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CONSTRUCTIONS OF SOME MINIMAL FINITE ELEMENT SYSTEMS
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Abstract. Within the framework of finite element systems, we show how spaces of differential forms
may be constructed, in such a way that they are equipped with commuting interpolators and contain
prescribed functions, and are minimal under these constraints. We show how various known mixed
finite element spaces fulfill such a design principle, including trimmed polynomial differential forms,
serendipity elements and TNT elements. We also comment on virtual element methods and provide
a dimension formula for minimal compatible finite element systems containing polynomials of a given
degree on hypercubes.
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1. Introduction

A framework of finite element systems (FES) has been developed, in [8, 9, 12, 13] to construct mixed finite
elements, generalizing those of [6,17,18]. Cast in the language of differential forms, following [2,3,7,16], it allows
for polyhedral meshes and non-polynomial differential forms.

A minimal compatible FES (mcFES) has three key properties: it is compatible, it contains certain prescribed
functions, and it has the smallest dimension among all possible finite element systems with these properties. Each
property relates to a practical computational purpose: compatibility is used for the design of provably stable
mixed methods, function containment is used for estimation of approximation error, and dimension minimality
is used to maximize computational efficiency.

In this paper, we do the following:

• In Section 2, we recall the main concepts of FES. We also illustrate them with some comments on the mixed
Virtual Element Method [5].

• In Section 3, we show how the dimension of a mcFES can be computed in terms of certain cohomology groups
and how a mcFES that contains a given set of functions can be constructed, within a larger compatible FES.
These results were announced, mostly in French and without proofs, in [10].

• In Section 4, we apply this analysis and construction process to show that:
(i) the trimmed polynomial spaces P−

r Λk, defined in [16], form a mcFES containing Pr−1Λ
k on simplices;

(ii) the serendipity spaces SrΛ
k, defined in [1], form a mcFES containing Pr−kΛk on hypercubes;
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(iii) the TNT elements, defined in [15], form a mcFES containing QrΛ
k on hypercubes;

(iv) the dimension of a mcFES on hypercubes that contains PrΛ
k can be given in closed form.

2. Background on finite element systems

The notion of finite element systems is presented in detail in [8, 9, 12, 13] so we will only recall the main
definitions and key results that are most relevant to this paper.

A cellular complex is a collection T of cells T , where each cell is either a singleton or homeomorphic to the
unit ball of some Euclidean space. The cells are subject to some gluing conditions that make them into a regular
CW complex, but where topologists use continuous maps for these conditions, we require the maps to be at
least Lipschitz continuous. We stress that in the collection T , cells of all dimensions are included. Typically,
they are taken to be flat-faced polytopes, all sitting in some given R

n, but this is not necessary for the theory
to hold (see [12], Def. 2.1) for details.

Given a cellular complex T , a finite element system is defined as in ([12], Def. 2.2). If T is a cell in a cellular
complex T , we denote by Ek(T ) the set of k-forms on T with the following property: for any T ′ ∈ T included
in T (including T itself), the pullback of the form to T ′ is in L2(T ′) and has its exterior derivative in L2(T ′).

An element system on T , is a family of closed subspaces Ek(T ) ⊆ Ek(T ), one for each k ∈ N and each T ∈ T ,
subject to the following requirements:

• The exterior derivative should induce maps:

d : Ek(T ) → Ek+1(T ). (2.1)

• If T ′ ⊆ T are two cells in T and iTT ′ : T ′ → T denotes the canonical injection, then pullback by iTT ′ should
induce a map:

i�TT ′ : Ek(T ) → Ek(T ′). (2.2)

For instance the spaces Ek(T ) constitute an element system. A finite element system (FES) is one in which all
the spaces are finite dimensional.

We define Ek(T ) as follows :

Ek(T ) = {u ∈
⊕
T∈T

Ek(T ) : ∀T, T ′ ∈ T T ′ ⊆ T ⇒ uT |T ′ = uT ′}. (2.3)

In this definition, which can be interpreted as encoding a continuity property of differential forms, uT |T ′ denotes
the pullback of uT to T ′ by the inclusion map.

Not all finite element systems yield good spaces Ek(T ). As in ([12], Def. 2.3), we consider the following two
conditions on an element system E on a cellular complex T :

• Extensions. For each T ∈ T and k ∈ N, the restriction operator (pullback to the boundary) Ek(T ) → Ek(∂T )
is onto. The kernel of this map is denoted Ek

0 (T ).
• Local exactness. The following sequence is exact for each T ∈ T :

0 �� R �� E0(T ) d �� E1(T ) d �� · · · d �� EdimT (T ) �� 0. (2.4)

The second arrow sends an element of R to the constant function on T taking this value.

We will say that an element system admits extensions if the first condition holds, is locally exact if the second
condition holds and is compatible if both hold.

In [12], Proposition 2.6, it is shown that for finite element systems admitting extensions, local exactness is
equivalent to the combination of the following properties:

• For each T ∈ T , E0(T ) contains the constant functions.
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• For each T ∈ T , the following sequence (with boundary condition) is exact:

0 �� E0
0 (T ) �� E1

0 (T ) �� · · · �� EdimT (T ) �� R �� 0. (2.5)

The second to last arrow is integration.

We take it for granted that a good finite element method consists of defining a compatible finite element
system that contains certain prescribed functions and with which one can somehow compute. That we want a
compatible finite element system is justified for instance in ([12], Sect. 2.4), where the underlying conditions are
related to the existence of degrees of freedom and commuting interpolators, the main tools of analysis of mixed
methods. Typically, one would also want the finite element system to contain polynomials of a certain degree,
to ensure corresponding best approximation properties in Sobolev spaces. We also remark that in some cases it
is more desirable to contain certain exponentials [11, 14].

As was already the case in [8], one of the basic tools of our constructions is harmonic extension:

Proposition 2.1. Suppose E is a FES where each Ek(T ) is equipped with a scalar product, denoted a. We
suppose that T is a cell such that (2.5) is exact. For each α ∈ R there is a unique u in EdimT (T ) such that:

∫
T

u = α and ∀v ∈ EdimT−1
0 (T ) a(u, dv) = 0. (2.6)

Fix k < dim T . Any u ∈ Ek(∂T ) that has an extension in Ek(T ), has a unique extension in Ek(T ) such that:

∀v ∈ Ek
0 (T ) a(du, dv) = 0 and ∀v ∈ Ek−1

0 (T ) a(u, dv) = 0. (2.7)

An element u of Ek(T ) such that (2.7) holds will be called E-harmonic. The proposition above asserts that
elements having an extension have a unique E-harmonic extension. Orthogonality with respect to a will be
denoted ⊥, so that (2.7) can also be written:

du ⊥ dEk
0 (T ) and u ⊥ dEk−1

0 (T ). (2.8)

We are also interested in dimension counts, so we recall ([12], Prop. 2.1):

Proposition 2.2. Let E be a FES on a cellular complex T . Then:

• We have:
dim Ek(T ) ≤

∑
T∈T

dim Ek
0 (T ). (2.9)

• Equality holds in (2.9) if and only if E admits extensions for k-forms on each T ∈ T .

Finally we recall some results on tensor products, following [9, 13].
Suppose U and V are cellular complexes, equipped with FES systems B and C, respectively. Consider the

product cellular complex:
T = {U × V : U ∈ U and V ∈ V}. (2.10)

For U ∈ U and V ∈ V , define spaces Ak(U × V ) by:

Ak(U × V ) = {p�
Uu ∧ p�

V v : u ∈ Bl(U), v ∈ Ck−l(V ), 0 ≤ l ≤ k}, (2.11)

where pU : U × V → U and pV : U × V → V are the canonical projections.
One checks that A is a FES on T , and we call it the tensor product of B and C. This name is motivated by

the fact that the formula:
u ⊗ v = p�

Uu ∧ p�
V v (2.12)
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indeed defines a tensor product. Then (2.11) can be written in compact form:

A•(U × V ) = B•(U) ⊗ C•(V ). (2.13)

One recognizes a tensor product of graded spaces.
The important result is:

Proposition 2.3. The tensor product construction satisfies:

• If B and C admit extensions, then so does A.
• If B and C are locally exact, then so is A.
• If B and C are compatible, then so is A.

These facts were proved in [9] and with some simplifications in [13]. It is possible to simplify the proof of the
first bullet point further by using the only if part of Proposition 2.2.

2.1. Comments on virtual element methods

The Virtual Element Method is presented for scalar function spaces in [4]. It has recently been extended to
the mixed setting, producing H(curl) and H(div) conforming spaces [5]. As we see it, the mixed virtual element
method does essentially two things: it defines a finite element system and it provides a way of computing with it,
that avoids reconstructing all the basis functions from the degrees of freedom. As an illustration of the methods
of FES, we provide some details on the first point. The second point however, we leave open.

The constructions of [8] were based on a notion of harmonic extension for differential forms (both continuous
and discrete). Canonical degrees of freedom for compatible FES can be defined, as in projection based interpo-
lation, by non-homogeneous harmonic extensions – see ([9], Prop. 3.23 and [13], Prop. 5.44). As we shall see,
the mixed VEM spaces are defined by a similar technique.

Lemma 2.4. Let T be a cell of dimension n.

• Fix k < n. Choose f ∈ L2Λk(T ) and g ∈ L2Λk−1(T ). The system, with unknown u ∈ Ek
0(T ):

d�du = f, (2.14)

d�u = g. (2.15)

has a solution if and only if d�f = 0 and d�g = 0. In this case the solution is unique.
• The case k = n. Fix f ∈ R and g ∈ L2Λk−1(T ). The system, with unknown u ∈ Ek(T ):

∫
u = f, (2.16)

d�u = g, (2.17)

has a solution if and only if d�g = 0. In this case the solution is unique.

Proof. Left to the reader. �

Consider now a cellular complex T . We suppose we have, for each integer k and cell T ∈ T , with k < dim T ,
a finite dimensional subspace Zk(T ) of L2Λk(T ), whose elements g satisfy d�g = 0. For k = dimT , we put
Zk(T ) = 0 and note that for u ∈ L2Λk(T ) we have d�du = 0. We define:

Ak(T ) = {u ∈ Ek(T ) : ∀ T ′ � T d�du|T ′ ∈ Zk(T ′) and d�u|T ′ ∈ Zk−1(T ′)}, (2.18)

where T ′ � T indicates that T ′ is a face of T .
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Proposition 2.5. The above defined spaces Ak(T ) constitute a compatible finite element system and for k <
dim T :

dim Ak
0(T ) = dimZk(T ) + dim Zk−1(T ), (2.19)

whereas for k = dim T :
dim Ak

0(T ) = 1 + dimZk−1(T ). (2.20)

Proof. The definition of Ak(T ) ensures that it is an element system. The technique of harmonic extension shows
that A has the extension property. The local exactness in the form (2.5) is also trivial to check. Thus A defines
a compatible element system. The dimension counts follow from Lemma 2.4. �

There are several variants of mixed VEM, but the main one seems to correspond to the following choice of Z.
We suppose that each cell is flat, so that polynomials are well defined objects. Fix r ≥ 1 and put, for k < dim T .

Zk(T ) = {f ∈ Pr−1Λ
k(T ) : d�f = 0}. (2.21)

Then A, defined as above, is a compatible FES by the preceding proposition, and Ak(T ) contains polynomial
k-forms of degree r. There is a notion of degrees of freedom for FES. Since it is rather intuitive we omit the
definition; details can be found in ([12], Sect. 2.4).

Proposition 2.6. For any integer k and cell T of dimension n, consider the linear forms, defined on k-forms by:

u �→
∫

u ∧ v, (2.22)

for some v ∈ P−
r Λn−k(T ).

These linear forms constitute unisolvent degrees of freedom on the FES A.

Proof. Let � denote the Hodge star operator. We notice that u ∈ Pr−1Λ
k(T ) iff �u ∈ Pr−1Λ

n−k(T ). Moreover,
for such u we have:

d�u = 0 ⇐⇒ d�u = 0. (2.23)

Therefore, for k < dim T = n (recalling [3], Thm. 5.4):

dim Zk(T ) = dim{u ∈ Pr−1Λ
n−k(T ) : du = 0}, (2.24)

= dim{u ∈ P−
r Λn−k(T ) : du = 0}. (2.25)

We also have:

dim Zk−1(T ) = dim{u ∈ Pr−1Λ
n−k+1(T ) : du = 0}, (2.26)

= dim{dv : v ∈ P−
r Λn−k(T )}. (2.27)

It follows that:
dim Zk(T ) + dimZk−1(T ) = dimP−

r Λn−k(T ). (2.28)

In the case k = dim T we may also check:

1 + dimZk−1(T ) = dimP−
r Λn−k(T ). (2.29)

Therefore:
dim Ak

0(T ) = dimP−
r Λn−k(T ). (2.30)

Suppose now that u ∈ Ak
0(T ) satisfies:

∀v ∈ P−
r Λn−k(T )

∫
u ∧ v = 0. (2.31)
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We have d�du ∈ Pr−1Λ
k(T ), hence d�du ∈ Pr−1Λ

n−k(T ) ⊆ P−
r Λn−k(T ). Hence:

0 =
∫

u ∧ d�du = ±
∫

du ∧ �du = ±
∫

|du|2. (2.32)

Therefore du = 0.
Let h denote the standard homotopy operator used to prove the Poincaré’s lemma, as in e.g. [19]. Recall that

h, which is proportional to κ on homogeneous polynomial differential forms, maps P−
r Λn−k+1(T ) to P−

r Λn−k(T ).
We have d�u ∈ Pr−1Λ

k−1(T ), so that d�u ∈ Pr−1Λ
n−k+1(T ) and hence hd�u ∈ P−

r Λn−k(T ). We write:

0 =
∫

u ∧ hd�u = −
∫

u ∧ dh�u +
∫

u ∧ �u, (2.33)

= ±
∫

du ∧ h�u +
∫

|u|2 =
∫

|u|2. (2.34)

Hence u = 0.
It follows that the integrated wedge product is an invertible bilinear form on the product Ak

0(T )×P−
r Λn−k(T ).

This concludes the proof. �

3. Construction of minimal finite element systems

The material presented in this section is an expanded version in English of material that appeared previously,
in French and without proofs, in [10]. Given any sequence

· · · d �� Xk−1(T ) d �� Xk(T ) d �� Xk+1(T ) d �� · · ·

satisfying d ◦ d = 0, we use the notation ker d|Xk to denote the kernel of the d map whose domain is Xk and
dXk to denote the image of that map. The kth cohomology group associated to this sequence is the quotient:

Hk(X•) = (ker d|Xk)/dXk−1.

3.1. Sufficient conditions for minimality

Proposition 3.1. Suppose that A is a finite element system, and that B is a compatible finite element system
containing A. Then we have:

dim Bk
0 (T ) ≥ dim Ak

0(T ) + dim Hk+1(A•
0(T )). (3.1)

Proof. By the rank-nullity theorem and the definition of cohomology groups, we have that:

dim Ak
0(T ) = dim dAk

0(T ) + dim ker d|Ak
0(T ), (3.2)

dim Hk+1(A•
0(T )) = dim kerd|Ak+1

0 (T ) − dim dAk
0(T ). (3.3)

Hence:
dim Ak

0(T ) + dim Hk+1(A•
0(T )) = dim ker d|Ak+1

0 (T ) + dim ker d|Ak
0(T ). (3.4)

Now, since B•
0(T ) is exact we may choose a subspace V of Bk

0 (T ) such that the map:

d : V → ker d|Ak+1
0 (T ), (3.5)

is an isomorphism. Then it is clear that:

V ∩ ker d|Ak
0(T ) = 0. (3.6)

It follows that:
dim Bk

0 (T ) ≥ dim V + dim ker d|Ak
0(T ). (3.7)

Since dim V = dim ker d|Ak+1
0 (T ), we apply (3.4) to complete the proof. �
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We will use this as follows:

Corollary 3.2. Suppose that A is a finite element system, and that B is a compatible finite element system
containing A. Suppose that:

dim Bk
0 (T ) = dimAk

0(T ) + dim Hk+1(A•
0(T )). (3.8)

Then B is minimal among compatible finite element systems containing A.

We will show in the next two sections that, given a finite element system A, there exists a compatible finite
element system B containing A such that (3.8) holds. Thus the condition is not only sufficient, it is necessary
for minimality. Moreover, in the case that A is included in a compatible finite element system B, it is always
possible to find a minimal one containing A, inside B. Finally, in this context, we will actually construct a
particular minimal FES. We will show how other authors have proposed different definitions of finite element
spaces, which turn out to be minimal among those containing certain differential forms.

3.2. First step

Given a finite element system A, the first step is to construct a finite element system Ã containing A such
that Ã0 is exact. In the case that A0 is exact already, this step can be skipped.

For k < dim T choose a subspace Hk+1(T ) such that:

dAk
0(T ) ⊕ Hk+1(T ) = ker d|Ak+1

0 (T ). (3.9)

Then choose a subspace Ek(T ) of Bk
0 (T ) such that d restricts to an isomorphism:

d : Ek(T ) → Hk+1(T ). (3.10)

For k = dim T , if Ak(T ) contains an element with integral 1, set Ek(T ) = 0, if not choose an element in Bk(T )
with integral 1 and let Ek(T ) be its linear span.

We remark that Ak(T ) ∩ Ek(T ) = 0 and set:

Ãk(T ) := Ak(T ) ⊕ Ek(T ). (3.11)

We remark that we have an induced isomorphism:

d : Ek(T ) → Hk+1(A•
0(T )), (3.12)

where if k = dimT , the exterior derivative operation is replaced by integration. In fact we might take this,
together with Ek(T ) ⊆ Bk

0 (T ), as the defining properties of Ek(T ), and the space Hk(T ) introduced above
merely as a device to make it clear that such an Ek(T ) exists.

We could also have specified Ek(T ) from a choice of scalar products as follows: If k < dim T , set:

Ek(T ) := {u ∈ Bk
0 (T ) : du ∈ Ak+1

0 (T ), du ⊥ dAk
0(T ) and u ⊥ dBk−1

0 (T )}. (3.13)

If k = dimT and if Ak(T ) contains an element with integral 1, set Ek(T ) := 0, if not set:

Ek(T ) := {u ∈ Bk(T ) : u ⊥ dBk−1
0 (T )}. (3.14)

Then one checks immediately that Ek(T ) is a subspace of Bk
0 (T ) such that (3.12) is an isomorphism.

Proposition 3.3. Under the above hypothesis, Ã is a FES containing A such that the sequences:

0 → Ã0
0(T ) → Ã1

0(T ) → · · · → ÃdimT (T ) → R → 0, (3.15)

are exact.
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Proof. That Ã is stable under restrictions and the exterior derivative is immediate, so we only need to prove
the exactness property.

Consider first k < dim T . Suppose u ∈ Ãk
0(T ) is such that du = 0. We have Ãk

0(T ) = Ak
0(T ) ⊕ Ek(T ), so we

can write u = v + w with v ∈ Ak
0(T ) and w ∈ Ek(T ). Then dw = −dv ∈ dAk

0(T ) so dw = 0, so w = 0.
Now we have dv = 0. If k = 0 this gives v = 0. If k > 0, we have already remarked that dAk−1

0 (T ) ⊕
dEk−1(T ) = ker d|Ak

0(T ), so we can write v = dt with t ∈ Ãk−1
0 (T ). This concludes the case k < dim T .

If k = dim T , the same proof goes through, replacing the exterior derivative by the integral for the involved
k-forms. �

3.3. Second step

We now consider the situation of a finite element system A included in a compatible finite element system
B, such that the following sequences are exact:

0 → A0
0(T ) → A1

0(T ) → · · · → AdimT (T ) → R → 0. (3.16)

For each cell T we will augment the spaces A•(T ) in such a way that the extension property holds, while
A•

0(T ) is preserved (i.e. no trace-free elements will be added). We start by carrying out this process on 1D cells,
then on 2D cells, and so forth. We will use the following result, where tr denotes the trace (pull-back) operator
B•(T ) → B•(∂T ).

Proposition 3.4. Let l ≥ 0 and suppose T is a cell of dimension l + 1. Fix k ≤ l. Any u ∈ Bk(∂T ) such that
du ∈ trAk+1(T ) has a unique extension ũ ∈ Bk(T ) satisfying:

dũ ∈ Ak+1(T ), dũ ⊥ dAk
0(T ) and ũ ⊥ dBk−1

0 (T ). (3.17)

Proof.
Existence. Suppose first k < l. Let v be the A-harmonic extension of du. Since dv is A-harmonic and zero on
the boundary we have dv = 0. Choose u′ ∈ Bk(T ) such that du′ = v. We have d(tr u′ − u) = 0. If k = 0,
tr u′ − u is a constant c and u′ − c is an extension of u with exterior derivative v. If on the other hand k > 0
choose u′′ ∈ Bk−1(T ) such that d tr u′′ = tr u′−u. Then u′−du′′ is an extension of u with exterior derivative v.
Adding an element of dBk−1

0 (T ) we can ensure that it becomes orthogonal to dBk−1
0 (T ).

Suppose now k = l. Pick v ∈ Ak+1(T ) such that
∫

v =
∫

u and v ⊥ dAk
0(T ). Pick u′ ∈ Bk(T ) such that

du′ = v. By Stokes we have
∫
(tr u′ − u) = 0, so we can choose u′′ ∈ Bk−1(T ) such that d tr u′′ = tr u′ − u. Then

u′ − du′′ is, as before, an extension of u with exterior derivative v and by adding an element of dBk−1
0 (T ) we

can ensure orthogonality to dBk−1
0 (T ).

Uniqueness. If ũ ∈ Bk
0 (T ) satisfies (3.17) we have dũ = 0. The condition ũ ⊥ dBk−1

0 (T ) then gives
ũ = 0. �

Suppose we have realized our plan for cells of dimension at most l (l ≥ 0), the augmented FES being
denoted Ã. We consider a cell T of dimension l + 1.

We equip Ãk(∂T ) with a scalar product, for instance the sum of the local ones, defined for T ′ �∂T . For k ≤ l
we put:

F k = {u ∈ Ãk(∂T ) : u ⊥ trAk(T ) and du ∈ tr Ak+1(T )}, (3.18)

and denote by F̃ k the extensions of elements of F k defined by Proposition 3.4 above. We also denote:

Gk = {u ∈ Ãk(∂T ) : du ⊥ tr Ak+1(T ) and u ⊥ {v ∈ Ãk(∂T ) : dv = 0}}, (3.19)

and denote by G̃k the B-harmonic extensions of elements of Gk. Finally we put:

Ãk(T ) = Ak(T ) + F̃ k + G̃k. (3.20)

For k = l + 1 we take simply Ãk(T ) = Ak(T ).
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Proposition 3.5. On the (l + 1)-skeleton of T , Ã is a compatible finite element system intermediate between
A and B such that Ãk

0(T ) = Ak
0(T ) for all k and T .

Proof. We remark that dF̃ k ⊆ Ak+1(T ). If k < l, dG̃k ⊆ F̃ k+1(T ) and if k = l, G̃k = 0. Therefore dÃk(T ) ⊆
Ãk+1(T ). We have a direct sum decomposition:

Ãk(∂T ) = trAk(T ) ⊕ F k ⊕ Gk. (3.21)

It follows in particular that tr : Ãk(T ) → Ãk(∂T ) is surjective. Moreover if u ∈ Ak(T ), v ∈ F̃ k and w ∈ G̃k

satisfy tr(u + v + w) = 0, then tr v = 0 and tr w = 0, which gives v = 0 and w = 0. If in fact u + v + w = 0, we
will also have u = 0. Therefore the sum (3.20) is direct and:

Ãk
0(T ) = Ak

0(T ). (3.22)

This completes the proof. �

The construction is therefore complete, and provides a minimal compatible finite element system containing A,
by Corollary 3.2.

4. Minimality of some finite element systems

We now consider more concrete examples, based on polynomial differential forms on simplices or hypercubes.
The two steps of our general construction enter differently in them:

• In Section 4.1, concerning trimmed differential forms on simplices, the local cohomology groups Hk(PrΛ
k
0(T ))

are non-trivial, but once this problem is fixed, the obtained spaces turn out to have the extension property.
Notice also that the spaces PrΛ

k(T ) have the extension property for r ≥ 1.
• In Section 4.2, on serendipity elements, the local cohomology groups one starts with are trivial, so one only

needs to add spaces of forms that ensure the extension property.
• In Section 4.3, on TNT elements, the extension property holds for the spaces one starts with, but local

sequence exactness fails. When adding tiny bubble functions Ek(T ) to fix the cohomology requirement, one
also needs to add forms that extend them to higher-dimensional cells.

• In Section 4.4, in which we introduce “small pleasures” elements, the sequence one starts with has nontrivial
cohomology and does not satisfy the extension property.

4.1. Minimality of trimmed polynomial differential forms

We now adopt notations from finite element exterior calculus [2]. We first consider finite element systems on a
simplicial complex T . Let PrΛ

k(T ) denote the space of k-forms on T ∈ T whose coefficients are polynomials of
degree at most r. The space P−

r Λk(T ) is defined with the help of the operator κ on forms, which is contraction
by the vector field x �→ x (different choices of origin yield the same space). Then:

P−
r Λk(T ) = {u ∈ PrΛ

k(T ) : κu ∈ PrΛ
k−1(T )}. (4.1)

In keeping with our previous notations, P−
r Λk

0(T ) is the subspace of P−
r Λk(T ) consisting of differential forms

whose pullback to the boundary ∂T of T is 0. We also use freely that these spaces form exact sequences under
the exterior derivative, which follows from the fact that they constitute a compatible FES. The underlying facts
are proved in standard finite element language in [2], but it is also checked with the general tools of finite
element systems in [12].

Similar statements hold for the PrΛ
k(T ) spaces, but here sequence exactness requires decreasing r through

the complex. That is, under the exterior derivative, the sequence:

Pr+1Λ
k−1
0 (T ) → PrΛ

k
0(T ) → Pr−1Λ

k+1
0 (T ), (4.2)
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is exact, whereas the sequence:

PrΛ
k−1
0 (T ) → PrΛ

k
0(T ) → PrΛ

k+1
0 (T ), (4.3)

in general is not. The cohomology group of the latter sequence is denoted:

HkPrΛ
•
0(T ). (4.4)

Lemma 4.1. We have :
dP−

r Λk
0(T ) = dPrΛ

k
0(T ). (4.5)

Proof. Pick u ∈ PrΛ
k
0(T ) and set v := du. Then v ∈ Pr−1Λ

k+1
0 (T ) ⊆ P−

r Λk+1
0 (T ) and dv = 0. Hence there is

w ∈ P−
r Λk

0(T ) such that dw = v. �

The following identity shows that the spaces P−
r Λk(T ) constitute a minimal compatible FES containing the

spaces Pr−1Λ
k(T ).

Proposition 4.2. We have:

dimP−
r Λk

0(T ) = dimPr−1Λ
k
0(T ) + dim Hk+1Pr−1Λ

•
0(T ). (4.6)

Proof. We use the vertical line notation | to denote restriction of an operator to a subspace. We have:

dimP−
r Λk

0(T ) = dim dP−
r Λk

0(T ) + dim ker d|P−
r Λk

0(T ), (4.7)

= dim dPrΛ
k
0(T ) + dim dP−

r Λk−1
0 (T ), (4.8)

= dim dPrΛ
k
0(T ) + dim dPrΛ

k−1
0 (T ), (4.9)

and:

dimPr−1Λ
k
0(T ) = dim dPr−1Λ

k
0(T ) + dim kerd|Pr−1Λ

k
0(T ), (4.10)

= dim dPr−1Λ
k
0(T ) + dim dPrΛ

k−1
0 (T ). (4.11)

Moreover:

dim Hk+1Pr−1Λ
•
0(T ) = dim ker d|Pr−1Λ

k+1
0 (T ) − dim dPr−1Λ

k
0(T ), (4.12)

= dim dPrΛ
k
0(T ) − dim dPr−1Λ

k
0(T ). (4.13)

The result follows by addition of the above equalities. �

4.2. Minimality of serendipity elements

In [1], Arnold and Awanou define spaces of serendipity finite element differential forms on n-dimensional
cubes, denoted SrΛ

k(In). They prove a subcomplex property (Thm. 3.3) and trace property (Thm. 3.5), which
is equivalent, in our notation, to showing that the spaces Sr−kΛk(In) constitute a FES, for any fixed r ≥ n.
Arnold and Awanou also define these spaces for r < n, but then one does not get a full complex, but one that
stops at k = r. In many applications this is useful, since one does not require the full complex but rather two
consecutive spaces, possibly three. But the FES framework has not been designed for this.

They also prove that the spaces Pr−k−2(n−k)Λ
n−k(In) provide unisolvent degrees of freedom (Thm. 3.6).

By ([12], Prop. 2.5), this guarantees that the extension property holds. They also check the sequence exactness
property ([1], p. 1566). Thus, in our language, they have shown that the serendipity finite element spaces consti-
tute a compatible finite element system. The inclusion Pr−kΛk(In) ⊆ Ak(In) is obvious from their construction
and it is implicit from their Proposition 3.7 that Ak

0(In) = Pr−kΛk
0(In).



CONSTRUCTIONS OF SOME MINIMAL FINITE ELEMENT SYSTEMS 843

Thus one can interpret many of their results, by the statement that the serendipity elements define a minimal
compatible finite element system containing Pr−kΛk(In). We now explain this, proving the main statements
above, in our framework.

It should be noted that the construction in [1] is very different from the one we propose in Section 3.3 (the
first step in our construction is not necessary here, for reasons provided below). Our construction depends on
a choice of compatible finite element system B containing Pr−kΛk(In). For that purpose we could take the
spaces:

B•(In) = P−
r Λ•(I) ⊗ . . . ⊗ P−

r Λ•(I). (4.14)

We would also need a scalar product. One can use L2 scalar products, or more algebraic ones, for instance one
that makes some preferred basis in B orthonormal.

Remark 4.3. We will take I to be the interval [0, 1] while Arnold and Awanou take it to be [−1, 1]. Also, we
will only address the cases r ≥ n, although the arguments can be adapted to treat lower order cases as well.

Lemma 4.4. Let Bk
α be a space of differential k-forms on In−1, for each 0 ≤ α ≤ r and for each k. Define the

sum of graded tensor product spaces of forms on In:

A• =
r∑

α=0

B•
α ⊗ PαΛ•(I). (4.15)

Consider δ0n and δ1n, the nth trace operators, defined respectively as pullbacks by the injections In−1 ×{0} → In

and In−1 × {1} → In. Then the intersections of the kernels of δ0n and δ1n on A• is :

(ker δ0n|A•) ∩ (ker δ1n|A•) =
r∑

α=0

B•
α ⊗ PαΛ•

0(I). (4.16)

Proof. We let λ0 (resp. λ1) denote the element of P1Λ
0(I) taking the values 1 (resp. 0) at 0 and 0 (resp. 1) at 1.

Observe that for α ≥ 1 we have a direct sum decomposition:

PαΛ•(I) = Rλ0 ⊕ Rλ1 ⊕ PαΛ•
0(I). (4.17)

We also have:
P0Λ

•(I) = R(λ0 + λ1) + Rdλ0. (4.18)

Now take an element u of Ak and write it as a sum:

u = v0 ⊗ (λ0 + λ1) + v′0 ⊗ dλ0 +
r∑

α=1

(vα0 ⊗ λ0 + vα1 ⊗ λ1 + vα), (4.19)

with:
v0 ∈ Bk

0 , v′0 ∈ Bk−1
1 , and vα ∈

∑
l

Bk−l
α ⊗ PαΛl

0(I). (4.20)

Observe that if u is in the intersection of the kernels, we have:

0 = δ0nu = v0 +
r∑

α=1

vα0 , (4.21)

0 = δ1nu = v0 +
r∑

α=1

vα1 . (4.22)

Then we are left with:

u = v′0 ⊗ dλ0 +
r∑

α=0

vα, (4.23)

and this completes the proof. �
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Proposition 4.5. On In let xj denote the jth coordinate function. We have:

PrΛ
k
0(I

n) = span

⎧⎨
⎩u

∏
j �∈J

xj(1 − xj)dxJ :
u ∈ Pr−2(n−k)(In),
J ⊆ {1, . . . , n},
# J = k.

⎫⎬
⎭ , (4.24)

where, for J = {j1, . . . , jk} we define dxJ = dxj1 ∧ . . . ∧ dxjk .

Proof. We have:
PrΛ

•(In) =
∑

α1+...+αn=r

Pα1Λ
•(I) ⊗ . . . ⊗ PαnΛ•(I), (4.25)

where we sum over integer αi in the range [0, r].
In order to determine PrΛ

•
0(I

n) we apply Lemma 4.4, or its equivalent, in each coordinate direction. We get:

PrΛ
•
0(I

n) =
∑

α1+...+αn=r

Pα1Λ
•
0(I) ⊗ . . . ⊗ PαnΛ•

0(I), (4.26)

Now, concerning each factor, we have with x the coordinate function on I:

PqΛ
0
0(I) = {u(x)x(1 − x) : u ∈ Pq−2(I)}, (4.27)

PqΛ
1
0(I) = PqΛ

1(I). (4.28)

It follows that the left hand side of (4.24) is included in the right hand side. The inclusion in the other
direction is trivial, so the proof is complete. �

Remark 4.6. The result just shown seems to be taken as self-evident in ([1], p. 1569).

Proposition 4.7. The integrated wedge product defines an invertible bilinear form:
(∫

· ∧ ·
)

: PrΛ
k
0(I

n) × Pr−2(n−k)Λ
n−k(In) → R. (4.29)

Proof. It follows from the preceding proposition that the two spaces have the same dimension.

Fix u ∈ PrΛ
k
0(In). We want to show that the map sending v �→

∫
u ∧ v ∈ R is non-zero only if u is zero.

Write u in the form:

u =
∑
J

⎛
⎝uJ

∏
j �∈J

xj(1 − xj)dxJ

⎞
⎠ , (4.30)

with:
uJ ∈ Pr−2(n−k)(In), J ⊆ {1, . . . , n} and # J = k. (4.31)

Letting J ′ denote the complement of J in {1, . . . , n} we define:

v =
∑

J

εJuJdxJ′ ∈ Pr−2(n−k)Λ
n−k(In). (4.32)

Then we have:
u ∧ v =

∑
J

εJu2
J

∏
j �∈J

xj(1 − xj)dxJ ∧ dxJ′ . (4.33)

We then choose the signs εJ such that εJdxJ ∧ dxJ′ is the volume form on In. Then
∫

u ∧ v is zero iff u is
zero. �
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Proposition 4.8. Fix r ≥ 0.
For 0 ≤ k < n, the following sequence, for the exterior derivative, is exact:

Pr+1Λ
k−1
0 (In) → PrΛ

k
0(I

n) → Pr−1Λ
k+1
0 (In). (4.34)

The sequence:
Pr+1Λ

n−1
0 (In) → PrΛ

n
0 (In) → R, (4.35)

is also exact (where the last arrow is integration).

Proof. Consider the first statement. By Proposition 4.7, the sequence is paired with the following one:

Pr−1−2(n−k)Λ
n−k+1(In) ← Pr−2(n−k)Λ

n−k(In) ← Pr+1−2(n−k)Λ
n−k−1(In). (4.36)

The differential in this sequence is again the exterior derivative. Recall also that:
∫

T

du ∧ v = ±
∫

T

u ∧ dv, (4.37)

when (for instance) u is zero on ∂T . Since the latter sequence is exact, the former one must be too.
Consider now the second statement. The sequence is paired with:

Pr−1Λ
n−1(In) ← PrΛ

0(In) ← R. (4.38)

On the right we have inclusion of the constants. This sequence is exact. �

We may summarize our results as follows:

Proposition 4.9. Fix r ≥ n. Let Ak(Im) be a compatible finite element system on hypercubes of dimension at
most n, such that:

Pr−kΛk(Im) ⊆ Ak(Im). (4.39)

Then Ak(Im) is a minimal compatible finite element system with this property if and only if:

Ak
0(Im) = Pr−kΛk

0(I
m). (4.40)

In this case, the spaces Pr+k−2mΛm−k(Im) provide unisolvent degrees of freedom on A.

Proof. The first statement follows from the dimensional characterization of minimality provided by Corollary 3.2,
given the exactness property proved in Proposition 4.8. The second statement recalls Proposition 4.7. �

Again we point out that [1] and Section 3 use quite different means to define a compatible FES A such
that (4.39) and (4.40) hold.

4.3. Minimality of TNT elements

We now consider the work of Cockburn and Qiu regarding the ‘TiNiest spaces containing Tensor product
spaces of polynomials’ on cubes or TNT elements for short [15]. We will show how to derive their minimality
claims from the framework of FES. Moreover we cast their constructions in the language of differential forms,
which is uniform in the treatment of dimensions and degree of forms. We will also make explicit use of other
facts from homological algebra such as the Kunneth theorem.

Fix r ≥ 1. Define the spaces, on hypercubes:

A•(In) = QrΛ
•(In) = PrΛ

•(I) ⊗ . . . ⊗ PrΛ
•(I). (4.41)
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We remark that on an interval PrΛ
•(I) has the extension property. Therefore, by Proposition 2.3, A also has

the extension property. However the sequence exactness fails. We want to define a minimal compatible finite
element system containing A. This is accomplished for dimension n = 3 in [15].

By ([9], Lem. 3.10) we have:
A•

0(I
n) = PrΛ

•
0(I) ⊗ . . . ⊗ PrΛ

•
0(I). (4.42)

Looking at the sequence:
0 → PrΛ

0
0(I) → PrΛ

1
0(I) → 0, (4.43)

we notice that there is a non-zero cohomology group only in the 1-forms, and that it has dimension 2. We write
out the Kunneth theorem:

H•A•
0(I

n) ≈ H•(PrΛ
•
0(I)) ⊗ . . . ⊗ H•(PrΛ

•
0(I)). (4.44)

Since, as we remarked above, H0(PrΛ
•
0(I)) = 0, most of the terms cancel. There is only one non-zero cohomology

group in A•(In), namely the one in n-forms. Explicitly:

HkA•
0(I

n) = 0, for k < n, (4.45)

HnA•
0(I

n) ≈ H1(PrΛ
•
0(I)) ⊗ . . . ⊗ H1(PrΛ

•
0(I)), (4.46)

and the latter space has dimension 2n.
Now, the sequence that we want to make exact is really:

0 → A0
0(I

n) → A1
0(I

n) → . . . → An(In) → R → 0, (4.47)

where the second to last arrow is integration. Thus the notation in (4.46) is slightly different from the one used
in the beginning of the article, e.g. in (3.8), the difference being whether we consider that there is an R in the
end of A•

0(I
n) or not. We notice that An(In) contains elements with non-zero integral. We thus have:

Proposition 4.10. Let B denote a compatible finite element system containing A, as defined in (4.41). Then
B is a minimal one containing A if and only if, for all k and n:

Bk
0 (In) = Ak

0(I
n), for k �= n − 1, (4.48)

dim Bn−1
0 (In) = dimAn−1

0 (In) + 2n − 1. (4.49)

This provides the dimension count for any minimal finite element system containing A, using Proposition 2.2.
Any construction of a minimal compatible finite element system B containing A would need to add spaces

En−1(In) to An−1(In) such that:

dim En−1(In) = 2n − 1, (4.50)
Bn−1

0 (In) = An−1
0 (In) ⊕ En−1(In), (4.51)

as in the “first step” outlined in Section 3.2. The second step, outlined in Section 3.3, would have to ensure that
the extension property holds, after these additions, since they also take place on the faces of In.

To be more specific, we notice that if x denotes the coordinate function on the interval I, we can choose two
generators of H1(PrΛ

•
0(I)), to be dx and P (x)dx, where P is a polynomial of degree r with integral 0 on I. We

also impose P (1 − x) = P (x) if r is even and P (1 − x) = −P (x) if r is odd (to ensure that our construction
becomes invariant under reflections in the coordinate directions). Then we let Q be the polynomial of degree
r + 1 such that Q(0) = Q(1) = 0 and Q′ = P .

Denote by xi the ith coordinate map on In. Let J denote a non-empty subset of {1, . . . , n}. Define the n-form
fJ on In:

fJ =
⊗
j∈J

P (xj)dxj

⊗
j �∈J

dxj , (4.52)
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where the notation is taken to mean that we have the form P (x)dx in the directions of J and the form dx in
the other ones (thus there is a permutation in the indices going on). Since J is non-empty, fJ has integral 0.
Notice that we have thus defined 2n − 1 linearly independent forms in An(In) with zero integral.

We now observe that:

fJ =
1

# J
dgJ , with gJ =

∑
i∈J

Q(xi)
⊗

j∈J\{i}
P (xj)dxj

⊗
j �∈J

dxj . (4.53)

This notation is taken to mean that we can obtain gJ from fJ by replacing, for each index i in J , the term
P (xi)dxi by Q(xi), and summing over i ∈ J .

We define:
En−1(In) = span{gJ : J ⊆ {1, . . . , n}, J �= ∅}. (4.54)

We remark that:

Lemma 4.11. The elements of En−1(In) are zero on ∂In and the map defined in (3.12) is an isomorphism.

Thus they are adequate for the first step of our general construction. Notice also that these spaces are
invariant under permutation of indices and reflections xi �→ 1 − xi.

For the second step, one should keep in mind that we have added spaces Ed−1(T ) for all faces T of dimension d
in In, and that the extension property is therefore no longer guaranteed. We could proceed by our general
method. But inspired by [15], we prefer the following explicit approach:

We determine a face T of In by a choice of indices JT ⊆ {1, . . . , n} and for the indices i ∈ {1, . . . , n} \ JT a
number NT (i) ∈ {0, 1}. Then the associated face T is:

T = {(x1, . . . , xn) : for i �∈ JT xi = NT (i)}. (4.55)

Let T be a d dimensional face of In. An element of Ed−1(T ) is extended to In as follows. Let u be the element
in question. Its extension is chosen to be:

ũ = u
⊗
i�∈JT

x
NT (i)
i (1 − xi)1−NT (i). (4.56)

We then define:
Bk(In) = Ak(In) +

∑
dimT=k+1

Ẽk(T ), (4.57)

where the sum is over k + 1 dimensional faces of In and Ẽk(T ) denotes the space of extensions of elements of
Ek(T ) defined by (4.56).

Proposition 4.12. The definition (4.57) provides a minimal compatible FES containing A.

Proof. Suppose that (4.56) holds for some u ∈ Ek(T ). Then:

dũ = u
⊗
i�∈JT

x
NT (i)
i (1 − xi)1−NT (i) +

∑
j �∈JT

u
⊗
i�∈JT

x
NT (i)
i (1 − xi)1−NT (i)(±dxi)i=j , (4.58)

∈ Ak+1(In) +
∑

dimT=k+2

Ẽk+1(T ). (4.59)

Thus B satisfies the requirements to be an element system. Let T be a k + 1 dimensional face of In and let T ′

be another one. Let’s take an element u of Ek(T ) and restrict ũ to T ′. Choose i ∈ JT \ JT ′ . The restrictions
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of u to the faces xi = 0 and xi = 1 inside T are 0. Therefore the restriction of ũ to T ′ is 0. From this we deduce
that the sum in (4.57) is direct, and that:

Bk
0 (In) = Ak

0(I
n), for k �= n − 1, (4.60)

Bn−1
0 (In) = An−1

0 (In) ⊕ En−1(T ). (4.61)

Recalling that A has the extension property, we see in particular that:

dim Bk(In) = dim Ak(In) +
∑

dimT=k+1

dim Ek(T ), (4.62)

=
∑

dimT �=k+1

Ak
0(T ) +

∑
dimT=k+1

(
dim Ak

0(T ) + dimEk(T )
)
, (4.63)

=
∑
T

dim Bk
0 (T ), (4.64)

where T runs through the set of faces of In. This proves that B has the extension property by Proposition 2.2. The
sequence exactness in the form (2.5) has already been proved, see (4.45) and Lemma 4.11. Thus we have proved
that B is a compatible finite element system. It is minimal containing A by application of Proposition 4.10. �

If we want degrees of freedom for this compatible FES that yield commuting interpolators, we can take the
ones defined in ([12], Prop. 2.8).

4.4. Dimension count for “small pleasures” elements

Neither the construction of Arnold and Awanou nor the one of Cockburn and Qiu resolves the question that
seems most natural to us, namely, defining the minimal compatible FES on hypercubes containing the sequences

PrΛ
0(In) → PrΛ

1(In) → . . . → PrΛ
n(In). (4.65)

The preceding general construction provides such a mcFES. Being neither the serendipity elements, nor the
tiniest elements in the Cockburn–Qiu sense, we refer to these as the “Small Pleasures” elements. We provide a
dimension count of the Small Pleasures elements with the following result.

Lemma 4.13.

dim HkPrΛ
•
0(I

n) =
(

r + 2k − n − 1
k − 1

)(
r + k − n − 1

n − k

)
. (4.66)

Proof. We have an exact sequence:

0 → Pr+k−1Λ
0
0(I

n) → Pr+k−2Λ
1
0(I

n) → . . .

. . . → Pr+1Λ
k−2
0 (In) → PrΛ

k−1
0 (In) → dPrΛ

k−1
0 (In) → 0. (4.67)

This gives:

dim dPrΛ
k−1
0 (In) =

k−1∑
i=0

(−1)i dimPr+iΛ
k−1−i
0 (In). (4.68)

We also have:
ker d|PrΛ

k
0(I

n) = dPr+1Λ
k−1
0 (In). (4.69)

Hence, by the same formula as previously:

dim ker d|PrΛ
k
0(I

n) =
k−1∑
i=0

(−1)i dimPr+1+iΛ
k−1−i
0 (In). (4.70)
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Table 1. Some computed values for dimBk
0 (I3) where B is a minimal compatible finite element

system containing (4.65).

r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10
k = 0 0 1 4 10 20 35 56
k = 1 11 27 54 95 153 231 332
k = 2 45 81 133 204 297 415 561
k = 3 35 56 84 120 165 220 286

Therefore:

dim HkPrΛ
•
0(I

n) =
k−1∑
i=0

(−1)i(dimPr+1+iΛ
k−1−i
0 (In) − dimPr+iΛ

k−1−i
0 (In)), (4.71)

=
k−1∑
i=0

(−1)i(dimPr+1+i−2(n−k+1+i)Λ
n−k+1+i(In)− (4.72)

dimPr+i−2(n−k+1+i)Λ
n−k+1+i(In)), (4.73)

=
k−1∑
i=0

(−1)i dimHr−1−i−2(n−k)Λ
n−k+1+i(In). (4.74)

Now, following ([2], Sect. 3.2), the Koszul sequence on In:

0 → HtΛ
n → Ht+1Λ

n−1 → . . . → Ht+k−1Λ
n−k+1 → κHt+k−1Λ

n−k+1 → 0, (4.75)

is exact. We take t = r + k − 2n, and deduce:

k−1∑
i=0

(−1)i dimHt+k−1−iΛ
n−k+1+i = dim κHt+k−1Λ

n−k+1, (4.76)

=
(

n + t + k − 1
k − 1

)(
t + n − 1

n − k

)
, (4.77)

=
(

r + 2k − n − 1
k − 1

)(
r + k − n − 1

n − k

)
. (4.78)

This concludes the proof. �

Using (4.66) and (3.8), we can compute the dimension of Bk
0 (In) where B is a minimal compatible finite

element system containing (4.65). We give some some sample values in Table 1. These spaces will be investigated
further in future work.
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