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We examine the linear stability of a homogeneous gas—solid suspension of small
Stokes number particles, with a moderate mass loading, subject to a simple shear
flow. The modulation of the gravitational force exerted on the suspension, due to
preferential concentration of particles in regions of low vorticity, in response to an
imposed velocity perturbation, can lead to an algebraic instability. Since the fastest
growing modes have wavelengths small compared with the characteristic length scale
(U,/T") and oscillate with frequencies large compared with I", U, being the settling

velocity and I" the shear rate, we apply the WKB method, a multiple scale technique.

This analysis reveals the existence of a number density mode which travels due
to the settling of the particles and a momentum mode which travels due to the
cross-streamline momentum transport caused by settling. These modes are coupled
at a turning point which occurs when the wavevector is nearly horizontal and the
most amplified perturbations are those in which a momentum wave upstream of
the turning point creates a downstream number density wave. The particle number
density perturbations reach a finite, but large amplitude that persists after the wave
becomes aligned with the velocity gradient. The growth of the amplitude of particle
concentration and fluid velocity disturbances is characterised as a function of the
wavenumber and Reynolds number (Re = U;/ I'v) using both asymptotic theory and
a numerical solution of the linearised equations.

Key words: instability, multiphase and particle-laden flows, particle/fluid flow

1. Introduction

A striking feature of the dynamics of inertial particles in gas flows is the tendency
of centripetal accelerations to expel the particles from vortical regions so that they
preferentially concentrate in straining-dominated regions of the flow (Squires &
Eaton 1991). It is natural to expect that the resulting fluctuations in the particle
concentration and the forces the particles exert on the fluid will enhance the fluid
velocity fluctuations. In this study, we investigate a mechanism by which preferential
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concentration of particles and the associated variations in the gravitational forces
can lead to enhanced fluid velocity fluctuations in a unidirectional laminar flow. In
particular, we consider the linear stability of an unbounded simple shear flow of a
homogeneous dilute suspension of inertial particles in a gas, a scenario that allows for
a rigorous analysis, but nevertheless extracts mechanisms of growth of concentration
fluctuations that are generic and should apply to small-wavelength perturbations in
more complicated flow scenarios such as laminar shear mixing layers or turbulent
flows. We show that preferential concentration and gravitational forces can lead to a
large enhancement in the magnitude of particle concentration and fluid velocity waves
as they rotate in the shear flow. The long-term growth of the fluctuations can then
arise from the coupled effects of the new preferential concentration instability and the
Rayleigh—Taylor instability of stratified particulate flows (Batchelor & Nitsche 1991).

The qualitative physical understanding of the complex dynamics of single-phase
fluids is greatly enhanced by the study of a set of classical hydrodynamic instabilities.
Our poorer understanding of dispersed multiphase and particulate flows may result
then not only from their greater complexity but also from the limited supply of readily
understandable instability mechanisms. Many of the classical instabilities of particulate
flows, such as the instability of fluidised beds to void fraction waves (Batchelor 1988;
Anderson, Sundaresan & Jackson 1995) and the clustering of particles in rapid
granular flow (Wang, Jackson & Sundaresan 1996) involve dense flows with particle
volume fraction ¢ of order one where the hydrodynamic and collisional interactions
among the particles dominate the flow. At the other extreme very dilute flows with
small particle mass loading M can be understood with reference to the hydrodynamic
instabilities of the carrier fluid. Here, the mass loading is the ratio of the mass
supplied by the particles to that supplied by the fluid, i.e. M =nm/p;, where n is the
number of particles per unit volume, m is the mass of a particle and p; is the density
of the fluid. As an example, the dynamics of settling particles in two coflowing gas
streams with different velocities is controlled by the Kelvin—Helmholtz instability of
the fluid (Tio, GafanCalvo & Lasheras 1993). In addition, the classic approach of
Saffman (1962) to the stability of such suspensions is to consider an effective fluid
with a density adjusted to take in account the presence of particles.

The most challenging regime is a semi-dilute regime with small particle volume
fractions ¢ « 1 but moderate mass loadings M = O(1). In such a regime, the
particulate and gas phases play comparable roles in the suspension dynamics.
Examples of these flows include the handling of particles in pneumatic conveying
(Nishimura & Hunt 2000), methods of contacting gas and solids such as circulating
fluidised beds (Dasgupta, Jackson & Sundaresan 1994), and the suspension of particles
in dust storms (Alfaro & Gomes 2001). While these applications are influenced by
particle-boundary interactions in addition to bulk gas—solid interactions, one can
isolate the bulk gas—solid interactions studied here in more idealised experiments
such as particle-seeded grid-generated turbulent flows (Aliseda et al. 2002) and
studies of self-induced turbulence of sedimenting particles (Parthasarathy & Faeth
1990).

In this paper, we analyse the stability of a homogeneous gas—solid suspension in
an unbounded simple shear flow. When analysing the evolution of disturbances to
unbounded simple shear flows in the form of Fourier modes, it is necessary to account
for the turning of the wavevector of the disturbance mode by the imposed shear flow.
Kelvin (1887) first analysed the linearised disturbances with turning wavevector,
known as Kelvin modes, to the Navier—Stokes equations for unbounded simple shear
flow. Interestingly, it has been noted by Craik & Criminale (1986) that each of
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these modes, due to its transverse nature, is also a solution to the full Navier—Stokes
equations, although a collection of Kelvin modes is not. Lord Kelvin demonstrated
that the momentum perturbations eventually decay at long times algebraically in the
inviscid case and super-exponentially (exponential of a third-order polynomial) for
finite Reynolds numbers. Nevertheless, the modes experience a transient period of
algebraic growth which has led to the postulate of the so-called bypass transition to
turbulence for shearing flows by a mechanism that couples nonlinear effects with the
initial linear transient growth, referred to as ‘bootstrapping’ (Trefethen et al. 1993).

To analyse the stability of unbounded simple shear flow in the presence of a
particulate phase, it is necessary to solve equations describing the state of the
particulate phase along with mass, momentum and energy conservation equations.
Such an analysis has been performed for rapidly sheared granular materials by
Schmid & Kytomaa (1994) by solving momentum and kinetic energy conservation
coupled with the constitutive equations for a granular material (Lun et al. 1984).
As in the case of the Navier—Stokes problem, it was found that disturbances in
granular materials have a transient period of algebraic growth followed by decay of
the disturbances at long times. The extent of the transient growth was much larger
for granular materials than for Newtonian fluids leading to an increased possibility
that nonlinear effects may arise during the transient period and sustain the disturbed
state.

In the present study, we will analyse the coupled linearised dynamics associated
with momentum conservation and particle number density conservation in a dilute gas—
solid suspension. It will be seen that there is a large algebraic growth of disturbances
in this system. In contrast to the cases of single-phase Newtonian flow and granular
flows, the number density disturbances in the dilute gas—solid system do not decay at
long times but reach a steady amplitude, allowing an indefinite time period for the
development of secondary instabilities.

The inertia of the particles, measured by the particle Stokes number St = I't,,
plays a critical role in the preferential concentration of particles that is crucial to the
instability mechanism studied here. However, to facilitate an analytical development
we will consider the case of small but non-zero Stokes number for which Ferry &
Balachandar (2001, 2002) have developed a partial differential equation for particle
concentration. Here I" is the shear rate of the imposed flow, 7, =m/(6mua) is the
particle response time, w is the gas viscosity and a is the particle radius. In the dilute,
low-Stokes-number regime, one can neglect the direct hydrodynamic and collisional
interactions among the particles, although particles experience indirect interactions
through the disturbances to the continuum solution for the fluid velocity induced by
the forces exerted by other particles.

We will show that inertially induced preferential concentration of particles combined
with their gravitational forcing can destabilise a sheared gas—solid suspension.
Evidence that gravity and particle inertia are effective in creating hydrodynamic
fluctuations can be gleaned from previous direct numerical simulation (DNS) and
experimental studies of turbulent flows. For example, Elghobashi & Truesdell (1993)
used forcing to produce isotropic turbulence in a DNS and then introduced particles
and observed the decaying turbulence. They found that particles that settle with
velocities comparable with the root-mean-square fluid velocity enhance both the
turbulent energy and turbulent dissipation rate more than particles experiencing no
gravitational force. The enhancement was highest at small wavelengths where the
larger scales of turbulence could be viewed as producing shearing flows. Some
experimental evidence for particle enhanced hydrodynamic fluctuations comes from
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the study of particles in grid generated turbulence by Aliseda et al. (2002). It is
known from DNS (Wang & Maxey 1993) that particles settle faster in turbulence
than in quiescent fluid because the particles are expelled from vortical upwelling
regions. Aliseda er al. (2002) found that the sedimentation velocity increased with
increasing mass loading suggesting that the particles increased the fluid velocity
fluctuations and thereby enhanced their own sedimentation.

In this paper, we will analyse the linear stability of a uniformly sheared unbounded
gas—solid suspension with a uniform number density. To account for particle inertia
and particle-gas coupling we consider a small but finite Stokes number and a
moderate mass loading. The particular case of horizontal shear will be investigated,
since it is most relevant to flows such as wind-driven dust flow and pneumatic
conveying. In §2, we derive the linearised equations for Fourier-mode velocity and
concentration disturbances with wavevectors that turn in the imposed shear flow.
From numerical integration of these equations, we observe that the solutions exhibit
multiple time scales when the wavelength is much smaller than the characteristic
distance L= U,/I" over which a particle settles during the shearing time 1/I", where
U, is the particle settling velocity. In this case the number density and velocity
waves undergo many periods of oscillation due to settling of particles and transport
of momentum by particle settling in the time it takes the waves to turn in the shear
flow. Since these high-wavenumber disturbances have the largest growth, they are
analysed in more detail using the WKB method of multiple time scale analysis.
The WKB analysis for inviscid and viscous solutions is presented in §§3 and 4,
respectively. The analysis reveals the existence of two perturbation modes, which we
term the momentum and number density modes. These modes evolve independently
for most of their existence. However, the coupling of the two modes in the vicinity
of a turning point, when the wavevector is nearly vertical, plays a crucial role in
determining the amplitude of the final number density disturbance created by an
initial fluid velocity disturbance. A concluding perspective on the study is given
in §5.

2. Derivation of the governing equations
2.1. Derivation of the nonlinear equations

We assume that the particles are small enough that they experience a hydrodynamic
force that equals the Stokes drag force as well as a gravitational force. For a solid—gas
suspension, the Basset history force and the lift force can be neglected due to the large
density ratio. The particle equation of motion is then

dv u—v
dr T,

+g (2.1)

where v is the particle velocity and u is the fluid velocity. Because we consider small
volume fractions, particle—particle collisions are also neglected. The particles act on
an incompressible Newtonian fluid through a body force term equal to the number of
particles per unit volume times the particle-fluid interaction force (Druzhinin 1995;
Ferry & Balachandar 2001). The resulting governing equations for the fluid are

du 1 ) mnv—u
—+u-Vu=——Vp+vwWVu+— (2.2)
ot Ps Pr T

V.u=0. (2.3)


https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2015.136

Downloaded from https:/www.cambridge.org/core. Cornell University Library, on 30 May 2017 at 14:48:00, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2015.136

Preferential concentration driven instability of sheared suspensions 89

In the case of an unbounded shear flow, for which we write the velocity gradient
tensor as Vu, = I'eye,, the only characteristic length in the problem is L = U,/I"
where U, = 1,g refers to the settling velocity of the particles. Note that L represents
the distance settled by the particles during the characteristic shearing time. An
appropriate Reynolds number for the suspension is then Re =U,L/v = U; /().

While a range of methods can be used to model particles and their interaction with
the fluid, Eulerian methods have the advantage of considering the net effect of the
particles through spatial fields such as the number density field without requiring the
tracking of each individual particle. The number density conservation equation is given
by

on +V.(vn)=0. (2.4)

ot
Equation (2.4) does not include particle diffusion. The diameter of particles large
enough to have non-zero Stokes numbers precludes the importance of Brownian
diffusion. The suspension is sufficiently dilute to neglect particle collisions and
near-field hydrodynamic interactions. Furthermore, the equations already capture the
net force exerted by the particles on the fluid so that hydrodynamic diffusion due
to point particles would be described by (2.2) and (2.4) provided that the number
density fluctuations associated with randomly distributed particles were included in
the initial conditions for the number density field.

Starting from the Maxey & Riley (1983) equations of motion for a rigid sphere,
Ferry & Balachandar (2001) derived an asymptotic expansion for the particles’
velocity in the limit of small Stokes number St = I't, < 1. We treat the settling
velocity as a leading order contribution to this expansion since U, is the characteristic
velocity scale in the problem. Thus, the expansion up to first order in the particle
response time is

ou
v=u+U,—71, <at+(u+Ug)-Vu> +0(z). (2.5)

The expansion (2.5) is given in dimensional form. When non-dimensionalised by
the settling velocity magnitude U,, the characteristic distance L and the shearing time
1/I", it becomes

ou

= 1, — St
v=u-+1, <8t

+ @+1,)- Vu) + O(S%) (2.6)

where 1, = U,/U, is a unit vector parallel to gravity. This low-Stokes-number
formulation has the advantage that the particle velocity can be related to the local
fluid velocity and its derivatives, whereas the flow history along individual particle
trajectories must be accounted for at finite Stokes numbers. Note that when St = 0,
the particles move with the fluid velocity, acting as tracers. For small but finite Stokes
numbers, the particles deviate from the fluid motion because of the fluid acceleration
in a reference frame that translates with the sum of the fluid and settling velocities.
It has been shown in Ferry & Balachandar (2002) that the above expression is in
excellent agreement with a Lagrangian treatment of particles in a turbulent channel
flow. The particle concentration equation coupled with the particles’ velocity field
(2.5) was solved by Rani & Balachandar (2003) in isotropic, homogeneous turbulence
and found to be in good agreement with results from Lagrangian particle tracking.
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Using the expression (2.5) in the governing equations, we derive the fluid equations
of motion and the number density conservation equation. Non-dimensionalised by the
length scale L=U,/I", velocity scale U,, base state number density n, and shearing
time scale 1/I", the equations are

V-u=0 (2.7)
(1 + Mn) <8"+u-w) =—Vp+ iV%ur@l - (I — StVu) (2.8)
at Re St ¢
on du
8t+<u+1g—5t<at+(u+lg)-Vu>>-Vn=Sthu:Vu (2.9)

where [ is the identity tensor. Note that the suspension appears to have an effective
density p;(1 4+ Mn) equal to the sum of the mass densities of the gas and particulate
phases. Another striking feature of the momentum equation (2.8) is that in addition to
the gravitational force, the particles exert a body force proportional to —1, - Vu. This
term arises from the convection of momentum across fluid streamlines by the settling
of the particles.

The number density field in (2.9) is convected by the approximate particle velocity
field and can change along particle paths as a result of the compressibility of the
particle velocity field. The divergence of the particle velocity is —StVu : Vu =
—St(S? — £2%) with $?=85:8 and 22 = R: R being the second invariants of the fluid
strain 8 = (Vu + Vu")/2 and rotation tensors R = (Vu — Vu')/2. A homogeneous
shear flow base state does not contribute to the particle density modulation since
Vu, : Vu, = 0. This is because a simple shear flow has equal portions of straining
and rotational motion. It is through a perturbation to the simple shear and the
resulting local imbalance between vorticity and extension that one will obtain a
non-zero term in the right-hand side of (2.9). In particular, regions of higher vorticity
(Vu : Vu = §* — 2% < 0) will lead to a depletion of particles, while particles
aggregate in regions of higher strain (Vu: Vu = 5> — 22 > 0). This process is known
as preferential concentration.

The preferential concentration term is order O(S?) in (2.9), because to leading order
the particle velocity is equal to the sum of the fluid velocity and settling velocity both
of which are divergence free. It follows that a uniform number density is unaltered
by the O(1) particle velocity field and number density fluctuations arise only at O(S?).
Thus, we can write n =1+ Stn’. In terms of the scaled number density fluctuations
n’, the conservation equations (2.8) and (2.9) at O(St) become

9 1
(1+M) <(,;;+u-Vu> :—Vp/+R—v2u—M1g-Vu +Mn'l,  (2.10)
e
on’' ,
; +(uw+1,)-Vn'=Vu:Vu (2.11)

where p'=p — (M/St)1, - r is a reduced pressure adjusted to remove the gravitational
forcing of a uniform particle suspension.

2.2. Linear stability analysis

Next, we assume that the fluid velocity includes a small perturbation to the base
simple shear flow such that u =r - Vu, + ', with the base velocity gradient tensor
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constant and proportional to the shear rate as defined above. Hence, the momentum
perturbation satisfies

ou’ , , M ,
W—kr-Vu,,-Vu +u-Vuh+m1g-Vu
! Vy + ! 1v2/+ Ml/ (2.12)
=—— ———Vu+———1mn .
1M P T 1S MRe 1+M ¢
V-u=0 (2.13)

and the number density equation becomes

/

8—”[ 7V, - Vi +1,V0 =2Vu,: Vil 2.14)

An arbitrary small perturbation of the number density and fluid velocity fields can
be decomposed into spatial Fourier modes and so we define the Fourier transform as

. 1 , .
n(t, k) = W /rER3 n'(t, r) exp(—ik - r)dr (2.15)

and the inverse transforms as
, 1 n )
n (t, r) = W k/kve]Rj’ I’l([, k) exp(lk . r)dk (216)

The disturbance equations (2.12) and (2.14) become in Fourier space

"
S =k Vul - Vi il ki =2V, : ki 2.17)
ou S .M -
E—k'VuZ'Vku+U’VUb+lm1g'ku

_ 1

. . 1 K, M .
=—i
1+M

kp— av -2 1a 2.18
P MR T 1M (2.18)

For an incompressible fluid, pressure balances the component of the force field along
the k direction. The residual force field drives the flow. The operation I — kk projects
(2.18) along the direction parallel to the wavefront. The resulting momentum balance
in the transverse direction is

on . kk . . M A
E—k-Vuz-Vku = — (I—Zkz) VuZ'u—lmlg'ku
! kZA-l— I kk M 1,7 (2.19)
—— —Uu - | . .
1+ MRe ) 1+m "

Applying the method of characteristics, the conservation equations can be converted
to ordinary differential equations (ODEs) with respect to time along the characteristics
defined by

dk Vv k (2.20)
— =-Vu,-k. :
dt b
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The conservation equations along the characteristics with a turning wavevector given
by (2.20) are

i

dlt’ +il, - ki =2V, : kit 2.21)
di Kk M 1 K kk\ M
& (125 Val i — i Yy ki — ——— i+ (= o | 1,0,
dr K2 1+M 1+ M Re ) 1+M

(2.22)

The condition (2.20) reflects the fact that a wave of arbitrary initial orientation
rotates under the action of the shearing and its wavelength evolves as the wave
is stretched and compressed by the straining component of the imposed flow. As a
result of the turning wavevector, these plane-wave disturbances exhibit a non-separable
dependence on space and time. A classical approach in stability analysis is to write
the disturbance equations in the form

dx
— =Ax 2.23
” (2.23)
where x is a multidimensional vector that represents the unknowns of the problem and
A is an operator that contains the governing equations. When A is constant in time,
the solution to (2.23) is

x(t) =exp(tA)x(t =0). (2.24)

The usual procedure is then to analyse the spectrum of the operator A. However,
this method fails in the case we are considering, because A is now time dependent.
Integrating (2.23) becomes challenging both conceptually and numerically. Dyson
(1949) has proposed a formal solution that makes use of a time-ordering operator .7

x()=T {exp </t A(r)d‘c) } x(t=0) (2.25)
0

that is not practical for computational purposes. A numerically tractable expansion
found in Bellman (1997)

x(t) = lim {I+/ dt,,/ndt,,1.../ldtOA(ZO)A(tl)...A(tn)}x(t:0) (2.26)
n—0o0 0 0 0

was used by Schmid & Kytomaa (1994) in the context of granular flow in
unbounded homogeneous shear. Alternatively, the method of Magnus (1954) provides
a representation based on an exponential of a series of operators. The common
denominator to these different approaches, is the high degree of complexity of
the form of solution and the difficulty of implementation. In contrast, we shall
demonstrate, in our case, that for the large wavenumbers, which give the largest
perturbation growth, one can obtain simpler analytical approximate solutions to the
(2.21) and (2.22) using the WKB method.

In the following, we will investigate the particular case in which gravity is aligned
with the velocity gradient of the imposed shear flow, so that 1, = —e, and Vu, =ese;.
In this configuration, the number density equation (2.21) is

A

dn . ..
T =ikyn + 12k, i1, (2.27)
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FIGURE 1. As the wave rotates, it goes from an upstream configuration corresponding
to negative times, to a downstream configuration corresponding to positive times:
(a) upstream configuration; (b) downstream configuration.

and the momentum equation (2.22) along the e, axis is

di, _kok, . LM M_( 2\ 1 K2 22%)
— =2t ——ikity——— 1= | = —— —. .
dr R CGT1IEM T 1+ M k2 1+MRe *

The velocity component along ey, that is iy, can be easily obtained with the continuity
equation. From the relation (2.20), the two components of the wavevector along
directions e; and e; have constant values, while along e, the component is k, = —k;t
where we choose the origin of time such that k, becomes zero at t = 0. Thus, for
negative values of time, the wavevector is pointing upstream (k, > 0) while, for
positive values of time, it is pointing downstream (k, < 0) as illustrated in figure 1.
We will consider initial times #, that may be positive or negative according to the
desired initial orientation of the wavevector. We constrain the analysis to perturbations
for which k3 =0. The 3-component of the wavenumber makes no qualitative difference
in the dynamics of the system.

2.3. Numerical investigation

To understand the dynamics of coupled particle number density and fluid momentum
perturbations in a sheared gas—solid suspension we begin by examining numerical
solutions to (2.27) and (2.28) for the inviscid case Re — oo with a moderate mass
loading M =0.5. Figure 2 illustrates the response of the number density perturbation
and the vertical component of the fluid velocity perturbation to an initial disturbance
of the fluid momentum scaled with an arbitrary small amplitude € of (=0, i, =1).
Note that since the initial scaled amplitude is unity, the later scaled amplitude is also
equal to the relative amplification of the wave. A comparison of figure 2(a,b) with
(c,d) illustrates the effect of increasing the wavenumber of the perturbation, while
a comparison of figure 2(c,d) with (ef) indicates the effect of changing from an
initially upstream to downstream wavevector orientation. We can see in figure 2(d)
that the momentum disturbance for an upstream wavevector grows significantly in
amplitude as the wavevector approaches a horizontal orientation and decays with
time thereafter. This behaviour is qualitatively similar to that observed in Kelvin
waves in a single-phase fluid although the transient growth is stronger in the presence
of inertial particles. The number density perturbation (figure 2¢) remains small
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FIGURE 2. Real part of the number density and vertical fluid velocity for the initial
conditions n=0, i, =1: (a) n, ky =ky(tp) =3; (D) tho, ky =ky(t) =3; (¢) 1, k1 =k, (19) = 20;
(d) l,:tz, kl =k2(f0)=20; (6) fl, kl =20, kg(t()) =—20, (f) ilz, kl 220, kz(f()) = —20. Different
orientations and magnitudes of the wavevector are considered. The initial time is #,. The
Reynolds number is taken to be infinitely large and the mass loading is M =0.5.

while the wavevector is upstream of the horizontal orientation and grows rapidly
as the wavevector passes downstream of horizontal eventually saturating with an
amplification of about 500. While this behaviour does not represent an exponential
growth of a small perturbation as can occur in a linearly unstable unsheared system,
growth by more than two orders of magnitude can potentially lead to nonlinear
effects or secondary instabilities for a relatively modest finite amplitude of the initial
disturbance.

Comparing figure 2(a,b) with (c,d), we see that increasing the wavenumber
of the perturbation increases both the amplitude and frequency of the resulting
number density and momentum perturbations. This suggests that high-wavenumber
perturbations are most amplified at least in the inviscid limit. Assuming that a
nonlinear mechanism exists by which number density perturbations can create
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FIGURE 3. (Colour online) Mechanism of instability of a particle laden simple shear
flow: a disturbance to the fluid flow (arrows) leads through preferential concentration to
variations in particle number density (grey). The particle concentration variations create a
fluctuating gravitational force which enhances the fluid velocity disturbance.

sustained momentum perturbations this observation would be consistent with the
observation of Elghobashi & Truesdell (1993) that turbulence enhancement by settling
particles is most pronounced at high wavenumbers. The number density perturbations
in figure 2(c) oscillate with a high frequency while changing amplitude at a slower
rate, indicating that the dynamics are represented by multiple time scales in the
limit k; >> 1. An examination of the behaviour at different wavenumbers indicates
that the oscillations for values of ¢ not too close to zero occur with a period of
order 1/k;, while the amplitude varies over an O(1) time scale. The period of the
oscillations grows at t — 0 and the period and time scale of amplitude variation are
of the same order as t when t = O(k}/ %). These observations suggest that a multiple
time scale asymptotic analysis is applicable for k; >> 1, the limit in which the largest
growth of the perturbation is observed. The behaviour near + = 0 does not show a
distinctive time scale separation, something that is indicative of a so-called turning
point, a point in time around which the different time scales collapse into one. These
findings motivate the use of the WKB asymptotic method, a method that addresses
the separate time scales and connects them through the turning point.

Further evidence of the importance of the turning point at + = 0 can be seen by
comparing the response to an initially upstream wave (k,(#y) > 0) in figure 2(c,d) and
an initially downstream wave (k,(#)) <0) in figure 2(e,f). While a substantial growth
of the disturbance occurs for an upstream wave, the downstream wave exhibits no
growth of the number density disturbance and a monotonic decay in the amplitude of
the momentum disturbance. From this comparison, we see that the turning point at
t =0 plays a crucial role in creating a large growth of the disturbance.

The mechanism of the instability is illustrated in figure 3. The divergence of
the particle velocity field, which results in preferential concentration of particles, is
proportional to the difference between the mean-squared strain rate and rotation rate
(2.20). The base state simple shear flow has equal portions of strain and rotation and
results in no preferential concentration. However, a sinusoidally varying fluid velocity
perturbation alternately reinforces and attenuates the vorticity due to the imposed
flow leading to regions where the number density is decreased and increased. This
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FIGURE 4. Real part of the number density and vertical fluid velocity for the initial
conditions n =1, it, =0: (a) 1, ky = ka(to) = 20; (b) Uy, ki = ka(to) = 20; (¢) n, ki =20,
ky(ty) = —20; (d) @iy, ki =20, ky(ty) = —20. Different orientations and magnitudes of the
wavevector are considered. The initial time is #. The Reynolds number is taken to be
infinitely large and the mass loading is M =0.5

number density wave illustrated in grey in the figure is directly out of phase with
the momentum disturbance. Nonetheless, the gravity force acting on the perturbed
number density field (third term in the right-hand side of (2.28)) can reinforce the
momentum wave if the two waves propagate relative to one another. This propagation
does occur and is facilitated by the particles’ inertia, the transient effects due to the
shear-induced rotation of the wave and the sedimentation of the particles relative to
the wave when the wavevector is not horizontal.

Now, consider an initial number density perturbation (2 =1, it =0). The simulations
reported in figure 4 show the same features at high k; (time scale separation, sharp
transient at ¢+ = 0) as for a momentum perturbation. The final number density
disturbance is again larger when the initial disturbance has a larger wavenumber.
However, amplification of the number density disturbance created by an initial
disturbance to the fluid velocity (figure 2c¢) is much larger than that due to an initial
number density disturbance (figure 4a).

Figure 5 illustrates the effect that mass loading has on the growth in amplitude of
the number density and fluid velocity due to an initial momentum disturbance (a,b)
and an initial number density disturbance (c,d). It can be seen that the saturation
amplitude of the number density wave and the transient peak of the fluid velocity
disturbance both grow significantly with increasing mass loading and this growth
occurs for both initial number density and momentum disturbances.

The inviscid numerics indicate that the largest growth in the amplitude of
disturbances occurs at the highest dimensionless wavenumbers, making the inviscid
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FIGURE 5. Amplitude of the number density and the vertical fluid velocity due to a
momentum disturbance 7=0, it =1 (a,b) and a number density disturbance n=0, it, =1
(c,d) for an inviscid flow with k; =k, (f)) =20. The mass loading is M =0.25 ( ), 0.5
==, 075 ¢-), 1 (— - —).

analysis ill-posed. However, it may be expected that viscous effects will reduce
the growth rate when the dimensional wavelength becomes smaller than /v/I" the
distance over which viscous diffusion can damp fluid velocity variations during the
O(1/I') time required for shear-induced rotation of the wave. We will see that this
leads to a finite growth rate at an intermediate wavenumber in the well-posed viscous
problem.

The effect of finite Reynolds number on an initial momentum perturbation with
ki = 20 is illustrated in figure 6, where the Reynolds number is varied from 10000
to 1000, 500 and 100. The Re = 10000 results in figure 6(a,b) are very close to
the corresponding inviscid results in figure 2(c,d). In the range Re = 1000-500, the
saturation amplitude of the number density wave begins to decreases and by Re =100
it is reduced over 50-fold compared with the inviscid result. These results indicate that
the large amplification of the disturbance that was seen in the inviscid numeric can
be retained at large but finite Reynolds numbers.

We have suggested based on the inviscid numeric that an asymptotic analysis
based on k; > 1 would be fruitful since the instability is most amplified in this
limit. One might raise the concern, however, that viscous effects become increasingly
important at higher wavenumber and might make high-wavenumber disturbances less
amplified in viscous gases. To explore this issue, we plot the saturation amplitude
of the number density wave due to an initial upstream momentum disturbance as
a function of wavenumber in figure 7 for two viscous cases with Re = 1500 and
Re = 2500. At moderate values of the wavenumber, the saturation amplitude grows
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(b)

FIGURE 6. Number density and vertical fluid velocity for Re = 10000, 1000, 500 and
100: (a) A, Re =10000; (b) U, Re =10000; (¢) n, Re =1000; (d) u,, Re =1000; (e) n,
Re =500; (f) 2, Re =500; (g) n, Re=100; (h) &,, Re =100. The initial conditions are
a momentum perturbation and a wavevector such that k; = k,(#y) = 20. The mass loading
is M=0.5.
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FIGURE 7. (Colour online) Saturation amplitude generated by a momentum perturbation
at fp = —1 for a mass loading M =0.5. The solid curve corresponds to Re =1500 and the
dashed curve to Re =2500.

with amplitude similarly to the inviscid simulations. The amplitude then passes
through a maximum and decreases at high wavenumbers. The optimal wavenumber
is k; ~ 35 and k; =~ 50 at Re = 1500 and Re = 2500, respectively, and further
analysis shows that the optimum wavenumber scales as k; ~ Re'/?. The dimensional
wavelength of the optimum perturbation is (v/I")!/?. As one might expect, this
is the wavelength at which viscous diffusion of momentum can propagate across
the wavelength attenuating the momentum disturbance within the time it takes the
wave to turn toward the horizontal and amplify. Smaller wavelength disturbances are
damped by viscous diffusion while larger wavelengths experience less amplification
as indicated by the inviscid numerics.

We have seen that the optimum wavenumber remains asymptotically large in a
viscous fluid when the Reynolds number is asymptotically large. With this observation
in mind, we will employ a WKB asymptotic analysis for k; 3> 1 to obtain more insight
and analytical predictions for the growth of the disturbances, exploring the inviscid
case in §3 and the viscous case in §4.

3. Asymptotic analysis for large wavenumber using WKB method: inviscid
analysis

3.1. Outer region

In this section, we apply a WKB multiple time scale asymptotic analysis valid for
k; > 1 to the inviscid equations for the velocity and number density fluctuations.
An in-depth explanation of the WKB method (sometimes referred to as WKBIJ after
Wentzel-Kramer—Brillouin—Jeffreys) has been provided in Hinch (1991) and Bender
& Orszag (1999). The WKB approach is often used for analysing the behaviour of
a wave in an inhomogeneous medium (or a potential barrier) with properties that
might undergo a sharp transition. This transition layer would then connect the wave
properties on either side. In the present context, the analysis we present is adapted for
turning waves with a wavevector that varies with time. One might consider then that
the velocity and number density perturbations experience varying effects of gravity,
preferential concentration and particle inertia as they rotate and dilate.
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It is most convenient to perform the WKB method on a single ODE obtained by
combining (2.27) and (2.28) as

d2
F—F (t)—+B(t)n— (3.1
Making use of k, = —kit and dropping viscous terms, we can express the two

coefficient functions A and B as

AG) — & 1—|—2M +1 2t
AT AR Y
1
=k <ao([) + kfh(t)) (3.2)
1
M 1 2 I 1+3M
B(t) = ik* (i £+ —
@ 11<‘1+M s <1+M1+t2+ 1+M>>
1
=K (bo(t) + kbl(t)) ) (3.3)
1

We begin by developing approximate solutions to (3.1) with (3.2) and (3.3) valid
for times that are not close to zero, i.e. times at which the wavevector is either
significantly upstream (r < 0) or downstream (¢ > 0) of the horizontal orientation.
From the numerical solution in figure 2(c), we expect that the number density field
oscillates with an O(k;) frequency and that the frequency and amplitude of the wave
vary over O(1) time scales. The standard form of the solution sought by the WKB
method involves an exponential of an expansion in k; of the form:

[o¢] 1 n
() = exp (kl > <k> Sn(t)) (3.4)

n=0 1

where the first term with an imaginary Sy(f) provides the O(k;) frequency that
varies over O(1) time periods and S, provides a modulation of the amplitude over
O(1) time scales. It is generally expected that this form will provide an accurate
representation of the solution for most times outside a short interval around a point
in time referred to as a turning point. The exponential form is valid as long as
(1/k") S, < (1/k"™1)S,,, is satisfied. It can be seen from (3.3) that this outer solution
will break down when by(¢) ~ b,(f)/k,, corresponding to times ¢~ 1/+/k;. An inner
solution valid for such small times when the wavevector is nearly horizontal will be
developed later. Substituting this expansion in the number density equation yields a
series of ODEs:

Oky) S2+aoS'y+by=0
0(1) (ZS/() +a0)S/1 +S”0 +a1S’0 +b1 =0

1 n—1
0 (k"—l ) 2So+a))Sy + 81+ 88+ aS,. =0 forall n>2.
1 j=1
(3.5)
The order O(k;) equation is a quadratic equation for §;, and yields a pair of solutions:

—dy + (ag — 4b0)1/2

S'o= 5

(3.6)
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Each of the higher- (nth)-order equations provides a linear equation for §’, in terms
of known results from the previous orders. In particular, the first order solution is

S// b S/
§ = _20etoitaso 3.7)
25/0 + ap

giving one solution for each of the solutions for Sy. As in most applications of the
WKB method, zeroth- and first-order terms in the expansion provide an adequate
approximation of the outer solutions by specifying the time-varying frequency and
amplitude, respectively. To understand the physical nature of the two solutions, it
is useful to express ay, and b, as functions of terms appearing in the conservation
equations:

1 M FT[1,-Vu,] FT[1,-Vn]
ag = w (3.8)
+M  FTlu] FT[n]
1 M FT[l - Vu,] FT[1 - Vn]
by = 1?1 (3.9)
+M  FTlu,] FT[n]

where FT denotes the Fourier transform operator. The two solution for the zeroth
order are

' M FT[1,.-V M 2
Ky So" = e - Vil M 0 (3.10)
y T+M  FTlu] 1+M 2
k,SON=/ FI, -Vl _ lkltz 3.11)
0 FT[n]

We will refer to Sp" as the number density mode (or N mode) since its frequency
arises from the rate of convection of particle number density by sedimentation as
it appears in the number density conservation equation. Here Sy" will be called the
momentum mode (M mode), because its frequency arises from the convection of
momentum by particle sedimentation as it appears in the momentum conservation
equation. The propagation of momentum differs from the settling speed by a factor
of M/(1 + M) because momentum is transported only by the particles (M) but is
stored by both particle and gas (1 + M). The reader is referred to §3.2 for further
explanations of this choice of nomenclature.

The amplitudes of the modes are determined by S," and S," and (3.7) which governs
these quantities can be written as

, lu'  1ay+aa)—2b,
SETY ATy e (3-12)

where u = a} — 4b,. We can integrate the equation to find the first-order term:

S = —(1 +2M) In(jt]) — (1 — M) In(1 + 1) (3.13)
S, () =2M In(Jt]) — M In(1 + £2). (3.14)

Therefore, the two modes are

N 1 1 M P
n ([) = |t|1+2M (1 n t2)l—M exXp —lklmz (315)
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2 M pe
AN _ .
n() = <1 n t2> exp <—1k12) . (3.16)

Here it becomes clear that k.S, constitutes the phase, while S; controls the
amplitude. Note that the two modes are waves with effective angular frequencies
o"(t) = (ky/2)(M/(1 4+ M))t for the momentum mode and w"(f) = (k;/2)t for the
number density mode. These frequencies depend on time and increase as |t| increases
and the wavevector is aligned with gravity. The increase in frequency with |¢]| is
readily apparent in figure 2(c,d) and it results from the fact that the wavelength of
the disturbance decreases as 1/t as |t| — oo so that the time required for particles or
momentum to traverse the wave decreases. It is interesting to note that the amplitude
of the momentum mode grows when the wavevector is upstream of the horizontal
(t < 0) and decays with time downstream (¢ > 0). This behaviour might be expected
as the case M = 0 corresponding to a single-phase fluid recovers Kelvin modes,
which are known to undergo transient amplification. In contrast the number density
mode decreases in amplitude for + < 0 and grows for ¢ > 0. It will be seen that the
turning point near =0 allows a transformation of disturbance amplitude between the
two modes. Thus, an upstream momentum mode that triggers a downstream number
density mode can be expected to lead to the largest growth of perturbations.

To obtain more insight into the nature of the modes it is useful to consider their
fluid velocity disturbances, which can be obtained from (2.27) as

. 1 ¢t .1 [1+2M 2 1\ .y
h= (21+M+12k1 [t o ‘M>1+tzD o G
N M (1 t N

As suggested by its name, the number density mode has a fluid velocity that is
O(1/ky) smaller than its number density. The momentum mode has comparable fluid
velocity and number density disturbances.

The general solution is a linear combination of the two modes

i) = Agi(1) + Ay (1) (3.19)
i (f) = Awil (1) + Ayl (1) (3.20)

in which the coefficients Ay and Ay depend on the choice of initial conditions. For
a fluid velocity perturbation with no initial number density disturbance, one obtains
a momentum and a number density mode with comparable magnitudes Ay ~ Ay.
However, the subsequent fluid velocity field is produced primarily by the momentum
mode since #5 < . An initial perturbation to the number density field produces
primarily a number density mode with a much smaller momentum mode Ay~ Ay/k;.
These observations along with our previous discussion of the temporal dynamics
of the modes help to explain why the fluid velocity disturbances in figure 2(c,d)
produced much larger growth than the number density disturbances in figure 4(a.b).
The velocity initial condition produces an O(1) momentum mode that grows up to
the turning point and then induces a number density mode that grows downstream of
the turning point. On the other hand, the number density initial condition primarily
induces a number density mode whose amplitude declines in the upstream orientations
and a much smaller momentum mode that grows in the upstream region.


https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2015.136

Downloaded from https:/www.cambridge.org/core. Cornell University Library, on 30 May 2017 at 14:48:00, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2015.136

Preferential concentration driven instability of sheared suspensions 103

3.2. Mechanisms leading to time variation of the amplitudes of the modes in the
outer region

In the previous discussion, we solved systematically for S, and S; in the exponential
ansatz and obtained the N and M modes, two waves with effective angular frequencies
oM(t) = (ki /2)(M/(1 +M))t and &"(t) = (k;/2)t and respective amplitudes (i3, ")
and (ﬁ”z“, n"). Thus, for example, the number density and fluid velocity in the number
density mode can be written in terms of the frequency and amplitudes as

At = i7" exp(io™(0)t)

2 \" 7

wy (1) = ity exp(io"(1)1)

_ M (! ! A" (t 3.22
__1<t_1+t2)n(). (3.22)

Substituting 7"(r) = " exp(i"(H)1) and (1) = ity exp(iw"(£)) into (2.27) and (2.28),
yields the following equations for the time variation of the amplitudes for the N mode:

d~N

% = Dikyil! (3.23)
di! ik o 2k, M K,
di _ _ G 3.24
@ M e T e (324)

Thus, in a reference frame of a wave that rotates with the shear flow and translates
with the settling velocity, the amplitude of the number density in (3.23) changes
solely due to preferential concentration. The three terms on the right-hand side of
(3.24) indicate that the velocity evolves due to the propagation of momentum by
settling, a shear-induced amplification upstream and diminution downstream of the
horizontal orientation, and the gravitational forcing by the particles, respectively.
Recalling that the fluid velocity associated with the N mode is O(1/k;) smaller than
the number density, i.e. ity ~ ii"/k;, the leading-order solution of (3.24) involves a
quasi-steady balance of the production of momentum due to the gravitational forcing
and its transport by settling induced momentum flux, i.e.

ik, _y M k.,
M T Trme” (325)
which, when using k, = —k;t, becomes
M 1

/\N_

AN
iy = lkl i +t2)n . (3.26)
The fluid velocity induced by the gravitational forcing decays as 1/(¢(1 + %)) with
increasing t because the smaller wavelength at large time increases the rate of
momentum transport across the wave and the alignment of the wavevector toward
the vertical direction reduces the portion of the gravitational forcing that drives
a fluid velocity rather than a hydrostatic pressure field. Inserting the quasi-static
approximation for the fluid velocity field (3.25) into the number density equation
(3.23), we see that

dn® M,
t— ——n =0 (3.27)
dt 147
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FIGURE 8. (Colour online) Mechanism leading to (a) growth of the N mode in the
upstream region and (b) attenuation of the N mode in the downstream region. Waves are
illustrated in the reference frame of the number density field.

which integrates to
= (/4N (3.28)

The mechanism for the decay (in the upstream region) and growth (in the
downstream region) is illustrated in figure 8. The number density field creates a wave
of fluid motion that moves downward in regions of high concentration and upward
in regions of low concentration (dashed lines). However, the momentum disturbance
is shifted upward because the inertia of the gas causes momentum to move upward
relative to the settling particles resulting in the momentum disturbance illustrated
by the solid line. This momentum disturbance through preferential concentration
attenuates the number density field in the upstream region and reinforces it in the
downstream region.

Proceeding to analyse the M mode in a similar manner, we consider the ansatz
(1) = " exp(io"(¢)r) and @5(r) = il exp(iw"(¢)f) and substitute in (2.27) and (2.28),

di' _ ik "+ 2iky i (3.29)
d ~ 1+M
ditf  _kok_, M K

-l Ty (3.30)

The M mode wave travels due to the momentum propagation caused by the settling
velocity. In this reference frame, the wave at high wavenumber satisfies

ik
0=1 IJ:MﬁM + 2k, it (3.31)
At k., M K,
o R R T e (0-32)

It consists of a quasi-steady number density field resulting from a balance of
preferential concentration and the settling of the particles downward relative to the
wave, and a momentum field whose dynamic response is driven by the convection of
the base state shear flow momentum across streamlines by the disturbance (first term
on the right-hand side of (3.32)) and the gravitational forcing of the particles (second
term on the right-hand side). Both of these mechanisms lead to an upstream growth
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FIGURE 9. Preferential concentration mechanism for (a) the amplification of the M mode
in the upstream region and (b) attenuation of the M mode in the downstream region. The
waves are illustrated in the reference frame of the fluid velocity field.

and downstream decay of the amplitude of the momentum wave. The upstream
growth and downstream decay due to the first term was derived by Lord Kelvin.
The mechanism leading to the upstream growth and downstream decay due to the
gravitational forcing is illustrated in figure 9. The fluid velocity field creates a number
density field (light grey) due to preferential concentration which is shifted downward
relative to the wave by sedimentation (dark grey) so that its gravitational force
reinforces the wave in the upstream and attenuates it in the downstream region.

3.3. Inner region

As noted earlier, the outer solutions obtained in the previous section break down for
times near =0 corresponding to wavevector orientations that are nearly perpendicular
to the gravity and velocity gradient direction. We now seek an inner solution valid in
the turning point near 1 =0. To facilitate the analysis we first transform equation (3.1)
into the so-called canonical form (Hinch 1991). Using the transformation

1 t
x(t) = n(r) exp (2 / A(t’)dt’> (3.33)
the number density equation becomes
L& =0 (3.34)
2de 8T '

where

= - 1%_le
50 = @ {B(t) S04 (r)}

1/ 2ine \> 1/ 1+4M _ 1-2M £ 11
= —= +—|ixw + 2im -
4 \1+M k 1+M 1+M 1+7 ki 147

1 1
go(0) + ;gl(t) + ﬁgz(f)- (3.35)
1 1
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This equation takes the form of a wave equation with a time-dependent frequency. The
small parameter 1/k7 multiplying the highest order is a classical feature of equations
necessitating a multiple time scales approach. When ¢t = O(1), g = O(1) and the
frequency is O(k;) as assumed in the outer solution. However, as t — 0, go — 0 and
the exponential expansion (3.4) breaks down when go(¢) ~ (1/k;)g:(¢), corresponding
to t=0(1/+/k;). Thus, the inner region time scale is T =t/k; = O(1). We verify that
the third term can be neglected by noting that go(t) ~ (1/k;)g:(r) = O(1/k;) while
(1/k3)g2(t) = O(1/k?). In terms of the inner region time scale, (3.34) becomes

d’x 1 1 4+4M
— — +i x= (3.36)
dr? 4(1+M)>  2(1+M)
This equation is a parabolic cylinder equation and can be placed in a standard form
by defining a time variable 7= t/+/2(1 + M), so that

(124 =0 (3.37)

— X = .
d7?

where A = i(1 + 4M). The two solutions of this equation are parabolic cylinder

functions D_4iy2[£(1 +1)T] as defined by Gradshteyn ez al. (2000).

To summarise, solutions for the number density disturbance have been obtained in
terms of an outer solution for the upstream wavevectors (¢ < 0), an inner solution for
the turning point region when the wavevector is nearly horizontal (t— 0), and an outer
solution for the downstream wavevector region (¢ > 0) and are given by

ZN;lN'i‘ZMfLM t=0(1) t<0

(1 + )kt (1 4 )kt
{A+DW [m] 4D [‘m”

il1+2M ¢ 1
<o (k)=o)
1

414+M 2
A"+ AR t=0(1) t>0.

While the solutions in both outer regions, upstream and downstream, are linear
combinations of M and N modes, the coefficients of the modes will differ in the two
regions. For this reason, we used overlines for the pair {Ay, Ay} in the upstream
region, and underlines in the downstream region. The number density and momentum
modes, 7" and 7", are given by (3.15) and (3.16).

The behaviour of parabolic cylinder functions in the matching region (|| > 1/v/k;),
is similar to a combination of N and M modes. This makes it possible to directly match
the coefficients in the upstream region with those in the downstream region, yielding

n) = (3.38)

ivi n( ky

AN:_ ~
MIr2M) YV 2 \1+M

A 2 .
Ay =—e M A, —iv/iy| Z2M sin@Mw) T 2M)e ™ <
T

(1/2)+2M
> e—mMAM +e—2mMAN

(3.39)
|4+ p\ Q22w
+> i,

ky

The mathematical details of the matching procedure can be found in appendix A.
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FIGURE 10. Comparison of the amplitude of number density (a) and velocity (b) predicted
by numerical solution of the ODEs (solid line) and the outer WKB analytical solutions
(dashed line). The initial conditions are for a number density # =1, &t =0 perturbation
with an initial wavevector k; = k,(#y) = 125. The Reynolds number is infinitely large and
the mass loading M =0.5.

The matching provides a mixing of modes as one crosses the turning point. In
fact, one can see from (3.39) that each of the upstream modes generate both N and
M modes in the downstream region. A closer examination shows that an incoming
N mode creates a downstream N mode whose coefficient differs from that for the
upstream mode only by a phase shift as well as a momentum mode whose coefficient
is smaller by a factor kl_(l/ 2™ than that of the incoming N mode. The latter small
contribution decays further with time for # > 0. An upstream M mode is much more
effective in creating downstream disturbances. It induces a downstream M mode with a
phase shift relative to the upstream mode. More importantly, it generates a downstream
N mode whose coefficient is kil/ k2 larger than the upstream M mode coefficient.
The growth of the number density and velocity disturbances does not occur primarily
within the turning point since |Aw"(t = —1/vk;)| ~ | A" (t = 1//k;)|. However, by
transforming these disturbances from an N mode to an M mode, the disturbance is able
to grow in both the upstream and downstream regions. This observation explains the
previous numerical results (figures 2 and 4) that an initial condition corresponding to
an upstream fluid velocity disturbance which primarily excites the M mode leads to
a much larger downstream number density disturbance than is created by an initial
disturbance of the number density field.

To demonstrate the validity of the WKB analysis presented above, we present in
figure 10 a comparison between the WKB analytical predictions for the upstream and
downstream outer regions and results obtained by numerically integrating the original
ODEs. The downstream WKB results make use of the relationships (3.39) between
upstream and downstream mode coefficients obtained by matching with the inner
region. The oscillations in the amplitudes (more visible for the velocity), which are
also reproduced by the theoretical solution, come from the interferences between the
two complex modes. The figure proves the validity of the matching relations (3.39)
and validates the treatment of the inner region.

To provide a succinct measure of the growth of the number density fluctuations due
to an initial perturbation, we define two growth functions, G, corresponding to an
initial number density perturbation (7|, =1 and #&|, = 0) and G, to a momentum
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FIGURE 11. (Colour online) Amplitude growth (a) G| and (b) G, as a function of k;. The
initial configuration is k(%)) =k, i.e. tp = —1. Symbols represent simulations while lines
represent theory. Four mass loadings are considered: M = 0.25 ( /®), 0.5 (——--/00),
0.75 (- /), 1 (— - —/An).

perturbation (7|, =1 and i,|,, = 0), in terms of the ratio

IOl
Gi(kh M’ tO) - ;Lleroo ||x(t0)|| ,

ie{l,2} (3.40)

where the vector x = (7, ii;) is a generalised representation of the solution, and ||x| =
/72 + 05 the 2-norm. The index i represents the type of initial condition considered:
by definition { = 1 refers to a number density perturbation and i = 2 refers to a
momentum perturbation. Note that in both cases ||x(#)| = 1, and because u, decays
at long times, the growth functions G, and G, represent the saturation amplitude of
the number density due to a unity perturbation of each of the two types, i.e.

Gilki, M, 1) = lim @I, ie{l, 2} (3.41)

Figure 11(a) shows the growth function G, for different values of the mass loading
M. The initial time has been set to ) = —1 which means that the wave is initiated
in an upstream configuration with a 45° angle from the horizontal axis (k, =k;). We
observe good agreement between the theory (dashed lines) and the simulations (solid
lines) as we increase k;. The growth for M = 0.25 shows a weak dependence on k;.
This can be explained simply by looking at the form G, takes using the theoretical
expressions derived so far

Gk, M) = lim [ =14,

o . k ape2m
— e—2mMAN _ L E 71 e_mMAM . (342)
mrom\ 2 \1+m

The theoretical growth G™ is a sum (weighted by some constants) of Ay and
kﬁl/ DHMZM. Now, at the initial time #,, which was taken to be |fy] ~ 1, the modes
scale as (2", ~ 1, @3], ~ 1/k;) and (2|, ~ 1, &3], ~ 1). In order to satisfy the initial
conditions, Aya"|, + Auit"|,, =1 and Ayiy|,, + Awils],, =0 the coefficients Ay and Ay
scale as Ay ~ 1 and Ay~ 1/k;. Hence, the growth is a sum of a function of order
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one and a function kil/ 24, that varies as kf(l/ 22 \which explains the absence
of dependence on k; for M =0.25.

In figure 11(b), we plot the evolution of the growth function G, as defined in the
case (n|, =0, iy|,, = 1) for different values of the mass loading. Contrary to the
previous case, we do not observe a plateau for M =0.25. Despite, G, having the same
expression as Gj, i.e.

Gy (ki, M) = | Ayl

— |e2miMg ii T ki (I/ZHZMC—mMZ
- “mroem\V 2 \1+m "

(3.43)

the initial conditions in the momentum perturbation case lead to Ay~ Ay~ 1, making
the second term in the growth a function of kf]/ A

4. WKB analysis for viscous gases

4.1. Weakly viscous regime Re ~k?

For simplicity, we presented the WKB analysis in the previous section for an inviscid
gas. Since the growth of the perturbation obtained in the inviscid analysis increases
with increasing wavenumber, it is important to assess the role of viscous effects in
limiting the growth and establishing a most amplified perturbation. Thus, we will now
generalise the analysis for finite Reynolds numbers. In the outer regions, the number
density satisfies (3.1) with the coefficients

koki  142M K2
Ay = —ak 1My
ky 1+M (1 + M)Re

A+2M 1 2t ki 1+¢
=Ik (i——rt4+ — —
1+M ki1+2 Rel+M

1 k
= ki (ao(t)+al(t)+1aRe(t)> 4.1)
k1 Re
/143M 2 Bk M, Kk
B(t) = k _
@ 1<1+M TTIM R T TEM™ T (I + MRe
M 1 2 1> 1+3M ky t(141%)
_ .k2 . t2 o AL
" (11+M s <1+M1+t2+ 1+M)+Re 1+M )
) 1 ki
= ki [ bo() + —b1 () + —Dbg.(1) ] . 4.2)
kl Re

It is clear that the magnitude of k,/Re controls the order at which the functions ag,
and bg, enter the WKB expansion. When k;/Re = O(1/k}) with n > 2, the viscous
effects are too small to impact the first two orders Sy and S;. In such cases, the
inviscid analysis presented earlier is accurate. On the other hand, a Reynolds number
such that k;/Re = O(1/k;), is small enough to change the equation for S, but leaves
So unchanged. For this case, which we term weakly viscous, the viscous damping
influences the amplitude of the outer solution while leaving the frequency unchanged.
The weakly viscous case, Re = O(k?) corresponds to a dimensional wavelength in
the outer region on the order of the distance, (v/I")!/?, that viscous diffusion of


https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2015.136

Downloaded from https:/www.cambridge.org/core. Cornell University Library, on 30 May 2017 at 14:48:00, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2015.136

110 M. H. Kasbaoui, D. L. Koch, G. Subramanian and O. Desjardins

momentum occurs during the turning of the wave by the shear in the outer region.
The equations for the WKB expansion are now (3.6) and

K K
S//Q + 2S/05/1 + a()S/l + | a + 7161]@ S/O + b] + ibke =0. (43)
Re Re

Proceeding as in the previous analysis, we derive two modes which now account for
the viscous terms:

i (1) : : exp (—i—2 kt2 ex i t 1+t2 (4.4)
nh(t) = Mk — S S _ ]
P (1 2y P\ T T 2 ) P\ T Re(T M) 3

- £\ P
n ()= (1 +t2> exp <—1k12> . 4.5)

The number density mode is not influenced by the Reynolds number and remains
the same as that in the inviscid analysis. The momentum mode has the same form
as that for the inviscid analysis except for the final term giving viscous damping in
terms of an exponential function of k;, Re, M and t. The damping is more rapid
when the wavevector is nearly vertical (large |¢|) and becomes asymptotically small as
one approaches the turning point |¢| ~ O(1 /k}/ %), because the wavelength over which
viscous diffusion must occur becomes smaller as |f| — co and larger as |f| — 0. The
lack of damping of the number density mode indicates that even in a viscous gas, the
disturbance does not decay at long times and one is left with a finite long time number
density fluctuation. Since it has been found that the most amplified perturbations are
those in which an initial momentum perturbation triggers a number density wave in
the turning point, the damping of the M mode will play an important role in limiting
the maximum growth that can be achieved.

Consistent with our observation that damping of the outer solution becomes
negligible as one approaches the inner region |f| ~ O(1 /kf/ *) in the weakly viscous
limit Re = O(k3), we will see that the inner solution remains unaltered from the
inviscid analysis in § 3.3 for this case. Thus, one can still use the matching relations
(3.39) to relate the coefficients of the upstream and downstream outer region modes.
In figure 12(a,b), we show a comparison of the weakly viscous outer solution with
the numerical solution for examples within the weakly viscous regime corresponding
to initial velocity and number density perturbations, respectively. The theory yields
an accurate prediction of the variation of the amplitude with time.

4.2. Moderately viscous regime, ReNk?/ :

At a sufficiently small Reynolds number, viscous effects will begin to influence
the solution even during the relatively short time period of the turning point. To
examine these viscous effects we repeat the procedure for deriving the turning point
approximation by transforming (3.1)—(3.34) using the transformation (3.33), and doing
a Taylor series expansion of g, keeping in mind that time scales as t = O(1//k;) in
the inner region. It is found that no viscous terms arise when Re = O(k%). However,

if we perform this analysis for a Reynolds number that scales as Re = O(k?/ %), we

obtain
2
g(r):l o r+ﬁ iMoo (L (4.6)
ki | 4(1 +M)? Re 20+ M) ki
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FIGURE 12. Comparison between theory (dashed line) and simulation (solid line) for
the parameters k| = 125, k, = k; = 125, M = 0.5, Re = k% = 15625 and different initial
conditions: (a) n(t=1) =0, w(t=1) =1, (b) nt=1ty)) =1, t(t =1t;) = 0. The initial
configuration is k() = k;. Only the two outer WKB solutions are represented.

where 7 = tki/ *. The resulting equation takes the form of a parabolic cylinder equation
in terms of a complex shifted time variable:

d’x

dT*?

+ (T +Dx=0 4.7)

where T* = /(ki/Q2( +M)))t*, t* =t + ik;/Re and A = i(1+4M). Viscous effects
would not alter the matching the coefficients of the waves in the upstream
and downstream outer regions because, in the matching region corresponding to
|| > 1/4/k;, the complex shift can be neglected and t* ~¢. However, viscous effects
in the inner region do alter the response to a wave produced by a momentum initial
condition within the inner region. We may then expect viscous effects to scale with
Re/kf/ * for an initial fluid velocity disturbance whose wavevector is horizontal. This
prediction of the analysis is corroborated by the numerical solution presented in
figure 13.

To summarise, viscosity affects the results in three different parameter regimes.
For very high Reynolds number Re and moderate wavenumbers such that k; < Re'/?,
viscosity plays no role and the dynamics can be described by the inviscid equations.
The growth of the disturbance for this range of wavenumbers is a power law of k.
The weakly viscous case occurs for higher wavenumbers such that k; ~ Re'/? and
k; < Re??. Damping of the M mode, for these waves, happens in the outer regions
only, but the N mode is unaffected by viscosity. Since the inner region creates the
N mode responsible for the long-term saturation from an incoming M mode, waves
that start far enough upstream for some amplification of the incoming M mode but
without too much viscous damping lead to the largest growth. Next, viscous effects
cause strong damping of the M mode in the outer region and begin to have an effect
even in the inner region for wavenumbers of order Re?. In this case, the largest
growth is seen for initial conditions with nearly horizontal wavenumbers, although
this growth is much smaller than for the weakly viscous case. Finally, if k; > Re*/?
viscosity dominates in both the inner and outer regions and only the N mode survives
providing a disturbance that neither grows nor decays with time.
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FIGURE 13. (Colour online) Saturation amplitude of number density for initially
horizontal waves with initial conditions 7 =0, &1, = 1. The mass loading is M =0.5. The
amplitudes are obtained numerically with the symbols referring to k; =50 (®), 75 (O),
100 (), 125 (A).

4.3. Growth of the perturbations at finite Re

To assess quantitatively the growth at finite Reynolds numbers, we consider again the
growth functions G,, due to a number density perturbation initial condition, and G,,
due to a momentum perturbation initial condition, defined in (3.40). The theoretical
growth based on the solutions we found is given in (3.42) and (3.43). For the sake
of clarity, we reproduce the equality below

G!"(ki, M, Re, tg) = |4,]

. (1/2)+2M
_omiM ii ”( ki > e A,

e Ay — - | — . 4.8
MI2M) V 2 \14+M

The coefficients Ay and Ay for the initial conditions (nl, =1 and @], = 0) are

found to be
_ 1

~

N— X
ny(to)
— 2MA+M) 1
k(1 +f(%) fn(to)”

(4.9)

Note that |ay(to)| ~ exp(ki/Re(1 + M)) for 1, < 0 and |fp| = O(1) which can be
very large if Re/k} is small. The expressions above show that the growth has a
contribution |Ay| that comes from the N mode prior to the turning point and that
depends on Re/k? only. An additional contribution comes from the M mode prior to
KT AL| that varies like k; /2
figure 14(a), we compare the simulated and predicted growth normalised by
as a function of Re/k?. This scaling collapses the results partially but not completely
because the N mode contribution plays comparable role to the M mode contribution

. —(1/2)+2M
for the wavenumbers considered and does not scale as k; /2+2M

times a function of Re/k}. In
k—(l/2)+2M
1

the turning point, |
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FIGURE 14. (Colour online) Growth functions G; and G, normalised based on the
theoretical predictions for the given initial conditions versus Re/k?, for a mass loading
M = 0.5. Symbols correspond to simulations and lines to theoretical values. The
wavevector is initially at an angle 45° upstream (f, = —1), with k; =25 (——/©®), 50
(===/0), 75 (-- /), 100 (— - —/A).

The second set of initial conditions (71|, =0 and &,|, =1) yields

o 204M) 1
AN:_tiA(f)
0 ny (o
4.1
L 24+M) 1 (4.10)
Ay ——— .
I nu(to)

In this case the N mode contribution is negligible and the results are dominated by
M mode contribution that scales as kil/ 22 exp(k?/Re(1 + M)) for a 1, <0 and |ty| =
O(1). We test this scaling in figure 14(b) where we reported G,(k;, M, Re, to)/kil/z)’LZM
for different values of k; as a function of Re/kj and for 7= —1. We observe that for
all values of k;, the curves collapse proving, that the growth normalised by kgl/ AR
varies solely with the ratio Re/k? for high k; and fixed mass loading M and initial
time fg.

In general, the initial wavevector of the perturbations can have any direction. In
the inviscid case Re = oo, the growth can take arbitrary large values as |ty| = |k /k|
increases for #; < 0. A finite Reynolds number will, however, set a limit to the growth
and will damp M modes with sufficiently large values of |fy| before they reach the
turning point where they can induce an N mode. The optimal starting configuration
leading to the most growth will then depend on the mass loading, Reynolds number,
and the horizontal component of the wavenumber. The corresponding optimal growth
for a set of parameters is given by

sup G;(k;, M, Re) 4.11)

1o

and is met for an ideal initial configuration —zy"" = (ky/k;)?".

The isocontours of sup G; and sup G, in (k;, Re) space obtained from numerical
solution of the differential equations are presented in figure 15 for a mass loading
M = 0.5 along with the corresponding plot of the optimal |7|. As suggested by the
previous discussion, the plots show that k,/k; tends to zero, i.e. towards the inner
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FIGURE 15. (Colour online) Isocontours of the growth functions in (k;, Re) space:
(a) sup, G, for M =0.5; (b) 1" for M=0.5; (c) sup,, G, for M=0.5; (d) 1 for M=0.5.
The dashed line is Re =k} in (a) and Re =12.6k} in (c).

region, as the Reynolds number goes to zero. The locations of the most amplified
wavenumbers follow roughly the Re ~ k7 scaling for sup G; and Re ~ 12.6k% for sup G,
that one would expect based on the weakly viscous analysis.

To obtain theoretical predictions for the most amplified mode for a given Re
and M, one can solve 0G;/dk; = 0G;/dty = 0. We focus on the case of an initial
momentum disturbance, since it leads to the highest growth. For k; > 1, one can use
the approximate expression G4 given in (3.43) (we neglect the N mode contribution
as justified previously) combined with the expressions for the coefficient Ay in (4.10).
Maximising the growth leads to an optimal initial time satisfying

M-+ (EM-3)g+1-2M=0 (4.12)
and a corresponding optimal k{”" given by the relation

. 410(1 4 13/3) 2
T A44MA+M) Y

(4.13)

For mass loadings larger than 5/12, the optimum time given by (4.12) can be written
as

M —3—4/3J 1302 — 15M
tgp,:_\/8/3 3—4/3J13 SM+6 win

0 5/3 —4M
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FIGURE 16. (Colour online) Isocontours of sup, G, in (k;, Re) space with the
corresponding £ obtained from simulations: (a) sup,, G, for M =1; (b) t" for M = 1;
(¢) sup,, G, for M = 1.25; (d) 1" for M = 1.25; (e) sup,, G, for M = 1.5; (f) P for
M =1.5. The dashed line represent the most amplified wavenumbers obtained using (4.14)
and (4.13).

In the case of mass loading M =0.5, this time is " = —3.2. Using the relation (4.13)
we obtain Re =12.63k? in agreement with the numerical solutions.

For mass loadings smaller than 5/12, the most amplified mode is obtained when
tp - —oo and k; — 0. For such small wavenumbers, the expression (3.43) is no
longer valid and one can only conclude that small wavenumbers, not captured by the
WKB method, can lead to higher growth than the larger wavenumbers. Figure 16
demonstrates that the relations (4.13) and (4.14) are able to predict the optimal
wavenumber and initial orientation for mass loadings M = 1, 1.25 and 1.5. Note
that the growth is very large for these cases which might have implications on the
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FIGURE 17. (Colour online) Isocontours of sup, G, for four different mass loadings
smaller than 5/12 ~0.466: (a) M =0.125; (b) M =0.25; (¢) M=0.3; (d) M =0.46. The
isocontours are obtained from simulations.

development of nonlinearities. Figure 17 shows that for the mass loadings smaller
than 5/12~0.46 (here M =0.125, 0.25, 0.3 and 0.46) the most amplified wavenumber
at a given Reynolds number is below k; = 10, corroborating our theoretical argument
that small wavenumbers are most amplified for such small mass loadings.

5. Conclusion

The stability of a gas—solid suspension with small but non-zero Stokes numbers
subject to a homogeneous shear has been investigated with a linear stability analysis.
The complete description of rotating wave-like perturbations, analogous to the Kelvin
modes for single phase flow, has been detailed. A WKB asymptotic analysis yielded
analytical results for cases where the initial wavelength of the perturbation is smaller
than the characteristic particle settling distance in a shear time scale: L =U,/I", the
case that was shown to yield the largest growth for mass loadings M > 5/12. The
theory is applicable for order-one mass loadings for which analytical solutions were
shown to replicate numerical simulations with excellent agreement. The instability
presented in this paper can be considered as one of the few building-block instabilities
available to enhance our qualitative understanding of the mechanics of dispersed
multiphase flows.

To model the gas—solid suspension, a small Stokes approximation of the particle
velocity field (2.5) was used in addition to a momentum coupling between the two
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FIGURE 18. (Colour online) Two schematics depicting the evolution of the N (dashed/blue
online) and M (dash-dotted/green online) modes from upstream to downstream. The solid
black curve represents the total perturbation, which is a linear combination of the two
modes. (a) Evolution of the disturbance due to an upstream M mode: the mode grows until
it reaches the inner region, which results in the generation of a N mode in the downstream
region. The latter grows to a saturation amplitude kil/ DM times higher than the upstream
mode that created it. The downstream M mode vanishes with time. (b) Evolution of the
disturbance due to an upstream N mode: the mode decays until it reaches the inner region,
which results in the generation of a small M mode in the downstream region. The latter
decays and the downstream N reaches a saturation amplitude similar to the starting one.
There is no overall amplification due to an upstream N mode.

phases as described for dilute suspensions in Druzhinin (1995) (2.2). The resulting
number density equation features preferential concentration, a term that acts as a sink
in high-vorticity regions of the flow and as a source in high-stretching regions (2.9).
The feedback of the particles on the fluid momentum is via a gravitational forcing
term in (2.8) that depends on the effective local suspension density p.; = pf + m,n.
This coupled action is critical to the maintenance and growth of a perturbation. The
latter is chosen as a rotating wave, a class of perturbations relevant to the study
of unbounded homogeneous shear, and first introduced in Kelvin (1887). Such a
perturbation is characterised by its initial wavevector which for two-dimensional
perturbations is (k;, k»(¢)). This wavevector evolves with time and eventually aligns
along the mean velocity gradient (2.20).

For the case when gravity is parallel to the velocity gradient, we have used the
WKB analysis valid for k; 3> U,/I" two identify two solutions, which are termed the
number density (N) mode and the momentum (M) mode. Analytical expressions for
the modes are given by (3.15)—(3.18), (4.5) and (4.4). Any small perturbation can
be expressed as a linear combination of the two modes, when the wavevector has
an orientation far from the horizontal with |k;| > \/kiI"/U,. As the wave rotates
under the base shear, and goes from an upstream configuration k,(f)/k; > 0 to a
downstream configuration k,(¢)/k; < 0, there is a very narrow range of configurations
|k2] = O(\/kiI"/U,), referred to as the inner region, where the solution is given in
terms of parabolic cylinder functions. As the wave passes across this inner region the
upstream N and M mode can each produce both a downstream N and M mode. This
particular point is critical to the growth of perturbations.

The sketch in figure 18 shows the evolution of disturbances produced by an initial
momentum mode (figure 18a) and an initial number density mode (figure 18b). In
§3.2, we discussed the manner in which preferential concentration, gravitational
forcing and the relative propagation of momentum and number density disturbances
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due to settling lead an N mode to decay upstream and grow downstream of the turning
point, while an M mode grows upstream and decays downstream of the turning point
(see figures 8 and 9). As shown in figure 18(b), an initial N mode decays until
reaching the turning point and produces at the turning point an N that manages to
return to the initial amplitude and a small M that decays. In contrast the initial M
mode illustrated in figure 18(a) grows in the upstream region and produces at the
turning point a downstream N mode that grows further and saturates at a large finite
amplitude as t — oco. As a result the largest growth occurs due to initial fluid velocity
disturbances which produce large number density disturbances as the wave turns.

The inviscid analysis in §3 shows that an initial velocity disturbance leads to
a downstream N mode with an amplification factor of (Ugk;/I")/?*M that grows
algebraically with decreasing wavelength when the wavelength is much smaller than
the distance U,/I" that particles settle during the shearing time scale, i.e. k; > I'/U,.
However, when viscous diffusion can transfer momentum across the wavelength
during the shearing time, i.e. vk?/I" = O(1), viscous effects begin to damp the M mode
as shown in §4. As a result the maximum amplification occurs at a wavenumber
ky = O((I'/v)"/?) and a wave orientation k,/k; = O(1) which is determined as a
function of the mass loading in (4.14). The optimal wavelength is small compared
with the settling distance U,/I" and the WKB analysis predicts the maximum growth
wavevector analytically provided that M > 5/12. For smaller mass loading, the
optimal wavelength is O(U,/I") and a numerical solution of the linearised equations
is required to determine its value. Large-wavenumber momentum disturbances with
ki > (I'/v)"? are greatly damped before reaching the turning point. At these
wavenumbers, the most amplified wavevector orientation is near the horizontal in
the turning point region. Initial disturbances with horizontal wavenumbers are finally
damped at a still higher wavenumber k; = O((I"U,)'/*v*/?) for which viscous effects
become important in the turning point region, cf. figure 13. Nonetheless, the largest
growth occurs for disturbances with k; = O((I"'/v)"/?) and k,/k; = O(1) as given by
(4.14) and (4.13).

It would be natural to expect that an instability involving preferential concentration
of particles and their gravitational forcing of the gas flow might lead to an
enhancement of the particle settling rate. While the extent to which this ultimately
occurs depends on the nonlinear evolution of the number density and velocity
perturbations, some indication of the initial change in settling velocity for small
perturbations can be gleaned from the linear stability analysis. The phase-averaged
vertical particle velocity is

2n
/ Re{n(x, 1)}Re{v(x, r)}d&
0

2n
/ nodé
0

where £ = k - x is a spatial coordinate parallel to the wavevector and Re{} is the
real part of a complex number. In presence of the perturbations the average particle
velocity differs from —U, by

(5.1

S
Avz) = (v2) = (=Up) = ﬁRe{ftzﬁ*}- (5.2)

The star here denotes the complex conjugate. The scaled change in the particle
velocity is plotted as a function of time in figure 19. The change of the particle velocity
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FIGURE 19. Change in the particle velocity due to perturbations with the scaled initial
conditions i, =1, =0 for the parameters U,k,/I" =100, M =1, and Re=o00. The change
is scaled with the small amplitude of the initial perturbation.

averaged over a period of oscillation is zero in the outer region (|/Lk,I't| > 1).
However, in the inner region (|«/Lk;I"t| < 10), i.e. when the number density streaks
are vertical and the coupling between the velocity perturbation and particle phase
is strongest, there is a net enhancement of the settling rate. In the absence of a
secondary instability, the increase of the settling velocity is transient and one can
characterise its effects in terms of the net extra displacement a particle experiences
as the wavevector passes through the turning point. This extra displacement for the
parameters considered in figure 19 is

> 1
Alra)y, :/ Afva) = d(I'D) ~ =27 x 10%'g, (5.3)

1

in which u’ is the magnitude of the initial velocity perturbation, which should be
small compared with U, in the context of linear theory. Thus, the instability leads
to a downward displacement that is by many orders of magnitude larger than the
displacement an inertial particle might experience due to the initial perturbation.

Despite its algebraic nature, the instability presented in this paper can amplify
disturbances by a significant amount. To illustrate this, consider the example of a
suspension of 80 wm diameter silica particles in sheared air at standard pressure
and temperature with I" = 1.5 s~!. The particle Stokes number is St =0.07. With a
volume fraction ¢ =4.6 x 107, the suspension mass loading is M = 1. The Reynolds
number is Re = U;/ (I'v) =11 690. Under these conditions, an initial perturbation to
the velocity field with a wavelength 4 = 1.1 cm oriented 56° upstream leads to an
amplification of four orders of magnitude (7.4 x 10*) despite some viscous effects
(Re/(Lk;)? ~ 1).

It has long been hypothesised that transient linear growth can explain the transition
to turbulence in flows that are otherwise unconditionally stable from the stand point of
traditional linear analysis, such as flows in circular pipe. Several research groups wave
worked on means of identifying optimal transient perturbations (Trefethen et al. 1993;
Trefethen 1997; Schmid 2007), and it has been shown by Baggett & Trefethen (1997)
that an optimal transient mode that achieves a growth of 1.5-2 orders of magnitude
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can trigger nonlinearities leading to significantly higher magnifications. This effect
is known as bootstrapping. The instability presented in this paper, although of finite
amplitude, is able to achieve a growth of four orders of magnitude and more, which
makes us believe that it might achieve even higher growth by bootstrapping.

In the present mechanism the large finite-amplitude disturbance that is created is
not transient but persists at long times allowing even more opportunity for the onset
of secondary instabilities than in cases such as single-phase pipe flow. Once a wave is
amplified and turned by the shear, the final state is a periodic number density stratified
vertically. Such a configuration is subject to a Rayleigh—Taylor instability as described
in Batchelor & Nitsche (1991). While the shear mechanism converts, for the most part,
a momentum perturbation into a number density perturbation, a secondary Rayleigh—
Taylor instability converts a number density perturbation back to a momentum one
while resetting the wave orientation to a direction that is not parallel to gravity. A
second cycle of shear and Rayleigh-Taylor instability may then be expected to take
place to further reinforce the perturbation. Whether, these two instabilities take place
simultaneously or sequentially will depend on the size of the initial disturbance and
their respective growth rates.

While we have considered the idealised case of the instability of a homogeneously
sheared gas—solid suspension, this analysis will be applicable to disturbances that are
small in comparison with the distance over which the shear rate varies in a more
complex flow. As an example, consider a mixing layer in which two fluid streams
with velocity difference AU have interacted long enough to develop a shear layer
of thickness 6. The shear rate in this layer will be I" = O(AU/$) and the Reynolds
number of the shear layer is Res; = AUS/v = I'§?/v. The current analysis predicts
that, in the presence of particles settling across this mixing layer, a fluid velocity
disturbance will lead to a large growth of particle concentration fluctuations with
an optimal wavelength A =27 /k; = O((v/I")"/?). This optimal wavelength is much
smaller than the shear layer thickness § = (v/I")"/ zReé,{z for any high-Reynolds-number
shear layer. Thus, the dominance of small-wavelength disturbances that justifies the
use of the WKB analysis makes the analysis applicable to the consideration of local
disturbances in many complex flows.
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Appendix A. Inviscid solution in the inner region

Gradshteyn et al. (2000) provide asymptotic relationships for the behaviour of
the parabolic cylinder functions as T — Z4oo and this facilitates the derivation of
analytical relationships between the amplitudes of the upstream and downstream
modes. To match the upstream outer region (¢t < —1) to the turning point, consider
the asymptotic expansion of the parabolic cylinder functions for times such that r <0
and |T| > 1:

Doy[(1 +1)T] =~ 2Mefi((3n)/2)Mefi(T2/2)|T|2M

ir?/2
+ ie—iﬂ(M/z)e_i(nM) ! + © (AD
r(-2M) 207250 T |12M
Dop[—(1 +1)T] == 2Melx/2Mg=iT*/2) | 2M (A2
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Using these expansions, the inner solution for # <0 and || 3> 1/+4/k; approaches

. ke \Y . , ,
}’l(t) ~ < 1 > (AJreil((?ﬂT)/z)M-I—A,CI(H/Z)M) |t|2Meflkl([2/2)

1+M
(/2)+M 2
by T g (LMY SN
Y (—2m) ki T

Note that the asymptotic expressions for the upstream N and M modes when |f| < 1
are

A —i 2
nN ~ |t|2Me iky (1°/2) (A4)
1 ! )
M T o iM/(+M)k(17/2)
|[|2M+1 ¢ : (AS)

It is seen that the functional form of the parabolic cylinder functions is consistent
with that of the N and M modes within the matching region <0 and 1//k, < |t] K 1
provided that we relate the coefficients as

k M
AN:( ! ) (A+e—i((311)/2)M+A_ei(n/z)M)

1+M At
V27 14+ M\ V2 (A0)
Z :A efi(n/Z)Mefi(rrM)
M + 7 Aam - .
I (=2M) k

A similar matching of the inner solution with the downstream outer solution in the
matching region 1> ¢> 1//k, yields

ke \" . .
A — A_e—l((STr)/Z)M A el(n/Z)M
= (1+M> ( T )

(1/2)+M
A=A YA mefi(n/Z)Mefi(nM) ﬂ '
= '(—2M) ky

(A7)

The coefficients of the downstream modes can therefore be expressed in terms of
the amplitudes of the upstream modes as

ivi k 1/2)+2M S S
AN — _L E 71 emeAM + 6727[1MAN
mrem\ 2 \1+m

(A8)
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