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ABSTRACT
The study of disaster events and their impact in the ur-

ban space has been traditionally conducted through manual

collections and analysis of surveys, questionnaires and au-

thority documents. While there have been increasingly rich

troves of human behavioral data related to the events of

interest, the ability to obtain hindsight following a disas-

ter event has not been scaled up. In this paper, we pro-

pose a novel approach for analyzing events called PairFac.

PairFac utilizes discriminant tensor analysis to automati-

cally discover the impact of a major event from rich human

behavioral data. Our method aims to (i) uncover the persis-

tent patterns across multiple interrelated aspects of urban

behavior (e.g., when, where and what citizens do in a city)

and at the same time (ii) identify the salient changes follow-

ing a potentially impactful event. We show the e�ectiveness

of PairFac in comparison with previous methods through

extensive experiments. We also demonstrate the advantages

of our approach through case studies with real-world tra�c

sensor data and social media streams surrounding the 2015

terrorist attacks in Paris. Our work has both methodological

contributions in studying the impact of an external stimulus

on a system as well as practical implications in the area of

disaster event analysis and assessment.
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1. INTRODUCTION
Analyzing the impact of disastrous events has been central

in understanding and responding to crises. E�ective crisis

management requires not only careful planning and prepa-

ration for disaster relief operations, but also a timely as-

sessment of an event’s impact to facilitate actions that will

bring the society back its normal operations as fast as pos-

sible [16]. In this work, we introduce a novel event analysis

framework that can automatically reveal the changes of hu-
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man behavioral patterns associated with an event through

mining context-rich urban activity data.

Traditionally, the assessment of disaster impact has primar-

ily relied on the manual collection and analysis of surveys

and questionnaires as well as the review of authority re-

ports [17], which can be costly and time-consuming. To-

day, in the era of mobile and pervasive computing, increas-

ingly rich digital human traces of routine transactions gen-

erated by citizens, businesses, and organizations, can be col-

lected through online activities (e.g., activities on social me-

dia), sensing technologies (e.g., mobile phones and wireless

sensors) and other means (e.g., crowdsourcing platforms).

These rich troves of human behavioral data provide an un-

precedented opportunity to closely examine (both qualita-

tively and quantitatively) the changes in urban activity due

to events of interest. While much progress has been made

in predictive event analytics, e.g., detecting or forecasting

event outbreaks [19, 2, 22], automatically quantifying and

capturing the impact of an event has been neglected despite

its aforementioned importance.

In this paper, we introduce a novel approach that aims to

automatically discover the impact of an exogenous event on

multiple aspects of urban human activities, i.e., how does

the event change when, where and what citizens normally

do in a city? Our approach, called PairFac, formulates

this as a discriminant tensor analysis problem and solves it

through joint factorization of a pair of tensors. Specifically,

given two tensors capturing urban activity data before and

after a potentially impactful event, PairFac simultaneously

learns the shared and discriminative subspaces from the ten-

sor pairs. These reveal both the persistent and changing

patterns across multiple interrelated aspects of urban activ-

ity data. Our method di�ers from existing literature [14,

8, 11] by introducing the discriminative weight vector that

allows for automatically discerning the discriminative com-

ponents. Extensive experiments on both synthetic and real-

world event datasets demonstrate the e�ectiveness of our

approach.

Our main contributions can be summarized as follows:

• We formally introduce a problem for capturing the im-

pact of an exogenous event on the normal operations of a

system using discriminant tensor analysis.

• We develop a new joint tensor factorization framework

that aims to simultaneously learn the shared and discrim-

inative components from a pair of high-dimensional data

sources. Our method is able to automatically identify the

discriminative components without a predefined number

of shared and/or discriminative components.
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• We conduct extensive experiments on synthetic datasets,

which shows the superior performance of our method in

comparison with existing work.

• We use PairFac to analyze the impact of the 2015 ter-

rorist attacks in Paris through mining multiple relevant

datasets including Paris tra�c sensor data, Twitter data,

and Foursquare check-ins. The analysis reveals several

distinctive patterns of activity surrounding the shocking

event.

The rest of this paper is organized as follows. Section 2 dis-

cusses related work, while Section 3 presents the problem

formulation with the essential background. We introduce

multiple solutions to the tensor factorization problem, in-

cluding a novel algorithm that automatically learns the dis-

criminative weights of the components in Section 4. Section

5 shows detailed quantitative results on synthetic data sets,

while Section 6 presents the Paris attack case study appli-

cation of PairFac. Finally, Section 7 concludes our work.

2. RELATED WORK
In this section we briefly introduce relevant literature to our

methodology as well as to event and urban analytics.

2.1 Shared and discriminative subspace learn-
ing

The increasing availability of data from a diverse set of

sources has given rise to the study of joint analysis of het-

erogeneous data. There exist studies for simultaneously

discovering shared and discriminative subspace, using Non-

Negative Matrix Factorization (NNMF). For example, Gupta

et al. [7] propose a joint NNMF on two data sources through

a shared subspace, while maintaining their unique varia-

tions through individual subspaces. Gupta et al. [8] fur-

ther impose mutually orthogonal regularizations to separate

the common and discriminative subspaces, ensuring that the

shared subspace and the discriminative subspaces are mutu-

ally exclusive. Following the same idea, Kim et al. [11] relax

the framework by requiring the shared subspaces to be sim-
ilar while not necessarily being strictly identical. Regarding

the shared and discriminative subspace learning in the con-

text of tensor factorization, the framework by Liu et al. [14]

- similar to [7] - separates the subspace into shared and in-

dividual subspaces. To the best of our knowledge, there has

not been any work to date imposing regularization on the

shared and discriminative spaces or extending a more flex-

ible framework to the factorization of higher dimensional

data sources.

2.2 Event Analytics
With the growing volume of social media that become rapidly

available, there has been a rising interest in the area of event

analytics through microblogs (e.g., Twitter). Researchers

have approached this field from three perspectives. One line

of research is geared towards event detection. A common

technique is to monitor the frequency of all words and look

for a sudden burst in the frequency of (a subset of) them

[15]. The other line of research is to make sense of the event

storyline through statistical or visual analytics. Diakopoulos

et al. [6] design a visual analytic tool to help journalists and

media professionals to extract news-worthy content from a

large volume of social media around the events. Our work

falls into a third category, which aims at studying the im-

pact of an event on the a�ected population. Related work

includes Lin and Margolin [13] that explores the response

of Twitter users in di�erent cities to the bombing attacks

in Boston. However, the authors are particular focused on

the emotional response towards the attacks. Furthermore,

Bagrow et al. [4] provide a quantitative view of the behav-

ioral changes in human activity under extreme conditions,

such as bomb attacks and earthquakes, through the analy-

sis of the mobile phone records. Also, Song et al. [18] mine

the GPS records of 1.6 million users and build a system to

automatically discover, analyze, and simulate the mobility

of large population in severe disasters in Japan. The short-

coming of using cell phone and GPS data is that the activity

context is absent. The latter significantly complicates the

analysis through the increased dimensionality of the data.

2.3 Urban Computing
During the last years, there has been a significant rise in the

attention to the research of urban computing and informat-

ics. For instance, Zhang et al. [26] propose a data-driven sys-

tem that reveals the real-time sensing of individual refueling

behavior as well as the city-wide petrol consumption, using

the GPS data from taxis. Kaltenbrunner et al. [10] use the

amount of bikes available in the stations in the Barcelona to

detect temporal and geographical mobility patterns within

the city. One closely related work is that of Wang and Tay-

lor [21] that uses Twitter data to study the perturbation

and resilience of human mobility patterns in New York City

during and after the hurricane Sandy.

Our study contributes in the urban computing area since

PairFac is a generic framework that can be used to study

the impact of various exogenous events – them being natu-

rally or imposed by the local government. For example, the

impact of a long-term construction project on the dwellers’

mobility and activities can be quantified using PairFac.

3. PRELIMINARIES AND PROBLEM FOR-
MULATION

In this section, we provide some basic background and pre-

liminaries for the study, followed by the problem formula-

tion. In particular, we provide the notations and essential

background on tensors and their basic operations.

3.1 Preliminaries

3.1.1 Tensors
A tensor is a mathematical representation of a multidimen-

sional array, i.e., an extension of concepts such as scalars,

vectors and matrices to higher dimensions. Table 1 presents

the notation we use in the rest of the paper. We use x to

represent a scalar, x a vector, X a matrix, and X a tensor.

We use x
i

to denote the i-th entry of vector x, X
ij

to denote

the element of matrix X at position {i, j} and X
ijk

to de-

note the element of tensor X at position {i, j, k}. The order
of a tensor is the number of dimensions (modes, or ways).

The dimensionality of a mode is the number of elements in

that mode. We use I
q

to denote the dimensionality of the q-

th mode. For example, the three-way tensor X œ RI1◊I2◊I3
+

has three modes with dimensionality of I1, I2, and I3, re-

spectively. R+ indicates that all the elements of X obtain

nonnegative values.



3.1.2 Basic Operations

Symbol Description
x a scalar (lower-case letter)
x a vector (boldface lower-case letter)
X a matrix (boldface capital letter)
X a tensor (boldface Euler script letter)

Xi,j the scalar at the {i, j} position of matrix X
X i,j,k,... the scalar at the {i, j, k...} position of X

X(n) mode-n unfolding of tensor X
U(n) mode-n factor matrix of tensor X
U(n)

r the r-th column in mode-n factor matrix of tensor X
I1,..., IM the dimensionality of mode 1, ..., M

R the desired rank (boldface captial letter)
K # of shared components (boldface captial letter)

Table 1: Description of Notations.

Mode-n matricization or unfolding: Matricization is the
process of reordering the elements of an M-way array into a
matrix. A mode-n matricizataion of a tensor X ∈ R

I1×I2×···×IM

is denoted by X(n) ∈ R
In×

∏M

q �=n
Iq .

Mode-n product: The mode-n matrix product of a ten-
sor X ∈ R

I1×I2×···×IM with a matrix U ∈ R
J×In is de-

noted by X ×n U and is a new tensor of size I1 × · · · ×
In−1 ×J ×In+1 ×· · ·×IN with (X ×n U)i1···in−1jin+1···iN =∑In

in=1 xi1i2···iN ujin .
Tensor Decomposition: Given an input tensor, tensor fac-
torization decomposes it into a smaller/core tensor multi-
plied by a matrix along each mode. For the case of a three-
way tensor X ∈ R

I×J×K , we have X ≈ Z ×1 A ×2 B ×3 C.
Matrices A ∈ R

I×P , B ∈ R
J×Q, and C ∈ K

K×R are called
factor matrices, or factors, while tensor Z ∈ R

I×J×K is
called the core tensor. In this process, each element of
the tensor X is the product of the corresponding factor
matrix elements multiplied by a weight zpqr, i.e., xijk ≈∑P

p=1
∑Q

q=1
∑R

r=1 zijkaipbjqckr.
CP Decomposition: CANDECOMP/PARAFAC [9] decom-
position is often referred as CP. The CP decomposition of
tensor X could be expressed as xijk ≈ ∑R

r=1 zrairbjrckr.
Let [z] denote a superdiagonal tensor, where [·] is the op-
eration that transforms vector z to a superdiagonal tensor
by setting tensor element zk...k = zk and other elements
as 0. Thus the CP decomposition of a three-way tensor
can be written as X ≈ [z] ×1 A ×2 B ×3 C. Following
Kolda [12], the CP model can be concisely expressed as
X ≈ [[A, B, C]] ≡ ∑R

r=1 ar ◦ br ◦ cr.

3.2 Problem Formulation
Simultaneous Discovery of Common and Discrimi-
native Mobility Patterns: The central problem in this
paper can be formally expressed as follows. Given two non-
negative input tensors, X B ∈ R

I×J×K and X A ∈ R
I×J×K

representing the sets of urban activities Before and After
an exogenous shock, where each entry in the tensors rep-
resents the Location, Time and Venue of each activity, we
seek to obtain a nonnegative tensor factorization (NTF) to
approximate both input tensors, as:

X B ≈ [[U(L)
B , U(T )

B , U(V )
B ]]

and
X A ≈ [[U(L)

A , U(T )
A , U(V )

A ]],

U
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Figure 1: Problem illustration of the proposed dis-
criminant tensor analysis. X B and X A represents the
data tensor Before and After a terrorist attack event. Ma-
trix U(L), U(T ), and U(V ) represent the three factor matri-
ces, Location, Time, and Venue, respectively. The corre-
sponding column in each factor matrix jointly represents a
behavioral pattern. The goal is to find similar and discrim-
inative behavioral patterns across the event.

respectively, where U
(L)
q ∈ R

I×R
+ , U

(T )
q ∈ R

I×R
+ , U

(V )
q ∈

R
I×R
+ , q ∈ {A, B}, represent the factor matrices correspond-

ing to location, time, and venue, respectively, for X B and
X A. Note that in this work we focus on three-mode tensors
but the proposed tensor analysis framework can be used to
deal with data with higher dimensions.
As shown in Fig.1, the corresponding column (red) of each
factor matrix together define a mobility pattern that asso-
ciates specific areas, time, and types of venues. Given our
interest in disastrous events, such as terrorist attacks that
inject an intense psychological instability in the targeted
population, the mobility or behavior patterns of this popu-
lation are likely to change after the event. The goal here is
to discover the shared and discriminative components of the
tensors describing urban activities before and after an event
of interest. Each component here represents a coherent set
of mobility pattern before and/or after the event of interest.

4. SOLUTIONS
In this section, we describe our solution for the problem
described in Section 3.2.

4.1 Shared and Discriminative Subspace ap-
proach

To learn the shared and discriminative subspace, Liu et
al. [14] proposed the Common and Discriminative subspace
Non-negative Tensor Factorization (CDNTF) which takes
a set of labeled tensor as its input and computes both their
common and discriminative subspaces simultaneously as the
output. Following their work, the objective of CDNTF can
be re-written as the following simultaneous factorization of
two input tensors:

X B ≈ [[[U(L)
C |U(L)

D:B ], U(T )
B , U(V )

B ]]
and

X A ≈ [[[U(L)
C |U(L)

D:A], U(T )
A , U(V )

A ]],



where the columns of matrix U(L)
B

and U(L)
A

are segmented

into two parts: U(L)
C

represents the common subspace, while

U(L)
D:B and U(L)

D:A represents the discriminative components

to each tensor X
B

and X
A

. The above common and dis-

criminative subspace discovery is the solution to the mini-

mization of the following objective function:

J0 = 1
n

B

...X
B

≠ [[[U(L)
C

|U(L)
D:B ], U

(T )
B

, U

(V )
B

]]
...

2

+ 1
n

A

...X
A

≠ [[[U(L)
C

|U(L)
D:A], U

(T )
A

, U

(V )
A

]]
...

2
,

(1)

where U(L)
, U(T )

, and U(V )
are defined as above. n

A

and

n

B

are the Frobenius norm of each tensor, and Î·Î2
stands

for the Frobenious norm.

4.2 Regularized Shared and Discriminative Sub-
space approach

Shared and discriminative subspace learning have also been

explored in the context of nonnegative matrix factorization.

In fact, CDNTF can be thought of as the extension of non-

negative shared subspace learning (JSNMF [7]) to higher

dimensions. Under this framework, Gupta et al. [8] pro-

pose regularized nonnegative shared subspace learning that

further imposes a mutual orthogonality constraint on the

constituent subspace, which segregates the common pat-

terns from those that are source-specific. In the context of

discovering common and discriminative mobility patterns,

we extend the framework to Regularized Joint Subspace

Nonnegative Tensor Factorization (RJSNTF) and derive

the following minimization problem:

J1 = J0 +
ÿ

mœ{L,V,T }

J

R1(U(m)
C

, U

(m)
D:B , U

(m)
D:A), (2)

where J

R1(·) is a regularization function used to penalize

the “similarity” between subspaces spanned in {U(m)
B

} and

{U(m)
A

}. Following [8], the mutually orthogonal constraints

are defined as:

J

R1(U(m)
C

, U

(m)
D:B , U

(m)
D:A) = –

...U

(m)
C

T

U

(m)
D:B

...
2

+ —

...U

(m)
C

T

U

(m)
D:A

...
2

+ “

...U

(m)
D:A

T

U

(m)
D:B

...
2

,

(3)

where –, — and “ are the regularization parameters. When

J
R1(U(m)

C

, U(m)
D:B , U(m)

D:A) = 0, the model is reduced to CD-

NTF.

RJSNTF enforces the shared components to be strictly iden-

tical, which is a hard constraint. This might result in distor-

tion when factorizations the tensors. Kim et al. [11] have

proposed the simultaneous discovery of common and dis-

criminative topics via joint nonnegative matrix factorization

where this constraint is relaxed by redefining the regulariza-

tion term. The definition enforces the similar components

to be even more similar while the discriminative parts even

more so as well. Following the same idea and replacing U(m)
C

with U(m)
C:B and U(m)

C:A to represent the similar components

of tensors X
B

and X
A

respectively we derive Simultaneous

Discovery of Common and Discriminative Nonnegative Tensor

Factorization (SDCDNTF) as the following minimization

function:

J2 = J0 +
ÿ

mœ{L,V,T }

J

R2(U(m)
C:B , U

(m)
C:A, U

(m)
D:B , U

(m)
D:A), (4)

and

J

R2(U(m)
C:B , U

(m)
C:A, U

(m)
D:B , U

(m)
D:A)

= –

...U

(m)
C:B ≠ U

(m)
C:A

...
2

+ —

...U

(m)
D:B

T

U

(m)
D:A)

...
1,1

,

(5)

where Î·Î1,1 denotes the absolute sum of all the matrix

entries.

4.3 Automatic Discovery of Discriminative Com-
ponents

The above approaches fall under the same framework that

splits the tensors’ components into common and discrimina-

tive parts in advance, learning them with di�erent regular-

ization. These approaches require the number of shared (or

distinct) components to be determined beforehand, which is

di�cult in practice. In this paper, we propose a novel fac-

torization method, which we term PairFac, that does not

require a manual input for the distinction between these two

parts. In a nutshell, we assign a weight to each component

that reflects the discriminative coe�cient or score of the

corresponding component.

To do so, we introduce two auxiliary data tensors Z
B

and

Z
A

that represent the aggregated unique patterns found

in each tensor respectively. We first define the following

function to compute these auxiliary tensors.

Definition 4.1. Given a data tensor X œ RI◊J◊K

, G(X )

is a clamping function that finds a tensor Z œ RI◊J◊K

that

restricts the entries in X to a given range, so that we have

Z = G(X ), where G(X ) is defined as:

G(X ) =
Ó

X
ijk

, if X
ijk

> ‘,

0, otherwise,

(6)

and ‘ is a constant that defines the minimum entry in the

tensor Z. ‘ can be empirically chosen to control the sparse-

ness of the auxiliary tensors (we use ‘ = 0 in this work).

Note that the clamping function G(·) can also work with

vectors and matrices. Then we compute Z
B

that captures

the unique variance in X
B

from X
A

and Z
A

that captures

the unique variance in X
A

from X
B

as:

Z
A

= G (X
A

≠ X
B

) , (7)
and

Z
B

= G (X
B

≠ X
A

) . (8)

We also use the weight vectors w
B

œ RR

+ and w
A

œ RR

+ to

capture the discriminative coe�cient of each corresponding

component. Our intuition is that while factorizing the orig-

inal tensors into its latent patterns (mobility in our case),

we want to find a discriminative score for each pattern that

corresponds to its unique contribution in each tensor. With

the notations presented, we formally derive the minimiza-

tion problem as:

J3 = J

Õ
0 + J

R3,

(9)

where J Õ
0 di�ers from J0 in that it does not require the

manual split of common and discriminative parts in the fac-

tor matrix, and J

R3 is a function to factorize the auxiliary

tensors, defined as:



J

R3 = –

...Z
B

≠ [[w
B

; U

(L)
B

, U

(T )
B

, U

(V )
B

]]
...

2

+ —

...Z
A

≠ [[w
A

; U

(L)
A

, U

(T )
A

, U

(V )
A

]]
...

2
.

(10)

To solve Eq. 9 we use the block coordinate descent method.

At each iteration, we only update one factor matrix while

fixing the others. Therefore, a factor matrix U(m)
q

where

q œ {A, B} and m œ {L, V, T } in Eq. 9 can be obtained

through the following minimization problem:

min 1
n

q

...X
q(m) ≠ U

(m)
q

(U(m

ÕÕ)
q

§ U

(m

Õ)
q

)T

...
2

+ –

...Z
q(m) ≠ U

(m)
q

�wq (U(m

ÕÕ)
q

§ U

(m

Õ)
q

)T

...
2

,

(11)

where § denotes the Khatri-Rao product, �wq is a diagonal

matrix with w
q

as its diagonal entries while m

Õ
and m

ÕÕ
are

used to index factor matrices other than U(m)
q

. Similarly, we

update each factor matrix alternatively until convergence.

The optimization of the factor matrices is a nonnegative

least squares problem in the context of NMF and several

methods have been extensively studied, including the multi-

plicative updating (MU) method, the hierarchical alternat-

ing least squares method, the active-set methods, and the

alternating proximal gradient method (APG) [23]. While

all of these algorithms do not require searching for the step

size at each iteration, APG-based methods have shown the

superiority in the convergence speed and quality. In fact,

APG can be regarded as a special case of the block coordi-

nate descent method (BCD) with two blocks [24]. In this

paper, we adopt the same framework as in [24] to solve our

problem.

The BCD method solves the following generic optimization

problem:

min
x

F (x1, . . . , x

n

) = f (x1, . . . , x

n

), (12)

where variable x is partitioned into n blocks x1,..., x

n

and

f (·) is di�erentiable and convex for each i while keeping the

others fixed. Let “f

i

(x

i

) is the block-partial gradient of f

at x

i

. Then, for any x

1
i

and x

2
i

, the following property holds:

..“f

i

(x1
i

) ≠ “f

i

(x2
i

)
..

F

6 L
..

x

1
i

≠ x

2
i

..
F

, (13)

for a suitably chosen L as the Lipschitz constant. Applying

the acceleration technique [23, 5], we keep two sequences x

k

i

and z

k

alternatively updated during each iteration k:

x

k

i

= arg min
xi

3
È“

i

f(xk≠1
i

), x

i

≠ x

k≠1
i

Í +
Lk

i

2
..

x

i

≠ x

k≠1
i

..
F

4
,

(14)
and

z

k = x

k

i

+ –

k

≠ 1
–

k+1
(xk

i

≠ x

k≠1
i

), (15)

where È·, ·Í denotes the inner product and

–k≠1
–k+1

is the ex-

trapolation weight. The update step size –

k

is chosen the

same as in [5]:

–

k+1 =
1 +


4–

2
k

+ 1
2

. (16)

Eq. 14 has the following closed form for nonnegative factor-

ization:

Algorithm 1: PairFac algorithm for discovering the

shared and discriminative subspace from tensor pairs.

Input : original tensors X
B

and X
A

, and R.

Output: {w

q

}, {U

(m)
q

} for q œ {A, B} and

m œ {L, V, T }
1 Compute Z

B

and Z
A

by Eq. 7 and Eq. 8;

2 Randomly initialize U(m)
q,0 , ’q and ’m;

3 Set z

U(m)
q

0 = U(m)
q,0 , ’q and ’m;

4 Set z

wq
0 = w

q,0 = [

1
R ], ’q;

5 Set –1 = 1 and k = 1;

6 while not converged do

7 U(m)
q,k

= G

A
z

U(m)
q

k≠1 ≠ 1

L
U(m)

q
k

ˆf

ˆU(m)
q

B
, ’q and ’m;

8 w
q,k

= G
1

z

wq

k≠1 ≠ 1
Lwq

k

ˆf

ˆwq

2
, ’q;

9 –

k+1 =

1+


4–

2
k

+1
2 ;

10 z

U(m)
q

k

= U(m)
q,k

+

–k≠1
–k+1

(U(m)
q,k

≠ U(m)
q,k≠1), ’q and ’m;

11 z

wq

k

= w
q,k

+

–k≠1
–k+1

(w
q,k

≠ w
q,k≠1), ’q;

12 k = k + 1;

13 end

x

k

i

= G

3
z

k≠1
i

≠
1

Lk

i

“ f

i

(xk≠1
i

)
4

. (17)

In this paper, we extend the above for PairFac. We can

think of each block x

i

as each factor matrix U(m)
q

. Then,

the gradient of Eq. 11 with respect to U(m)
q

can be computed

as:

ˆf

ˆU

(m)
q

= 1
n

q

U

(m)
q

F

(m)
q

T

F

(m)
q

≠ X
q(m)F

(m)
q

+ –(w
q

U

(m)
q

F

(m)
q

T

F

(m)
q

≠ Z
q(m)F

(m)
q

),
(18)

where

F

(m)
q

= U

(m

Õ)
q

§ U

(m

ÕÕ)
q

,

(19)

and

LU(m)
q =

...F

(m)
q

T

F

(m)
q

...
2

(20)

is the Lipschitz constant with respect to q and m. The

gradient of Eq. 11 with respect to w
q

can be written as:

ˆf

ˆw

q

= w

q

F

wq
T

F

wq ≠ Z
q(m)F

wq , (21)

where

F

wq = U

(m)
q

§ U

(m

Õ)
q

§ U

(m

ÕÕ)
q

,

(22)

and

Lwq =
..

F

wq T

F

wq
..2 (23)

is the Lipschitz constant with respect to q. Our complete

PairFac algorithm that uses the above updating rules for

solving Eq. 9 is presented in Algorithm 1.

5. EVALUATION
In this section, we use a synthetic dataset to evaluate the

performance of our proposed method. As discussed in sec-

tion 4, there are three existing models that we adopt for
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Figure 2: Illustration of the output from our ap-
proach. We reorder the components of each output factor

matrix by its associated weight in increasing order from left

to right. The weight vector w
A

= [.001, .023, .005, .485, .485]

and the weight vector w
B

= [.001, .022, .004, .487, .487].

comparisons, including CDNTF[14], and our extension of

RSJNMF[8] to RSJNTF, and our extension of SDCDNMF[11]

to SDCDNTF.

5.1 Synthetic Data Setup
We generated two three-way tensors X

B

œ RI◊J◊K

and

X
A

œ RI◊J◊K

according to the equation X
B

=

q
R

r=1 U(L)
B,r¶

U(T )
B,r ¶U(V )

B,r and X
A

=

q
R

r=1 U(L)
A,r ¶U(T )

A,r ¶U(V )
A,r , where X

B

and X
A

shared the first K components in the first factor

matrix and have exactly the same columns in the second

and third factor matrices. Our generation rules of the syn-

thetic dataset follow the idea of [11] with an additional set

of parameters so that the process can be adapted for the

synthetic dataset with more flexibility in the dimensional

settings. The shared parts in the first factor matrix are

generated as:

U

(L)
C,r =

Ó
1, s ◊ r 6 r < s ◊ (r + 1),
0, otherwise,

, where s =

I

R+(R≠K) . We generate the discriminative parts

in the first factor matrix as:

U

(L)
D:B,r =

Ó
1, s ◊ K + s ◊ r 6 r < s ◊ K + s ◊ (r + 1),
0, otherwise,

and

U

(L)
D:A,r =

Ó
1, s ◊ R + s ◊ r 6 r < s ◊ R + s ◊ (r + 1),
0, otherwise.

In addition, each row of U(T )
and U(V )

is set to be a unit

vector with only one non-zero entry at a randomly selected

dimension. We further add sparse Gaussian noise N (0, ‡

2
)

with di�erent amounts of variance to 20% of the entries in

U(L)
B

and U(L)
A

.

5.2 Results

5.2.1 Algorithm Output Illustration
We first provide the illustration of the output from our ap-

proach with the synthetic dataset generated by setting I =

J = K = 20, R = 5, K = 3, ‡

2
= 0.1 and – = — = 1e ≠ 4.

Fig. 2 shows an example of the factor matrices obtained

from our method in comparison with the ground truth fac-

tor matrices. Each column of the output factor matrices

is associated with a discriminative score, where a higher

score represents a greater discriminative power of this com-

ponent in comparison with the corresponding factor matrix

in the second tensor. We observe that our method nicely

segments each output factor into two parts based on the

learned weights. The weights of the common components

are almost zero while the discriminative components equally

shared the discriminative power.

5.2.2 Performance Evaluation:
We include three baselines and one modification of our method

for comparative studies:

• CDNTF [14] takes an input K and splits the factor matrix

into K common components and (R ≠ K) discriminative

components by solving Eq. 1 with multiplicative updating

rules.

• RSJNTF is our tensor extension of RSJNMF[8]. It also

requires the input K and shares the similar framework

with CDNTF with additional mutually orthogonal con-

straints on the common and discriminative components.

We develop multiplicative updating rules to solve Eq. 2.

• SDCDNTF is our tensor extension of SDCDNMF [11],

which also requires the input K. It is under the same

framework with RSJNTF with relaxed constraints on the

shared components. We extend the block coordinate de-

scent framework to SDCDNTF to solve Eq. 4.

• PairFac does not require the specification of K. Instead,

it learns two weight vectors that represent the discrimi-

native scores for each of its components. We use a matrix-

wise alternating proximal descent framework to solve Eq. 9.

• PairFacC solves the same optimization problem as in Eq. 9,

however it adopts a column-wise alternating proximal de-

scent framework.

Performance Metrics To quantitatively evaluate the per-

formance of our proposed approach in comparison with ex-

isting literature, we use three measures, namely, (a) the rel-

ative reconstruction error, (b) the quality of the recovered

discriminative components and (c) the quality of the recov-

ered the recovered common components. To measure the

quality of the reconstruction, we compute the relative re-

construction error as:

1

2
(

..X B ≠ [[U(L)
B

, U(T )
B

, U(V )
B

]]
..2

.
X B

.2 +

..XA ≠ [[U(L)
A

, U(T )
A

, U(V )
A

]]
..2

.
X A

.2 ).

The quality of the recovered discriminative part of factor

matrix is computed as the similarity between the output

factor matrix and the ground truth factor matrix, which

follows sim

D

(U, Ū) = 1
R≠K

qR
r>K cos(U

r

,

¯

U

r

) = Ur·Ūr
ÎUrÎÎŪrÎ ,

where U
r

is the r-th discriminative component in the ground

truth and

¯U
r

is the output r-th discriminative component.

Because there is an ambiguity in the column orderings [1], we

try out all possible permutations of R ≠ K components and

we compute the maximum similarity. Similarly, we compute

the maximum similarity score on the common components

as: sim

C

(U, Ū) = 1
R

qR
r6K cos(U

r

,

¯

U

r

) = Ur·Ūr
ÎUrÎÎŪrÎ .

Experiment Setup: Following the setup introduced in

section 5.1, we generate another synthetic dataset by set-

ting I = 100, J = 10, K = 20, ‡

2
= 0.5, R = 10, and

K = 5. For SDCDNTF, we experiment with – and — in

[10

≠5
, 10

≠4
, 10

≠3
, .01, .1, .3]. For RSJNTF, following [8], we
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Figure 3: Comparison of our approach with existing
methods. Each point represents the average score of 30

runs. The size of points represents the reconstruction error.

set a super parameter – from the same range. Finally, we

set – = — from the same range for PairFac and PairFacC.

We plot the average reconstruction error versus average sim-

ilarity score on the discriminative components as well as on

the common components from 30 runs for each set of pa-

rameters.

Fig. 3 presents the comparison of the various methods. Our

approach has comparable reconstruction quality with that of

SDCDNTF. However, it has superior performance in terms

of both the quality of recovered discriminative and common

components.

5.2.3 Parameter Sensitivity
In our approach, parameters – and — control the weight

placed on identifying the discriminative components, with

the trade-o� of potentially jeopardizing the reconstruction

quality.

We vary the parameter – in PairFac as defined in Section

5.2.2. As we increase –, we place more weights on learning

the discriminative components. Fig. 4 shows that with the

increase of –, although the quality of the recovered discrim-

inative increases, the reconstruction error increases as well.

As PairFac learns the discriminative weights we label the

components with their discriminative power so that we can

distinguish the common components and the discriminative

components. During this process, we need to identify a cut-

o� point for the (ranked) weights. The components that

have discriminative power higher than this cuto� would be

regarded as unique patterns to each tensor data.

There can be di�erent approaches to segment a one-dimensional

vector, most of which rely on how well the two sets of data

points can be separated. Fig. 5 (a) shows the distribution of

the weight vectors in di�erent evaluation environment. As

– becomes smaller, there is a more clear separation in the

bimodal distribution. To check the degree of separation, we

computed Ashman’s D, which is commonly used to quantify

the separation from a mixture of two normal distributions

as [3]:

D = 2
1
2

|µ1 ≠ µ2|
‡

2
1 + ‡

2
2

.

From Fig. 5 (b) we can observe that as – becomes larger,

D initially increases and reaches its peak before it starts

decreasing. This is likely because for a small – the weight

term in the regularization does not make a substantial im-
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Figure 4: The e�ect of – on the reconstruction error
and the recover quality. As – increases, the reconstruc-

tion error increases as well, while the recover quality on the

discriminative components increases up to a certain point

after which it deteriorates.

pact on learning the unique patterns. However, when –

becomes very large, the two distributions are more di�cult

to separate.
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Figure 5: (a) Weights distribution (b) – vs D (Sepa-
rability). (a) shows that as – chooses a smaller value, the

distribution of the weights are more close to a bimodal dis-

tribution; (b) shows that as – increases, the bimodal distri-

bution are more separable, while the separability decreases

after a certain point.

6. CASE STUDIES
In this section, we illustrate the application of our method in

a real case study. In particular, we use PairFac to analyze

the e�ects of the Paris terrorist attacks in the surrounding

urban space. We collect Twitter check-ins and tra�c sensor

data in Paris and apply our approach to the tensors con-

structed based on the two datasets respectively.

6.1 Dataset
Table 1 summarizes the data sources we used for our case

study. The first dataset is the geo-tagged tweets from Paris

collected through Twitter API between the period of Oct

6th, 2015 and Nov 20, 2015. The region is defined by a

rectangle boundary

1
that covers the Paris area. 75,982

geo-located tweets were extracted during the period cov-

ered. The second dataset includes approximately 2.5 million

records of tra�c sensor data [20]. It provides the hourly oc-

cupancy rate of 2,889 road segments in the area of Paris

and covers the same period as above. Our third dataset is

from Foursquare collected by Yang et al. [25] and it contains

86,033 check-ins from 15,375 POIs in the area of Paris area

between April 2012 and September 2013.

1
N 48

¶
54

Õ
32.6118

ÕÕ
, E 2

¶
24

Õ
33.7104

ÕÕ
, N 48

¶
48

Õ
56.361

ÕÕ
,

E 2

¶
14

Õ
36.7794

ÕÕ
.



Data Source Type of Data Dimensions extracted Volume of raw data extracted
Twitter Geo-tagged Tweets Location, Time 75,982 tweets

Service des Déplacements Tra�c Sensor databases Location, Time 2,492,640 hourly occupancy rate
from 2,885 road sensors

Foursquare Checkins and POI database Location, Time, Activity 86,033 checkins with 15,375 POI information
Table 2: Data fusion from heterogeneous data sources in Paris.
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Figure 6: Pair-wise Cosine similarity of the components from tra�c sensor data (left) and from Twitter
check-ins (right). We re-order the components from each tensor by its associated weight in an increasing order so that the

bottom-left places the component with the highest discriminative weight. The size of the point represents the cosine similarity

between each pair of components. The color is filled as by the joint discriminative score as computed by w
A

i

ú w
B

j

, where

points with high joint discriminative scores are colored in red and ones with low scores are colored in blue.

6.2 Experiment Setup
We construct three-mode tensors, where the three dimen-

sions are location, time, and venue type, respectively. For

the location dimension, we overlay the city of Paris with

a grid including 646 square cells, where each cell’s side is

1000 meters. For the temporal dimension, we segment a

week into 24 ◊ 7 = 168 hourly intervals. Finally, for the

venue dimension, we extract the nine primary categories in

the Foursquare venue hierarchy that includes Professional
& Other Places (POP), Travel & Transport (TT), Food (F),

Outdoors & Recreation (OR), Nightlife Spot (NS), Shop &
Service (SS), Residence (R), Arts & Entertainment (AE),

and College & University (CU). For the data tensor of geo-

tagged Tweets, we first construct a matrix LT , where LT

ij

is the number of geo-located tweets that fall in i-th grid cell

at the j-th hour in the week. Similarly, we construct the LT

matrix based on the tra�c sensor data, where LT

ij

is the

average occupancy rate in i-th grid cell at the j-th hour in

the week. Then, we construct a matrix F T V , where F T V

ijk

is the probability of Foursquare check-ins in k-th venue cat-

egory that falls in i-th grid cell at the j-th hour in the week.

Thus, for each cell at a given hour in the week, we know

from the matrix F T V the probability distribution of activi-

ties over the nine categories. Finally, the entries in the data

tensor are computed as:

X
ijk

=
LT

ij

◊ F T V

ijkq
ijk

X
ijk

, (24)

for both X
B

and X
A

. X
B

contains the normalized aggre-

gated values over four weeks between Oct 16th, 2015 (Fri-

day) and Nov 12th, 2015, and X
A

is constructed based on

the normalized values in the following week, between Nov

13th, 2015 (Friday) and Nov 20th, 2015.

In our experiments we set – = — = 10

≠5
and include spa-

tial similarity regularization to enforce the contagious areas

to share the same components. Finally R = 20 for both

datasets.

6.3 Results
The output of PairFac is the mobility patterns as compo-

nents learned from the tensor factorization along with their

discriminative weights. To interpret these patterns in a com-

parative analysis, we first align similar components in two

periods together. The similarity between j-th component

before the attacks and i-th component after the attacks is

computed as:

cosine(U(L)
Bj

, U

(L)
Ai

) · cosine(U(T )
Bj

, U

(T )
Ai

) · cosine(U(V )
Bj

, U

(V )
Ai

).

For each component pair of (j,i), we also compute the joint

discriminative score as w
A

i

· w
B

j

.

Fig. 6 lists all the pair-wise components from each dataset.

We re-order the components in each axis so that the one

with the highest discriminative score falls onto the bottom-

left in each figure. The size of each point represents the

similarity score of the components, and the color represents

the joint discriminative score. As we observe from Fig. 6,

the similar yet discriminative components nicely locate in

the bottom-left region, while the similar ones - but with low

discriminative scores - are pinpointed on the top-right corner

in each figure. Due space limitations, we only show a subset

of the top-ranked common and discriminative components

from each dataset.

Nightlife: Fig. 7 shows the component with the largest joint

discriminative score among all. It corresponds to the 14-th

component before the attacks and 14-th component after

the attacks (the point at the position of (14,14) in the left

part of Fig. 6). This turns out to be the one that represents

the night life activities in the neighborhoods near to the at-

tack sites. We can see from Fig. 7 that before the attacks

more tra�c is observed during the late night on Fridays and
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Figure 7: Nightlife Spot pattern from the traffic sen-
sor data (NS). 14−th component before the attacks and
14−th component after the attacks. Two maps show the
probability distribution of traffic in different areas of Paris
before (left) and after (right), where dark red stands for
higher probability. The bottom-left figure shows the distri-
bution of traffic over the week (24×7), where blue dotted line
represents the distribution before the attacks and solid red
line for the one after. The radar chart on the bottom-right
shows the traffic in areas with different distributions over the
venue categories (defined in section 6.2) from Foursquare,
where blue dots represents the distribution before the at-
tacks and red dots as the one after.
Saturdays. The volume of traffic decreased on the Saturday
and Sunday after the attacks. This might be due to the re-
strictions of movements on the vehicles in some parts of the
city. The Twitter check-ins (as pointed at (14,14) location
in the right part of Fig. 6), are depicted in Fig. 8 and show
a larger volume of activities on Friday midnight. In retro-
spect, this is expected since this is the time that the attacks
happened and hence, there might be a spike of Twitter ac-
tivities. What is interesting and contrasting to the pattern
from the traffic data is that we observe a much higher prob-
ability of activities on the second day of the attacks, while
much less over the next week. This combined could explain
the situation of the streets in the regions close to the attack
sites; they are fueled with fewer than normal vehicles, but
angered citizens are in the area to commemorate the victims
from the attacks or to just protest against violence towards
the civilians expressing their opinions on Twitter.
Shop & Services: The pair of components from the traffic
data with the least discriminative score are the patterns for
shops. As shown in Fig. 9 (corresponds to point at the
position of (18,15) in Fig. 6 on the left), while there is a slight
decrease of the traffic on Saturday and Sunday, the patterns
before and after are almost the same otherwise. This might
be because the primary driving region of this pattern falls
in the southeast part of the city, which is relatively further
away from the attack sites.
Transportation: The mobility pattern that represents the
way people move around the city through public transporta-
tion is presented in Fig. 10 (point (11, 7) in Fig. 6 on the
right). We observe a spike of activities on Friday from Twit-
ter data. This is possibly due to the international friendly
match between France and Germany in Stade de France in
North Paris, which is accessible via public transport. The
distribution of the locations for this component is more con-
centrated in areas where Paris Metro stations are located.
This is also reflected in the activities distribution (bottom-
right in Fig. 10), where the activity is more focused on Travel
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Figure 8: Nightlife Spot (NS) pattern from Twitter
check-ins. 14−th component before the attacks and 14−th
component after the attacks. We observe that on the follow-
ing day of the attacks (Saturday), there is a spike of activ-
ities in the areas that are populated with nightlife venues,
while the activities in this region decrease to a much smaller
volume afterwards.
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Figure 9: Shop & Services (SS) pattern from traffic
data. The pattern is almost identical before and after the
attacks.
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Figure 10: Pattern of Travel & Transportation (TT)
from Twitter data. It stays relatively the same while
being more concentrated towards the use of public trans-
portation.

& Transportation venue types. This observation might be
explained by the fact that public transportation stations
function as hubs of the city to commute to different areas.

7. CONCLUSION
In this work, we provide a novel method to quantitatively
evaluate the impact of a disastrous outbreak on the human
mobility in the city. We propose a novel analytic approach



that aims to automatically discover the impact of an exoge-

nous event on multiple aspects of human activities in the

urban environment. We apply our model to tra�c sensor

data and Twitter check-ins data in Paris surrounding the

period of Terrorist attacks in Nov 2015. We find that the

mobility pattern that represents the city’s nightlife is the

one with the most changes across the time while the pattern

for public transportation stays relatively stable.

Finally, we acknowledge the limitations of this study. Cur-

rently, the discriminative score captures both the changes

in the volume of a certain mobility pattern as well as in the

distribution of this mobility pattern in either location, time,

or venue. This helps to ensure that the factorization can re-

veal the patterns that are mostly close to the ones underline.

However, it su�ers the problem of being less interpretable.

In our future work, we plan to add regularizations to the

current framework so that the discovery of the changes can

be more targeted in particular dimensions. Besides, in this

work, we only consider the immediate changes in one week

in the mobility patterns, using the terrorist attacks in Paris

as a case study. In the future, we plan to explore the pos-

sibility of characterizing a risk scenario based on the results

of various case studies. We hope through this, the analysis

could shed predictability insights for what the city might go

through in the wake of disastrous events.
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