

Impact of Mn(II)-Manganese Oxide Reactions on Ni and Zn Speciation

Margaret A. G. Hinkle*, Katherine G. Dye[†] and Jeffrey G. Catalano

Department of Earth and Planetary Sciences, Washington University, 1 Brookings Drive, Saint Louis, MO 63130 USA

*Corresponding author: Tel.: +1-202-633-1815; Fax: +1-202-357-2476; E-mail: mhinkle@eps.wustl.edu

Word count with text (abstract through acknowledgements: 5,352 words), figures (1200 words), and tables (600 words) is 7,152 words

Submitted to *Environmental Science & Technology*

August 2016

Revised December 2016

Revised February 2017

ABSTRACT

29 Layered Mn oxide minerals (phyllo-manganates) often control trace metal fate in natural
30 systems. The strong uptake of metals such as Ni and Zn by phyllo-manganates results from
31 adsorption on or incorporation into vacancy sites. Mn(II) also binds to vacancies and subsequent
32 comproportionation with structural Mn(IV) may alter sheet structures by forming larger and
33 distorted Mn(III)O₆ octahedra. Such Mn(II)-phyllo-manganate reactions may thus alter metal
34 uptake by blocking key reactive sites. Here we investigate the effect of Mn(II) on Ni and Zn
35 binding to phyllo-manganates of varying initial vacancy content (δ -MnO₂, hexagonal birnessite,
36 and triclinic birnessite) at pH 4 and 7 under anaerobic conditions. Dissolved Mn(II) decreases
37 macroscopic Ni and Zn uptake at pH 4 but not pH 7. Extended X-ray absorption fine structure
38 spectroscopy demonstrates that decreased uptake at pH 4 corresponds with altered Ni and Zn
39 adsorption mechanisms. These metals transition from binding in the interlayer to sheet edges,
40 with Zn increasing its tetrahedrally-coordinated fraction. These effects on metal uptake and
41 binding correlate with Mn(II)-induced structural changes, which are more substantial at pH 4
42 than 7. Through these structural effects and the pH-dependence of Mn(II)-metal competitive
43 adsorption, system pH largely controls metal binding to phyllo-manganates in the presence of
44 dissolved Mn(II).

45

1. INTRODUCTION

46 Manganese oxides are highly reactive minerals with a wide occurrence in marine,
47 lacustrine, riverine, and cave systems, acting as metal scavengers.¹⁻⁹ As a result of their large
48 adsorption capacities and redox behavior, manganese oxides exert substantial controls on the
49 concentrations and speciation of many trace metals, notably Ni and Zn.^{4,9-13} The reactivity of
50 these minerals is largely controlled by their structure,¹⁴⁻¹⁶ which can be affected by cation
51 adsorption onto and incorporation into manganese oxides.¹⁷⁻²⁷

52 Unlike most dissolved cations, the structural effects of dissolved Mn(II) when it reacts
53 with manganese oxides involves both adsorption and comproportionation with Mn(IV),
54 producing solid-phase Mn(III). Recent research shows that Mn(II) promotes the phase
55 transformation of layered Mn(IV/III) oxides (phyllo-manganate) into manganite (γ -MnOOH) and
56 hausmannite (Mn₃O₄), involving a feitknechtite (β -MnOOH) intermediary.²⁸⁻³⁰ While such
57 transformations affect trace metal speciation,³¹ the resulting lower-valent mineral phases are
58 uncommon in environmental systems, which are typically dominated by Mn(IV/III)
59 phyllo-manganates,^{3,32-37} and these phase transformations may not be widespread in nature. At
60 lower Mn(II):Mn(IV) ratios phase transformations do not occur, with phyllo-manganates instead
61 exhibiting modifications to their sheet structures and layer stacking.^{21,38-40} pH, reaction time, and
62 the initial manganese oxide composition and structure affect the extent and nature of these
63 Mn(II)-induced modifications.^{28,30,39,40}

64 The effects of Mn(II) on phyllo-manganates suggest that metals may display altered
65 sorption behavior to such minerals in regions with coexisting aqueous Mn(II), such as at redox
66 interfaces in soils, sediments, and water columns, acid and coal mine drainage remediation sites,
67 or regions with active biogeochemical manganese cycling. Many cations bind in the interlayer of

68 phyllo-manganates by adsorbing over vacancy sites,⁴¹⁻⁴⁹ although edge sites remain highly
69 reactive towards adsorbates in Mn(III)-rich phyllo-manganates.^{16,50-53} Over time, structurally
70 compatible cations like Ni become progressively incorporated into the phyllo-manganate sheet at
71 these vacancies.⁴¹ Because Mn(II) also binds to these sites,^{21,40,49,54} it may alter metal adsorption
72 and subsequent incorporation through site competition and vacancy filling.

73 In this study, the effects of Mn(II) on Ni and Zn sorption behaviors on phyllo-manganates
74 are examined. Mineral vacancy content and pH are hypothesized to be principal factors, as
75 metals typically adsorb over vacancies, exhibiting increased uptake with increasing
76 pH,^{35,41,42,44,55} and both vacancy content and pH are important controls on Mn(II)-induced
77 phyllo-manganate structural changes.⁴⁰ Thus, the manganese oxides examined in this study were
78 selected to explore how vacancies and Mn(III) content affect metal binding: δ -MnO₂ (the
79 synthetic analogue of vernadite) has charge primarily from sheet vacancies, triclinic birnessite
80 has layer charge predominantly from Mn(III) substitutions, and c-disordered H⁺ birnessite (a
81 birnessite with hexagonal symmetry) contains both vacancies and Mn(III) substitutions.^{56,57}
82 Acidic and neutral pH systems were chosen to reduce the risk of secondary manganese oxide
83 mineral precipitation, which is promoted by higher pH, and because these pH regimes are
84 relevant for natural and polluted systems with coexisting dissolved Mn(II), manganese oxides,
85 and trace metals.^{32,45,58-61} Ni and Zn binding mechanisms onto these phyllo-manganates during
86 adsorption on and coprecipitation with phyllo-manganates were assessed with X-ray absorption
87 fine structure (XAFS) spectroscopy. The effect of the absence and presence of dissolved Mn(II)
88 during aging for 25 days on Ni and Zn uptake and binding mechanisms was also investigated.

89

90 **2. METHODS AND MATERIALS**

91 **2.1. Molecular-Scale Ni and Zn Sorption Experiment Sample Preparation**

92 Ni and Zn sorption onto three different minerals, δ -MnO₂, c-disordered H⁺ birnessite
93 (termed ‘HexB’ in this paper), and triclinic birnessite (‘TriB’), in the presence and absence of
94 Mn(II) was investigated by Ni and Zn K-edge XAFS spectroscopy. Mineral syntheses and
95 reagent preparation are described in the SI. δ -MnO₂, HexB, and TriB were previously
96 determined to have $\sim 1\pm 1\%$, $10\pm 2\%$, and $40\pm 10\%$ of structural Mn as Mn(III).⁴⁰ Samples
97 consisted of 2.5 g L⁻¹ δ -MnO₂, TriB, or HexB reacted in a solution containing 0.23 mM Ni(II) or
98 Zn(II) with 10 mM NaCl (an ionic strength buffer), 1 mM 2-(4-morpholino)ethanesulfonic acid
99 (MES) buffer (for pH 7 samples), and 0, 0.75, or 7.5 mM Mn(II) for 25 days (as listed in Tables
100 1 and 2) within an anaerobic chamber (Coy Laboratory Products, Inc., 3% H₂/97% N₂
101 atmosphere with Pd catalysts) at pH 4 and pH 7. These experiments have Ni(II) and Zn(II):solid
102 Mn(IV) ratios of 0.013-0.016 mol:mol and Ni(II) and Zn(II):solid Mn(total) ratios of 0.009-0.014
103 mol:mol (using solid Mn(IV) per g mineral and solid Mn(total) per g mineral, respectively, as
104 obtained for the same starting materials and published previously⁴⁰). The Mn(II):solid Mn(IV)
105 ratios are 0.042-0.054 and 0.425-0.543 mol:mol for the 0.75 and 7.5 mM experiments,
106 respectively. The 7.5 mM Mn(II) experiments were conducted at pH 4 only, as feitknechtite
107 precipitation occurs at this Mn(II):Mn(IV) ratio at pH 7⁴⁰ and the impact of such phase
108 transformations on trace metal speciation has been previously studied.³¹ After the mineral
109 suspension was added to the samples, marking the start of the experiment, the samples were
110 allowed to equilibrate for approximately 1 hour, at which point the pH of the samples was
111 adjusted to pH 4 or 7 with HCl and NaOH. The samples were placed on end-over-end rotators
112 wrapped in aluminum foil. Sample pH was checked, and adjusted if necessary, throughout the
113 duration of the experiment. At the end of the experiment, the samples were filtered (reusable

114 syringe filter; 0.22 μ m MCE membrane; Fisher Scientific), discarding the first 1 mL of filtrate
115 and collecting the solid as a wet paste. The filtrates were removed from the anaerobic chamber
116 and promptly acidified to 2% HNO₃ (trace metal grade; OmniTrace® UltraTM). The acidified
117 filtrates were diluted with 2% HNO₃ for inductively coupled plasma-optical emission
118 spectroscopy (ICP-OES; Perkin Elmer Optima 7300 DV) analysis for dissolved Ni, Zn, and Mn
119 concentrations. Uncertainty (95% confidence level) was determined using the standard
120 deviations from the triplicate instrument analyses. Similar experiments were also conducted to
121 assess the effect of Mn(II) on macroscopic Ni adsorption on short time-scales; experiment details
122 are described in the SI.

123 Additional Mn(II)-free samples of Ni and Zn adsorbed onto phylomanganates, reacted
124 for just 40 hours, were also prepared for XAFS spectroscopic measurements. These 40 hour
125 samples involved the same experimental parameters described above. Phylomanganates
126 coprecipitated with Ni and Zn were also analyzed by XAFS spectroscopy. These samples were
127 synthesized following the procedures described in the SI for metal-free phylomanganates, but
128 with Ni(II) or Zn(II) (using a NiCl₂•6H₂O or ZnCl₂) substituting for a portion of the
129 MnCl₂•4H₂O starting solution [Ni:Mn and Zn:Mn= 0.02]. All syntheses were successful in
130 producing the intended phylomanganate with approximately 2 mol% Ni (specifically, 1.7 mol%
131 for δ -MnO₂, 1.5 mol% for HexB, 2.1 mol% for TriB) or Zn (2.0 mol% for δ -MnO₂, 0.6 mol% for
132 HexB), with the exception of Zn-coprecipitated TriB. All attempts to synthesize
133 Zn-coprecipitated TriB resulted in the formation of a triclinic birnessite-hetaerolite mixture, even
134 at lower initial Zn contents (e.g., 0.2 mol% Zn), as evidenced by X-ray diffraction (XRD)
135 (Bruker D8 Advance X-ray diffractometer, Cu K_α radiation) patterns and X-ray absorption near
136 edge structure (XANES) spectra (not shown). The precipitation of hetaerolite (ZnMn₂O₄)

137 appears to be favored in systems with substantial Mn(III) contents, as hetaerolite formation was
138 previously observed upon the addition of Zn during the Mn(II)-induced phase transformation of
139 a hexagonal birnessite to feitknechtite.³¹

140 XAFS samples for the solids (as wet pastes) were prepared following methods described
141 previously.⁴⁰ Samples preparation was timed to minimize risk of drying: samples were prepared
142 a maximum of 68 hours prior to the start of experiments for those analyzed at the Advanced
143 Photon Source (APS) at Argonne National Laboratory and 120 hours prior to the start of
144 experiments at the Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National
145 Accelerator Laboratory. To preserve anoxic conditions and further prevent drying, each sample
146 was individually sealed in a polyethylene bag with a damp Kimwipe.

147

148 **2.2. XAFS Spectroscopic Measurements**

149 XAFS spectra were collected at APS beamline 20-BM-B and SSRL beamline 4-1.
150 Beamline 20-BM-B uses a Si (111) fixed-offset double-crystal monochromator, detuned by 10%
151 to attenuate harmonics. Rh-coated Si mirrors were used for focusing and further harmonic
152 rejection. Fluorescence yield Ni and Zn K-edge XAFS spectra were collected with a 12-element
153 energy dispersive solid-state Ge array detector. Beamline 4-1 uses a Si (220) double crystal
154 monochromator, which was detuned by 40% to attenuate beam harmonics. Fluorescence yield Ni
155 and Zn K-edge XAFS spectra were collected using 15 elements of an energy dispersive
156 solid-state Ge array detector. Spectra of Ni and Zn metal foils were used to calibrate the incident
157 beam energy, with the maximum in the first derivative of the K-edges set to 8333 eV and 9659
158 eV, respectively.

159

160 **2.3. XAFS Fitting**

161 The Athena⁶² graphical user interface to IFEFFIT⁶³, in conjunction with SamView via the
162 SixPack interface⁶⁴ were used to average, process, deadtime correct, and normalize the XAFS
163 spectra. SixPack was also used for spectral fitting, largely following models described in past
164 research^{20,35,41,43} for Ni and Zn adsorption onto phyllo-manganates. The chalcophanite structure⁶⁵
165 was used to calculate backscattering phase and amplitude functions for the Zn system using
166 FEFF 9.6⁶⁶, and Ni substituted for Zn within the chalcophanite structure was used to calculate
167 these functions for the Ni system. The k^3 -weighted extended X-ray absorption fine structure
168 (EXAFS) spectra were fit over a k range of $3 - 11.1 \text{ \AA}^{-1}$ and an R range of $1 - 4.0 \text{ \AA}$, with the
169 amplitude reduction factor (S_0^2) fixed to 0.94 for all Ni samples²⁰ and 0.86 for all Zn samples.⁴⁴
170 Details regarding the structural model fits to the data and the constraints applied to some
171 parameters are provided in the SI.

172

173 **3. RESULTS**

174 **3.1. Effect of Adsorption versus Coprecipitation on Metal Binding Mechanisms**

175 Aging phyllo-manganates can involve structural changes [both in the absence and
176 presence of Mn(II)],^{39,40,49,54,67-69} thus to better constrain our interpretation of Ni and Zn
177 speciation in this system, we first characterized the Ni and Zn binding modes after 40 hours of
178 reaction with pre-formed phyllo-manganates in the absence of Mn(II) and after coprecipitation
179 with the Mn oxides. These two sets of experiments provide a baseline of metal binding by simple
180 adsorption and by coprecipitation during phyllo-manganate formation, respectively, and their
181 EXAFS fitting results provide parameter constraints for aged samples (see SI for details).

182

183 *3.1.1. Metal Adsorption at pH 4*

184 EXAFS spectroscopy shows that Ni and Zn adsorption mechanisms vary substantially
185 with manganese oxide structure. The EXAFS spectra of Ni adsorbed to all three
186 phyllo-manganates after 40 hours of reaction at pH 4 (Figure 1) exhibit clear peaks in the Fourier
187 transform at ~3.1 Å, corresponding to double-corner (DC) or triple-corner (TC) sharing surface
188 complex.^{35,41} These types of complexes have similar Ni-Mn interatomic distances of ~3.48 Å,
189 which yield a ~3.1 Å feature in the Fourier transform, but the TC complexes have ~6 Mn
190 neighbors because they adsorb above sheet vacancies²⁰ while the DC complexes have only ~2
191 Mn neighbors because they adsorb at sheet edges. Fitting these spectra (Figure S1) obtains large
192 CNs for the Ni-Mn_{DC/TC} shell (Table S1), indicating that the adsorbed Ni occurs predominantly
193 as TC complexes. The Fourier transform feature at ~5.0 Å confirms that Ni binds as a TC
194 complex as it is associated with a second shell of Mn neighbors present when Ni binds on top of
195 a vacancy site.^{20,41,42,55} This feature is generally not observed for DC complexes²⁰ because of the
196 fewer neighbors involved and greater disorder associated with fewer bonds between Ni and the
197 Mn oxide surface. In addition to features associated with a TC complex, the EXAFS spectrum of
198 Ni adsorbed on TriB at pH 4 also contains peaks in the Fourier transform at ~2.4 Å and 5.5 Å
199 (Figure 1F). These features indicate that a fraction of the solid-bound Ni is incorporated into the
200 phyllo-manganate sheet,^{35,41-43,55} confirmed by the spectral fit, which includes Ni-Mn shells at
201 2.88 Å, 5.00 Å, and 5.97 Å with CNs of 0.8 (Table S1).

202 Adsorbed Zn binds to δ -MnO₂ and TriB through similar mechanisms as Ni, with the
203 exception that Zn does not incorporate into phyllo-manganate sheets and occurs as both
204 octahedral and tetrahedral surface species. These two coordination states can be differentiated by
205 their Zn-O and Zn-Mn interatomic distances [Zn-O = ~2.10 Å (^{VI}Zn) or ~1.97 (^{IV}Zn); TC Zn-Mn

206 $\sim 3.50 \text{ \AA}$ (${}^{\text{VI}}\text{Zn}$) or $\sim 3.35 \text{ \AA}$ (${}^{\text{IV}}\text{Zn}$]).^{35,44,70} Intermediate values (e.g., Zn-O distance of $\sim 2.07 \text{ \AA}$
207 and Zn-Mn distance of $\sim 3.47 \text{ \AA}$) are indicative of mixed but spectrally unresolved tetrahedral and
208 octahedral Zn contributions.⁴⁴ ${}^{\text{VI}}\text{Zn}$ can also be visually differentiated from ${}^{\text{IV}}\text{Zn}$ in an EXAFS
209 spectrum, with ${}^{\text{VI}}\text{Zn}$ exhibiting distinct positive antinodes at $k = \sim 3.8$ and $\sim 6.1 \text{ \AA}^{-1}$, while these
210 are shifted to $k = \sim 4.4$ and $\sim 6.4 \text{ \AA}^{-1}$ for ${}^{\text{IV}}\text{Zn}$.¹⁸ In samples containing a mixture of ${}^{\text{VI}}\text{Zn}$ and ${}^{\text{IV}}\text{Zn}$,
211 these features in the EXAFS spectra become damped and broadened due to overlapping
212 spectral contributions. ${}^{\text{VI}}\text{Zn}$ is favored over ${}^{\text{IV}}\text{Zn}$ at high Zn loadings and in phyllo-manganates
213 with strong sheet stacking.^{18,70,71}

214 Such intermediate spectral features are common for Zn adsorbed to phyllo-manganates
215 (Figure 2). Similar to Ni, TC and DC Zn complexes are present, both with Zn-Mn interatomic
216 distances at $\sim 3.49 \text{ \AA}$. Zn TC and DC complexes can be differentiated as discussed above with Ni.
217 On $\delta\text{-MnO}_2$ at pH 4, spectral fits (Figure S2) show that Zn speciation is dominated by TC
218 complexes (Table S2); both tetrahedral and octahedral complexes are present. Zn adsorbed to
219 HexB at pH 4 forms both DC and TC surface complexes, with both tetrahedral and octahedral
220 forms present but unresolvable (Table S2). On TriB, Zn forms TC complexes at pH 4, occurring
221 as both tetrahedral and octahedral species.

222

223 3.1.2. Metal Adsorption at pH 7

224 At pH 7, Ni forms both incorporated and TC species on $\delta\text{-MnO}_2$, consistent with past
225 research finding that Ni incorporates into vacancy-rich phyllo-manganate sheets as pH
226 increases.^{35,41,42,55} In contrast, Ni binds to HexB at pH 7 as predominantly a TC complex (Table
227 S1). Ni adsorption mechanisms on TriB at pH 7 are also distinct, forming both a DC and
228 tridentate edge-sharing (TE) complex (Table S1). TE complexes have been previously identified

229 in Ni-triclinic birnessite systems at circumneutral pH^{20,42,50} and have Ni-Mn interatomic
230 distances intermediate between incorporated species and TC or DC complexes.

231 Like Ni, TC Zn complexes form on δ -MnO₂ at pH 7 (Table S2), with ^{IV}Zn and ^{VI}Zn both
232 contributing to the EXAFS spectra (Figure 2). For HexB, the ^{IV}Zn and ^{VI}Zn spectral contributions
233 can be resolved, and the CNs for Mn neighbors indicate a mixture of DC and TC complexes
234 (Table S2), similar to Zn speciation at pH 4. Both ^{IV}Zn and ^{VI}Zn species form on TriB at pH 7,
235 with DC (as ^{IV}Zn and possibly ^{VI}Zn) and TE (as ^{VI}Zn) complexes present (Table S2).

236

237 *3.1.3. Metal Coprecipitation with Phyllo manganeseates*

238 Ni speciation when coprecipitated with phyllo manganeseates has much larger fractions of
239 incorporated Ni (Figure 1), with the adsorbed Ni fraction behaving most similar to Ni at pH 4
240 (Table S1). The adsorbed Ni in the coprecipitation samples are likely mixtures of TC and DC
241 complexes, based on the CN values (2.6-5.5) for the ~3.48 Å Ni-Mn shell (Table S1). The
242 fraction of Ni that is incorporated or adsorbed does not vary systematically among the three
243 phyllo manganeseates studied.

244 Zn binding in the coprecipitated samples, like the adsorbed samples, is also limited to
245 adsorption, with no evidence of incorporation into the phyllo manganeseate sheets (Figure 2). This is
246 consistent with past work which has found that Zn does not enter vacancy sites,^{44,46,70,72} even in
247 the Zn-bearing phyllo manganeseate mineral chalcophanite.⁶⁵ Recent density functional theory
248 calculations suggest that this lack of incorporation is the result of the large size of Zn octahedra,
249 which would cause greater stress on phyllo manganeseate sheets than can be compensated by
250 structural distortions.⁷³ Structural models consisting of adsorbed DC and TC Zn species in mixed

251 coordination states (Table S2) reproduce the EXAFS spectra of Zn coprecipitated with δ -MnO₂
252 and HexB (Figure S2).

253

254 **3.2. Effect of Aging and Mn(II) on Metal Binding Mechanisms**

255 *3.2.1. pH 4*

256 XANES and EXAFS spectra show that the speciation of Ni adsorbed to
257 phyllo manganese is unaffected by aging for 25 days at pH 4 in the absence of Mn(II) (Figure 1).
258 Similarly, XANES spectra indicate that Zn speciation is unchanged after 25 days of aging
259 without added Mn(II) at pH 4 (Figure 2); EXAFS spectra were not collected for these conditions.
260 Aged samples prepared with added aqueous Mn(II) at pH 4, however, display altered Ni and Zn
261 binding mechanisms, with macroscopic metal uptake correspondingly reduced for most
262 conditions (Table 1). For δ -MnO₂, Ni and Zn binding mechanisms (Figures 1,2) and macroscopic
263 uptake (Table 1) only change when 7.5 mM Mn(II) is added; 0.75 mM Mn(II) does not induce
264 any observable differences. A decrease in the CNs associated with the Ni-Mn and Zn-Mn shells
265 at \sim 3.48 Å (Tables S1,S2) indicates that 7.5 mM Mn(II) promotes a transition from TC to DC
266 complexes for both metals. In addition, the Zn EXAFS spectrum (Figure 2) shows an increased
267 splitting in the 6.1 Å⁻¹ antinode, indicating that this Mn(II) concentration increases the proportion
268 of ^{IV}Zn,^{18,44} which is supported by the fitting results (Table S2).

269 In the HexB system, a similar Mn(II)-induced promotion of DC Ni and Zn complexes
270 and of ^{IV}Zn over ^{VI}Zn is observed. For Ni, the Fourier transform feature at \sim 3.1 Å decreases in
271 amplitude (Figure 1D) with increasing aqueous Mn(II) concentration, consistent with a
272 conversion from a TC complex to a DC complex. With 7.5 mM Mn(II) some Ni also
273 incorporates into HexB. Zn predominantly adsorbs as a DC complex onto HexB (Table S2), with

274 a greater dissolved Mn(II) concentration promoting ^{IV}Zn over ^{VI}Zn species. These changes to Ni
275 and Zn speciation on HexB at pH 4 in the presence of dissolved Mn(II) are accompanied by
276 decreasing macroscopic uptake (Table 1).

277 Aqueous Mn(II) also appears to alter Ni and Zn speciation on TriB, but with different
278 effects at low and high initial Mn(II) concentrations. It should be noted that dissolved Mn(II)
279 concentrations in the TriB system were larger than the initial Mn(II) added (Table 1), indicating
280 that structural Mn(III) disproportionates and releases Mn(II) to solution.⁴⁰ For Ni, when aged
281 without dissolved Mn(II) or with 7.5 mM Mn(II), similar portions of the solid-associated metal
282 are incorporated into the mineral, but such species are undetectable for the 0.75 mM Mn(II)
283 sample (Table S2). However, the Fourier transform feature at ~ 3.1 Å (Figure 1I) indicates that
284 the proportion of TC complexes is approximately constant among all Mn(II) concentrations.
285 These changes in speciation do not correlate with macroscopic Ni uptake, which decreases only
286 when 7.5 mM Mn(II) is added (Table 1). Like Ni, macroscopic Zn uptake on TriB also
287 substantially decreases in the presence of 7.5 mM Mn(II) at pH 4. Unlike Ni, however, the
288 addition of dissolved Mn(II) at pH 4 causes a shift from TC to DC surface complexes for Zn
289 (Figure 2). This shift in binding occurs progressively as Mn(II) concentration increases and is
290 accompanied by an increase in the proportion of ^{IV}Zn (Table S2).

291

292 3.2.2. *pH 7*

293 In contrast to pH 4, Mn(II) has a muted effect on Ni and Zn behavior on
294 phyllosilicates at pH 7. No detectable suppression of macroscopic Ni and Zn sorption by
295 Mn(II) occurs (Table 2). However, both the metals and Mn(II) show complete uptake on all

296 manganese oxides, suggesting that these adsorbates did not saturate the binding capacity of the
297 solids; competitive effects are thus not expected to be observed for the conditions studied.

298 Although not affecting uptake, the addition of 0.75 mM Mn(II) during aging at pH 7
299 alters Ni and Zn solid-phase speciation. The Fourier transform feature associated with
300 incorporated Ni decreases for δ -MnO₂ in the presence of Mn(II) (Figure 1C). Fitting a structural
301 model to the data confirms that incorporated Ni decreases in abundance while TC complexes are
302 unaffected (Table S1). Unlike for Ni, aging Zn with δ -MnO₂ for 25 days at pH 7 alters the
303 spectral features associated with TC and DC surface complexes (Figure 2). Fitting the spectra of
304 Zn bound to δ -MnO₂ indicates that the relative amount of TC and DC complexes is statistically
305 invariant and suggests that the primary speciation change is in the ratio of ^{VI}Zn and ^{IV}Zn.

306 For HexB, the contribution to the EXAFS spectra of Mn neighbors associated with
307 incorporated Ni is near the limit of detection given the presence of other neighboring shells.
308 While fitting shows that inclusion of such shells in a structural model is only statistically
309 justified for HexB aged in the presence of Mn(II) and not in its absence (Table S1), the Fourier
310 transform feature near \sim 2.4 Å visually appears unchanged (Figure 1F). It is thus likely that a
311 small fraction of solid-associated Ni is incorporated into the phyllosilicate sheet after 25 days
312 of reaction at pH 7, even in the absence of Mn(II). TC surface complexes are also present and
313 remain unaffected by Mn(II) addition. Similarly, Zn speciation is minimally affected by aging
314 HexB in the absence and presence of Mn(II), with a mixture of ^{IV}Zn and ^{VI}Zn occurring
315 primarily as DC complexes.

316 Like HexB, Ni and Zn speciation on TriB exhibits only minor changes upon aging for 25
317 days at pH 7 (Figures 1,2). Ni binding mechanisms involve a mixture of TE and DC Ni surface
318 complexes in the absence of added Mn(II), similar to Ni speciation after 40 hours of reaction

319 (Table S1). Aging with 0.75 mM Mn(II) suppresses DC surface complexes, with TE complexes
320 becoming the dominant (and perhaps sole) Ni species (Table S1). For Zn, the Fourier transform
321 feature at \sim 2.7 Å, indicative of TE complexes, is damped during aging without Mn(II) but is
322 unaffected when 0.75 mM Mn(II) is present (Figure 2I). Fitting suggests that aging without
323 Mn(II) favors DC complexes over TE complexes, but that a mixture of such species are present
324 when TriB is aged with added Mn(II), similar to what is seen after Ni is adsorbed for 40 hours.

325

326 4. DISCUSSION

327 4.1. Metal Binding Mechanisms Following Adsorption and Coprecipitation

328 These results show that Ni and Zn binding mechanisms are similar when reacted over
329 short (i.e., 40 hour) time scales via adsorption or coprecipitation with phyllosilicates, with the
330 exception that Ni may incorporate into the mineral structure. Vacancy content and pH are the
331 primary controls on Ni and Zn speciation. This is consistent with several prior studies, which
332 found that these metals bind as TC complexes onto high-vacancy materials like δ -MnO₂,^{20,35,41,42}
333 with DC complexes forming under high metal loadings³⁵ and Ni incorporating into δ -MnO₂ at
334 high pH,^{35,42} and TE sorption onto low-vacancy TriB.^{20,42} The presence of TC Ni and Zn
335 complexes on TriB at pH 4 but not at pH 7 suggests that a substantial vacancy content has
336 developed in this material under weakly acidic conditions. Previous research found that aging
337 TriB at pH 4 results in a reduction of Mn(III) content, the creation of sheet vacancies, and a
338 transition to hexagonal sheet symmetry, likely because acidic conditions promote Mn(III)
339 disproportionation reactions and exchange of Na⁺ for H⁺.^{40,49,54,68} Kinetic experiments
340 investigating the conversion of triclinic birnessite to hexagonal birnessite at pH 4 suggest that
341 chemical equilibrium is reached within approximately 2 hours, with substantial release of Mn(II)

342 and Na^+ to solution within 1 minute.⁴⁹ Such rapid proton-promoted structural changes in TriB at
343 low pH would explain the both the macroscopic Ni uptake and Mn release by TriB overnight at
344 pH 4 as discussed in the SI (Figure S3) and the presence of both TC and incorporated Ni in the
345 40 hour TriB pH 4 samples. Previous observations that Ni incorporation into phyllo-manganates
346 increases with increasing pH⁴¹ may, therefore, only apply to manganese oxides with substantial
347 initial vacancy contents (e.g., $\delta\text{-MnO}_2$ and HexB).

348

349 **4.2. Mechanism of Mn(II)-Induced Metal Speciation Changes During Aging at pH 4**

350 For most mineral-metal systems investigated, dissolved Mn(II) consistently promotes
351 ${}^{\text{IV}}\text{Zn}$ over ${}^{\text{VI}}\text{Zn}$ surface species on phyllo-manganates during aging at pH 4. As this change in
352 coordination correlates with a shift from adsorption at vacancy sites (TC complexes) to sheet
353 edges (DC complexes), it suggests that edge sites better stabilize ${}^{\text{IV}}\text{Zn}$. This Mn(II)-induced shift
354 from TC to DC complexes occurs for both adsorbed Ni and Zn. In the $\delta\text{-MnO}_2$ system, the
355 transition from predominantly TC to DC Ni and Zn only occurs at high Mn(II) loadings [(7.5
356 mM initial Mn(II)], while the transition for Ni occurs at lower Mn(II) loadings [(0.75 mM initial
357 Mn(II)] in the HexB system. These speciation changes correlate with Mn(II)-induced rotational
358 ordering and the formation of intermixed hexagonal and orthogonal sheets with long range
359 ordering, which occur at lower Mn(II) loadings in the HexB system relative to the $\delta\text{-MnO}_2$
360 system under similar experimental conditions.⁴⁰ Such observations suggest that phyllo-manganate
361 structural changes and competitive adsorption cause the altered Ni and Zn uptake and speciation.
362 Edge-binding complexes like DC and TE species may be promoted by the formation of
363 orthogonally symmetric phyllo-manganate sheets, as these sheets have more structural Mn(III)

364 and fewer vacancies relative to hexagonally symmetric sheets,^{54,74} and therefore possess fewer
365 binding sites for TC adsorption.

366 TriB shows distinct metal binding behavior at pH 4. The substantial Mn(III) component
367 of this phase undergoes extensive disproportionation,⁴⁰ producing dissolved Mn(II) (Table 1) and
368 vacancy-rich, rotationally ordered hexagonally-symmetric phyllo-manganate sheets.⁴⁰ Previous
369 research has demonstrated that Ni and Zn also promote the formation of vacancy-rich
370 phyllo-manganates by ejecting Mn(II) to solution,^{18,20} presumably by promoting
371 disproportionation of Mn(III) in the sheet or capping vacancies through competitive binding. The
372 favorability of these vacancy-forming disproportionation reactions should decrease when the
373 product, aqueous Mn(II), is added to the system. This likely is the cause of decreased Ni and Zn
374 uptake in the presence of Mn(II), and may partially explain why less Ni and Zn bind to TriB than
375 to δ -MnO₂ or HexB at pH 4. The results indicate that Ni competes with Mn(II) for vacancy sites
376 more effectively than Zn, as Ni uptake is reduced only with a high dissolved Mn(II)
377 concentration (7.5 mM) but Zn uptake is inhibited at both Mn(II) concentrations studied. The
378 variability in the amount of Ni incorporated into TriB at pH 4 with increasing Mn(II)
379 concentration also likely relates to the changing favorability of Mn(III) disproportionation. Zn
380 behavior is more straightforward, as the shift from TC to DC complexes and decreasing uptake is
381 consistent with competitive adsorption between Zn and dissolved Mn(II).

382

383 **4.3. Mechanisms of Mn(II)-Induced Metal Speciation Changes During Aging at pH 7**

384 Unlike at pH 4, Ni and Zn speciation on phyllo-manganates are largely unaffected by
385 aqueous Mn(II) during aging at pH 7. The slight decrease in Ni incorporation into δ -MnO₂ when
386 dissolved Mn(II) is present corresponds to an increase in structural Mn(III), and likely decrease

387 in vacancy content, observed in a past study under similar conditions.⁴⁰ With δ -MnO₂, changes in
388 Zn coordination are primarily the result of aging, irrespective of Mn(II) concentration. Ni and Zn
389 speciation in the HexB system is largely unaffected by the addition of Mn(II), consistent with the
390 finding that Mn(II) does not alter the HexB structure at this pH value.⁴⁰ For TriB, Mn(II)
391 addition results in a shift from DC to TE surface complexes for both Ni and Zn. One possible
392 explanation for this promotion of TE over DC Ni and Zn complexes is that Mn(II) may simply
393 outcompete these metals for DC adsorption sites. If this Mn(II)-metal competitive adsorption is
394 in fact the cause for enhanced TE adsorption, there must be enough binding sites for TE
395 complexes so that macroscopic metal uptake is unaffected. Alternatively, the increased
396 proportion of Ni and Zn TE complexes when Mn(II) is added may result from Mn(II) adsorption
397 to edge sites followed by comproportionation to form Mn(III),^{39,40} as recent research shows that
398 Mn(III) on sheet edges favors Ni TE over DC adsorption.⁵⁰

399

400 **4.4. Environmental Implications**

401 This study shows that Mn(II) alters trace metal speciation in phyllo-manganates, with
402 differing effects at acidic and circumneutral pH. Trace metals such as Ni and Zn commonly
403 coexist with phyllo-manganates and aqueous Mn(II) in acid and coal mine drainage sites, marine
404 sediments, and anoxic soils.^{4,32,58-61,75,76} At acidic pH, Mn(II) redistributes Ni and Zn surface
405 complexes from capping vacancies within the interlayer to binding at more exposed edge sites
406 and, at high loadings, suppresses overall Ni and Zn uptake by the solid. The amount of Mn(II)
407 remaining in solution at the end of these pH 4 high Mn(II) experiments [7.5 mM Mn(II)],
408 although large, is within the same order of magnitude for dissolved Mn(II) concentrations in
409 highly contaminated coal mine drainage sites.^{32,58} Thus, phyllo-manganates may not sequester

410 trace metals as effectively in acidic soils and acid or coal mine drainage sites with appreciable
411 concentrations of aqueous Mn(II). In more alkaline marine sediments or calcareous coal mine
412 drainage sites, Mn(II) may serve to alter the long-term behavior of incorporated metals, such as
413 Ni, in phyllo-manganates with high initial vacancy contents. In fact, the heavy metal content of
414 phyllo-manganates in a karst cave system has been shown to inversely correlate with dissolved
415 Mn(II) concentrations, potentially caused by decreased sheet vacancy content following Mn(II)
416 uptake.³ These results demonstrate that Mn(II)-bearing fluids will alter trace metal uptake and
417 speciation on phyllo-manganates in aquatic and soil systems.

418

419 **5. ASSOCIATED CONTENT**

420 **Supporting Information.** This document contains information regarding mineral and reagent
421 preparation, details of the fitting routines for the EXAFS spectra, characterization of the
422 synthesized phyllo-manganates, and a discussion regarding alternative EXAFS spectral fits. The
423 SI document also includes figures of the Ni and Zn EXAFS spectra and model fits and tables of
424 the Langmuir isotherm fit parameters (for the Ni overnight adsorption isotherms), the Ni and Zn
425 EXAFS fitting parameters, and tables comparing final and alternate EXAFS fitting parameters
426 for the Ni and Zn systems. This information is available free of charge via the Internet at
427 <http://pubs.acs.org>.

428

429 **6. AUTHOR INFORMATION**

430 **Corresponding Author Margaret A. G. Hinkle now at:**

431 * Department of Mineral Sciences, Smithsonian Institution, National Museum of Natural
432 History, Washington, DC 20560 Tel: +1-202-633-1815; E-mail: mhinkle@eps.wustl.edu

433 [†]Katherine G. Dye now at: Ocean Research College Academy, Everett, WA 98201

434 **Author Contributions**

435 The manuscript was written through contributions by Margaret A.G. Hinkle and Jeffrey G.
436 Catalano. Katherine G. Dye synthesized metal coprecipitated manganese oxides and performed
437 acid digestions on those materials to determine total mol % Ni and Zn. All authors have given
438 approval for the final version of the manuscript.

439 **Notes**

440 The authors declare no competing financial interest.

441

442 **7. ACKNOWLEDGEMENTS**

443 This research was supported by the U.S. National Science Foundation (NSF), Division of
444 Earth Sciences, Geobiology and Low-Temperature Geochemistry Program with Grant No.
445 EAR-1056480. ICP-OES analyses were conducted at the Nano Research Facility at Washington
446 University, which is supported through NSF Award No. ECS-0335765. XAFS spectra were
447 collected at beamline 20-BM-B at the APS, an Office of Science User Facility run by the U.S.
448 Department of Energy (DOE) Office of Science by Argonne National Laboratory, supported by
449 the U.S. DOE through Contract No. DE-AC02-06CH11357 and at beamline 4-1 at SSRL,
450 operated by SLAC National Accelerator Laboratory with support from the DOE Office of
451 Science through Contract No. DE-AC02-76SF00515. XRD patterns were collected with the
452 Bruker D8 Advance XRD instrument at Washington University in St. Louis, supported by the
453 NSF through Award No. EAR-1161543. We particularly thank Dale Brewe, John Bargar, and
454 Ryan Davis for their support in collecting XAFS spectra. We also especially thank Elaine D.
455 Flynn, for collecting ICP-OES data on the 40-hour sample filtrates.

8. REFERENCES

457 (1) Singh, A. K.; Hasnain, S. I.; and Banerjee, D. K. Grain size and geochemical partitioning of
458 heavy metals in sediments of the Damodar River--a tributary of the lower Ganga, India.
459 *Environ. Geo.* **1999**, *39*, 90-98.

460 (2) Li, X.; Shen, Z.; Wai, O. W. H.; and Li, Y. Z. Chemical forms of Pb, Zn and Cu in the
461 sediments profiles of the Pearl River Estuary. *Mar. Pollut. Bull.* **2001**, *42*.

462 (3) Friedich, A. J. and Catalano, J. G. Distribution and speciation of trace elements in iron and
463 manganese oxide cave deposits. *Geochim. Cosmochim. Acta* **2012**, *91*, 240-253.

464 (4) Tebo, B. M.; Bargar, J. R.; Clement, B. G.; Dick, G. J.; Murray, K. J.; Parker, D.; Verity, R.;
465 and Webb, S. M. Biogenic manganese oxides: Properties and mechanisms of formation.
466 *Annu. Rev. Earth Pl. Sc.* **2004**, *32*, 287-328.

467 (5) Goldberg, E. D. Marine Geochemistry 1. Chemical scavengers of the sea. *J. Geol.* **1954**, *62*,
468 249-265.

469 (6) Miyata, N.; Tani, Y.; Sakata, M.; and Iwahori, K. Microbial manganese oxide formation and
470 interaction with toxic metal ions. *J. Biosci. Bioeng.* **2007**, *104*, 1-8.

471 (7) Brown, G. E. and Parks, G. A. Sorption of trace elements on mineral surfaces: Modern
472 perspectives from spectroscopic studies, and comments on sorption in the marine
473 environment. *Int. Geol. Rev.* **2001**, *43*, 963-1073.

474 (8) White, W. B.; Vito, C.; and Scheetz, B. E. The mineralogy and trace element chemistry of
475 black manganese oxide deposits from caves. *J. Cave Karst Stud.* **2009**, *71*, 136-143.

476 (9) Jenne, E. A. In *Advances in Chemistry*; American Chemical Society, 1968; p. 337-387.

477 (10) Tebo, B. M.; Ghiorse, W. C.; van Waasbergen, L. G.; Siering, P. L.; and Caspi, R.
478 Bacterially mediated mineral formation; insights into manganese (II) oxidation from
479 molecular genetic and biochemical studies. *Rev. Mineral. Geochem.* **1997**, *35*, 225-266.

480 (11) Manceau, A.; Tamura, N.; Marcus, M. A.; MacDowell, A. A.; Celestre, R. S.; Sublett, R. E.;
481 Sposito, G.; and Padmore, H. A. Deciphering Ni sequestration in soil ferromanganese
482 nodules by combining X-ray fluorescence, absorption, and diffraction at micrometer
483 scales of resolution. *Am. Mineral.* **2002**, *87*, 1494-1499.

484 (12) Manceau, A.; Lanson, M.; and Takahashi, Y. Mineralogy and crystal chemistry of Mn, Fe,
485 Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule. *Am. Mineral.* **2014**, *99*, 2068-
486 2083.

487 (13) Lanson, B.; Marcus, M. A.; Fakra, S.; Panfili, F.; Geoffroy, N.; and Manceau, A. Formation
488 of Zn-Ca phyllo-manganate nanoparticles in grass roots. *Geochim. Cosmochim. Acta*
489 **2008**, *72*, 2478-2490.

490 (14) Siegel, M. D. and Turner, S. Crystalline todorokite associated with biogenic debris in
491 manganese nodules. *Science*. **1983**, *219*, 172-174.

492 (15) Post, J. E. Manganese oxide minerals: Crystal structures and economic and environmental
493 significance. *Proc. Natl. Acad. Sci. U. S. A.* **1999**, *96*, 3447-3454.

494 (16) Villalobos, M.; Escobar-Quiroz, I. N.; and Salazar-Camacho, C. The influence of particle
495 size and structure on the sorption and oxidation behavior of birnessite: I. Adsorption of
496 As(V) and oxidation of As(III). *Geochim. Cosmochim. Acta*. **2014**, *125*, 564-581.

497 (17) Yin, H.; Tan, W.; Zheng, L.; Cui, H.; Qiu, G.; Liu, F.; and Feng, X. Characterization of Ni-
498 rich hexagonal birnessite and its geochemical effects on aqueous Pb^{2+}/Zn^{2+} and As(III).
499 *Geochim. Cosmochim. Acta*. **2012**, *93*, 47-62.

500 (18) Grangeon, S.; Manceau, A.; Guilhermet, J.; Gaillot, A. C.; Lanson, M.; and Lanson, B. Zn
501 sorption modifies dynamically the layer and interlayer structure of vernadite. *Geochim.
502 Cosmochim. Acta*. **2012**, *85*, 302-313.

503 (19) Boonfueng, T.; Axe, L.; Yee, N.; Hahn, D.; and Ndiba, P. K. Zn sorption mechanisms onto
504 sheathed *Leptothrix discophora* and the impact of the nanoparticulate biogenic Mn oxide
505 coating. *J. Colloid Interface Sci.* **2009**, *333*, 439-447.

506 (20) Zhu, M.; Ginder-Vogel, M.; and Sparks, D. L. Ni(II) sorption on biogenic Mn-oxides with
507 varying Mn octahedral layer structure. *Environ. Sci. Technol.* **2010**, *44*, 4472-4478.

508 (21) Zhu, M.; Ginder-Vogel, M.; Parikh, S. J.; Feng, X. H.; and Sparks, D. L. Cation effects on
509 the layer structure of biogenic Mn-oxides. *Environ. Sci. Technol.* **2010**, *44*, 4465-4471.

510 (22) Yu, Q.; Sasaki, K.; Tanaka, K.; Ohnuki, T.; and Hirajima, T. Zinc sorption during bio-
511 oxidation and precipitation of manganese modifies the layer stacking of biogenic
512 birnessite. *Geomicrobiol. J.* **2013**, *30*, 829-839.

513 (23) Cai, J.; Liu, J.; and Suib, S. L. Preparative parameters and framework dopant effects in the
514 synthesis of layer-structure birnessite by air oxidation. *Chem. Mater.* **2002**, *14*, 2071-
515 2077.

516 (24) Paterson, E.; Bunch, J. L.; and Clark, D. R. Cation exchange in synthetic manganates: I.
517 Alkylammonium exchange in a synthetic phyllosilicate. *Clay Miner.* **1986**, *21*, 949-
518 955.

519 (25) Shen, Y. -F.; Suib, S. L.; and O'Young, C. -L. Effects of inorganic cation templates on
520 octahedral molecular sieves of manganese oxide. *J. Am. Chem. Soc.* **1994**, *116*, 11020-
521 11029.

522 (26) Bodeï, S.; Manceau, A.; Geoffroy, N.; Baronnet, A.; and Bautier, M. Formation of
523 todorokite from vernadite in Ni-rich hemipelagic sediments. *Geochim. Cosmochim. Acta*.
524 **2007**, *71*, 5698-5716.

525 (27) Ching, S.; Krukowska, K. S.; and Suib, S. L. A new synthetic route to todorokite-type
526 manganese oxides. *Inorg. Chim. Acta*. **1999**, *294*, 123-132.

527 (28) Lefkowitz, J. P.; Rouff, A. A.; and Elzinga, E. J. Influence of pH on the reductive
528 transformation of birnessite by aqueous Mn(II). *Environ. Sci. Technol.* **2013**, *47*, 10364-
529 10371.

530 (29) Elzinga, E. J. and Kustka, A. B. A Mn-54 radiotracer study of Mn isotope solid-liquid
531 exchange during reductive transformation of vernadite (δ -MnO₂) by aqueous Mn (II).
532 *Environ. Sci. Technol.* **2015**, *49*, 4310-4316.

533 (30) Elzinga, E. J. Reductive transformation of birnessite by aqueous Mn (II). *Environ. Sci.*
534 *Technol.* **2011**, *45*, 6366-6372.

535 (31) Lefkowitz, J. P. and Elzinga, E. J. Impacts of Aqueous Mn(II) on the Sorption of Zn(II) by
536 Hexagonal Birnessite.. *Environ. Sci. Technol.* **2015**, *49*, 4886-4893.

537 (32) Tan, H.; Zhang, G.; Heaney, P. J.; Webb, S. M.; and Burgos, W. D. Characterization of
538 manganese oxide precipitates from Appalachian coal mine drainage treatment systems.
539 *Appl. Geochem.* **2010**, *25*, 389-399.

540 (33) Dick, G. J.; Clement, B. G.; Webb, S. M.; Fodrie, F. J.; Bargar, J. R.; and Tebo, B. M.
541 Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the Guaymas
542 Basin deep-sea hydrothermal plume. *Geochim. Cosmochim. Acta*. **2009**, *73*, 6517-6530.

543 (34) Manceau, A.; Kersten, M.; Marcus, M. A.; Geoffroy, N.; and Granina, L. Ba and Ni
544 speciation in a nodule of binary Mn oxide phase composition from Lake Baikal.
545 *Geochim. Cosmochim. Acta*. **2007**, *71*, 1967-1981.

546 (35) Manceau, A.; Lanson, M.; and Geoffroy, N. Natural speciation of Ni, Zn, Ba, and As in
547 ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction.
548 *Geochim. Cosmochim. Acta*. **2007**, *71*, 95-128.

549 (36) Friedl, G.; Wehrli, B.; and Manceau, A. Solid phases in the cycling of manganese in
550 eutrophic lakes: New insights from EXAFS spectroscopy. *Geochim. Cosmochim. Acta*.
551 **1997**, *61*, 275-290.

552 (37) Wehrli, B.; Friedl, G.; and Manceau, A. Reaction rates and products of manganese oxidation
553 at the sediment-water interface. In *Advances in Chemistry*; 1995; p. 111-134.

554 (38) Bargar, J. R.; Tebo, B. M.; Bergmann, U.; Webb, S. M.; Glatzel, P.; Chiu, V. Q.; and
555 Villalobos, M. Biotic and abiotic products of Mn(II) oxidation by spores of the marine
556 *Bacillus* sp. strain SG-1. *Am. Mineral.* **2005**, *90*, 143-154.

557 (39) Zhao, H.; Zhu, M.; Li, W.; Elzinga, E. J.; Villalobos, M.; Liu, F.; Zhang, J.; Feng, X.; and
558 Sparks, D. L. Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its
559 Layer Symmetry.. *Environ. Sci. Technol.* **2016**, *50*, 1750-8.

560 (40) Hinkle, M. A. G.; Flynn, E.; and Catalano, J. G. Effect of Mn(II) on manganese oxide sheet
561 structures. *Geochim. Cosmochim. Acta.* **2016**, *192*, 220-234.

562 (41) Peacock, C. L. Physiochemical controls on the crystal-chemistry of Ni in birnessite: Genetic
563 implications for ferromanganese precipitates. *Geochim. Cosmochim. Acta.* **2009**, *73*,
564 3568-3578.

565 (42) Peacock, C. L. and Sherman, D. M. Sorption of Ni by birnessite: Equilibrium controls on Ni
566 in seawater. *Chem. Geol.* **2007**, *238*, 94-106.

567 (43) Peacock, C. L. and Sherman, D. M. Crystal-chemistry of Ni in marine ferromanganese
568 crusts and nodules. *Am. Mineral.* **2007**, *92*, 1087-1092.

569 (44) Toner, B.; Manceau, A.; Webb, S. M.; and Sposito, G. Zinc sorption by biogenic hexagonal
570 birnessite particles within a hydrated bacterial biofilm. *Geochim. Cosmochim. Acta.*
571 **2006**, *70*, 27-43.

572 (45) Manceau, A.; Tommaseo, C.; Rihs, S.; Geoffroy, N.; Chateigner, D.; Schlegel, M.;
573 Tisserand, D.; Marcus, M. A.; Tamura, N.; and Chen, Z. -S. Natural speciation of Mn, Ni,
574 and Zn at the micrometer scale in a clayey paddy soil using X-ray fluorescence,
575 absorption, and diffraction. *Geochim. Cosmochim. Acta.* **2005**, *69*, 4007-4034.

576 (46) Marcus, M. A.; Manceau, A.; and Kersten, M. Mn, Fe, Zn and As speciation in a fast-
577 growing ferromanganese marine nodule. *Geochim. Cosmochim. Acta.* **2004**, *68*, 3125-
578 3136.

579 (47) Manceau, A.; Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Geoffroy, N.; Sposito, G.;
580 and Padmore, H. A. Molecular-scale speciation of Zn and Ni in soil ferromanganese
581 nodules from loess soils of the Mississippi Basin. *Environ. Sci. Technol.* **2002**, *37*, 75-80.

582 (48) Manceau, A.; Drits, V. A.; Silvester, E.; Bartoli, C.; and Lanson, B. Structural mechanism
583 of Co^{2+} oxidation by the phyllo-manganate buserite. *Am. Mineral.* **1997**, *82*, 1150-1175.

584 (49) Silvester, E.; Manceau, M.; and Drits, V. A. Structure of synthetic monoclinic Na-rich
585 birnessite and hexagonal birnessite: II. Results from chemical studies and EXAFS
586 spectroscopy. *Am. Mineral.* **1997**, *82*, 962-978.

587 (50) Simanova, A. A.; Kwon, K. D.; Bone, S. E.; Bargar, J. R.; Refson, K.; Sposito, G.; and
588 Peña, J. Probing the sorption reactivity of the edge surfaces in birnessite nanoparticles
589 using nickel(II). *Geochim. Cosmochim. Acta.* **2015**, *164*, 191-204.

590 (51) van Genuchten, C. M. and Peña, J. Sorption selectivity of birnessite particle edges: a d-PDF
591 analysis of Cd(II) and Pb(II) sorption by δ - MnO_2 and ferrihydrite. *Environ Sci Process
592 Impacts.* **2016**, *18*, 1030-41.

593 (52) Simanova, A. A. and Peña, J. Time-resolved investigation of cobalt oxidation by Mn(III)-
594 rich δ - MnO_2 using quick X-ray absorption spectroscopy. *Environ. Sci. Technol.* **2015**, *49*,
595 10867-10876.

596 (53) Peña, J.; Bargar, J. R.; and Sposito, G. Copper sorption by the edge surfaces of synthetic
597 birnessite nanoparticles. *Chem. Geol.* **2015**, *396*, 196-207.

598 (54) Lanson, B.; Drits, V. A.; Silvester, E.; and Manceau, A. Structure of H-exchanged
599 hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at
600 low pH. *Am. Mineral.* **2000**, *85*, 826-838.

601 (55) Peña, J.; Kwon, K. D.; Refson, K.; Bargar, J. R.; and Sposito, G. Mechanisms of nickel
602 sorption by a bacteriogenic birnessite. *Geochim. Cosmochim. Acta.* **2010**, *74*, 3076-3089.

603 (56) Lopano, C. L.; Heaney, P. J.; Post, J. E.; Hanson, J.; and Komarneni, S. Time-resolved
604 structural analysis of K- and Ba-exchange reactions with synthetic Na-birnessite using
605 synchrotron X-ray diffraction. *Am. Mineral.* **2007**, *92*, 380-387.

606 (57) Villalobos, M.; Toner, B.; Bargar, J. R.; and Sposito, G. Characterization of the manganese
607 oxide produced by *pseudomonas putida* strain MnB1. *Geochim. Cosmochim. Acta.* **2003**,
608 *67*, 2649-2662.

609 (58) Luan, F.; Santelli, C. M.; Hansel, C. M.; and Burgos, W. D. Defining manganese(II)
610 removal processes in passive coal mine drainage treatment systems through laboratory
611 incubation experiments. *Appl. Geochem.* **2012**, *27*, 1567-1578.

612 (59) Mayanna, S.; Peacock, C. L.; Schäffner, F.; Grawunder, A.; Merten, D.; Kothe, E.; and
613 Büchel, G. Biogenic precipitation of manganese oxides and enrichment of heavy metals
614 at acidic soil pH. *Chem. Geol.* **2015**, *402*, 6-17.

615 (60) Kay, J. T.; Conklin, M. H.; Fuller, C. C.; and O'Day, P. A. Processes of nickel and cobalt
616 uptake by a manganese oxide forming sediment in Pinal Creek, Globe Mining District,
617 Arizona. *Environ. Sci. Technol.* **2001**, *35*, 4719-4725.

618 (61) Cravotta III, C. A. Dissolved metals and associated constituents in abandoned coal-mine
619 discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations. *Appl.*
620 *Geochem.* **2008**, *23*, 166-202.

621 (62) Ravel, B. and Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray
622 absorption spectroscopy using IFEFFIT. *J. Synchrotron Radiat.* **2005**, *12*, 537-541.

623 (63) Newville, M. IFEFFIT: interactive EXAFS analysis and FEFF fitting. *J. Synchrotron
624 Radiat.* **2001**, *8*, 322-324.

625 (64) Webb, S. M. SIXPack: A Graphical User Interface for XAS Analysis using IFEFFIT. *Phys.*
626 *Scripta.* **2005**, *T115*, 1011-1014.

627 (65) Post, J. E. and Appleman, D. E. Chalcophanite, ZnMn₃O₇-3H₂O: New crystal-structure
628 determinations. *Am. Mineral.* **1988**, *73*, 1401-1404.

629 (66) Rehr, J. J.; Kas, J. J.; Vila, F. D.; Prange, M. P.; and Jorissen, K. Parameter-free calculations
630 of X-ray spectra with FEFF9. *Phys. Chem. Chem. Phys.* **2010**, *12*, 5503-5513.

631 (67) Ling, F. T.; Heaney, P. J.; Post, J. E.; and Gao, X. Transformations from triclinic to
632 hexagonal birnessite at circumneutral pH induced through pH control by common
633 biological buffers. *Chem. Geol.* **2015**, *416*, 1-10.

634 (68) Drits, V. A.; Silvester, E.; Gorshkov, A. I.; and Manceau, A. Structure of synthetic
635 monoclinic Na-rich birnessite and hexagonal birnessite: I. Results from X-ray diffraction
636 and selected-area electron diffraction. *Am. Mineral.* **1997**, *82*, 946-961.

637 (69) Manceau, A.; Marcus, M. A.; Grangeon, S.; Lanson, M.; Lanson, B.; Gaillot, A. -C.;
638 Skanthakumar, S.; and Soderholm, L. Short-range and long-range order of
639 phyllo manganese nanoparticles determined using high-energy X-ray scattering. *J. Appl.*
640 *Crystallogr.* **2013**, *46*, 193-209.

641 (70) Manceau, A.; Lanson, B.; and Drits, V. A. Structure of heavy metal sorbed birnessite. Part
642 III: Results from powder and polarized extended X-ray absorption fine structure
643 spectroscopy. *Geochim. Cosmochim. Acta.* **2002**, *66*, 2639-2663.

644 (71) Lanson, B.; Drits, V. A.; Gaillot, A. -C.; Silvester, E.; Plançon, A.; and Manceau, A.
645 Structure of heavy-metal sorbed birnessite: Part 1. Results from X-ray diffraction. *Am.*
646 *Mineral.* **2002**, *87*, 1631-1645.

647 (72) Fuller, C. C. and Bargar, J. R. Processes of zinc attenuation by biogenic manganese oxides
648 forming in the hyporheic zone of Pinal Creek, Arizona. *Environ. Sci. Technol.* **2014**, *48*,
649 2165-2172.

650 (73) Kwon, K. D.; Refson, K.; and Sposito, G. Understanding the trends in transition metal
651 sorption by vacancy sites in birnessite. *Geochim. Cosmochim. Acta.* **2013**, *101*, 222-232.

652 (74) Drits, V. A.; Lanson, B.; and Gaillot, A. -C. Birnessite polytype systematics and
653 identification by powder X-ray diffraction. *Am. Mineral.* **2007**, *92*, 771-788.

654 (75) Tebo, B. M.; Johnson, H. A.; McCarthy, J. K.; and Templeton, A. S. Geomicrobiology of
655 manganese(II) oxidation. *Trends Microbiol.* **2005**, *13*, 421-428.

656 (76) Graybeal, A. L. and Heath, G. R. Remobilization of transition metals in surficial pelagic
657 sediments from the eastern Pacific. *Geochim. Cosmochim. Acta.* **1984**, *48*, 965-975.

658

659

660

661

662

663

Table 1. pH 4 sample abbreviations and conditions.

Sample ID ^a	Mn Oxide	Reaction Time	[Mn] _{init} (mmol L ⁻¹)	[Mn] _{soln} (mmol L ⁻¹)	[Mn] _{ads} (mmol g ⁻¹)	[Me] _{soln} (mmol L ⁻¹)	[Me] _{ads} (mmol g ⁻¹)
Ni(II):							
4δad	δ-MnO ₂	40 hours	0	BDL ^b	- ^c	BDL	0.092
4δno	δ-MnO ₂	25 days	0	BDL	-	BDL	0.092
4δlo	δ-MnO ₂	25 days	0.75	BDL	0.30	BDL	0.092
4δhi	δ-MnO ₂	25 days	7.5	3.4 ± 0.2	1.64	BDL	0.092
4HBad	HexB	40 hours	0	BDL	-	BDL	0.092
4HBno	HexB	25 days	0	BDL	-	BDL	0.092
4HBlo	HexB	25 days	0.75	0.106 ± 0.006	0.26	0.018 ± 0.006	0.085
4HBhi	HexB	25 days	7.5	5.7 ± 0.1	0.72	0.16 ± 0.01	0.028
4TBad	TriB	40 hours	0	0.154 ± 0.001	-0.06 ^d	BDL	0.092
4TBno	TriB	25 days	0	0.42 ± 0.01	-0.17	0.060 ± 0.008	0.068
4TBlo	TriB	25 days	0.75	0.87 ± 0.01	-0.05	0.059 ± 0.007	0.068
4TBhi	TriB	25 days	7.5	6.9 ± 0.2	0.24	0.11 ± 0.005	0.048
Zn(II):							
4δad	δ-MnO ₂	40 hours	0	BDL	-	BDL	0.092
4δno	δ-MnO ₂	25 days	0	0.034 ± 0.005	-0.01	BDL	0.092
4δlo	δ-MnO ₂	25 days	0.75	BDL	0.30	BDL	0.092
4δhi	δ-MnO ₂	25 days	7.5	4.29 ± 0.07	1.28	0.217 ± 0.008	0.005
4HBad	HexB	40 hours	0	0.011 ± 0.003	0.00	BDL	0.092
4HBno	HexB	25 days	0	0.006 ± 0.005	0.00	BDL	0.092
4HBlo	HexB	25 days	0.75	0.084 ± 0.008	0.27	0.036 ± 0.01	0.078
4HBhi	HexB	25 days	7.5	5.7 ± 0.2	0.72	0.21 ± 0.01	0.008
4TBad	TriB	40 hours	0	0.133 ± 0.002	-0.05	BDL	0.092
4TBno	TriB	25 days	0	0.429 ± 0.007	-0.17	0.038 ± 0.008	0.077
4TBlo	TriB	25 days	0.75	1.02 ± 0.01	-0.11	0.072 ± 0.006	0.063
4TBhi	TriB	25 days	7.5	6.6 ± 0.1	0.36	0.181 ± 0.008	0.020

665 ^a Sample IDs as used in figures. Additional sample IDs not included in this table are ‘co-δ,’ ‘co-HB,’ and
666 ‘co-TB’ for Ni or Zn coprecipitated with δ-MnO₂, HexB, or TriB, respectively.

667 ^b BDL denotes any samples with [Ni]_{soln}, [Zn]_{soln}, or [Mn]_{soln} below detection limit (0.006 mM; 0.035 mM;
668 and 0.006 mM, respectively).

669 ^c (-) Denotes no aqueous Mn(II) added to the sample and dissolved Mn(II) is BDL so this parameter is not
670 reported.

671 ^d Negative values indicate net release of Mn(II) to solution.

Table 2. pH 7 sample abbreviations and conditions.

Sample ID ^a	Mn Oxide	Reaction Time	[Mn] _{init} (mmol L ⁻¹)	[Mn] _{soln} (mmol L ⁻¹)	[Mn] _{ads} (mmol g ⁻¹)	[Me] _{soln} (mmol L ⁻¹)	[Me] _{ads} (mmol g ⁻¹)
Ni(II):							
7δad	δ-MnO ₂	40 hours	0	BDL ^b	- ^c	BDL	0.092
7δno	δ-MnO ₂	25 days	0	BDL	-	BDL	0.092
7δlo	δ-MnO ₂	25 days	0.75	BDL	0.30	BDL	0.092
7HBad	HexB	40 hours	0	BDL	-	BDL	0.092
7HBno	HexB	25 days	0	BDL	-	BDL	0.092
7HBlo	HexB	25 days	0.75	BDL	0.30	BDL	0.092
7TBad	TriB	40 hours	0	BDL	-	BDL	0.092
7TBno	TriB	25 days	0	BDL	-	BDL	0.092
7TBlo	TriB	25 days	0.75	0.023 ± 0.006	0.29	BDL	0.092
Zn(II):							
7δad	δ-MnO ₂	40 hours	0	0.007 ± 0.001	0.00	BDL	0.092
7δno	δ-MnO ₂	25 days	0	BDL	-	BDL	0.092
7δlo	δ-MnO ₂	25 days	0.75	BDL	0.30	BDL	0.092
7HBad	HexB	40 hours	0	BDL	-	BDL	0.092
7HBno	HexB	25 days	0	BDL	-	BDL	0.092
7HBlow	HexB	25 days	0.75	BDL	0.30	BDL	0.092
7TBad	TriB	40 hours	0	BDL	-	BDL	0.092
7TBno	TriB	25 days	0	BDL	-	BDL	0.092
7TBlo	TriB	25 days	0.75	BDL	0.30	BDL	0.092

675 ^a Sample IDs as used in figures. Additional sample IDs not included in this table are ‘co-δ,’ ‘co-HB,’ and
676 ‘co-TB’ for Ni or Zn coprecipitated with δ-MnO₂, HexB, or TriB, respectively.

677 ^b BDL denotes any samples with [Ni]_{soln}, [Zn]_{soln}, or [Mn]_{soln} below detection limit (0.006 mM; 0.035 mM;
678 and 0.006 mM, respectively).

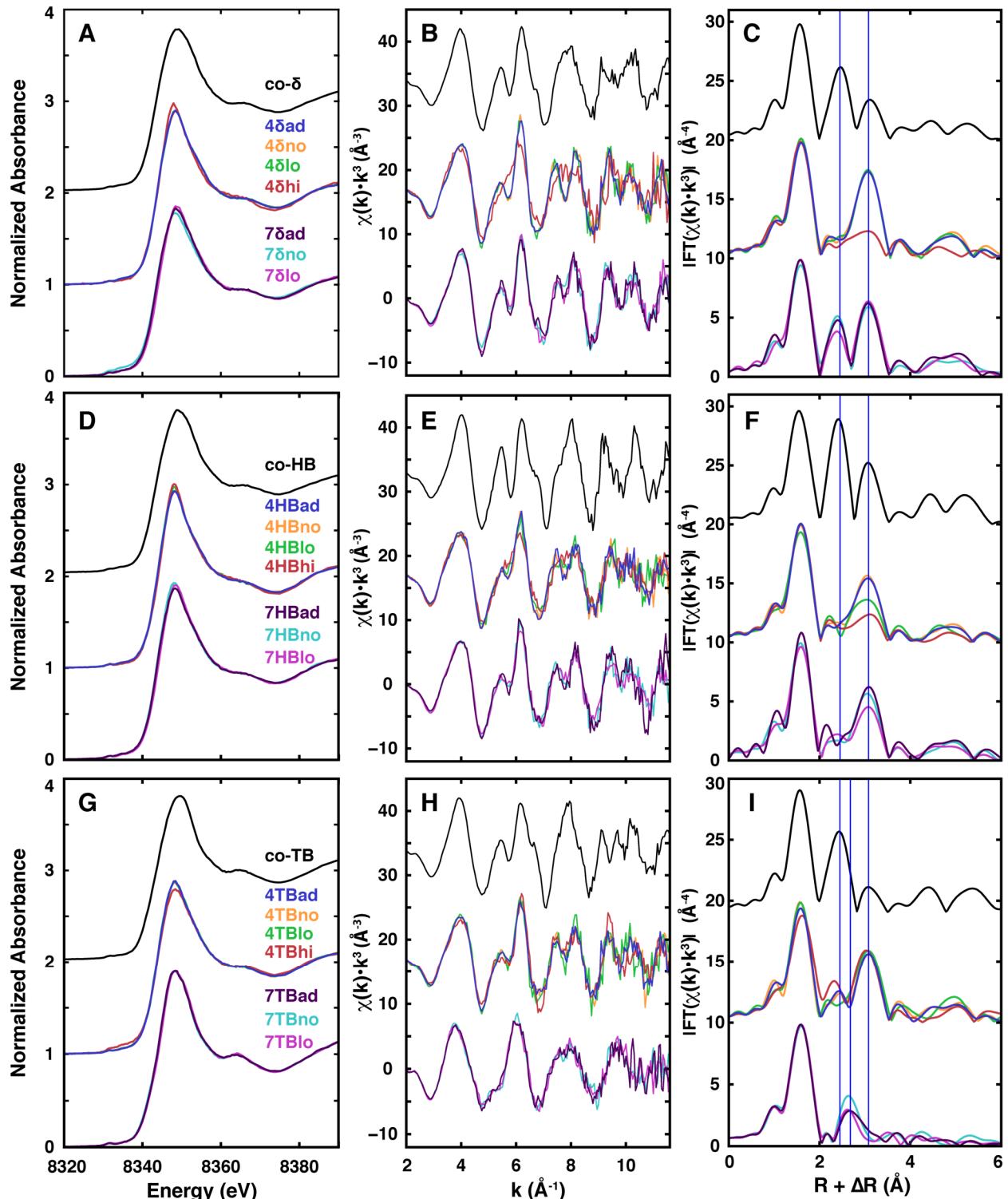
679 ^c (-) Denotes no aqueous Mn(II) added to the sample and dissolved Mn(II) is BDL so this parameter is not
680 reported.

682 **FIGURE CAPTIONS**

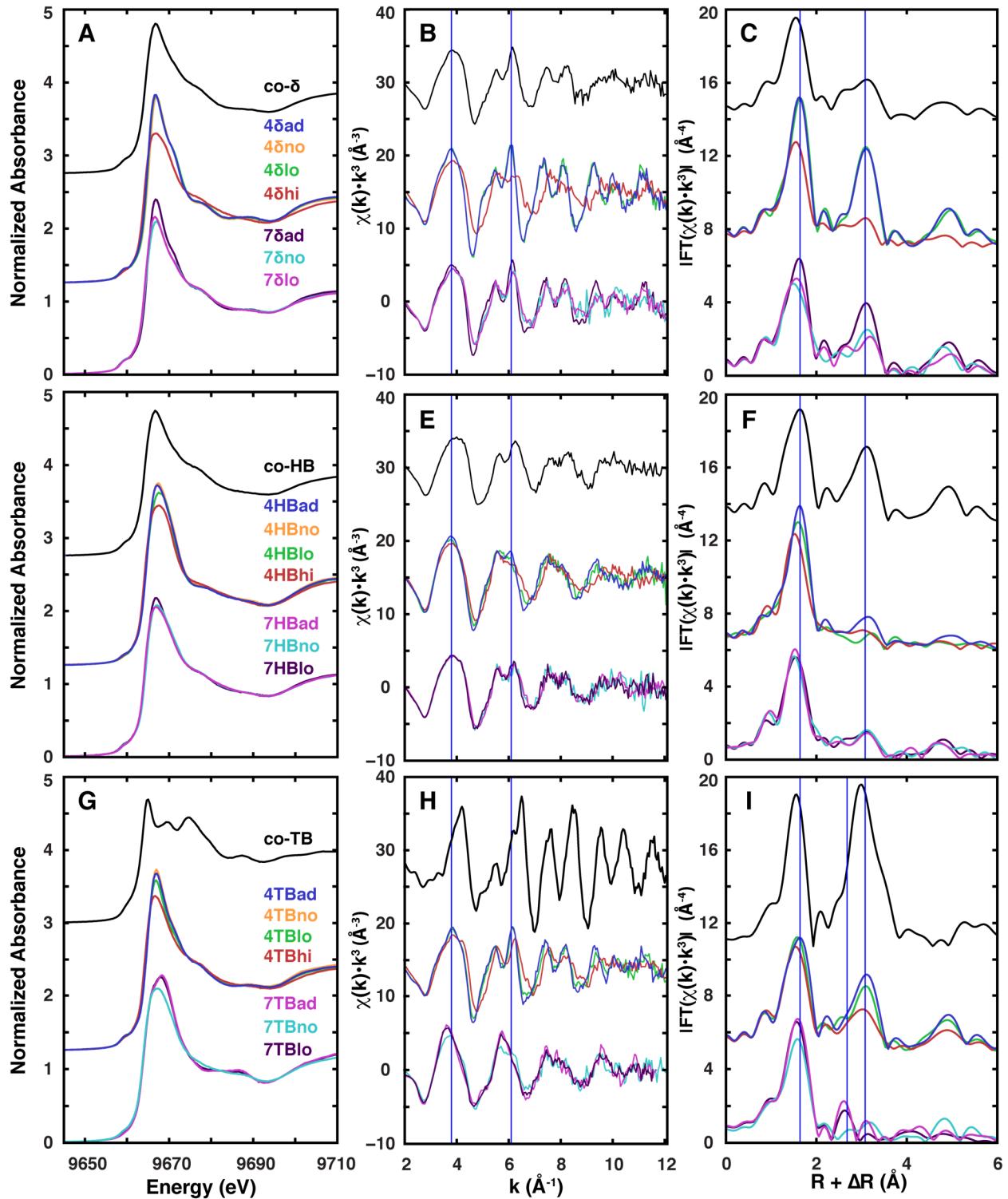
683

684 **Figure 1.** Ni K-edge XAFS spectra of Ni coprecipitated and reacted with δ -MnO₂ (A,B,C), HexB
685 (D,E,F), and TriB (G,H,I) (see Tables 1 and 2 for specific conditions). Diagnostic features at 2.5,
686 2.7 and 3.1 Å (R + Δ R) in R space (corresponding to Ni-Mn shells for incorporated Ni at 2.88 Å,
687 TE Ni at 3.08 Å, and DC/TC Ni at 3.48 Å, respectively) are denoted by dark blue vertical lines.

688


689 **Figure 2.** Zn K-edge XAFS spectra of Zn coprecipitated and reacted with δ -MnO₂ (A,B,C),
690 HexB (D,E,F), and TriB (G,H,I) (see Tables 1 and 2 for specific conditions). Diagnostic features
691 at 3.8 and 6.1 Å⁻¹ in k space (corresponding to ^{VI}Zn; features are shifted to the right for ^{IV}Zn) and
692 at 1.64, 2.7 Å and 3.1 Å (R + Δ R) in R space (corresponding to the Zn-O shell for ^{VI}Zn at 2.08
693 Å, Zn-Mn shell for TE Zn at 3.1 Å, and Zn-Mn shell for DC/TC Zn at 3.48 Å, respectively) are
694 denoted by dark blue vertical lines.

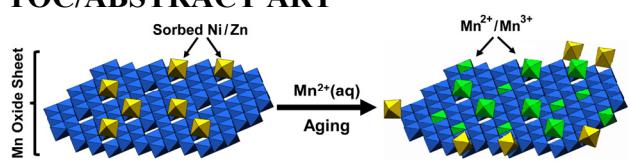
695


696

697

698

699
700 **Figure 1.** Ni K-edge XAFS spectra of Ni coprecipitated and reacted with δ -MnO₂ (A,B,C), HexB
701 (D,E,F), and TriB (G,H,I) (see Tables 1 and 2 for specific conditions). Diagnostic features at 2.5,
702 2.7 and 3.1 \AA ($R + \Delta R$) in R space (corresponding to Ni-Mn shells for incorporated Ni at 2.88 \AA ,
703 TE Ni at 3.08 \AA , and DC/TC Ni at 3.48 \AA , respectively) are denoted by dark blue vertical lines.
704
705



706
707
708
709
710
711
712

Figure 2. Zn K-edge XAFS spectra of Zn coprecipitated and reacted with δ -MnO₂ (A,B,C), HexB (D,E,F), and TriB (G,H,I) (see Tables 1 and 2 for specific conditions). Diagnostic features at 3.8 and 6.1 \AA^{-1} in k space (corresponding to ${}^{VI}\text{Zn}$; features are shifted to the right for ${}^{IV}\text{Zn}$) and at 1.64, 2.7 \AA and 3.1 \AA ($R + \Delta R$) in R space (corresponding to the Zn-O shell for ${}^{VI}\text{Zn}$ at 2.08 \AA , Zn-Mn shell for TE Zn at 3.1 \AA , and Zn-Mn shell for DC/TC Zn at 3.48 \AA , respectively) are denoted by dark blue vertical lines.

713 TOC/ABSTRACT ART

714

