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Abstract
Microbial archaeology is flourishing in the era of high-throughput sequenc-
ing, revealing the agents behind devastating historical plagues, identifying
the cryptic movements of pathogens in prehistory, and reconstructing the an-
cestral microbiota of humans. Here, we introduce the fundamental concepts
and theoretical framework of the discipline, then discuss applied method-
ologies for pathogen identification and microbiome characterization from
archaeological samples. We give special attention to the process of identify-
ing, validating, and authenticating ancient microbes using high-throughput
DNA sequencing data. Finally, we outline standards and precautions to guide
future research in the field.
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1. INTRODUCTION
In 2011, the first fully reconstructed ancient bacterial genome sequence was published—that of
Yersinia pestis—which confirmed at least one of the etiological agents of the Black Death pandemic
(16) and put to rest years of controversy that had dogged polymerase chain reaction (PCR)–based
attempts to identify the pathogen in archaeological samples (41, 57, 58, 154, 155). Other ancient
microbial genome sequences quickly followed, including those from other plague epidemics (14,
47, 158, 178, 192) and additional pathogens, such as Mycobacterium leprae (170), Mycobacterium
tuberculosis (13), Tannerella forsythia (196), Brucella melitensis (85), and Helicobacter pylori (112). The
key turning point was the availability of high-throughput sequencing (HTS), a transformative
innovation in DNA sequencing (114, 115), and sequence capture enrichment methods (16, 20, 62,
75)—two techniques that increased both sample throughput and data output by orders of mag-
nitude. These advancements revolutionized ancient DNA (aDNA) research and, more broadly,
ushered in the era of genomics nearly overnight (92, 140).

However, with these technological advances come new challenges. Tools and techniques are
needed to sort, evaluate, authenticate, and interpret the hundreds of millions of DNA sequences
that have now become the standard output of genomics and paleogenomics laboratories alike.
Numerous protocols, scripts, pipelines, and computational environments are available, as are a
myriad of genetic and genomic databases, but the rapid proliferation of these tools has left many
uncertain about which ones to use and when to use them. For example, the decision to use either
alignment-based or alignment-free taxonomic classifiers can have a strong impact on microbial
community reconstruction (106). Likewise, the choice of reference databases can greatly affect tax-
onomic assignment (149) and, consequently, the false positive and false negative rates of pathogen
detection. Similar but nonequivalent choices in parameter settings can introduce systematic bi-
ases, leading to spurious sequence alignments and false claims, and failure to statistically account
for both biological and taphonomic factors in the selection of appropriate analysis pipelines and
statistical tests can result in inaccurate conclusions.

As the complexity of paleogenomic data analysis increases, standards and guidelines for best
practices are required to ensure not only high-quality data generation, but also accurate and mean-
ingful data interpretation. Numerous challenges face the growing field of microbial archaeology—
some stemming from the way microbes reproduce and recombine during life, others shared with
genomics more generally, and still others specific to ancient and degraded samples. Concerted
effort will be required by the research community to identify and address these challenges in order
to achieve a robust and established scientific discipline.

In March 2016, the Max Planck Institute for the Science of Human History hosted the first
Standards, Precautions, and Advances in Ancient Metagenomics conference in order to identify
and discuss the challenges involved in analyzing ancient microbial metagenomic data. Here, we
present the outcomes of this meeting and outline a series of precautions and best practices for the
emerging field of microbial archaeology.

2. RESEARCH DIRECTIONS IN MICROBIAL ARCHAEOLOGY
Research directions within the growing field of microbial archaeology can generally be divided
into two paths: pathogenomics and microbiome studies. The former focuses on understanding
pathogen evolution and host-microbe interactions involved in disease states (138), whereas the
latter focuses on understanding the diversity, structure, and function of endogenous microbial
communities and their interactions with the host during both health and disease states (78, 79). In
general, pathogenomics is concerned primarily with individual disease-causing microorganisms,
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such as those causing plague (Y. pestis), tuberculosis (M. tuberculosis), or leprosy (M. leprae), whereas
microbiome studies focus more on the distribution and diversity of the microbes native to a given
host and their role in host functions, such as digestion, immune system stimulation, and chronic
inflammation.

There is a great deal of overlap between these two disciplines in practice, as pathogenomics
may include polymicrobial infections (e.g., dental caries) or mixed coinfections (e.g., pneumonia
and tuberculosis), and microbiome studies may focus on keystone taxa that disproportionately
drive community behavior (e.g., Streptococcus mutans or Porphyromonas gingivalis). Additionally,
both disciplines rely heavily on metagenomic sequence data, and thus many of their analytical
tools are shared or similar.

2.1. The Growth of the Field
Microbial archaeology can trace its origins back several decades, and early research in the field
focused on targeted PCR amplification of short specific loci, followed by electrophoretic charac-
terization or Sanger DNA sequencing. Mycobacterial spoligotyping of skeletal lesions (208) and
sequencing of amplified 16S ribosomal RNA (rRNA) gene clones from paleofeces (23) are char-
acteristic of paleomicrobiology approaches in the pre-HTS era. However, these low-throughput
techniques, which were adapted from protocols originally developed for clinical and ecological
applications, have several drawbacks when applied to ancient and degraded samples from envi-
ronmental contexts. First, targeted PCR typically requires long (>100 base pairs), well-preserved
DNA templates, which are not characteristic of the vast majority of authentic aDNA fragments
(64, 181); second, ancient samples typically require a large number (>35) of PCR cycles for suc-
cessful target amplification, which makes this approach particularly sensitive to background and
environmental contamination; third, cloning and Sanger sequencing do not allow efficient inves-
tigation of template damage patterns in order to authenticate aDNA sequences; fourth, targeted
PCR is particularly susceptible to amplification biases, including both off-target and skewed PCR
amplification, as well as taxonomic dropout; and finally, the experimental replicability of studies
using these techniques is generally low, and the results have proven to be difficult to indepen-
dently authenticate or validate (57, 64, 199, 207). Such problems reached a critical point in 2005,
when a prominent review of aDNA research summed up the field of microbial archaeology as “the
microbial problem” and largely dismissed it as a discipline (200).

The advent of HTS technologies in the mid-2000s presented a powerful solution to the inherent
shortcomings of conventional PCR-based approaches, and this new technology has dramatically
influenced the field of microbial archaeology. Today, nearly all ancient microbial research utilizes
HTS-based techniques, and multiple sequencing platforms and analytical strategies are available.
The situation mirrors that of genetic research on ancient humans, which at first was hampered
by contamination concerns resulting from PCR amplification and Sanger sequencing–based ap-
proaches but is now flourishing in the post-HTS era (65, 157, 159).

2.2. Definition of Terms
This article focuses on the analysis of metagenomic (all available DNA) data obtained from HTS
shotgun-sequenced (untargeted) or sequence-captured (target-enriched) genes and genomes ob-
tained from a microbiota (an assemblage of microorganisms) present within a microbiome (a
defined microbial ecosystem) (113). Archaeological samples typically contain mixtures of endoge-
nous (antemortem) and exogenous (postmortem) microbial DNA that may include host-associated
commensal taxa (e.g., oral microbes in dental calculus), epidemic pathogens (e.g., Y. pestis in the
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pulp cavity of teeth), and environmental bacteria (e.g., soil microbes involved in decomposition).
Additionally, contaminating DNA sequences from handling (e.g., skin microbes), storage condi-
tions (e.g., bacteria and fungi overgrowth), and laboratory sources (e.g., reagents contaminated
with enzyme expression vectors) may also be present.

This addition of both ancient and modern exogenous microbial DNA in archaeological re-
mains makes ancient pathogen and microbiome studies more complicated than investigations
of fresh samples. For example, in contrast to a freshly cultured clinical specimen, which would
typically contain a single clonal pathogen and no other major DNA sources, analysts of ancient
pathogens must grapple with complex host and environmental backgrounds, potentially including
nonpathogenic, soil-derived relatives of the pathogen of interest. Postmortem colonization and
contamination also present challenges for microbiome analysis by skewing diversity metrics and
inflating community membership. It is thus important to note the distinction between ancient
endogenous microbiota, which are the host-associated microbes that were present during life, and
exogenous microbiota, which include both decomposition-related and recent contaminant taxa.

3. WHAT IS A MICROBIAL SPECIES?
Before endogenous microbiota can be analyzed, it is first important to define what microbes
are. For the purposes of this review, we define microbes as members of the prokaryotic domains
Bacteria and Archaea. Microeukaryotes and viruses are thus beyond the scope of this review, even
though noteworthy achievements have been made in the successful genetic characterization of
potato late blight evolution (116, 205), barley stripe mosaic virus (176), Spanish influenza strains
(189), early simian immunodeficiency virus (150), and seventeenth- and eighteenth-century
smallpox strains (12, 42).

Although species annotations are routinely applied to microbial taxa, there is relatively little
consensus on what a microbial species actually is (2, 40). Unlike Ernst Mayr’s birds, microbes
adhere to few, if any, of the tenets of the biological species concept (35, 72, 117), and although
many microbial species concepts have been proposed, none have been widely accepted (2). This
is largely because although microbes reproduce asexually by binary fission at a cellular level,
they also exchange genetic information horizontally—including across taxonomically divergent
groups. The discovery of such microbial mating systems earned the 1958 Nobel Prize in Physiology
or Medicine for molecular biologist Joshua Lederberg (82), who, incidentally, later went on to
popularize the term microbiome in 2001 (101).

At the heart of the microbial species problem is a tension between methods-based and methods-
free species definitions, in part reflecting philosophical differences in the fields of microbial sys-
tematics and evolutionary biology. At a crude level, methods-based approaches are objectively
measurable, but they suffer from the fact that methods continuously change with new technolo-
gies and that the species criteria that have been established are largely arbitrary. Methods-free
definitions are more grounded in evolutionary theory but are often unmeasurable (2). In the
genomics era, methods-based definitions currently prevail as pragmatic solutions to allow re-
searchers to name and discuss taxonomic groups using Linnaean taxonomy, a stopgap measure
that is both unsatisfying and at times misleading but is also necessary to allow investigations of
what are essentially phenotypic and genetic clusters (29) of metapopulation lineages (2) that defy
easy classification.

3.1. Pragmatic Definitions
For historical reasons, the gold standard of pragmatic solutions to the microbial species problem is
the characterization of genome similarity based on reciprocal, pairwise DNA reassociation values
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under controlled conditions. Microbes whose reassociation values are ≥70% in DNA hybridization
experiments are generally considered to belong to the same species, in part because this threshold
generally recapitulates classical species distinctions based on phenotypic traits (2). Because the
method is empirical and requires purified genomic DNA from both microbes being tested, it
can be applied only to cultivable microbes. Given that only a small fraction of microbial taxa can
currently be cultivated using known techniques (147, 193), this definition is poorly suited to the
identification of most microbial species. Moreover, because of the highly fragmented nature of
aDNA, this method cannot be applied to ancient samples.

Alternatively, the 16S rRNA gene can be PCR amplified from a pool of noncultured microbes,
and the resulting sequence identities can be calculated as a proxy for DNA reassociation values.
A cutoff of roughly 97–99% sequence identity for the full gene generally correlates with species
boundaries determined by DNA reassociation (118, 190). Taxa defined by their 16S rRNA gene
sequence alone are not described as species, but rather as operational taxonomic units (OTUs)—
convenient measurable proxies for microbes that are related by descent. Although the term OTU
is generally used to refer to a species-like unit, it can theoretically represent microbial biodiversity
at any level as long as its definition is clear and consistent (77).

Because 16S rRNA gene amplification and sequencing can be performed on mixed microbial
communities without cultivation, it is a powerful method for the discovery of novel taxa; how-
ever, this method also has important limitations. Current short-read HTS technologies, such
as Illumina sequencing by synthesis, do not allow for deep sequencing of the full ∼1,540-base-
pair-long 16S rRNA gene; instead, maximum achievable read lengths typically limit analysis to
one or more of the gene’s nine shorter hypervariable regions. However, even these short regions
are generally longer than most aDNA fragments (207). Taxonomic resolution varies across these
regions (207), effectively reducing confident taxonomic assignment to the level of genus or fam-
ily for many groups. This reduction in resolution is not consistent across microbial phyla and
tends to disproportionately affect certain groups (207). Emerging technologies, such as Pacific
Biosciences’ single-molecule real-time sequencing, are capable of sequencing full genes and may
soon replace hypervariable-region short-read sequencing in metataxonomic studies of modern
samples (167); however, the highly fragmented nature of aDNA strongly limits the benefit of this
technology for ancient samples. Nevertheless, even with full-length 16S rRNA gene sequences,
taxonomic assignment can be problematic for some microbial groups (Figure 1). For example,
gut bacteria belonging to the family Enterobacteriaceae are generally poorly resolved by 16S rRNA
sequences, with the clinically distinctive genera Escherichia, Salmonella, Shigella, and Klebsiella es-
sentially forming one 16S rRNA gene sequence cluster (Figure 1a), whereas other groups, such
as the oral genera Porphyromonas and Tannerella, are monophyletic and can be easily distinguished
on the basis of 16S rRNA sequences alone (Figure 1b).

Finally, unlike most microbial genes, the number of 16S rRNA gene copies per genome is highly
variable, ranging from 1 to 5 in archaea and from 1 to 15 or more in bacteria (3, 102). Microbial
rRNA (rrn) genes are typically colocated into an operon, and operon copy number is associated
with microbial habitat and lifestyle (102, 180). Operon copy number is only weakly correlated with
taxonomic ranks of genus and higher, and in some cases copy number even varies within species
(190). Among archaea, >60% of taxa have a single rrn operon, but among bacteria, >60% of taxa
have three or more copies, and up to seven copies are commonly found (3). Although 16S rRNA
gene copies may undergo homogenization through gene conversion (68), different sequences are
observed within a single species and even within a single genome. Fewer than 40% of taxa with
multiple 16S rRNA genes have identical 16S rRNA sequences in each operon, although sequence
divergence between copies is typically <1% (3, 190). 16S rRNA gene reference databases generally
do not take this into account, and instead contain composite or consensus sequences obtained from
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Klebsiella

Salmonella

Escherichia

Shigella

Tannerella

Porphyromonas

0.004

b  Porphyromonadaceaea  Enterobacteriaceae

Bacteroides nordii

Yersinia nurmii

0.02

Figure 1
Evolutionary relationships of taxa within the bacterial families (a) Enterobacteriaceae and (b) Porphyromonadaceae based on full-length 16S
rRNA gene sequences. Taxonomy and phylogeny are incongruent for the gut-associated genera Klebsiella, Salmonella, Escherichia, and
Shigella, which are not monophyletic, but rather exhibit polyphyletic and paraphyletic clade structure. By contrast, taxonomy and
phylogeny are congruent for the oral-associated genera Tannerella and Porphyromonas, which form distinct monophyletic clades with
high bootstrap support (38). Trees are shown relative to outgroup taxa within the same bacterial family. Note the difference in scales
between the two trees. Supplemental Appendix 1 provides the specific parameters used in tree construction.

simultaneous PCR amplification and pooled sequencing of all 16S gene copies on a genome (90).
The combined effects of multiple rrn operons per genome and different 16S rRNA gene sequences
per operon result in systematic skewing of relative taxonomic abundance and overestimation of
microbial diversity in mixed microbial communities (190). The Ribosomal RNA Operon Copy
Number Database (rrnDB) maintains updated, annotated lists of rRNA operon copy numbers
(180).

Other widely used methods for defining species boundaries include multilocus sequence anal-
ysis and multilocus sequence typing, which are similar to the method described above but rely on
a panel of usually seven to ten core genes rather than focusing on a single gene (60, 146), as well as
genome-wide average nucleotide identity, which compares the sequences of all orthologous genes
in the complete genomes of species pairs (87, 160). Average nucleotide identity is in some ways
simply a methodological update of the DNA reassociation approach, in which a 95–96% average
nucleotide identity is roughly equivalent to a 70% DNA reassociation value (87, 160); however, it
therefore also suffers from the same problem that complete genomes are required either from cul-
tivated isolates or from genomes painstakingly assembled in silico from deep-sequenced shotgun
or sequence-enriched metagenomic data sets, making it difficult to apply in general, but especially
in the context of microbial archaeology.

When assigning taxonomy to metagenomic data, many popular tools use a combination of core
gene–focused and whole-genome data, and such an approach is favored in emerging taxonomic
tools such as the Metagenomic Intra-Species Diversity Analysis System (MIDAS) pipeline (129),
which seeks to characterize strain-level differences in mixed microbial communities. Departing
from these approaches are those based on k-mer binning, such as algorithms implemented by
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Kraken (201), which differ from a gene-centered focus and instead mine taxonomic information
from reference databases containing frequency distributions of short sequence fragments (k-mers)
across a range of known taxa. Because both of these tools rely on relatively short DNA sequences
for taxonomic classification, they are particularly amenable to studies of ancient microbes.

3.2. Complicating Factors
Although microbes reproduce asexually, they do not transmit genetic information in a strictly
vertical manner. Microbes are capable of—and frequently do—horizontally transfer genes, plas-
mids, transposons, and other genetic elements by a wide range of means, including transformation
(uptake of DNA from the environment), conjugation (direct transfer of DNA between cells via a
pilus), and transduction (transfer of DNA by viruses). Collectively, these processes are referred to
as horizontal gene transfer or lateral gene transfer (132, 185), and the transferred DNA can sub-
sequently gain enhanced permanence in the cell through homologous recombination or insertion
into the host chromosome.

Although most horizontal gene transfer occurs between related taxa, DNA can also be trans-
ferred across higher taxonomic ranks, and even across domains (63). Horizontal gene transfer
can also transcend time through the uptake of short, degraded aDNA fragments into living cells
(136). Within the context of the microbiome, some bacterial members of a biofilm are prolific
producers of extracellular DNA, which they use as a scaffold to anchor themselves in space (61, 67,
198). Given the close proximity and metabolic cooperation of diverse taxa within biofilms, such
extracellular DNA serves as an important source of genetic material for horizontal gene transfer
via transformation and is thought to be a major factor in the spread of virulence and antibiotic
resistance genes within host-associated microbiota (144).

The fluidity by which microbes can acquire—and also lose—large portions of their genomes
has no parallel among macroorganisms. Within a given microbial species, the number of genes
frequently varies by as much as 20% across strains. For example, genome size among 17 strains
of the periopathogen P. gingivalis ranges from 2.2 to 2.4 Mb, a difference of 8%, but the number
of genes differs by 22%, ranging from 1,870 genes in strain F0569 to 2,405 genes in strain JCVI
SC001. This is true even though these strains exhibit >99.4% sequence identity in the 16S rRNA
gene and >98.8% sequence identity across a panel of 11 housekeeping genes (coa, dnaK, ef-tu,
ftsQ, gdpxJ, hagB, mcmA, nah, pga, recA, and pepO) (93) [analysis performed on all complete or
nearly complete (scaffolded) genomes available in GenBank as of November 2016; for details,
see Supplemental Appendix 1]. By contrast, all members of a eukaryotic species carry a nearly
identical gene set, and 75% of human genes have homologs in the genome of the puffer fish
Takifugu rubripes, which diverged from mammals more than 450 Mya (8, 148).

To account for these vast differences in genome size and gene content among strains, the
collective genomes of all members of a microbial species-level clade (a monophyletic group of
related taxa) are conceptualized as having two parts: a core genome and a pan-genome. The
pan-genome, a term first introduced in 2005, consists of all genes within all strains of a species-
level clade (184), whereas the core genome represents a subset of genes that are generally shared
among strains. The core genome is variably defined, but the National Center for Biotechnology
Information defines it as comprising the genes that are present in >80% of all genomes within
a species-level clade (183). By contrast, the minimum core genome is defined as the number
of genes shared by all genomes within a special-level clade or equivalent. By either definition,
the core genome comprises primarily housekeeping genes involved in replication, transcription,
translation, and other basic cell functions required for life (118). In general, core genes of well-
studied clades make up ∼70–80% of the pan-genome (183).
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Despite being relatively central to cell function, core genes can undergo homologous recom-
bination, a process known as core genome transfer. Core genes involved in transcription and
translation, such as rRNAs, recombine only rarely (28, 89, 99), but recombination rates of other
core genes can be high (202). Streptococcus is an important host-associated genus known for high
levels of genome plasticity and recombination. In one study of streptococcal human and agri-
cultural pathogens, core genome recombination was detected in all investigated streptococcal
lineages, and 18–37% of the core genome was estimated to be recombinant (103). Core genome
transfer rates vary considerably among taxa. H. pylori, Salmonella enterica, Streptococcus pneumoniae,
Neisseria meningitidis, and Neisseria lactamica are human-associated bacteria with unusually high
core genome recombination rates, in which nucleotide changes resulting from recombination
exceed those arising from mutation by more than fivefold; by contrast, recombination rates in
Staphylococcus aureus, Lactobacillus casei, Bartonella henselae, and Bordetella pertussis are fivefold lower
than mutation rates (191). Core genome recombination occurs most frequently in taxa that are
naturally competent (genetically capable of transformation), but it has also been documented in
noncompetent cells at genetic loci in proximity to mobile elements (44, 145, 191).

Noncore genes of the pan-genome include many gene types that may be involved in adaptation
to various nutrient sources or environmental conditions, and they may or may not be carried on
mobile elements. Noncore genes that are found within >20% of strains are called accessory genes.
Those found in 1–20% of strains and in <1% of strains are called dispensable and unique genes,
respectively, and they are more common than accessory genes (122, 183).

The nonvertical transfer of DNA among microbes serves as a mechanism to increase genetic
diversity beyond that introduced through mutation alone, and it plays a major role in microbial
evolution (34, 132). This fundamental process, however, complicates attempts to define species
boundaries and to trace the evolutionary history of microbial lineages, and it has led some to argue
that no natural classification system can be described for microbes because their evolutionary
relationships are web-like rather than tree-like (10, 39). However, not all taxa freely exchange
genetic information (191), and not all genes transfer easily or frequently (202, 203). For example,
monomorphic pathogens that reproduce primarily by clonal expansion show little evidence of
recombination over broad timescales (1, 203), and core housekeeping genes that are informational
in nature rarely transfer or recombine (99). Consequently, the ancient genomes of monomorphic
pathogens, such as M. leprae and M. tuberculosis, are easier to reconstruct than those of commensal
taxa, such as H. pylori or T. forsythia (13, 112, 170, 196). Despite the messiness of microbial
phylogenies (66), however, microbes generally behave as ecologically coherent entities at the levels
of species, genus, family, and order, as currently defined by 16S rRNA gene sequence cutoffs (148).

4. THE POWER AND PITFALLS OF NAMES
Names are powerful entities that allow microbial taxa to be discussed and analyzed in a meaningful
way. However, given the heterogeneous phenotypic, genetic, genomic, and metagenomic means
by which microbial taxa are detected and observed, it is difficult to devise a single nomenclature
system. Instead, overlapping systems of both formal and provisional schemes are currently in use,
which both facilitate and limit the study of individual microbes and communities, as well as the
reconstruction of ancient microbial genomes and microbiota.

4.1. Valid Species Names and Microbial Systematics
Despite the difficulty of defining what a microbial species is, methods for granting valid microbial
species names are outlined by the International Code of Nomenclature of Bacteria set forth by
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the International Committee on Systematics of Prokaryotes (ICSP; http://www.the-icsp.org)
(98, 186). This code governs all microbial taxonomic assignments at and below the Linnaean
rank of class (141); however, only the rank of species has a formal definition: “[A] species is a
category that circumscribes a (preferably) genomically coherent group of individual isolates/strains
sharing a high degree of similarity in (many) independent features, comparatively tested under
highly standardized conditions” (179, p. 1044; see also 162). The ICSP requires all new taxa to
be published in the International Journal of Systematic and Evolutionary Microbiology, and minimal
standards for the description of new species have been established by ICSP subcommittees (51).
These standards include (a) isolation of the new species in pure culture, (b) 16S rRNA gene
sequencing to establish phylogenetic position, (c) morphological description, (d ) chemotaxonomic
characterization to establish genus affiliation, (e) explanation of the genotypic and phenotypic
basis for species differentiation, and ( f ) deposition of the type strain in at least two permanently
established culture collections in two different countries (84). Genome sequencing is not currently
required for the establishment of new microbial species, nor is genome sequencing alone sufficient
to establish a new species. The List of Prokaryotic Names with Standing in Nomenclature (LPSN;
http://www.bacterio.net) maintains an updated list of valid taxa (141).

4.2. Naming the Nameless
Given the emphasis placed on structural and functional properties of microbial isolates, taxa that
cannot be grown in pure culture—either because their growth conditions are unknown or because
they are parasitic and require the presence of other microbes to grow—are typically limited to
candidatus (candidate) status. For example, the candidate phylum Saccharibacteria (formerly TM7),
which includes at least 12 members in the human oral cavity, has proven very difficult to isolate in
pure culture (21). The only successfully cultivated phylotype to date, provisionally named TM7x,
was determined to be an epibiont (an organism that lives on the surface of another organism)
of the host bacterium Actinomyces odontolyticus, suggesting that oral Saccharibacteria may play
an important role in bacterial predation in the oral cavity (70). However, the apparent parasitic
lifestyle of such taxa precludes attempts to classify them using conventional systematics criteria.
Similar challenges face other microbial groups that are resistant to isolation in pure culture, making
them difficult to discuss and study (21, 50). Additionally, such a standard could never be applied to
ancient microbes, effectively shutting the door to the possibility of discovering and naming extinct
species.

As a consequence of the high bar set by the ICSP for obtaining a valid species name, compar-
atively few microbial species have been officially named and validated—15,974 as of 2014 (141),
compared with the >645,000 for which there is currently 16S rRNA gene sequence evidence
(OTUs clustered at 99% in the SILVA SSU Ref NR 99 database, release 128; https://www.arb-
silva.de) (152, 204). As a result, most microbial taxa are currently nameless but not necessarily
unknown.

The challenge of how to devise a functioning nomenclature scheme for such a situation is clearly
illustrated by the taxon table maintained by the Human Oral Microbiome Database (HOMD),
a public scientific resource that curates an up-to-date list of human oral microbes (27). As of
November 2016, the HOMD included 687 species-level oral taxa, of which 335 had both a valid
species name and at least one sequenced genome, 36 had a valid species name and no sequenced
genome, 88 had no valid species name but at least one sequenced genome, and 228 had no valid
species name and no sequenced genome. The HOMD addressed this problem by developing a
provisional naming scheme based on binning 16S rRNA gene sequences into unique phylotypes
that are then assigned a Human Oral Taxon number. This number then allows phenotypic,
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phylogenetic, genomic, clinical, and other data types to be linked within the HOMD portal. This
scheme, however, is limited to microbes of the human oral cavity and is not generalizable to other
microbiomes, such as those of the human gut, soil, or ocean.

Alternatively, as of March 2017, GenBank (11, 131) contains 14,022 sequenced microbial
genomes and maintains a taxonomy common tree of 23,653 named and candidatus microbial species
(993 archaea and 22,660 bacteria) that “does not follow a single taxonomic treatise but rather
attempts to incorporate phylogenetic and taxonomic knowledge from a variety of sources” (127).
By taking this pragmatic approach, they are able to utilize a diverse range of existing phenotypic,
genetic, and genomic microbial data in a common phylogenetic framework (165).

4.3. Taxonomy Versus Phylogeny
Although species names are practical entities that allow microbial taxa to be discussed and analyzed
in a meaningful way, they can also be misleading. Ideally, taxonomy (microbial classification)
should reflect phylogeny (evolutionary history), and species are periodically renamed to reflect
improved understanding of phylogenetic relationships. However, there are also many well-known
examples of named microbes for which the taxonomy is incongruent with phylogeny. In some cases,
such discrepancies apply to clinically important taxa that differ from nonpathogenic taxa mainly
because of horizontally transferred virulence factors that result in major phenotypic changes, as
in the case of Yersinia pseudotuberculosis and Y. pestis (25). In other cases, genera that are clearly
polyphyletic or paraphyletic, such as Klebsiella (Figure 1a), Clostridium, and Ruminococcus, persist
despite repeated attempts at taxonomic reorganization (100, 133, 153). The ICSP has procedures
for correcting such problems (98), and many taxa have been reclassified under this scheme. For
example, Bacteroides forsythus, a gram-negative anaerobic rod first isolated from periodontal patients
(182), was reclassified into its own genus as Tannerella forsythensis after major differences with
other Bacteroides taxa were discovered (163) and was later renamed Tannerella forsythia to adhere to
ICSP guidelines regarding gender consistency in Latin genus-species name combinations (111).
Given that microbial classifications frequently change as new information becomes available, it
is important to be aware of nomenclature history, especially when conducting literature searches
and comparing results generated using different databases.

5. METATAXONOMICS: WHO IS THERE?
The first step in any analysis of metagenomic data, either modern or ancient, is often addressing
the question “Who is there?” The question is simple and yet surprisingly difficult to answer,
in part because of our incomplete knowledge about biological diversity in general. The number
of bacterial species on earth is unknown but is likely massive. The number of bacterial cells is
estimated at 1030 (108), and microbes are thought to make up half of the earth’s total biomass
(175). Estimates ranging from millions to a trillion microbial species have been proposed (108,
166), in stark contrast with current estimates of just over 8 million eukaryotic species (123). Suffice
it to say that relatively few of these microbes have been characterized, genetically or otherwise.

Rather than providing definitive answers, a variety of techniques have been developed to com-
putationally approximate the taxonomic composition of a given microbial community from HTS
data, an approach known as metataxonomics (113). Establishing reliable methods for accurate
taxonomic assignment and placement of DNA sequences within a phylogenetic tree is a necessary
first step in most modern and ancient microbial analyses. For ancient pathogenomic studies, it
is the basis for identifying the proverbial pathogen needle in a haystack of background DNA,
and for ancient microbiome studies, it is essential for identifying community membership and
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calculating ecological diversity metrics (77). It is also the input data for the Bayesian-based tool
SourceTracker (91), which can, for example, model the relative contributions of ancient and ar-
chaeological microbiota sources in a given sample.

5.1. Amplicon Metataxonomics
Many efforts to characterize “who is there” in soils, oceans, and host-associated microbiota focus on
targeted amplification and deep sequencing of the 16S rRNA gene (56, 79). This gene, universally
present in all microbes, encodes the 16S small subunit of rRNA and is essential for life. Amplicon-
based metataxonomics typically targets this gene because its sequence is similar enough across
microbial taxa to be amplified using universal PCR primers and yet distinct enough among species
to be useful for taxonomic classification. This approach, which can also be applied to other genetic
loci, is also known as phylotyping (187) and metabarcoding (7, 46), and it has been widely used in
aDNA studies (e.g., 126, 187).

The ability to rapidly and inexpensively sequence tens or hundreds of thousands of partial
16S rRNA gene sequences simultaneously using HTS was essential to the success of the Human
Microbiome Project (79), and bioinformatics tools such as Quantitative Insights into Microbial
Ecology (QIIME) (24, 128) and mothur (168) were developed specifically to analyze the data
resulting from large sequencing projects. However, it is now known that this amplicon-based
approach cannot be straightforwardly applied to ancient microbial studies because the targeted
hypervariable regions far exceed the average length of aDNA molecules and additionally contain
length polymorphisms that contribute to biased amplification of degraded DNA (207). For this
reason, targeted amplification of the 16S rRNA gene is not recommended for aDNA samples,
although short-read mapping of shotgun-filtered 16S rRNA gene sequences can still be per-
formed. Despite its limitations for aDNA research, the technique remains important owing to
the extensive comparative data from modern microbiomes that have been generated using this
approach.

5.2. Metagenomics
As an alternative to single-gene amplicon-based approaches, genome-wide information can be
generated using metagenomics, an approach that is highly amenable to aDNA research. When
applied in an untargeted manner to all DNA recovered from a given environment, this approach
is called shotgun metagenomics, and sequences are generated from a random subset of DNA from
the collective genomes of all of the organisms present in a sample (113). This technique is used
to characterize microbiota in microbiome studies and as a screening tool in pathogenomics.

Alternatively, a targeted subset of the DNA in a sample may be selected before sequencing using
bait hybridization techniques in order to enrich the HTS library for the genomes of one or more
organisms of interest, a process known as sequence capture. This technique can be performed
either on chip (20) or in solution (9, 52), and the goal is to remove unwanted DNA from a sample
prior to sequencing. Bait sizes are typically less than 120 base pairs and are suitable for capturing
short aDNA molecules. If this technique is highly efficient, analysis of the resulting captured DNA
might qualify as genomics (the study of specific genomes), but in most cases post-duplicate-removal
enrichment success is modest, and many unintended off-target sequences are also captured (31).
The efficacy of sequence capture is nonetheless sufficient to merit its use in ancient pathogenomic
studies for genome reconstruction (14).

Metagenomic approaches have many advantages. They are better suited to aDNA stud-
ies than PCR-based approaches because they are not affected by length or sequence variants
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in the underlying genome, and even very short and highly degraded DNA fragments can be
successfully sequenced using HTS platforms. The resulting sequences allow not only metataxo-
nomic characterization, but functional inferences as well. Finally, if untargeted, all four domains
of life—bacteria, archaea, eukarya, and viruses—can be investigated simultaneously.

When deciding on strategies for the analysis of metagenomic data, the research question is
the most relevant factor. For the characterization of ancient microbiota, the goal is not only to
identify the microbes present, but also to reveal the microbial community structure and functional
potential. For this purpose, a nontargeted, shotgun metagenomics approach is often most suitable.
Ancient pathogen screening strategies, by contrast, focus on specific taxa and can be divided into
targeted and nontargeted approaches. Targeted approaches are applied with a particular pathogen
species in mind, often because skeletal lesions indicate the presence of a specific disease, such as
leprosy (170) or tuberculosis (13), or because a particular burial context suggests the presence of
a pathogen, as in the case of Y. pestis and medieval mass graves (16, 178). Unfortunately, however,
relatively few bacterial pathogens cause skeletal lesions, and burials often provide little disease
context. In this case, nontargeted screening approaches are applied in order to detect any bacterial
pathogen that might be present in a sample. Shotgun metagenomics is typically used to screen
for unknown pathogens. However, enrichment techniques are available that can target multiple
pathogenic species at once (15).

For any of these approaches, the metagenomic context of the sample must be considered
during the validation of the findings. For this reason, specialized computational tools for analyzing
metagenomic data are often applied not only to characterize microbiota but also in the context of
pathogen screening.

6. METATAXONOMIC TOOLS AND DATABASES
Numerous tools and databases are available that can facilitate metataxonomic analyses of both
modern and ancient samples. Here, we provide an overview of different approaches and strategies
commonly used in microbial archaeology studies, as well as a selection of frequently used software
(for a detailed description and systematic comparison, see 106, 142). Supplemental Appendix 2
provides a list of tools and databases mentioned in this article, along with website links and
references.

6.1. Tools of the Trade: Factors to Consider
When selecting a tool for a particular research question based on genetic comparison, the basic
strategies employed by that tool must be considered, including the reference strategy, which
defines the content and structure of the database to which the input data are compared; the query
strategy, which is the concept by which this comparison is facilitated; and the data type upon which
the reference database is built, which is either DNA or protein sequences.

6.1.1. The reference strategy. The way a reference database is constructed and queried by a
software tool has a strong influence on the sensitivity and specificity of the analysis, as well as on the
potential biases that can occur. Commonly applied reference strategies can be divided into three
classes: single-locus approaches, which focus on rRNA genes or other genes that show orthologs
in all species represented in the database; multilocus approaches, which represent an extension of
the previous approach applied to multiple genes; and whole-genome approaches, which use nearly
all available genomic information.
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6.1.1.1. Single-locus approaches. Tools that focus on single loci, such as the 16S rRNA gene,
have the advantage that single-locus databases contain more taxonomic entries than those covering
multiple loci or complete genomes. For investigations of microbial diversity, no other gene has
been studied as extensively as the 16S rRNA gene. Several large-scale, publicly available 16S
rRNA gene databases are available, each of which contains more than 1 million aligned reference
sequences: the Ribosomal Database Project (RDP) (3,356,809 sequences) (30), Greengenes (2013
release, 1,262,986 sequences) (37), and SILVA (SSU Ref, 1,922,213 sequences) (152), the last of
which contains entries for more than 645,000 distinct bacterial taxa (as defined by a 99% identity
clustering cutoff for OTU assignment; the number of database entries is reported as of December 1,
2016).

As a highly conserved gene, however, the 16S rRNA gene generally contains insufficient se-
quence diversity to differentiate between closely related taxa, such as different bacterial strains
of the same species, and rrn operon copy number variation contributes to skewed estimates of
taxonomic abundance and diversity (180, 190). Additionally, a relatively large number of reads
covering the rRNA locus is needed for a reliable taxonomic classification, and although this is
easily achievable using an amplicon approach, only a small proportion (∼0.2–0.6%) of shotgun
microbial aDNA reads typically map to the 16S rRNA gene, which is simply a function of the
relatively short length (∼1,540 base pairs) of the multicopy (four-copy average) gene compared
with the average size of a microbial genome (1–3 Mb). This presents a limitation for the de-
tection of low-abundance taxa. Finally, when working with short-read metagenomic data, we
have found that minor changes in closed reference OTU picking parameters (such as UCLUST
- -max_accepts and - -max_rejects values) can dramatically alter diversity estimates; conse-
quently, default settings should be adjusted in microbial archaeology studies to optimize perfor-
mance for very short sequences, which are typical of aDNA.

Two widely used software pipelines that use 16S rRNA reference databases are QIIME (24)
and mothur (168). Metagenome Analyzer (MEGAN) (80) can also be used in connection with
rRNA gene reference data.

6.1.1.2. Multilocus approaches. An alternative technique for metataxonomic assessment focuses
on multiple loci, usually a small set of (single-copy) housekeeping genes. Here, the advantage is
that more multilocus sequence analysis and multilocus sequence typing data sets are available in
comparison with full genomes, and the sequence divergence level can be higher in comparison
with rRNA genes, potentially allowing for the differentiation of bacterial strains. Another ad-
vantage is that genes can be selected that occur only as single copies in each reference genome
sequence.

One widely used software pipeline that uses a variant of a multilocus sequence analysis–based
approach is the Metagenomic Phylogenetic Analysis (MetaPhlAn) pipeline (172). The current
MetaPhlAn database (version 2) includes ∼1 million marker genes identified from ∼17,000 refer-
ence genome sequences obtained from >7,000 species-level taxa; the marker genes were selected
to define specific microbial clades (mainly bacterial and archaeal, but also including viruses and
eukaryotes) and are spread across all functional annotation classes (188). The latter is essential
because the microorganisms present in biological or environmental samples may differ in, for
example, their metabolic pathways and can be detected only if they are represented in the ref-
erence database. In contrast to whole-genome alignment, read alignment against clade-specific
markers is fast, comparing favorably to the Basic Local Alignment Search Tool (BLAST) (172),
although not quite as fast as Kraken (201). Once normalized by the sequence length of each
individual marker, the total number of high-quality hits offers a simple measure for calculat-
ing taxon abundances. Because gene elements that are shared among clades do not fulfill the
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definition of markers, MetaPhlAn assignment is robust to horizontal gene transfer. Quasi mark-
ers, which are informative only in the absence of particular taxa sharing closely related sequences,
can also improve sensitivity and enable strain detection. Typically, MetaPhlAn analyses achieve
high specificity, owing to the marker selection procedure, but relatively limited sensitivity, owing
to the incompleteness of the marker database. Ongoing sequencing efforts aimed at character-
izing microbial diversity will continue to improve the approach’s sensitivity. In addition to be-
ing available as a stand-alone package, MetaPhlAn is integrated into the metaBIT metagenomic
pipeline (110).

6.1.1.3. Whole-genome approaches. The third reference strategy is to use complete genomes
as a target database. Using whole genomes has the advantage that known taxa present in low
abundances can potentially be identified because any sequenced DNA fragment that originates
from a species contained in the target database can be (theoretically) assigned. Therefore, this
strategy can be beneficial in ancient pathogen detection studies, where only traces of DNA from a
pathogenic organism are expected to be present. Additionally, because variation across the entire
genome is considered, this method maximizes the power to make fine-scale distinctions among
species and strains.

Challenges, however, can arise from horizontal gene transfer, bacterial recombination, or
mobile elements, which can influence the precision of assignments. Additionally, genome sizes
of free-living taxa vary by nearly an order of magnitude, ranging from the tiny 0.16-Mb genome
of Candidatus Carsonella ruddii to the massive 10-Mb genome of Solibacter usitatus (118); as a
result, taxa with larger genomes contribute proportionally more fragment reads per cell to a
metagenome, potentially making them appear more abundant if genome size differences are not
taken into account. Whole-genome databases are also far less complete in comparison with rRNA
databases, and thus, for a given sample, far fewer taxa may have a close representative in the
reference database. This may lead to a larger number of false negative (unidentified) or false
positive (identified as the closest representative in the database) assignments, a phenomenon often
referred to as database bias.

Whole-genome databases are rapidly growing, however. Since the publication of the first
genome sequence of a free-living bacterium, Haemophilus influenzae, in 1995 (49), the number of
sequenced microbial genomes has increased exponentially (137), with 129,346 sequencing projects
at various stages of completion registered in the Genomes Online Database (GOLD) as of March
2017 (125). Currently, microbial genomes are available through multiple—often overlapping and
cross-referenced—databases that have been customized for different purposes, ranging from those
that aim to encompass all microbes, such as GOLD and the National Center for Biotechnol-
ogy Information’s RefSeq database (131) to those that focus on specific groups of bacteria, such
as EnteroBase (http://enterobase.warwick.ac.uk) and the HOMD (27). Pipelines that utilize
whole-genome data for taxonomic assignments include the MEGAN Alignment Tool (MALT)
(71) and MIDAS (129).

6.1.2. The query strategy. Metagenomic tools differ not only in the way that their reference
databases are constructed but also in the way those databases are queried, which depends on
whether read alignment is performed. As such, query strategies can be divided into alignment-
based and alignment-free approaches.

6.1.2.1. Alignment-based approaches. One important strategy for the assignment of query se-
quences to large reference databases is based on classical sequence alignments. The algorithms
applied are usually modifications of the Needleman-Wunsch (130) or Smith-Waterman (177)
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algorithms designed to perform semiglobal or local alignments, respectively. However, the
calculation of precise alignments is time consuming, even for more efficient variants of these
algorithms. For this reason, most software tools use so-called seed-and-extend approaches. Here,
candidate matches are first determined in a time-effective but imprecise manner, and precise
alignments are then calculated only for these candidates. Well-known examples of this algorithm
type include BLAST (5) and its faster variant MEGABLAST (124), as well as UBLAST and
USEARCH (43). Novel tools such as MALT (71) and lambda (69) also belong in this category, as
do read mappers such as the Burrows-Wheeler Alignment (BWA) tool (104) and Bowtie 2 (97).
Additionally, read mappers that are able to account for high nucleotide misincorporation rates,
such as the Burrows-Wheeler Alignment–Position-Specific Scoring Matrix (BWA-PSSM) tool
(86), may improve method sensitivity for aDNA.

The calculation of precise alignments has multiple advantages. It allows, for example, for a
sophisticated evaluation of every match and a statistical assessment of all matches for a given
taxon. This enables the calculation of aDNA damage patterns in order to authenticate the aligned
matches as representing aDNA fragments (17, 83). Furthermore, edit distance or percent identity
distributions can be assessed in order to verify the assignment of query sequences. The distribution
of query sequences across the reference sequence can also be inspected in detail, and spurious
taxa can be detected by their uneven genome coverage. The primary disadvantage of alignment-
based methods is that they are time consuming, even when using time-saving seed-and-extend
approaches.

6.1.2.2. Alignment-free approaches. Not all methods for metagenomic analysis rely on calculat-
ing precise alignments. Rather than taxonomically assigning sequencing reads or other sequences,
alignment-free methods determine the relative abundances of taxa based on other features. Kraken
(201), for example, uses an approach that is based on exactly matching k-mers. Both the sequences
present in the reference database and the query sequences are split into overlapping subsequences
of length k. This allows fast matching of queries to the database by hashing algorithms, a con-
cept that is often applied in the seeding step of seed-and-extend alignment-based methods. Other
methods are based on similarities and dissimilarities of nucleotide composition (74), compari-
son of Burrows-Wheeler transformed sequence information (6), or machine learning approaches
(156).

An advantage of many alignment-free methods is their speed. However, a precise evaluation of
taxonomic assignments is more difficult compared with alignment-based methods. Particularly in
the context of ancient metagenomic analyses, this poses challenges because it does not allow for
detailed authentication unless further alignment steps are taken in order to evaluate DNA damage
patterns or other alignment-based features.

6.1.3. Data type. The input data type for metagenomic analysis is DNA sequencing reads or
assembled DNA sequences, such as contigs. The data type for the reference database can be either
DNA or amino acid sequences. In the case of a protein database, the DNA input sequences must
be translated from all six possible reading frames, which is analogous to BLASTX (5).

An advantage of using a protein database is its higher level of sequence conservation, which al-
lows the exploration of deeper evolutionary relationships. Furthermore, tools such as DIAMOND
(19), lambda (69), and RapSearch2 (206) provide extremely fast algorithms for performing DNA-
to-protein alignments. However, protein alignments can be challenging to use for ancient metage-
nomic data because they are incompatible with DNA alignment–based authentication procedures.
Furthermore, short aDNA reads translate into even shorter peptide sequences, and DNA damage
can lead to in silico errors during translation and therefore to misassignments.
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6.2. Algorithms, Pipelines, and Environments
A versatile selection of software is available for metagenomic analysis. In the context of aDNA,
these software packages are often not directly comparable; some of them represent specific algo-
rithms that perform specific steps of an analysis, whereas others combine algorithms into analysis
pipelines that perform multiple steps of the metagenomic analysis.

Algorithms can be divided into different categories according to the analytical step they are
performing. If they apply an alignment-based concept, then the first step is alignment, or mapping.
In principle, any DNA or protein alignment tool can be used, including sequence similarity search
tools such as BLAST (5), as well as read mappers. The next step is to classify the alignments
using a taxonomy in order to assign the query sequences to specific taxa, a process known as
binning. Examples of binning algorithms include UCLUST (43), RDP Classifier (194), naive
lowest common ancestor (LCA), and weighted LCA (80).

MALT (71) is a tool that combines alignment and binning. It is based on a seed-and-extend
approach and uses spaced seeds for higher sensitivity. Seeds are matched to a DNA sequence
database that can contain single or multiple loci or whole genomes. MALT calculates precise
local or semiglobal alignments and uses (weighted) LCA for binning. It integrates well with the
MEGAN environment, which does not contain alignment functionality on its own.

MetaPhlAn (172) is an example of a metagenomic analysis pipeline. It uses a selection of
multiple loci as a target database. The selection of loci varies for different taxa, thus ensuring
specificity on different taxonomic levels and for different parts of the taxonomy. For its alignment
algorithms, MetaPhlAn integrates MEGABLAST or Bowtie 2; however, other alignment algo-
rithms could be integrated as well. The taxonomic assignment algorithm is specific to MetaPhlAn
owing to its unique database structure. Another example of a metagenomic pipeline is MIDAS
(129), which combines multiple databases, aligners, and binning algorithms into an integrated
pipeline.

In some cases, single algorithms and more complex analytical procedures are made accessible
in interactive environments that also provide an integrated visualization of the results. MEGAN
(80) is an example of such an environment. In other cases, multiple pipelines are made accessible
through an environment, as is the case with QIIME (96) and metaBIT (110). MetaBIT, for
example, implements MetaPhlAn-based microbial profiling and provides built-in modules for
(a) visualizing profiles, including Krona plots (134); (b) calculating diversity indices (e.g., alpha
and beta diversity); and (c) performing a range of statistical analyses. These analyses include
principal coordinate analysis, hierarchical clustering, and linear discriminant analysis, the latter
of which is used to identify microbes that drive differentiation among user-defined groups, such
as archaeological sites, samples, and/or DNA libraries (171). MetaBIT also provides preprocessed
microbial profiles from the Human Microbiome Project (78, 79) and cross-biome soil communities
(48), allowing users to place their (ancient) microbial communities within the known diversity of
human and soil microbiomes.

Because each software strategy operates differently and makes different assumptions based
on the algorithms and databases incorporated into the pipeline, the results generated by dif-
ferent software are not identical. Figure 2 illustrates the oral microbial community recon-
structed from an ancient dental calculus sample as performed by five common metataxonomics
pipelines: QIIME, metaBIT, MIDAS, and MALT. Although the five pipelines generally return
profiles containing similar taxa, systematic differences in taxon relative abundance and phylum
dropout are apparent owing to differences in pipeline parameters, algorithms, databases, and other
factors.
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Figure 2
Reconstructed taxonomic profile for archaeological dental calculus using the QIIME, metaBIT, MIDAS, and MALT pipelines.
Analysis was performed on 1,967,941 shotgun metagenomic DNA sequences obtained from a previously described dental calculus
sample from the Spanish Chalcolithic site of Camino del Molino (approximately 2340–2920 BCE) (207). Although all four pipelines
generally identify the same phyla, predictable biases are also readily apparent. For example, QIIME estimates the largest proportion to
be Firmicutes, a phylum known to have a high rrn operon copy number (190). Euryarchaeota is absent in the MIDAS analysis because
there are no reference genome sequences for this phylum in the database. MIDAS and metaBIT, which rely on genome-scale databases,
also fail to detect the largely uncultivated phyla Saccharibacteria (TM7), Chloroflexi, and SR1. Explanations for other differences in
phylum frequency abundance, such as the high proportion of Actinobacteria estimated by MALT and the absence of Fusobacterium
detected by MIDAS, are not as clear. Supplemental Appendix 1 provides the specific parameters used for each analysis. Abbreviations:
MALT, MEGAN Alignment Tool; MIDAS, Metagenomic Intra-Species Diversity Analysis System; QIIME, Quantitative Insights into
Microbial Ecology.

7. THE CHALLENGE OF RELATED TAXA
Although numerous tools and growing databases are available for taxonomic identification, care
must be taken to avoid taxonomic misassignment, especially for the short, damaged sequences
typical of aDNA. Accurate taxonomic assignment can be particularly challenging if closely related
environmental contaminants are also present. Additionally, clades of closely related species within
endogenous microbiota can be difficult to resolve if database coverage is poor or sequencing
effort is insufficient. Validation efforts focusing on the evenness of genome mapping coverage,
sequence identity distributions, and sequence monomorphism (haploidy) are powerful approaches
for identifying and eliminating false positive assignments in microbial archaeology studies.

7.1. All in the Family: The Rise of Pathogens
Many pathogens have close relatives in soil. Y. pestis, for example, is a close relative (if not sub-
species) of Y. pseudotuberculosis (25), a soil bacterium that has also been found in the gastrointestinal
tracts of nematodes and insects (55, 209) and those of birds and mammals (53, 109) as well as on
improperly washed vegetables (81). Likewise, a majority of the nearly 200 named Mycobacterium
species (and thousands of unnamed ribosomal phylotypes) are soil inhabitants (22, 45, 76), with the
pathogenic M. tuberculosis complex, M. leprae, and to some degree M. avium making up a minority
of species that regularly infect humans. During analysis, sequences from these environmental rel-
atives can misalign to the pathogen genome, producing false positives (Supplemental Table 1).
Other pathogens with close, nonpathogenic environmental relatives include B. pertussis, S. enterica,
Bacillus anthracis, Clostridium botulinum, Shigella dysenteriae, and Vibrio cholerae (see Supplemental
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Figure 3
Pathogens and their close environmental relatives. Many obligate pathogens share close 16S rRNA gene sequences with environmental
microbes. Bacillus anthracis, Bordetella pertussis, Clostridium botulinum, and Mycobacterium tuberculosis have close relatives in soil, sewage,
and extreme environments, whereas Salmonella enterica, Shigella dysenteriae, and Vibrio cholerae have close relatives in vertebrate gut and
feces. V. cholerae relatives are also abundant in water sources, and B. anthracis and B. pertussis share close relatives found in association
with nematodes and arthropods. By contrast, few environmental relatives outside of the Yersinia pseudotuberculosis complex were
observed for Yersinia pestis; however, Y. pestis shows strong similarity to 16S rRNA sequences obtained from a study of global diversity
in human saliva, indicating that human saliva in some parts of the world may harbor a previously undetected Yersinia relative. The total
number of RDP database matches for targets other than the respective pathogen is shown in parentheses. Of all the obligate pathogens
investigated, B. anthracis and S. dysenteriae had the highest number of hits to environmental sources. A subset of sources are highlighted
(along with the number of RDP database matches for these targets, shown in parentheses) to illustrate the diversity of environments
from which close matches were observed. Supplemental Appendix 3 provides a detailed list of taxa and sources. Abbreviation: RDP,
Ribosomal Database Project.

Appendix 3). Figure 3 shows the extent of closely related cultured and uncultured relatives for
each of these eight pathogens based on a 16S rRNA gene sequence identity of >97% in the RDP
database of more than 3 million sequences.

When working with very large data sets, as is typical for HTS, it is important to be aware
of—and have a plan for handling—false positives. In pathogen studies, shotgun metagenomic
sequence data generated from bone lesions or dental pulp (typically a few million sequence reads)
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are often initially mapped against a panel of pathogen genomes using standard mapping tools
in order to screen for putative taxa of interest. Although an important first step, this approach
yields many false positives, and in fact, nearly any large metagenomic data set is expected to
yield false positives under such an approach. For example, mapping metagenomic data from three
sources—soil, ocean, and healthy human saliva—against a panel of 14 pathogen reference genome
sequences resulted in numerous false positive hits to all 14 pathogens, ranging from a low of
2 Treponema pallidum hits per million soil reads to a high of 173 B. anthracis hits per million
saliva reads (Supplemental Figure 1). Overall, healthy saliva yielded the highest number of false
positives, with a mean of 67 false positive hits per million metagenomic sequences. None of these
reads were true positives; rather, they resulted from mismapping at highly conserved regions and
in regions of low complexity, mapping of mobile elements and other horizontal gene transfer sites,
and mapping at orthologous sites in related taxa because of database bias. Any alignment-based
screening study requires further validation in order to identify true positives against a background
of spurious hits.

7.2. Close but Not Close Enough
In addition to mistaking environmental contaminants for ancient pathogens, it is possible to
mistake one endogenous taxon for another, especially in ancient microbiome samples. Within the
oral cavity, for example, many genera include multiple closely related members, and the number
of named species and known phylotypes for the five largest genera in the HOMD are as follows:
Prevotella, 50; Treponema, 49, Streptococcus, 36; Actinomyces, 30; and Lactobacillus, 26. The oral
cavity contains numerous pathobionts, or endogenous potential pathogens, such as S. pneumoniae,
N. meningitidis, and H. influenzae, and it may also become colonized with obligate pathogens, such
as M. tuberculosis, during respiratory infections (195). Additionally, nearby skin pathobionts, such as
S. aureus and Propionibacterium acnes, and food microbes, such as Propionibacterium freudenreichii and
Lactobacillus rhamnosus, may also be present. Correctly assigning sequences within these genera
is therefore important for understanding the dietary and potential health implications of past
microbial communities. Database bias, however, can be a major challenge because of the limited
number of species with sequenced genomes, and it can result in both the underestimation of
important taxa in ancient microbiota and sequence misassignment to the closest sequenced genome
(Figure 4).

7.3. Validation Is Essential
If the number of reads supporting a species identification is low and robust phylogenetic confir-
mation is not possible, further validation steps should be taken. There are multiple measures that
can reduce the number of false positive hits, including evaluating coverage evenness, sequence
identity, and haploidy (Figure 5, Supplemental Figure 2).

7.3.1. Evenness of coverage. One measure that can validate species assignments is the evenness
of coverage across the reference sequence. If all reads that are assigned to a species represent
DNA fragments originating from the same source, they should be distributed randomly across the
reference sequence (Figure 5a). An accumulation of reads in distinct regions, by contrast, suggests
that they do not stem from the species they have been assigned to, but originate from one or more
related species and map to regions that are conserved among this group of species (Figure 5b).
Regions that commonly attract read assignments from other taxa include rRNA and tRNA loci,
mobile elements, repetitive regions, and any highly conserved protein-coding sequences.
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Acidipropionibacterium acidipropionici
(16,254; 7,528)
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(7,149; 3,045)

Microlunatus phosphovorus
(7,637; 2,752)

Propionibacterium acnes
(2,813; 1,412)

Propionibacterium freudenreichii
(9,450; 4,443)

Propionibacterium
(15,835; 8,132)
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Figure 4
Lack of signal for highly abundant endogenous bacteria resulting from database bias. A medieval dental calculus sample (G12) (196) was
screened using MALT (71) and visualized in MEGAN6 (80) using two databases, one without the genome sequence of the oral
bacterium Pseudopropionibacterium propionicum (database 1, red ) and another with that genome sequence included (database 2, blue). The
tree visualizes the results of both analyses, and nodes are scaled based on the summed number of hits to a log scale. The inclusion of
P. propionicum results in hits being shifted away from related dietary (Propionibacterium freudenreichii ), skin (Propionibacterium acnes), and
other species, as well previously nonaligned hits, toward the oral bacterial genome, revealing the presence of a previously unseen, highly
abundant species. This highly abundant species, with more than 1 million assigned reads, would not have been detected in
metagenomic screening methods before 2012, when the genome sequence was published. Supplemental Appendix 1 provides
additional details. Abbreviations: MALT, MEGAN Alignment Tool; MEGAN, Metagenome Analyzer.

7.3.2. Percent identity distributions. Another measure for the evaluation of read assignments
is their similarity to the reference. Of course, the percent identity values of assigned reads will
vary, but a large amount of information can be gained by investigating the distribution of values
across all read alignments for a given taxon. It can be assumed that, with the exception of damaged
sites, most reads will map to the reference genome sequence with zero mismatches if the species
assignment is correct, and the number of reads with an increasing number of mismatches will
decrease progressively. However, the expected diversity of strains varies depending on the species,
which should be taken into account. For example, H. pylori, the causative agent of gastritis and
some forms of gastric cancer, exhibits an extremely high level of strain diversity, with nearly
every unrelated isolate possessing a distinct genome sequence (107). Ancient strains of H. pylori
are thus expected to differ from modern strains but should still fall within expected models of
variation (112). By contrast, other microbes fall at the other end of the scale, exhibiting little or
no sequence variation across hundreds or thousands of isolates. These genetically monomorphic
microbes include many well-known epidemic pathogens, such as B. anthracis, Burkholderia mallei,
Escherichia coli O157:H7, M. leprae, the M. tuberculosis complex, S. enterica serovar Typhi, Shigella
sonnei, Chlamydia pneumoniae, T. pallidum, and Y. pestis (1). In these taxa, sequence differences
between ancient and modern strains are expected to be minimal and limited to a small number of
sites (16).

Overall, a high similarity between most assigned reads and the reference supports a true positive
assignment (Figure 5c). Conversely, if most reads are dissimilar to the reference, the species
assignment is likely incorrect (Figure 5d ), although it may be accurate at the genus level. A
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Figure 5
Schematic overview of different measures for the validation of species assignments in metagenomic data
analysis. (a,b) Evenness of coverage. Correctly assigned reads are expected to distribute randomly across the
reference (panel a); accumulation of reads in regions of high sequence conservation indicates misassigned
reads originating from different closely related species (panel b). (c–e) Percent identity distributions. In panel
c, most reads show a high similarity to the reference, which indicates a correct assignment. In panel d, most
reads are highly dissimilar to the reference, which suggests that they originate from different related species.
In some cases, as in panel e, a mixture of correctly assigned and misassigned reads can be observed.
( f–i ) Haploidy. Because bacteria are haploid organisms, only one allele is expected for each genomic position.
Only a small number of multiallelic sites are expected, which can result from a few misassigned or incorrectly
aligned reads (panel f ). A large number of multiallelic sites indicates that the assigned reads originate from
more than one species or strain, which can result in symmetric allele frequency distributions (e.g., if two
species or strains are present in equal abundance) (panel g) or asymmetric distributions (e.g., if two species or
strains are present in unequal abundance) (panel h). A large number of misassigned reads from closely related
species can result in a large number of multiallelic sites with low frequencies of the derived allele (panel i ).
Supplemental Figure 2 provides examples with empirical data from microbial archaeology studies.

clear distinction between these two cases is not always possible because correct and incorrect
assignments can be present at the same time, resulting in multimodal distributions in which
the background and foreground cannot be clearly distinguished (Figure 5e). In some cases, edit
distances (number of mismatches) are used instead of percent identity values because they are
more suitable for distinguishing very closely related taxa, such as Y. pestis and Y. pseudotuberculosis
(158).

7.3.3. Haploidy. Haploidy is another measure that provides an indication of whether reads from
multiple taxa have been misassigned to a single species. This approach can be applied to haploid
bacterial and archaeal genomes as well as eukaryotic organelle genomes. In haploid genomes,
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nearly all variable sites should be monoallelic (Figure 5f ), so a large number of multiallelic sites
suggests that the aligned reads originate from multiple taxa. In the case of two taxa present in equal
abundance, all multiallelic sites will show a frequency of the two alleles at ∼50% (Figure 5g). This
does not necessarily mean that the species assignment is wrong. It could, for example, indicate
the presence of two different strains of the same bacterium, as has been observed in cases of
multiple M. tuberculosis infections (26). Reads that originate from two or more sources in unequal
abundance result in a multimodal distribution (13) (Figure 5h). Even if the vast majority of the
reads originate from a single species, a small number of damaged or misassigned reads may still
produce a few low-frequency single-nucleotide polymorphism (SNP) calls of the derived allele
(Figure 5i ). Note that this analysis is possible only with sufficient coverage for reliable SNP calls.

8. DNA PRESERVATION AND CONTAMINATION
After the validation of taxonomic assignments, it is important to test whether the DNA sequences of
interest could be explained by exogenous contamination. Authentic aDNA undergoes predictable
forms of damage and decay, which can result in nucleotide misincorporation during library repair
and amplification. Such damage can be estimated by analyzing nucleotide substitution patterns as
well as strand breakage as a function of lambda (λ, a proxy for DNA fragmentation; see Section 8.2).
Additionally, with respect to ancient microbiota, Bayesian source estimation tools can test for
potential mixing of endogenous microbiota with exogenous sources. Finally, rigorous standards
set forth to prevent laboratory contamination and instrument sequence bleed-through should
be followed in order to ensure that the findings are not the result of poor laboratory or data
hygiene.

8.1. Damage Patterns
Early studies of HTS data from Late Pleistocene animals revealed that molecular damage accu-
mulating after death is a common feature of aDNA molecules (17, 18). In particular, depurination,
nick formation, and cytosine deamination are the most important DNA decay reactions in sub-
fossil material (32). Although such reactions limit the amount of aDNA material amenable to
sequencing, they also provide important molecular signatures for data authentication (94, 151,
181). For instance, nucleotide misincorporation profiles, in which the probability of sequence
mismatches between reads and the reference genome used in sequence alignment is traced from
read starts to read ends, provide a visual way to assess levels of inferred cytosine deamination within
a given data set. Statistical DNA damage models, such as the one implemented in mapDamage (59,
83), exploit such features to quantify DNA damage patterns. Here, the preferential accumulation
of deaminated cytosine (uracil), a chemical analog of thymine, within the overhanging ends of
aDNA templates typically results in increasing C→T misincorporation rates toward read starts
(complementary G→A misincorporation rates are expected to increase in an almost symmetric
fashion toward read ends in standard double-stranded library preparations) (17). In addition, the
amount of nucleotide misincorporations displayed by DNA from a sample correlates with the age
and depositional environment (4, 164). Demonstrating such signatures in ancient HTS data sets
has thus been considered key to data authentication (151), especially because such signatures have
been found in all sample types tested to date, including skeletal remains, dental calculus, plant
remains, and even DNA retrieved from permafrost (135, 143, 207).

However, when sequence data are scanned for such deamination footprints, the expected nu-
cleotide misincorporation profiles can vary depending on the molecular tools used during library
construction, especially according to the endonuclease (161) and exonuclease (33, 54, 95) activities
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of the end repair enzymes, the type of DNA ligase used during adapter ligation (121, 174), and
the polymerase employed for library amplification (33, 73, 173). In particular, amplification using
AccuPrime Pfx DNA polymerase results in typical misincorporation profiles following 454-like
DNA library types (120) but removes the elevated C→T pattern toward read starts on TruSeq
DNA library constructs (173). Differences in HTS-library preparation protocols also contribute
to the characteristically different damage patterns observed in double-stranded (120) and single-
stranded (54) aDNA libraries (Supplemental Figure 3). Additionally, minimal sequencing efforts
are necessary in order to assess the presence of cytosine deamination, and only a few thousand
sequences from the genome of interest are typically needed to recover reliable estimates of cyto-
sine deamination (Supplemental Figure 4). For smaller data sets from very-low-abundance taxa
containing on the order of hundreds of reads, alternative strategies can be used to assess terminal
damage patterns (197).

Finally, note that the presence of genuine nucleotide misincorporation profiles is not sufficient
to rule out environmental contamination and authenticate the aDNA data as endogenous. First,
the data produced will likely comprise a mixture of both ancient and modern DNA contaminants
in varying proportions. Second, body decomposition occurs rapidly after death, and microbes
that invade skeletal tissues during early decomposition (119) will also accumulate significant DNA
damage levels. This can be critical for studies of pathogens with closely related soil members. Con-
versely, authentic pathogens with reduced kinetics of DNA decay—e.g., owing to the presence of
particular chemical components in their bacterial wall, as proposed for M. leprae (170)—may show
less damage than other ancient taxa. Lastly, even small conserved regions within the genomes
of different bacterial species can result in sufficient read alignment to show what looks like gen-
uine damage profiles; in the case illustrated in Supplemental Figure 5, for example, 0.07–0.11%
of simulated aDNA reads from the environmental Mycobacterium smegmatis reference genome se-
quence can be successfully aligned on the M. leprae and M. tuberculosis genome sequences while still
showing the expected damage profiles. Therefore, unidentified or misidentified bacterial sources
for the aDNA data can drive expected DNA damage profiles when using another bacterial genome
for read alignment, which therefore cannot be used as the sole criterion for data authentication.
Correct phylogenetic placement and/or edit distance distributions compatible with the levels of
variation observed within the group of candidate bacteria are thus mandatory. The simulated data
in Supplemental Figure 4 show basal G→A (C→T) levels at read starts (ends) below 1% only
when aligned against the genome of the correct species.

8.2. DNA Fragmentation
aDNA is highly fragmented through a process that is driven by depurination followed by hydrolysis
of the DNA backbone (105). This process, initially described in vitro, is easily identifiable using
HTS by looking at DNA breakpoints, which in aDNA are enriched in purines (both A and G)
(17). Fragmentation patterns can be visually inspected and are produced by default in software
such as mapDamage (83).

The length distribution of aDNA can be approximated by a lognormal distribution (4) and
shows an exponential decline in the tail, which results from random fragmentation of DNA (36).
Upon logarithmic transformation of fragment length frequencies, the decline can be character-
ized by a linear function with slope λ. The fragmentation constant λ therefore represents the
fraction of bonds broken in the DNA backbone (4, 36) and is a summary statistic of the magnitude
of DNA fragmentation. If multiple samples are available, it is possible to assess whether DNA
from different organisms retrieved from the same samples is fragmented in a correlated way, e.g.,
sequencing reads originating from host and pathogen, or different taxa in a given microbiome.
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Figure 6
DNA fragmentation from pairs of organisms retrieved from the same historic and prehistoric samples. The x and y axes show the
fragmentation constant lambda (λ), which describes the fraction of broken bonds in the DNA backbone. The value of this constant can
be assessed directly from the length distribution of high-throughput sequencing reads. The dashed red line indicates the linear
regression. (a) DNA fragmentation of host and pathogen in DNA fragments retrieved from Solanum tuberosum herbarium samples
infected with Phytophthora infestans (205). DNA from both organisms is fragmented in a correlated way and at a similar magnitude.
(b) DNA fragmentation of host and pathogen in DNA fragments retrieved from Homo sapiens teeth samples infected with Yersinia pestis
(158). DNA from both organisms is fragmented in a correlated way, but the Y. pestis DNA shows a higher magnitude of fragmentation
than the H. sapiens DNA. (c) Fragmentation of oral archaeal (Methanobrevibacter sp.) and bacterial (Streptococcus sp.) DNA retrieved from
Chalcolithic-era (approximately 2340–2920 BCE) human dental calculus (207). DNA from both organisms fragments in a correlated way
but at different magnitudes: The Methanobrevibacter sp. DNA is less fragmented than the Streptococcus sp. DNA, which may be related to
the more robust ether linkages in archaeal cell membranes and the protective action of histones in archaeal genomes. (d ) DNA
fragmentation of Methanobrevibacter sp. and H. sapiens retrieved from dental calculus (the same samples as in panel c). The
fragmentation of H. sapiens DNA is not correlated with either that of Methanobrevibacter sp. (data shown here) or that of Streptococcus sp.
(data not shown here). Human DNA often exhibits a higher magnitude of fragmentation in dental calculus compared with microbial
DNA, a pattern consistent with an inflammation-driven entry of acellular human DNA into dental plaque biofilms that are rich in
extracellular nucleases (139).

This analysis is possible only if all samples were prepared (DNA extraction and library prepara-
tion) and sequenced (sequencing platform) in the same way. The correlation in the magnitude
of DNA fragmentation among different organisms from the same samples has been proposed as
an additional way to authenticate aDNA findings (158) because DNA stored in the same tissue
should generally fragment in a correlated way at similar (Figure 6a) or different (Figure 6b,c)
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magnitudes. The interpretation of the results should take into account the peculiarities of the DNA
sources and tissues analyzed, because there are cases where the correlation is not expected—e.g.,
when DNA from a given organism is differentially exposed to antemortem processes that fragment
DNA (Figure 6d ).

8.3. Estimating Source Contribution
In addition to profiling DNA damage and decay patterns, source modeling is a powerful tool for
authenticating well-preserved microbiome samples. Originally developed to detect contamina-
tion in metagenomic studies, the software tool SourceTracker (91) models the composition of a
metagenome sink (i.e., sample) as the product of different contributing metagenome sources using
Bayesian inference. For example, the microbial composition of a given sample, such as archaeo-
logical dental calculus, can be modeled as a mixture of DNA originating from dental plaque, skin
bacteria, soil, and other sources. Using reference metagenomic data sets selected for each of these
sources, the algorithm then estimates the proportion of the dental calculus sample originating
from each source (Figure 7). SourceTracker is a useful screening tool and has been used to esti-
mate the microbiome preservation of both paleofeces (187) and dental calculus (196, 207) before
further analysis of microbiome structure and function. Archaeological samples that produce poor
SourceTracker profiles are likely altered by decomposition processes or contamination and are
thus not suitable for inferring ancient microbial ecology; however, they may still contain traces of
endogenous microbial, dietary, and host DNA that can be studied individually. SourceTracker is
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Figure 7
Bayesian source estimation of the microbial composition of dental calculus and laboratory samples. Using
SourceTracker (91) with a panel of modern dental plaque, skin, and soil reference sources indicates that the
modern dental calculus (GU30C) contains a large proportion of microbial DNA (>60%) originating from
human dental plaque. Likewise, >70% of microbial DNA in an ancient calculus sample from a high-altitude
tomb in Nepal (37.UM2010.9, dating from approximately 400–650 CE) originates from dental plaque. By
contrast, microbial DNA from nineteenth-century dental calculus from the West African island of St.
Helena (STH16) derives nearly entirely from soil (80%) and human skin (3%). Microbial DNA collected
from the surfaces of an osteological laboratory originates from human skin and unknown sources. Consistent
with these results, the modern and Nepalese dental calculus samples are dominated by phylotypes belonging
to known oral-associated genera (77–80%); by contrast, only 2% of phylotypes in the St. Helena calculus are
consistent with oral genera, and 64% are classified as environmental Mycobacteria spp. Data are from
Reference 207.
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implemented in the QIIME pipeline and is most often applied to 16S rRNA gene sequence data,
but it can be used with any data set organized as a frequency table.

8.4. Sample and Data Hygiene
Standards and precautions for preventing and managing modern DNA contamination are now
well established in most aDNA laboratories. These include isolated and dedicated aDNA facili-
ties with high-efficiency particulate arrestance (HEPA) air filtration, regular UV irradiation, and
NaOCl sterilization of workspaces; consistent use of personal protection (such as full-body suits,
double gloving, and eye shields); continuous contamination monitoring using reagent blanks and
nontemplate negative controls in all experiments; and unidirectional workflows. Although these
best practices were initially developed for applications related to ancient human genome research,
they are equally—if not more—important in ancient microbial research.

Microbial DNA is everywhere, and it is the dominant source of nonendogenous genetic material
in all aDNA data sets. Ancient microbial research should never be carried out in a laboratory that
cultures, amplifies, or processes samples of living microorganisms. Full laboratory separation with
independent ventilation is critical to prevent cross-contamination, and simply providing an isolated
workspace within a microbiology laboratory is insufficient to prevent contamination of ancient
samples during extraction and library preparation steps. In addition, many common molecular
biology reagents, such as DNA polymerases and other enzymes, deoxynucleotide triphosphates
(dNTPs), oligonucleotides, and some buffers, are contaminated with microbial DNA, often de-
riving from expression vectors (169). Levels of contamination are often batch and brand specific
and result from different manufacturing procedures. Rigorous testing of all reagents should be
performed prior to their use on ancient samples.

Finally, cross-contamination is a serious but preventable challenge for highly multiplexed HTS.
So-called barcode bleeding is a phenomenon whereby a portion of sample-specific index sequences
(barcodes) appear to switch between samples, forming chimeras, likely as a result of jumping PCR.
Samples are at most risk for barcode bleeding during pooled amplification steps (e.g., during pooled
sequence capture or during reamplification of a final library pool) and during clustering steps prior
to Illumina sequencing. Empirical studies have found that up to 1% of HTS reads may be affected
by barcode bleeding on early-generation Illumina sequencing platforms, such as the GAIIx (88).
By that estimate, if two single-indexed samples are pooled and sequenced together to a depth of
200 million reads, thousands to millions of chimeric sequences can be generated and assigned
to the wrong sample. Fortunately, this problem can be overcome by using a multiple-indexing
strategy, which allows the rapid identification and removal of sequences with chimeric index pairs
(88, 161).

9. CONCLUSIONS
Microbial archaeology is a rapidly growing, multidisciplinary field that has the potential to reveal
the complex evolutionary history of humans and their microbes. Over the past five years, great
advances have been made in revealing the agents behind devastating historical plagues, tracing
the cryptic movements of pathogens in prehistory, and reconstructing the ancestral microbiota of
humans. However, many challenges remain. Here we have discussed the foundational concepts of
the discipline and suggest standards and precautions to support future research. In the sidebar titled
Recommended Authenticity Guidelines, we present seven guiding principles aimed at establishing
a common research standard and framework for the genetic investigation of ancient microbes.
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RECOMMENDED AUTHENTICITY GUIDELINES

To guide future research in microbial archaeology, we propose the following standards and precautions:

1. Dedicated aDNA laboratories are necessary to minimize and manage contamination.
2. Metataxonomic approaches differ in their assumptions and biases, and the results of these analyses should be

interpreted with these factors in mind. Parameters, protocols, and databases should be kept as consistent as
possible to minimize technical variation. Approaches that have been demonstrated to produce taxonomically
biased results for degraded DNA, such as 16S rRNA gene amplicon sequencing, are not recommended for
quantitative analyses.

3. Mapping to a reference genome sequence alone is not sufficient for species-level identification. Mapping
should be competitive (to more than one candidate reference) and must take the metagenomic nature of
the sample into account. Some genomic loci are more phylogenetically informative than others. In general,
mobile elements are not recommended for taxonomic identification and should be used only with caution on
a case-by-case basis.

4. Microbial species identification requires multiple lines of validation, which may include, but are not limited
to, demonstrations of coverage evenness, genetic similarity, and haploidy.

5. DNA damage must be assessed. Microbial aDNA should exhibit patterns of DNA damage and fragmentation;
however, the magnitude of damage may vary depending on the source context and species, and the damage
pattern itself depends on the workflow and enzymes used during library preparation.

6. For ancient microbiome samples, such as dental calculus and paleofeces, microbiome community composition
must be assessed and tested for biological plausibility before analysis. Diversity analyses and community
comparisons should be undertaken with caution and performed only on well-preserved samples; otherwise,
the results will be more informative about the process of decomposition than about the original microbiome
of the individual.

7. Finally, research questions and hypotheses involving ancient microbes should be biologically informed. Mi-
crobial archaeology is an emerging field drawing on the expertise of researchers who have been trained
in multiple disciplines, including archaeology, anthropology, microbiology, evolutionary biology, compu-
tational biology, population genetics, and medicine, to name a few. Cross-disciplinary communication and
collaboration are critical to develop a robust framework for microbial archaeology research.

Through this framework, we seek to provide a robust empirical and theoretical foundation to
support the growing field of microbial archaeology.
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