j : ε j = 1 and α j = 1},
i2 = #{ j : ε j = 1 and α j ≥ 2}.

Then

|α + ε|′ = |α|′ + 2i1 + i2,
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Table 1 Coefficients cm,k for
n = 1, 2, 3, 4

n m k
0 1 2 3 4 5 6

1 0 1

2 0 1 −1

1 1 0 −1

3 0 1 −2 1

1 1 −1 −1 1

2 1 0 −2 0 1

4 0 1 −3 3 −1

1 1 −2 0 2 −1

2 1 −1 −2 2 1 −1

3 1 0 −3 0 3 0 −1

and so α + ε ∈ Sr if and only if

|α|′ + 2i1 + i2 ≤ r,

or, equivalently,

2i1 + i2 ≤ k.

Since the number of ways of choosing i1 elements among m is
(m
i1

)
, and the number

of ways of choosing i2 elements among n − m is
(n−m

i2

)
, the sum in (20) reduces to

cα =
m∑

i1=0

k−2i1∑
i2=0

(−1)i1+i2

(
m

i1

)(
n − m

i2

)
.

Since

k−2i1∑
i2=0

(−1)i2
(
n − m

i2

)
= (−1)k−2i1

(
n − m − 1

k − 2i1

)
,

we obtain (23). ��
Table 1 shows the values of the coefficients cm,k for n = 1, 2, 3, 4. Finally, we need

to consider the possibility that m = n in (22), in which case the formula (23) is no
longer valid, and we must treat this situation separately. In this case α = 1n and we
can again find cα from (20). Since

|1n + 1n|′ = |2n|′ = 2n,

we see that 1n ∈ ∂Sr if and only if r < 2n.
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Theorem 3 Suppose that r < 2n. Then

c1n = (−1)�r/2

(
n − 1

�r/2

)

. (24)

Proof For any ε ∈ {0, 1}n ,

|1n + ε|′ = 2|ε|,

and so (20) gives

c1n =
∑

ε∈{0,1}n
2|ε|≤r

(−1)|ε| =
�r/2
∑
i=0

(
n

i

)
(−1)i

which gives (24). ��

We now consider examples of the use of Theorems 2 and 3, and let pr denote the
interpolant p in Theorem 1 when L = Sr .

5.1 2D Case

For n = 2, Theorems 2 and 3 give

p1 = p11,

p2 = p21 + p12 − p11,

p3 = p31 + p13 − p11,

p4 = p41 + p14 + p22 − (p21 + p12),

p5 = p51 + p15 + p32 + p23 − (p31 + p31 + p22).

Figure 5 shows the polynomials in S5 in the formula for p5, with black if cα = 1 and
white if cα = −1. Figure 6 depicts the polynomials in the same formula, based on the
Hermite interpolation conditions (16).

5.2 3D Case

For n = 3, to simplify the formulas, let

qα :=
∑

α′∈π(α)

pα′ ,
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Fig. 5 The geometry of S5 for n = 2 is shown (see Fig. 1) with an indication of which blocks within the set
contribute to the representation of the serendipity interpolant p5 as a linear combination of tensor-product
interpolants. A block with a filled dot in the upper right corner contributes to coefficient +1, while a block
with an empty dot in the upper right corner contributes to coefficient −1

+ + +

− − − =

Fig. 6 A visual depiction of the the formula for p5 in the Hermite case

with π(α) denoting all permutations of α = (α1, α2, α3), so that, for example,

q111 := p111,

q112 := p112 + p121 + p211,

q123 := p123 + p132 + p213 + p231 + p312 + p323,

etc. Then, Theorems 2 and 3 give

p1 = q111,

p2 = q112 − 2q111,

p3 = q113 − 2q111,

p4 = q122 + (q114 − 2q112) + q111,

p5 = (q123 − q122) + (q115 − 2q113) + q111.

Wenote thatDelvos [6] found a nodal basis for p4, n = 3, using hismethod of ‘Boolean
interpolation.’ That method is not, however, general enough to give the formulas for pr
with r ≥ 5, n = 3.Now thatwe have provided a generalized approach to defining nodal
bases for serendipity elements, it remains to be studiedwhether certain arrangements of
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the grid coordinates x j,k provide advantages in specific application contexts. Suitable
preconditioners associated with these bases may also be needed.
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