Structural Response of Phyllomanganates to Wet Aging and Aqueous Mn(II)

Margaret A. G. Hinkle*,†, Elaine D. Flynn, and Jeffrey G. Catalano

Department of Earth and Planetary Sciences, Washington University, 1 Brookings Drive, Saint Louis, MO 63130 USA

*Corresponding author: Tel.: +1-202-633-1815; E-mail: mhinkle@eps.wustl.edu

†Present address: Department of Mineral Sciences, Smithsonian Institution, National Museum of Natural History, Washington, DC 20560

Submitted to Geochimica et Cosmochimica Acta
May 2016
Revised July 2016
ABSTRACT

Naturally occurring Mn(IV/III) oxides are often formed through microbial Mn(II) oxidation, resulting in reactive phyllomanganates with varying Mn(IV), Mn(III), and vacancy contents. Residual aqueous Mn(II) may adsorb in the interlayer of phyllomanganates above vacancies in their octahedral sheets. The potential for interlayer Mn(II)-layer Mn(IV) comproportionation reactions and subsequent formation of structural Mn(III) suggests that aqueous Mn(II) may cause phyllomanganate structural changes that alters mineral reactivity or trace metal scavenging. Here we examine the effects of aging phyllomanganates with varying initial vacancy and Mn(III) content in the presence and absence of dissolved Mn(II) at pH 4 and 7. Three phyllomanganates were studied: two exhibiting turbostratic layer stacking (δ-MnO₂ with high vacancy content and hexagonal birnessite with both vacancies and Mn(III) substitutions) and one with rotationally ordered layer stacking (triclinic birnessite containing predominantly Mn(III) substitutions). Structural analyses suggest that during aging at pH 4, Mn(II) adsorbs above vacancies and promotes the formation of phyllomanganates with rotationally ordered sheets and mixed symmetries arranged into supercells, while structural Mn(III) undergoes disproportionation. These structural changes at pH 4 correlate with reduced Mn(II) uptake onto triclinic and hexagonal birnessite after 25 days relative to 48 hours of reaction, indicating that phyllomanganate reactivity decreases upon aging with Mn(II), or that recrystallization processes involving Mn(II) uptake occur over 25 days. At pH 7, Mn(II) adsorbs and causes limited structural effects, primarily increasing sheet stacking in δ-MnO₂. These results show that aging-induced structural changes in phyllomanganates are affected by aqueous Mn(II), pH, and initial solid-phase Mn(III) content. Such restructuring likely alters manganese oxide reactions with other constituents in environmental and geologic systems, particularly trace metals and redox-active compounds.
1. INTRODUCTION

Many naturally-occurring manganese oxides are nanoparticulate, poorly crystalline, and highly reactive minerals (Krumbein and Jens, 1981; Emerson et al., 1982; Villalobos et al., 2003; Saratovsky et al., 2006; Bargar et al., 2009; Clement et al., 2009; Dick et al., 2009; Grangeon et al., 2010; Tan et al., 2010). Manganese oxide formation in natural systems is often controlled by microbial Mn(II) oxidation, as abiotic Mn(II) oxidation is kinetically slow (Morgan and Stumm, 1964; Nealson et al., 1988; Tebo, 1991; Wehrli et al., 1995; Tebo et al., 1997; Von Langen et al., 1997; Bargar et al., 2000; Nelson and Lion, 2003; Morgan, 2005; Luther, 2010). Biogenic manganese oxides are typically phyllomanganates with birnessite-type structures, consisting of negatively charged octahedral sheets separated by hydrated interlayers (Krumbein and Jens, 1981; Emerson et al., 1982; Villalobos et al., 2003; Bargar et al., 2005; Webb et al., 2005a; Saratovsky et al., 2006; Bargar et al., 2009; Clement et al., 2009; Dick et al., 2009; Grangeon et al., 2010; Tan et al., 2010; Santelli et al., 2011). The negative layer charge develops as a result of Mn(IV) vacancies, Mn(III) substitutions, or a combination thereof, with vacancy and Mn(III) content varying substantially among phyllomanganates. To compensate the negative charge, exchangeable cations are adsorbed in the interlayer. These phyllomanganates exhibit high adsorption capacities for many cations, including Mn(II) (Morgan and Stumm, 1964; McKenzie, 1980; Murray et al., 1984), which often bind above vacant sites in the octahedral sheets (Toner et al., 2006; Peacock and Sherman, 2007; Manceau et al., 2007b; Peacock, 2009; Zhu et al., 2010b) and can enter into the phyllomanganate structure over time (Peacock, 2009).

Phyllomanganates coexist with aqueous Mn(II) in regions with active manganese cycling; for example, at hydrothermal vents, redox interfaces in soils or sediments, or in oxic regions of stratified soils, sediments, and water columns as a result of upward diffusion of Mn(II) (Graybeal...
and Heath, 1984; Rajendran et al., 1992; Burdige, 1993; Van Cappellen et al., 1998; Tebo et al., 2004; Tebo et al., 2005). Abiotic reactions involving Mn(II) adsorption onto phyllomanganates are likely common in these environments (Shimmield and Price, 1986; Canfield et al., 1993), and could involve Mn(II) incorporation into vacant sites or electron transfer via Mn(II)-Mn(IV) comproportionation reactions, resulting in increased structural Mn(III). Several studies have identified that aqueous Mn(II) induces phyllomanganate phase transformations to a wide range of Mn(III) or Mn(IV/III) oxide minerals, including nsutite [Mn(O,OH)₂], ramsdellite [MnO₂], cryptomelane [Kₓ(Mn⁴⁺,Mn³⁺)₈O₁₆], groutite [α-MnOOH] (Tu et al., 1994), hausmannite [Mn₃O₄] (Lefkowitz et al., 2013), feitknechtite [β-MnOOH] (Bargar et al., 2005; Elzinga, 2011; Lefkowitz et al., 2013; Elzinga and Kustka, 2015), or manganite [γ-MnOOH] (Tu et al., 1994; Elzinga, 2011; Lefkowitz et al., 2013; Elzinga and Kustka, 2015). A recent study has observed Mn isotope exchange between aqueous Mn(II) and a solid Mn(IV) oxide during conversion to Mn(III) oxyhydroxides, indicating that some Mn(III) formed during reaction undergoes disproportionation (Elzinga and Kustka, 2015).

Many natural systems with active manganese cycling are associated with Mn(IV/III) phyllomanganates, even in the presence of elevated dissolved Mn(II) (Wehrli et al., 1995; Friedl et al., 1997; Manceau et al., 2007a; Manceau et al., 2007b; Dick et al., 2009; Tan et al., 2010; Friedich and Catalano, 2012), suggesting that Mn(II)-induced phase transformations of birnessite-type phyllomanganates are uncommon. Prior research on Mn(II)-phyllomanganate interactions with Mn(II) to Mn(IV) ratios that do not induce phase transformations is limited. Some studies do indicate that Mn(II) alters sheet stacking behaviors (Lefkowitz et al., 2013) and symmetries (Bargar et al., 2005; Zhu et al., 2010a; Zhao et al., 2016). This indicates that structural Mn(III) was produced during reaction, as its larger size and Jahn-Teller distortion are
expected to alter the mineral structure. However, the systematic relationship between Mn(II)
concentrations and phyllomanganate structural changes at low to circumneutral pH (conditions
relevant to soils and many natural waters) is unclear.

Identifying the structural response of phyllomanganates to dissolved Mn(II) is needed
because the reactivity and trace metal scavenging behavior of manganese oxides is largely
controlled by their structure (Post, 1999). In this paper, changes to phyllomanganate structures
are examined following aging for 25 days in the presence and absence of Mn(II) at acidic and
neutral pH, with Na\(^+\) as the dominant cation. Because Mn(II) likely adsorbs above vacancies,
three birnessite-type phyllomanganates with varying vacancy content and layer stacking are
investigated. \(\delta\)-MnO\(_2\), the synthetic analogue of vernadite \([(Ca,Na,K)(Mn^{4+},\square)O_2\cdot nH_2O]\)
(Villalobos et al., 2006), has high vacancy content and turbostratic stacking; c-disordered H\(^+\)
birnessite (a hexagonal-type birnessite) (‘HexB’) \([(Ca,Na,K)(Mn^{4+},Mn^{3+},\square)O_2\cdot nH_2O]\) has
vacancies (Silvester et al., 1997; Lanson et al., 2000), Mn(III) substitutions, and turbostratic
stacking; triclinic birnessite (‘TriB’) \([(Ca,Na,K)(Mn^{4+},Mn^{3+}_{1-x})O_2\cdot nH_2O]\) has primarily Mn(III)
substitutions, few vacancies, and ordered layer stacking (Post and Veblen, 1990; Drits et al.,
1997; Post et al., 2002; Lopano et al., 2007). The role of pH is also examined because
Mn(II)-Mn(IV) comproportionation reactions exhibit a pH dependence, with comproportionation
promoted with increasing pH (Mandernack et al., 1995). The effects of aging and Mn(II) on
phyllomanganate sheet structures were explored using X-ray absorption fine structure (XAFS)
spectroscopy and powder X-ray diffraction (XRD). To assess differences in Mn(II) uptake upon
aging versus adsorption over short time scales, macroscopic Mn(II) adsorption isotherms onto
the solids at differing pH values were also obtained.
2. METHODS AND MATERIALS

2.1 Mn Oxide Syntheses

Manganese oxide minerals were synthesized using modified, previously published procedures, as described in detail below. δ-MnO₂ was synthesized using a redox method, which involves the reduction of KMnO₄ and the oxidation of MnCl₂ under alkaline conditions, outlined by Villalobos et al. (2003). Briefly, a solution of 2.50 g KMnO₄ in 80 mL deionized water (>18.2 MΩ·cm) was added to a solution of 1.75 g NaOH in 90 mL deionized water over approximately five minutes. While stirring this mixture vigorously, a solution of 4.70 g MnCl₂•4H₂O in 80 mL deionized water was added slowly, over approximately 35 minutes. The mixture was allowed to settle for four hours, after which point the pH of the suspension was checked to ensure it was around a pH of 7, and the suspension was centrifuged, discarding the supernatant. The suspension was subjected to at least four 1 M NaCl washes, as described in Villalobos et al. (2003), followed by at least six deionized water washes.

A poorly crystalline hexagonal birnessite was synthesized following the c-disordered H⁺-birnessite synthesis procedure described in Villalobos et al. (2003). This synthesis is similar to the δ-MnO₂ synthesis described above (including the NaCl and deionized water washes), except the NaOH solution consisted of 1.83 g NaOH in 90 mL deionized water, the Mn(II) solution consisted of 5.82 g MnCl₂•4H₂O in 80 mL deionized water, and the pH of the suspension prior to centrifugation was near 3.1. Triclinic birnessite was prepared following the synthesis for Na-birnessite outlined in Lopano et al. (2007), based on the synthesis procedures described by Post and Veblen (Post and Veblen, 1990) and Golden et al. (1986; 1987). In this synthesis, a 5.5 M NaOH solution and a 0.5 M MnCl₂•4H₂O solution were chilled in an ice bath while air was vigorously bubbled through the Mn(II) solution. Once the solutions were chilled to
5°C, the NaOH solution was added to the Mn(II) solution over approximately 3 minutes under a fume hood. The resulting suspension was bubbled with air overnight in the fume hood. The suspension was washed by an initial centrifugation to remove the basic supernatant, followed by filtration (0.45 µm nylon membrane, Whatman®) and washing with deionized water until the pH of the filtrate was below 10.

After synthesis, the minerals were resuspended in DI water, transferred to an anaerobic chamber (Coy Laboratory Products, Inc., 3% H₂/97% N₂ atmosphere with Pd catalysts) and sparged for at least 24 hours with a gas filtration system (Hinkle et al., 2015) to remove dissolved O₂ from the suspensions. The minerals were stored within the anaerobic chamber as suspensions in deionized water in aluminum foil-wrapped polypropylene bottles and were used for experiments within the month. Aliquots of the mineral suspensions were dried at 70 °C for surface area analysis by BET N₂ gas adsorption (Quantachrome Instruments Autosorb-1).

2.2 Reagent preparation

All stock solutions for experiments conducted in this study were prepared in the anaerobic chamber using deoxygenated deionized water. The Mn(II) stock solution was prepared from MnCl₂•4H₂O and stored in an amber polypropylene bottle to prevent photo-oxidation. NaCl and 2-(4-morpholino)ethanesulfonic acid (MES) stock solutions were also prepared. For experiments conducted at pH 7, a stock solution comprised of both NaCl and MES was prepared and adjusted to pH 7 using HCl or NaOH solutions, which were sparged using the gas filtration systems more than six months prior to use. The HCl and NaOH solutions were also used to adjust experiment sample pH.
2.3 Solid Mn(IV/III) Oxide Aging Experiments

The effect of Mn(II) on phyllomanganate sheet structures was explored by collecting XAFS spectra and XRD patterns on phyllomanganates reacted with varying concentrations of Mn(II). In these experiments, 10 mM NaCl (required to buffer ionic strength) and 0, 0.75, or 7.5 mM Mn(II) were reacted with 2.5 g L\(^{-1}\) \(\delta\)-MnO\(_2\), HexB, or TriB at pH 4 or 7 for 25 days in an anaerobic chamber (Coy Laboratory Products, Inc., 3% H\(_2\)/97% N\(_2\) atmosphere with Pd catalysts). 1 mM MES pH buffer was used for TriB pH 7 experiments as well as preliminary pH 7 \(\delta\)-MnO\(_2\) and HexB experiments.

For samples reacted with Mn(II), the ratio of initial aqueous Mn(II) to solid Mn(IV) (mol:mol) in these experiments range from 0.042-0.543 (Table 1). Samples were prepared in 15 mL or 50 mL conical centrifuge tubes for the XAFS and XRD analyses, respectively. The pH of the samples were monitored throughout the experiments. At the end of 25 days, the final pH of each sample was recorded and the samples were filtered (reusable syringe filter; 0.22 µm MCE membrane; Fisher Scientific) to collecting the solids and supernatant fluid for analyses; the first 1 mL of supernatant was discarded. The fluid was acidified to 2% HNO\(_3\) (trace metal grade; Fisher Scientific) immediately after removal from the anaerobic chamber. Aliquots of the acidified fluid were diluted using 2% HNO\(_3\) and analyzed for total Mn concentration by inductively-coupled plasma optical emission spectroscopy (ICP-OES) using a Perkin Elmer Optima 7300 DV instrument. Sample uncertainty (95% confidence level) was calculated for these samples by the triplicate instrument analyses.

2.4 XRD Analyses

For XRD analyses, the samples were dried at ambient temperature (22±1°C) in a vacuum
desiccator, then ground with an agate mortar and pestle and stored within glass vials, all within the anaerobic chamber. XRD slides were prepared in the anaerobic chamber and sealed with an airtight dome to maintain anoxic conditions. However, use of the dome substantially attenuated the X-ray beam intensity, decreasing the signal to noise ratio, and produced large background scattering features at 9 to 18° and above 65° 2θ. XRD patterns were collected for all samples reacted with 7.5 mM Mn(II) with and without the dome to test the stability of these materials in air during analysis (approximately 40 minutes). No changes were observed between patterns collected with and without the dome for these high Mn(II) experiments, consistent with the known slow kinetics of Mn(II) oxidation by O₂ (Morgan, 2005; Luther, 2010). All other samples were thus assumed to be air-stable for the duration of the XRD analyses and were measured only in air; all XRD presented here were collected without the dome. To minimize air exposure, these were transferred to the XRD instrument within the airtight dome, which was removed immediately prior to data collection. Unreacted phyllomanganates were dried immediately after synthesis and were prepared and analyzed following the same methods for the aged samples, but in air rather than under anaerobic conditions. XRD patterns were collected from 5-80° 2θ with 0.04° 2θ steps at 3 seconds step⁻¹ with Cu Kα radiation, a LynxEyeXE Si strip detector, a 0.6 mm anti-scatter slit, and a 2.5° incident soller slit, with the X-ray tube voltage and current set to 40 kV and 40 mA, respectively.

2.5 XAFS Spectroscopy

2.5.1 XAFS Data Collection

Samples prepared for XAFS spectroscopic analyses were packed as wet pastes on a syringe filter membrane enclosed in Kapton film and sealed with 25 µm Kapton tape within the
anaerobic chamber. Each XAFS sample was heat sealed in a polyethylene bag with a damp KimWipe to maintain anoxic and hydrated conditions during transport to the Advanced Photon Source (APS) at Argonne National Laboratory. Hydrated conditions were further ensured by filtering and preparing the solids within 48 hours of transport to the APS. Wet pastes of synthesized, unreacted δ-MnO$_2$, HexB, and TriB were also filtered and prepared for XAFS spectroscopic measurements as described above. XANES spectra of synthetic bixbytite $[\text{Mn}_2\text{O}_3]$, rhodochrosite $[\text{MnCO}_3]$, and 1 M MnSO$_4$(aq) were also collected. The minerals were prepared for XAFS spectroscopy by grinding with an agate mortar and pestle for approximately 15 minutes and spreading the resulting fine powder on Scotch tape. The 1 M MnSO$_4$ solution was prepared for XAFS measurements by sealing the solution in a polycarbonate sample holder with Kapton tape.

XAFS spectra were collected in transmission at beamlines 5-BM-D and 12-BM-B at the Advanced Photon Source (APS) at Argonne National Laboratory. 5-BM-D uses a Si (111) fixed-offset double-crystal monochromator, which was detuned by 40% to decrease harmonics in the incident X-ray beam. Rh-coated Si mirrors optimize the beam height and further reduce the harmonic content. 12-BM-B also uses a Si (111) fixed-offset double-crystal monochromator, which was detuned by 20%, and has toroidal focusing and flat harmonic rejection mirrors. XAFS spectra of a Mn metal foil, collected simultaneously with each sample scan, was used to calibrate the monochromators to the Mn K-edge (6539 eV).

2.5.2 XAFS Spectral Fitting

The XAFS spectra were averaged, processed, and normalized using the Athena (Ravel and Newville, 2005) interface to IFEFFIT (Newville, 2001). The average manganese oxidation
state (AMOS) for each sample was calculated using linear combination fitting (LCF) of the normalized XANES spectra in Athena with the following manganese oxidation state standards: MnCO$_3$, 1 M MnSO$_4$$_{aq}$, bixbyite, feitknechtite, and three Mn(IV) standards in the database provided in Manceau et al. (2012): KBi (a K$^+$-birnessite), ramsdellite, and pyrolusite (Figure EA1). These fits followed a modified approach described Manceau et al. (2012), in which six or fewer reference oxidation state standards with non-negative loadings are fit to a sample using LCF. The accuracy of these manganese oxidation valence state fits are difficult to calculate through traditional methods, but are estimated to be ±0.04 v.u., with decreasing accuracy with increasing Mn$^{3+/2+}$ content (Manceau et al., 2012).

Fitting of the k3-weighted EXAFS spectra was conducted in SixPack (Webb, 2005) using a structural model similar to that described in detail by Webb et al. (2005a). A Na-birnessite (phyllomanganate) structure (Post and Veblen, 1990) was used to calculate backscattering phase and amplitude functions using FEFF 7 (Ankoudinov, 1996). The EXAFS spectra were fit over a k range of 3 – 15.3 Å$^{-1}$ and an R range of 1 – 6 Å. The amplitude reduction factor (S$_0^2$) was fixed to 0.835 following Webb et al. (2005a). The model employed three Mn-O shells and three Mn-Mn shells, with each shell including two paths to account for potential Jahn-Teller distorted Mn(III)-induced warping of the phyllomanganate sheet. Corner-sharing Mn-Mn (likely Mn bound above sheet vacancies) and interlayer Mn-Na were also included in the model. All five possible Mn-Mn multiple scattering (MS) paths for the third Mn-Mn shell were included in the model, but only contributed 1 additional fitting variable (σ^2) to the fit as their coordination numbers and distances could be constrained fully using the constituent single scattering (SS) paths. The σ^2 values between linked paths were fixed, and second and third shell Mn-Mn distances were fixed based on the geometrical constrains defined by the first Mn-Mn shell. Every
Mn-Mn scattering path included a parameter to account for vacancy effects on the amplitude,
\(f_{occ} \): the fraction of Mn sites occupied in the phyllomanganate sheet. It should be noted that this
\(f_{occ} \) parameter correlates strongly with particle size (Webb et al., 2005a). Attempts to include the
\(\beta \) parameter from the Webb et al. (2005a) model to improve fitting a weak feature in the Fourier
transform spectra at ~5.2 Å (R+\(\Delta R \)) generally yielded no effect on other structural parameters
(e.g., \(f_{occ} \) or Mn path splitting). \(\beta \) did not vary systematically among the samples and often had
large uncertainties, with values within error of zero. As the feature at ~5.2 Å was adequately fit
(Figure EA2) by allowing a Mn-Mn MS \(\sigma^2 \) parameter to vary, the \(\beta \) parameter was not included
in the final model.

2.6 Macroscopic Mn(II) Adsorption Experiments

Mn(II) adsorption isotherms were measured after 2 days of reaction for each
phyllomanganate mineral to assess Mn(II) uptake on short time scales compared to results
observed in the aging studies described above. All experiments were conducted within the
aerobic chamber with 10 mM NaCl (to buffer ionic strength), 2.5 g L\(^{-1} \) phyllomanganate, and
0.02 – 12 mM aqueous Mn(II) at pH 4, wrapped in aluminum foil and rotated on end-over-end
rotators for two days. pH 7 studies were not conducted because no dissolved Mn(II) was detected
at the end of the aging studies, preventing comparison to short time scale adsorption isotherms.
Samples at 0.10 mM Mn(II) were prepared in triplicate and as mineral-free blanks to assess
systematic experimental errors. Samples were allowed to equilibrate for approximately an hour,
at which point the pH of each sample was adjusted using HCl or NaOH. The sample pH was
checked and adjusted if necessary throughout the reaction period.

At the end of the experiments, the pH of the samples was recorded and the samples were
filtered (0.22 µm MCE filters; Fisher Scientific). The pH of all samples drifted by less than 0.1 pH units, except under high Mn(II) conditions [i.e., > 9 mM initial Mn(II)] with the TriB system, which all had final pH drifts greater than 0.5 pH units from the target pH. Due to the large pH drifts in the TriB samples with > 9 mM initial Mn(II), these samples were discarded from the final reported isotherm. The filtrate was collected after discarding the first 1 mL of filtrate and prepared for ICP-OES measurements as described above. Both the triplicate instrument analyses and the standard deviations from the triplicate experiment samples (propagated to the entire sample set) were used to calculate experimental uncertainty at 95% confidence level. The adsorption data was fitted to Langmuir isotherms (Table EA1) to facilitate quantitative comparison to Mn(II) uptake after aging.

3. RESULTS

3.1 Synthesized Materials

The three phyllomanganates used in this work, δ-MnO₂, HexB, and TriB, exhibit properties consistent with past studies (Villalobos et al., 2003; Webb et al., 2005a). HexB (167.8 m² g⁻¹) and δ-MnO₂ (116.4 m² g⁻¹) have much larger BET-derived surface areas than TriB (24.8 m² g⁻¹), and the Mn(III) content decreases from TriB to HexB to δ-MnO₂ (Table EA2). The XRD patterns of δ-MnO₂ and HexB (Figure 1A) exhibit broad, low-intensity (001) and (002) peaks near 12.3 and 24.8° 2θ, respectively, indicating that few sheets are stacked along the c-axis [i.e., ~1-4 sheets (Lanson et al., 2008; Grangeon et al., 2010; Grangeon et al., 2012)]. The δ-MnO₂ and HexB XRD patterns also contain asymmetric (20,11) and (02,31) bands near 37 and 65° 2θ, respectively, characteristic of turbostratic phyllomanganates (Villalobos et al., 2003; Webb et al., 2005a; Webb et al., 2005b), with d-spacing ratios consistent with hexagonal sheet symmetry.
(i.e., d-spacing ratio of (20,11)/(02,31) ~√3) (Villalobos et al., 2003; Villalobos et al., 2006; Grangeon et al., 2010). The HexB XRD pattern also exhibits a decrease in intensity near 46° 2θ relative to the (20,11) band maxima at 38°, indicating vacancies in the sheet are capped by Mn or other cations (Villalobos et al., 2006; Grangeon et al., 2010; Grangeon et al., 2012). In contrast, the TriB XRD pattern (Figure 1A) is consistent with rotationally ordered sheets with pseudo-orthogonal symmetry and a large coherent scattering domain along the c-axis (Brindley and Brown, 1980).

The EXAFS spectra (Figure 2) also indicate that δ-MnO₂ and HexB have hexagonal sheet symmetry while TriB is pseudo-orthogonal. Prior work has shown that the positive antinodes at ~6.8, ~8.1, and 9.2 Å⁻¹ shift to lower k values, with the latter two splitting, when phyllomanganate sheets transition from hexagonal to pseudo-orthogonal symmetry (Marcus et al., 2004; Manceau et al., 2005; Webb et al., 2005a; Zhu et al., 2010a; Yu et al., 2012). The positive antinode at ~6.8 Å⁻¹ is considered characteristic of layered manganese oxides (McKeown and Post, 2001). These differences in sheet symmetry are manifested in the Fourier transform spectra, with the Mn MS peak at 5.2 Å (R+ΔR) becoming attenuated from sheet bending arising from Jahn-Teller distorted Mn(III) substitution (Webb et al., 2005a; Bargar et al., 2009).

The EXAFS spectra are also sensitive to the presence of Mn atoms capping vacancy sites, although quantification of the abundance of such species by this method is poor (Webb et al., 2005a). The dominant oxidation state of capping Mn atoms can be estimated by combining the distance between these atoms and Mn atoms in the phyllomanganate sheet (the Mn-Mncrnr path in the structural fitting model; Table EA3), the AMOS (Table 2), and fine-structure features in the XANES spectrum, specifically a shoulder at ~6553 eV that indicates the presence of sorbed
Mn(II) (Bargar et al., 2000; Villalobos et al., 2003; Webb et al., 2005a). The Mn-Mncorr distance (Table EA3) is shorter in TriB (3.36 Å) than in HexB (3.45 Å). The distance in TriB is consistent with Mn(III), as Jahn-Teller distortion yields shorter corner-sharing Mn-Mn distances for this oxidation state than for a Mn(II) neighbor (Post et al., 1982). For δ-MnO₂ the AMOS of 3.99 (Table 2), lack of a shoulder at 6553 eV, no distinct feature at 3.0 Å (R+ΔR) in the Fourier transform (corresponding to the Mn-Mncorr shell), and better EXAFS spectral fit when excluding Mn-Mncorr from the model (Figure EA2) all indicate that few vacancy-capping Mn atoms are present in unreacted δ-MnO₂. The Mn(II) content of the HexB material (Table EA2) and the longer Mn-Mncorr distance suggest that interlayer Mn over vacancies is predominately Mn(II).

3.2 Effect of Aging and Mn(II) on Turbostratic Phyllomanganates

pH 4

δ-MnO₂ and HexB sheet structures change substantially after 25 days of aging at pH 4 in both the absence and presence of aqueous Mn(II). XANES spectra (Figure 2) indicate that AMOS decreases with increasing initial aqueous Mn(II) (Table 2), and the Fourier transforms of the EXAFS spectra (Figure 2) suggest increased Mn-Mncorr contributions, both consistent with Mn(II) sorption onto the phyllomanganates during the 25 day reaction. While Mn(II) uptake onto δ-MnO₂ after aging closely matched uptake behavior observed on short time scales, adsorption by HexB decreased upon aging (Figure 3). This suggests that structural properties of the phyllomanganates change during aging.

The XRD patterns of δ-MnO₂ reacted with 0 and 0.75 mM Mn(II) at pH 4 (Figure 1) exhibit a minimum near 46° 2θ compared to the unaged sample, consistent with Mn adsorption over vacancies (Villalobos et al., 2006; Grangeon et al., 2010; Grangeon et al., 2012). The
decrease in f_{occ} (Table EA4) and AMOS of 3.99 (Table 2) for the 0 mM Mn(II) sample suggests that either Mn migrates out of the phyllomanganate sheet and into vacancy-capping sites or that the phyllomanganate crystallite size simply decreases during aging, although the latter scenario should be accompanied by an increase in the width of the hkl bands in XRD, which is not observed (Figure 1). The small Mn-Mn$_{crnr}$ contribution in the EXAFS model fit and its distance of 3.28 Å further indicate that some layer Mn(III/IV) is redistributed to the interlayer to adsorb over vacancies upon δ-MnO$_2$ aging at pH 4. For the 0.75 mM Mn(II) sample, however, the AMOS and presence of a shoulder at 6553 eV in the XANES spectrum indicate the addition of sorbed Mn(II).

The XRD patterns of the 7.5 mM Mn(II) δ-MnO$_2$ sample and all aged HexB samples exhibit substantial changes compared to the unreacted sample, with the (11,20) and (31,02) bands splitting and the appearance of additional peaks in the 20-70° 2θ region (Figure 1B,C). These additional peaks do not correspond with the diffraction lines of known manganese oxides, including tectomanganates like todorokite or cryptomelane (Table EA5). The additional XRD peaks are thus not from the formation of a secondary manganese mineral. Similar peaks between ~35-70° 2θ have been previously observed for an H-exchanged hexagonal birnessite (‘HBi’) formed by equilibration of triclinic Na-buserite at pH 5 (Lanson et al., 2000) and for HBi with Zn adsorbed over vacancies (Lanson et al., 2002; Drits et al., 2007). These were interpreted as containing an interstratified defective layer structure (Lanson et al., 2000; Lanson et al., 2002; Drits et al., 2007), as the hkl peak positions in such cases lie between the hkl positions of each of the layer-types present in the material (Drits and McCarty, 1996). These materials were best described by models consisting of interspersed hexagonal and orthogonal sheets with rotated stacking behaviors and each sheet displaced along the a axis by $+a/3$ (Lanson et al., 2000;
Lanson et al., 2002), analogous to the chalcophanite structure (Post and Appleman, 1988). This structure minimizes electrostatic repulsion, maximizing the distance between Mn atoms in adjacent sheets and the distance between sheet Mn sites and Mn atoms capping vacancies (Lanson et al., 2000; Lanson et al., 2002). Analogous XRD patterns have been reported for rotationally ordered Ca-montmorillonite, with (11,20) and (31,02) band splitting and relative intensities similar to those observed in this paper (Viani et al., 2002).

This structural arrangement was further shown to produce supercell ordering in phyllomanganates (Drits et al., 2002). XRD features in the 20-26° 2θ region not associated with the (002) reflection in the present study are consistent with supercell peaks previously observed for this class of minerals (Drits et al., 1998). All of the samples with these XRD features have weak layer stacking so the long range ordering responsible for the supercell must be located in the a-b plane. These results thus indicate that the phyllomanganate sheet structure formed after δ-MnO₂ reacts with 7.5 mM Mn(II) or when HexB is aged with or without added dissolved Mn(II) is likely a mixture of hexagonal and pseudo-orthogonal phyllomanganate sheets that are rotationally ordered in their stacking and contain long-range sheet-parallel periodicity. These aging-induced HexB structural changes may explain the observed reduction in Mn(II) uptake by HexB but not δ-MnO₂ upon aging relative to uptake over short time scales (Figure 3). The initiation of this ordering transition in HexB under all aging conditions yet only at the highest Mn(II) loading for δ-MnO₂ suggests that a threshold Mn(III) content may exist, below which rotational ordering and supercell formation do not occur upon aging. Valence state measurements (Table 2) suggest that an AMOS less than ~3.8 is required to induce this restructuring; in the samples studied, this corresponds to 10-15 mol.% Mn(III).

The EXAFS spectra of δ-MnO₂ and HexB further confirm that the XRD features do not
arise from a phase transformation but instead from changes in sheet symmetry and ordering, as
the primary phyllomanganate structure (i.e., MnO$_6$ octahedra arranged in negatively charged
sheets) is preserved during aging and reaction with Mn(II) (Figure 2). Both HexB and δ-MnO$_2$
reacted with 0.75 mM Mn(II) exhibit minimal changes relative to the samples aged without
added Mn(II). δ-MnO$_2$ reacted with 7.5 mM Mn(II), however, shows damping and slight
broadening of the 6.8 and 9.2 Å$^{-1}$ features in the EXAFS spectrum, which could be attributed to
the formation of a phyllomanganate with mixed sheet symmetries. All δ-MnO$_2$ and HexB
samples that show evidence of mixed sheet symmetries and supercell ordering display either an
increase in splitting of the Mn-O$_1$ interatomic distances in the structural fitting model or a
reduction in splitting in this shell coupled with a large σ^2 value for the more distant Mn-O$_{1b}$ shell
(Table EA4). We attribute these effects to the formation of a mixture of sheets with slightly
different structures that corresponds to the larger-scale structural changes identified by XRD. No
other systematic changes were apparent, indicating preservation of the overall phyllomanganate
sheet during aging and reaction with Mn(II) at pH 4.

pH 7

δ-MnO$_2$ and HexB aged at pH 7 exhibit behavior considerably different than when
reacted at pH 4. No substantial restructuring or formation of supercell ordering is observed at
higher pH, with or without Mn(II) addition (Figure 1B,C). δ-MnO$_2$ shows sharper (001) and
(002) peaks after aging with 0.75 mM Mn(II) present (Figure 1B), indicating that more sheets are
stacked along the c-axis. For HexB aged with and without 0.75 mM Mn(II), the XRD patterns
(Figure 1C), EXAFS spectra (Figure 2) and structural fitting parameters (Table EA4) at pH 7 are
largely unchanged during aging and reaction with Mn(II), indicating little alteration of the
phyllomanganate sheet structure occurs. Reduction of the AMOS (Table 2) and a decrease near
46° 2θ in the XRD pattern (Figure 1) (Villalobos et al., 2006; Grangeon et al., 2010; Grangeon et
al., 2012) indicate that Mn(II)-HexB interactions are primarily limited to Mn(II) adsorption
reactions at pH 7. However, for both δ-MnO₂ and HexB, structural changes and a decrease in
AMOS were observed at this pH in the presence of MES buffer (see Electronic Annex). All
samples reacted with higher Mn(II) concentrations, 7.5 mM, at pH 7 exhibit substantial
feitknechtite precipitation as demonstrated by the corresponding XRD patterns (Figure 4A),
resulting in substantial changes in the XANES spectra (Figure 4B) and making it impossible to
assess how the structure of the residual phyllomanganate responds.

3.3 Effect of Aging and Mn(II) on TriB

pH 4

Like δ-MnO₂ and HexB, TriB also undergoes structural changes when aged at pH 4 in the
absence and presence of aqueous Mn(II), although the changes to the TriB structure are distinct
from those displayed by the turbostratic phyllomanganates. The XRD patterns show that aging
TriB at this pH with or without added Mn(II) results in a hexagonally symmetric material with
weaker rotational ordering of layers than the unreacted sample (Figure 1D). The d-spacing ratio
between reflections in all TriB samples are ~1.73, in agreement with a hexagonal unit cell
(Villalobos et al., 2003; Villalobos et al., 2006; Grangeon et al., 2010). The EXAFS spectra
clearly show that TriB reacted at pH 4 no longer possesses pseudo-orthogonal sheet symmetry,
as the maxima centered at 6.8, 8.1, and 9.2 Å⁻¹ in hexagonally symmetric phyllomanganates are
no longer shifted to lower k values as in unreacted TriB, and each is a single positive antinode.
Structural fitting of the spectra (Figure EA2) reveal that Mn-Mn_{env} distances increased
from 3.36 Å in unreacted TriB to 3.49 Å in TriB aged in the absence and presence of Mn(II).

This change in Mn-Mncnr distances, in conjunction with the appearance of a shoulder at ~6553 eV and the white line shift toward higher energy in the XANES spectra (Figure 2G) (Bargar et al., 2000; Villalobos et al., 2003; Webb et al., 2005a), indicate that Mn atoms capping vacancies shift from predominately Mn(III) to Mn(II), and that this is coupled with an increase in structural Mn(IV) content. Fitting of the XANES spectra reveal a decreasing Mn(III) content coupled with increasing Mn(II) and Mn(IV) contents upon aging TriB at pH 4 (Table EA2). Furthermore, the amount of Mn(II) remaining in solution at the end of the 0 mM and 0.75 mM Mn(II) 25 day experiments is greater than the initial amount of Mn(II) added to the systems (Table 2), indicating that Mn(II) is released to solution via disproportionation of structural Mn(III). In contrast, Mn(II) uptake by TriB after 48 hours follows typical Langmuir isotherm adsorption behavior (Figure 3), with no net Mn(II) release observed, demonstrating the role of aging in altering the structure and reactivity of TriB. These observations are consistent with TriB transitioning to a phyllomanganate with hexagonal symmetry as a result of aging for 25 days under low pH conditions that favor Mn(III) disproportionation.

TriB samples reacted with differing amounts of aqueous Mn(II) show minor systematic changes in the XRD patterns and EXAFS spectra. The Fourier transforms of the EXAFS spectra (Figure 2I) show a slight shift in the first Mn-Mn shell position in the presence of 7.5 mM Mn(II), as well as an increased intensity of the ~3.0 Å feature corresponding to the Mn-Mncnr shell. Increasing aqueous Mn(II) shifts the XRD (001) and (002) peak positions to higher 2θ values (Figure EA3) with the (001) d-spacing, which corresponds to the interlayer spacing between phyllomanganate sheets, decreasing by 0.03-0.05 Å. Additionally, XRD peaks in the 35-70° 2θ region shift systematically with Mn(II) addition (Figure EA3). This indicates that the
addition of Mn(II) alters the sheet stacking or interlayer displacement, as has been invoked to explain similar XRD peak shifts in past studies (Lanson et al., 2002; Drits et al., 2007). The addition of 0.75 and 7.5 mM Mn(II) also leads to changes in low intensity XRD peaks at ~22° 2θ and in the 30-34° 2θ region by shifting their positions and increasing their intensities, respectively (Figure EA3). These peaks at ~22° 2θ and in the 30-34° 2θ region are consistent with the supercell reflections discussed above. These observations further support the conclusion that the addition of Mn(II) alters phyllomanganate long range ordering.

\[pH \ 7 \]

XRD patterns show that the TriB sheet structure is much more stable at pH 7 than at pH 4, with little difference between the unreacted TriB and the sample aged in the absence of Mn(II) (Figure 1). The EXAFS spectra, however, suggest that some aging-induced restructuring occurs as the antinode at 8.1 Å\(^{-1}\) is no longer split and shifted, as in unreacted TriB, although the positive antinodes near at 6.8 and 9.2 Å\(^{-1}\) are unchanged (Figure 2H). Structural fitting of the spectrum (Figure EA2) suggests that these changes may be the result of increased splitting in the first Mn-Mn shell and a lengthening of Mn-Mn_\text{cmr} (Table EA4). These results indicate that the coordination environments of some Mn octahedra in the phyllomanganate sheet change and that a portion of the capping atoms over vacancies are altered from Mn(III) to Mn(II). The AMOS results are within error of the unreacted material, but the fraction of Mn(III) decreases while the fractions of Mn(IV) and Mn(II) slightly increase (Table EA2) suggesting that some Mn(III) may disproportionate, leading to more vacancy capping Mn(II) as indicated by the structural EXAFS fits. These AMOS values also show that no redox interactions occurred between TriB and the MES buffer, as those derived by XANES LCF are in agreement with those calculated by mass.
balance (Table 2).

The EXAFS spectrum of TriB aged in the presence of 0.75 mM Mn(II) shows additional changes to the 6.8 and 9.2 Å\(^{-1}\) positive antinode (Figure 2H). These antinodes are still much broader than those in the pH 4 system, but are consistent with a transition toward hexagonal symmetry. A reduction in the splitting of the first Mn-O shell occurs, and the Mn-Mn\(_{\text{err}}\) shell increases substantially in coordination number, suggesting an increase of capping atoms over vacancies (Table EA4). However, the minor feitknechtite component (Figure 1D), which consists of a hexagonal Mn(III)-bearing sheet (Meldau et al., 1973), may cause destructive interference in the EXAFS spectrum and it is thus uncertain whether the observed spectral changes correspond to real structural alteration or are an artifact.

4. DISCUSSION

4.1 Mechanism of Mn(II)-Induced Phyllomanganate Structural Changes

These results indicate that in addition to adsorption, dissolved Mn(II)-phyllomanganate interactions result in structural changes, which involve altered sheet symmetries and long-range order within the sheet itself. The extent of these Mn(II)-induced structural alterations appear to be dependent on both initial structural Mn(III) content and the pH of the solution. At pH 4 in the absence of Mn(II), some structural Mn is ejected from turbostratic phyllomanganate sheets, which then adsorbs above vacancies. The addition of aqueous Mn(II), which also adsorbs above vacancy sites, promotes the formation of a phyllomanganate with mixed sheet symmetries in the \(\delta\)-MnO\(_2\) and HexB systems. In these cases, pseudo-orthogonal and hexagonal layers are intermixed and the sheets are rotationally ordered to minimize repulsion between high valence Mn in adjacent layers and Mn in the interlayer (Lanson et al., 2002). These changes also occur
upon aging HexB at pH 4 in the absence of Mn(II), concurrent with ejection of some structural Mn. Increasing Mn(II/III) adsorption over vacancies may enhance electrostatic repulsion with layer Mn(IV) in adjacent sheets, which would promote rotationally ordered stacking. In addition, Mn(II) adsorption followed by comproportionation forms Mn(III) in the phyllomanganate sheet, promoting a change from hexagonal to pseudo-orthogonal layer symmetry. These effects of Mn(II) addition appear to promote long range ordering in the plane of the phyllomanganate sheets, forming a supercell. Sheet-parallel ordering of vacancy sites capped by adsorbed Mn at repeat distances greater than the unit cell size or ordering of pseudo-orthogonal and hexagonal domains within the sheets could generate the observed supercell. Sheet restructuring only occurs in samples with AMOS < ~3.8 containing 10-15 mol.% Mn(III), suggesting that a threshold Mn(III) content is required to induce the observed structural changes. This hypothesized Mn(III) threshold may originate because changes in sheet symmetry and ordering of vacancy capping atoms likely increases with increasing Mn(III) content.

The distinct behavior of TriB at pH 4 results from extensive Mn(III) disproportionation dominating over other processes. This disproportionation relaxes Jahn-Teller-induced sheet strain and leads to the formation of a hexagonally-symmetric material. The hexagonal sheet symmetry at pH 4 is still observed with the addition of Mn(II). These results indicate that the amount of Mn(II) added is inadequate to promote Mn(II)-Mn(IV) comproportionation, which favors orthogonal sheet symmetry, over disproportionation.

Structural changes are much more muted at pH 7 following aging in the absence and presence of Mn(II). δ-MnO₂ sheet stacking increases upon addition of Mn(II), while in the HexB system, aqueous Mn(II) does not appear to alter the manganese oxide structure, restricting its interaction to adsorption over vacant sites. TriB showed minor changes in the phyllomanganate
sheet and far less disproportionation than at pH 4, with Mn(III) being more stable at this pH (Mandernack et al., 1995). We hypothesize that phyllomanganates with larger numbers of vacancies (i.e., δ-MnO₂) may exhibit greater structural changes (barring phase transformations) upon addition of aqueous Mn(II) at pH 7 as these are the sites where Mn(II) reacts with the mineral phase. Feitknechtite precipitation at higher Mn(II) loadings is consistent with substantial prior research on such phase transformations, which likely involve pH-dependent Mn(II)-Mn(IV) comproportionation reactions (Elzinga, 2011; Lefkowitz et al., 2013).

4.2 Comparison to Prior Work

4.2.1 Aging Induced Changes to Phyllomanganate Structures

Previous research (Lanson et al., 2000; Manceau et al., 2013) has found that phyllomanganate sheets undergo structural changes under acidic conditions in the absence of Mn(II) that are consistent with those observed in the current study. High-energy X-ray scattering and pair distribution function analysis demonstrates that structural Mn migrates into the interlayers in δ-MnO₂ upon equilibration at low pH (Manceau et al., 2013). This results in increased vacancy content and the formation of a supercell either through long range ordering of sheet vacancies or ordering of interlayer Mn. In the current study, we also find that some layer Mn is ejected from δ-MnO₂ sheets after aging at pH 4, but evidence of the formation of a supercell only appears with the addition of Mn(II) to the δ-MnO₂ system. However, we do find that a supercell may form in HexB aged at pH 4 in the absence of Mn(II), possibly because this sample exceeds our hypothesized Mn(III) threshold for such restructuring. Previous research on the structures of Na-birnessite [a triclinic birnessite (Post et al., 2002)] observed that the phyllomanganate sheet transitioned towards hexagonal symmetry with increasing acidity (Drits
et al., 1997; Silvester et al., 1997; Lanson et al., 2000), consistent with our observation that TriB maintains its pseudo-orthogonal sheets after aging at pH 7 but forms hexagonal sheets at pH 4. One recent study, however, observed that TriB partially transforms to hexagonal H-birnessite at pH 7 in solutions containing 20 mM MES or HEPES buffers and in unbuffered solutions after 14 days (Ling et al., 2015). This distinct outcome compared to the present study and prior research (Drits et al., 1997; Silvester et al., 1997; Lanson et al., 2000) is of unclear origin. Substantial differences in the mineral to water ratio, concentration of buffers that may reduce manganese oxides (Elzinga and Kustka, 2015), and ionic strength among these experiments all may contribute to the contrasting observed stability of the triclinic birnessite structure.

4.2.2 Mn(II) Induced Changes to Phyllomanganate Structures

Although most studies of interactions between dissolved Mn(II) and solid manganese oxide in abiotic systems have largely focused on phase transformation behaviors (Elzinga, 2011; Lefkowitz et al., 2013; Elzinga and Kustka, 2015), some have indicated that Mn(II) can affect phyllomanganate sheet structures (Bargar et al., 2005; Zhu et al., 2010a; Lefkowitz et al., 2013), inducing changes similar to those observed in the present study. Previous research demonstrated that Mn(II) adsorbs above vacancies in a biogenic, hexagonally-symmetric manganese oxide but that interlayer Mn decreases with increasing pH, indicating that Mn(II) oxidizes via Mn(II)-Mn(IV) comproportionation and enters the phyllomanganate sheet as Mn(III) (Zhu et al., 2010a). The fraction of phyllomanganates with orthogonal structures was also found to increase with time during reaction of δ-MnO₂ with 100 µM dissolved Mn(II) at pH 8 (Bargar et al., 2005). Recent research also finds that under oxic conditions, δ-MnO₂ progressively transitions to a triclinic birnessite type structure upon aging with Mn(II) at pH ≥8, with increasing
transformations observed with increasing pH (Zhao et al., 2016). No structural transformations were observed at pH 7, consistent with the current study.

As in prior studies (Bargar et al., 2005; Elzinga, 2011; Lefkowitz et al., 2013), the addition of substantial Mn(II) to all mineral systems at pH 7 resulted in the precipitation of feitknechtite. These samples have measured AMOS values near 3.20 (Table 2) and XRD patterns indicative of a mixture of phases, dominated by feitknechtite. Our experiments were conducted with aqueous Mn(II) to solid Mn oxide ratios lower (3 mmol Mn(II) g\(^{-1}\)) than those previously required to precipitate feitknechtite at pH 7 under anoxic conditions (8 mmol Mn(II) g\(^{-1}\), with no feitknechtite precipitation at 2-6 mmol Mn(II) g\(^{-1}\)) (Lefkowitz et al., 2013) and the solids in the present work have surface areas similar to or larger than those used in the previous studies. We hypothesize that the formation of feitknechtite at these lower Mn(II) contents is related to the longer reaction times in this current study (25 versus 8 days). We also observed minor feitknechtite precipitation at pH 7 with TriB at low initial Mn(II) concentrations (0.75 mM initial Mn(II); 0.3 mmol Mn(II) g\(^{-1}\)). This indicates that the initial structural Mn(III) content is an important factor in Mn(II)-induced phase transformations to MnOOH phases.

4.3 Relevance to Environmental and Geologic Systems

The results of this study suggest that phyllomanganates in natural systems interact with dissolved Mn(II) primarily through adsorption and comproportionation-disproportionation reactions, resulting in subtle alterations to phyllomanganate sheet structures. Although dissolved Mn(II) concentrations exhibit spatial and temporal variations in natural systems, these are often lower than those observed to induce phase transformations at circumneutral pH (Graybeal and Heath, 1984; Rajendran et al., 1992; Burdige, 1993; Van Cappellen et al., 1998; Tebo et al.,
Thus, abiotic Mn(II)-phyllomanganate interactions that occur in these systems likely involve Mn(II) adsorption and restructuring of phyllomanganate sheets, depending on the pH of the system. These Mn(II)-induced structural changes, as well as capping of vacancy sites, could cause a reduction in overall reactivity of manganese oxides and in trace metal sorption. Because the structural changes induced by aqueous Mn(II) results from a decreased Mn oxidation state in the phyllomanganate sheet, Mn(II) uptake may change phyllomanganate reactivity towards redox-active adsorbates. The adsorption of Mn(II) and subsequent restructuring of phyllomanganate sheets observed at low pH suggests that Mn(II) may decrease trace metal sorption in acidic systems by removing reactive sites. In environments at circumneutral to alkaline pH, such as marine sediments and suboxic soils, the interaction of dissolved Mn(II) with trace metals on phyllomanganate surfaces may be limited to competitive adsorption effects, such as capping vacancies and thus decreasing the number of surface sites available for trace metal adsorption (Toner et al., 2006; Peacock and Sherman, 2007; Manceau et al., 2007b; Peacock, 2009; Zhu et al., 2010b) and later incorporation (Peacock and Sherman, 2007). However, natural waters have more complex major cation compositions than the NaCl fluid studied here, and the effects of fluid composition on Mn(II)-phyllomanganate interactions is unknown. Past work shows that Ca\(^{2+}\) promotes structural transformations of phyllomanganate to pseudo-orthogonally symmetric sheets (Webb et al., 2005b). It is thus possible that Ca\(^{2+}\) and other common cations in natural waters may enhance Mn(II)-induced phyllomanganate structural changes and any associated effects on trace metal binding. These implications are consistent with recent observations from a cave system, where phyllomanganates formed in fluids with higher dissolved Mn(II) concentrations have lower trace metal contents than those produced in low-Mn(II) settings.
The results of the present study show that dissolved Mn(II) influences phyllomanganate sheet structures, potentially altering the sorption behavior and reactivities of these minerals in natural systems, and that environmental conditions such as pH and fluid composition are the dominant controls on Mn(II)-induced structural changes.

ACKNOWLEDGEMENTS

The National Science Foundation (NSF), Division of Earth Sciences, Geobiology and Low-Temperature Geochemistry Program supported this research through Grant No. EAR-1056480. Flynn was also supported by the NSF Graduate Research Fellowship program through Grant No. DGE-1143954. The facilities and instruments maintained by the Nano Research Facility at Washington University, supported by the NSF through Award No. ECS-0335765, were used to conduct ICP-OES analyses. XRD patterns were collected with the Bruker D8 Advance XRD instrument at Washington University in St. Louis, supported by the NSF through Award No. EAR-1161543. The pH 7 MES-buffer and pH 4 experiment XAFS spectra in this study were collected at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by Northwestern University, E.I. DuPont de Nemours & Co., and The Dow Chemical Company. The pH 7 XAFS spectra were collected at APS beamline 12-BM-B. The APS is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors would particularly like to thank Qing Ma for his help in setting up and collecting XAFS spectra at 5-BM-D and Sungsik Lee and Benjamin Reinhart for their support of data collection at beamline 12-BM-B.
This document contains information regarding MES buffer effects at pH 7. In addition, figures of XANES spectra of Mn oxidation state standards, EXAFS data and fits, XRD patterns of TriB aged at pH 4, and XANES spectra and XRD patterns showing the impact of MES buffer on pH 7 samples are included. Data regarding spectral fitting results for EXAFS measurements, diffraction lines of manganese (hydr)oxides, and Langmuir isotherm parameters for Mn(II) adsorption experiments are also listed.

Table 1. Structural Mn and Na content and relative amounts of initial dissolved Mn$^{2+}$ and solid Mn$^{4+}$ in the 25 day aging experiments.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Moles Mn$_{(s)}$ per g mineral</th>
<th>Moles Na per g mineral</th>
<th>Na: Mn (mol: mol)</th>
<th>Initial Mn$^{2+}$(aq):Mn$^{4+}$(s) (mol: mol)</th>
<th>Initial Mn$^{2+}$(aq):Mn$^{4+}$(s) (mol: mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ-MnO$_2$</td>
<td>0.0067</td>
<td>0.0011</td>
<td>0.16</td>
<td>0.045</td>
<td>0.450</td>
</tr>
<tr>
<td>HexB</td>
<td>0.0083</td>
<td>0.0002</td>
<td>0.02</td>
<td>0.042</td>
<td>0.452</td>
</tr>
<tr>
<td>TriB</td>
<td>0.0097</td>
<td>0.0027</td>
<td>0.28</td>
<td>0.054</td>
<td>0.543</td>
</tr>
</tbody>
</table>

Table 2. Properties of synthesized and reacted phyllomanganates, including the reaction conditions and final solution concentrations for the aging experiments.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Mn Oxide</th>
<th>pH</th>
<th>[Mn(II)]$_{initial}$ (mM)</th>
<th>XANES AMOSa</th>
<th>MB AMOSb</th>
<th>[Mn]$_{soln}$ (mM)</th>
<th>[Mn]$_{ads}$ (mmol g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unreacted:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthδ</td>
<td>δ-MnO$_2$</td>
<td>4</td>
<td>0.75</td>
<td>3.93</td>
<td>3.99</td>
<td>0.012 ± 0.001</td>
<td>-0.005c</td>
</tr>
<tr>
<td>SynthHB</td>
<td>HexB</td>
<td>4</td>
<td>0</td>
<td>3.79</td>
<td>3.80</td>
<td>BDL</td>
<td>-</td>
</tr>
<tr>
<td>SynthTB</td>
<td>TriB</td>
<td>4</td>
<td>0.75</td>
<td>3.67</td>
<td>3.68</td>
<td>4.4 ± 0.1</td>
<td>1.24</td>
</tr>
<tr>
<td>Aging Samples:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4δno</td>
<td>δ-MnO$_2$</td>
<td>7</td>
<td>0.75</td>
<td>3.98</td>
<td>3.99</td>
<td>BDL</td>
<td>-</td>
</tr>
<tr>
<td>4δlow</td>
<td>δ-MnO$_2$</td>
<td>7</td>
<td>0.75</td>
<td>3.94</td>
<td>3.91</td>
<td>BDL</td>
<td>0.30</td>
</tr>
<tr>
<td>4δhigh</td>
<td>δ-MnO$_2$</td>
<td>7</td>
<td>7.5</td>
<td>3.22</td>
<td>3.38</td>
<td>BDL</td>
<td>3.00</td>
</tr>
<tr>
<td>7δno</td>
<td>δ-MnO$_2$</td>
<td>4</td>
<td>0</td>
<td>3.79</td>
<td>3.80</td>
<td>BDL</td>
<td>-</td>
</tr>
<tr>
<td>7δlow</td>
<td>δ-MnO$_2$</td>
<td>4</td>
<td>7.5</td>
<td>3.72</td>
<td>3.73</td>
<td>BDL</td>
<td>0.30</td>
</tr>
<tr>
<td>7δhigh</td>
<td>δ-MnO$_2$</td>
<td>4</td>
<td>7.5</td>
<td>3.21</td>
<td>3.27</td>
<td>BDL</td>
<td>3.00</td>
</tr>
<tr>
<td>4HexBno</td>
<td>HexB</td>
<td>4</td>
<td>0</td>
<td>3.64</td>
<td>3.77</td>
<td>0.48 ± 0.02</td>
<td>0.11</td>
</tr>
<tr>
<td>4HexBlow</td>
<td>HexB</td>
<td>4</td>
<td>0.75</td>
<td>3.79</td>
<td>3.80</td>
<td>BDL</td>
<td>-</td>
</tr>
<tr>
<td>4HexBhigh</td>
<td>HexB</td>
<td>7</td>
<td>7.5</td>
<td>3.73</td>
<td>6.8 ± 0.2</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>7HexBno</td>
<td>HexB</td>
<td>7</td>
<td>0</td>
<td>3.72</td>
<td>3.73</td>
<td>BDL</td>
<td>0.30</td>
</tr>
<tr>
<td>7HexBlow</td>
<td>HexB</td>
<td>7</td>
<td>0.75</td>
<td>3.21</td>
<td>3.27</td>
<td>BDL</td>
<td>3.00</td>
</tr>
<tr>
<td>7HexBhigh</td>
<td>HexB</td>
<td>7</td>
<td>7.5</td>
<td>3.61</td>
<td>3.60</td>
<td>6.7 ± 0.08</td>
<td>0.32</td>
</tr>
<tr>
<td>4TriBno</td>
<td>TriB</td>
<td>4</td>
<td>0</td>
<td>3.67</td>
<td>3.60</td>
<td>6.7 ± 0.08</td>
<td>0.32</td>
</tr>
<tr>
<td>4TriBlow</td>
<td>TriB</td>
<td>4</td>
<td>0.75</td>
<td>3.63</td>
<td>3.60</td>
<td>6.7 ± 0.08</td>
<td>0.32</td>
</tr>
<tr>
<td>4TBhigh</td>
<td>TriB</td>
<td>7</td>
<td>7.5</td>
<td>3.53</td>
<td>3.51</td>
<td>BDL</td>
<td>0.30</td>
</tr>
<tr>
<td>7TriBno</td>
<td>TriB</td>
<td>7</td>
<td>0.75</td>
<td>3.53</td>
<td>3.51</td>
<td>BDL</td>
<td>0.30</td>
</tr>
<tr>
<td>7TriBhigh</td>
<td>TriB</td>
<td>7</td>
<td>7.5</td>
<td>3.11</td>
<td>3.10</td>
<td>BDL</td>
<td>3.00</td>
</tr>
</tbody>
</table>

aAverage manganese oxidation state (AMOS) determined by XANES. Estimated accuracy is approximately 0.04 v.u. (Manceau et al., 2012)

bAMOS predicted by mass balance (MB).

cNegative value indicates net release of Mn(II) to solution.

dBDL denotes below detection limit (0.006 mM).

eNo XANES data is presented for this sample because it was damaged prior to analysis.
FIGURE CAPTIONS

Figure 1. XRD patterns of unreacted manganese oxides (A) and of δ-MnO2 (B), HexB (C), and TriB (D) after aging for 25 days in the absence or presence of dissolved Mn(II); see Table 2 for specific conditions. In (B-D), patterns of the unreacted samples (black) and samples reacted without Mn(II) (see legend) are overplotted by the pattern of the corresponding sample reacted with Mn(II) (see legend). The red asterisk in (D) denotes a peak corresponding to feitknechtite. The vertical dashed line in (D) demarcates an intensity scale change from 1× to 8× intensity.

Figure 2. Mn K-edge XAFS spectra of unreacted and reacted δ-MnO2 (A-C), HexB (D-F), and TriB (G-I); see Table 2 for specific conditions. XANES spectra (A,D,G), EXAFS spectra (B,E,H), or Fourier transform (C,F,I) data of the aged samples are overplotted with one another for each pH set. Vertical blue lines denote diagnostic features at 6553 eV in the XANES spectra, 6.8, 8.1, and 9.2 Å⁻¹ in the EXAFS spectrum, and 3.0 and 5.2 Å in the EXAFS Fourier transform; the vertical black dashed line indicates the white line energy of unreacted triclinic birnessite. XAFS spectra of samples reacted with 7.5 mM Mn(II) at pH 7 appear in Figure 4.

Figure 3. (A) Mn(II) adsorption isotherms at pH 4 after 2 days of reaction. Lines represent Langmuir isotherm fits to the data (see Table EA1). (B) Mn(II) uptake (points) onto phyllomanganates after 25 days of reaction at pH 4 compared to Langmuir isotherm curves determined from the 2 day Mn(II) adsorption isotherm measurements.

Figure 4. XRD patterns (A) and XANES spectra (B) of phyllomanganates reacted for 25 days with 7.5 mM Mn(II). Peaks corresponding to feitknechtite in XRD are denoted by red asterisks. Dotted lines represent XANES spectra of the corresponding unreacted phyllomanganate.
Figure 1. XRD patterns of unreacted manganese oxides (A) and of δ-MnO2 (B), HexB (C), and TriB (D) after aging for 25 days in the absence or presence of dissolved Mn(II); see Table 2 for specific conditions. In (B-D), patterns of the unreacted samples (black) and samples reacted without Mn(II) (see legend) are overplotted by the pattern of the corresponding sample reacted with Mn(II) (see legend). The red asterisk in (D) denotes a peak corresponding to feitknechtite. The vertical dashed line in (D) demarcates an intensity scale change from 1× to 8× intensity.
Figure 2. Mn K-edge XAFS spectra of unreacted and reacted δ-MnO$_2$ (A-C), HexB (D-F), and TriB (G-I); see Table 2 for specific conditions. XANES spectra (A,D,G), EXAFS spectra (B,E,H), or Fourier transform (C,F,I) data of the aged samples are overplotted with one another for each pH set. Vertical blue lines denote diagnostic features at 6553 eV in the XANES spectra, 6.8, 8.1, and 9.2 Å$^{-1}$ in the EXAFS spectrum, and 3.0 and 5.2 Å in the EXAFS Fourier transform; the vertical black dashed line indicates the white line energy of unreacted triclinic birnessite. XAFS spectra of samples reacted with 7.5 mM Mn(II) at pH 7 appear in Figure 4.
Figure 3. (A) Mn(II) adsorption isotherms at pH 4 after 2 days of reaction. Lines represent Langmuir isotherm fits to the data (see Table EA1). (B) Mn(II) uptake (points) onto phyllosilicates after 25 days of reaction at pH 4 compared to Langmuir isotherm curves determined from the 2 day Mn(II) adsorption isotherm measurements.

Figure 4. XRD patterns (A) and XANES spectra (B) of phyllosilicates reacted for 25 days with 7.5 mM Mn(II). Peaks corresponding to feitknechtite in XRD are denoted by red asterisks. Dotted lines represent XANES spectra of the corresponding unreacted phyllosilicate.