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ABSTRACT man behavioral patterns associated with an event through

The study of disaster events and their impact in the ur-
ban space has been traditionally conducted through manual
collections and analysis of surveys, questionnaires and au-
thority documents. While there have been increasingly rich
troves of human behavioral data related to the events of
interest, the ability to obtain hindsight following a disas-
ter event has not been scaled up. In this paper, we pro-
pose a novel approach for analyzing events called PairFac.
PairFac utilizes discriminant tensor analysis to automati-
cally discover the impact of a major event from rich human
behavioral data. Our method aims to (i) uncover the persis-
tent patterns across multiple interrelated aspects of urban
behavior (e.g., when, where and what citizens do in a city)
and at the same time (ii) identify the salient changes follow-
ing a potentially impactful event. We show the effectiveness
of PairFac in comparison with previous methods through
extensive experiments. We also demonstrate the advantages
of our approach through case studies with real-world traffic
sensor data and social media streams surrounding the 2015
terrorist attacks in Paris. Our work has both methodological
contributions in studying the impact of an external stimulus
on a system as well as practical implications in the area of
disaster event analysis and assessment.
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1. INTRODUCTION

Analyzing the impact of disastrous events has been central
in understanding and responding to crises. Effective crisis
management requires not only careful planning and prepa-
ration for disaster relief operations, but also a timely as-
sessment of an event’s impact to facilitate actions that will
bring the society back its normal operations as fast as pos-
sible [16]. In this work, we introduce a novel event analysis
framework that can automatically reveal the changes of hu-
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mining context-rich urban activity data.

Traditionally, the assessment of disaster impact has primar-
ily relied on the manual collection and analysis of surveys
and questionnaires as well as the review of authority re-
ports [17], which can be costly and time-consuming. To-
day, in the era of mobile and pervasive computing, increas-
ingly rich digital human traces of routine transactions gen-
erated by citizens, businesses, and organizations, can be col-
lected through online activities (e.g., activities on social me-
dia), sensing technologies (e.g., mobile phones and wireless
sensors) and other means (e.g., crowdsourcing platforms).
These rich troves of human behavioral data provide an un-
precedented opportunity to closely examine (both qualita-
tively and quantitatively) the changes in urban activity due
to events of interest. While much progress has been made
in predictive event analytics, e.g., detecting or forecasting
event outbreaks [19, 2, 22], automatically quantifying and
capturing the impact of an event has been neglected despite
its aforementioned importance.

In this paper, we introduce a novel approach that aims to
automatically discover the impact of an exogenous event on
multiple aspects of urban human activities, i.e., how does
the event change when, where and what citizens normally
do in a city? Owur approach, called PairFac, formulates
this as a discriminant tensor analysis problem and solves it
through joint factorization of a pair of tensors. Specifically,
given two tensors capturing urban activity data before and
after a potentially impactful event, PairFac simultaneously
learns the shared and discriminative subspaces from the ten-
sor pairs. These reveal both the persistent and changing
patterns across multiple interrelated aspects of urban activ-
ity data. Our method differs from existing literature [14,
8, 11] by introducing the discriminative weight vector that
allows for automatically discerning the discriminative com-
ponents. Extensive experiments on both synthetic and real-
world event datasets demonstrate the effectiveness of our
approach.

Our main contributions can be summarized as follows:

e We formally introduce a problem for capturing the im-
pact of an exogenous event on the normal operations of a
system using discriminant tensor analysis.

e We develop a new joint tensor factorization framework
that aims to simultaneously learn the shared and discrim-
inative components from a pair of high-dimensional data
sources. Our method is able to automatically identify the
discriminative components without a predefined number
of shared and/or discriminative components.
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e We conduct extensive experiments on synthetic datasets,
which shows the superior performance of our method in
comparison with existing work.

e We use PairFac to analyze the impact of the 2015 ter-
rorist attacks in Paris through mining multiple relevant
datasets including Paris traffic sensor data, Twitter data,
and Foursquare check-ins. The analysis reveals several
distinctive patterns of activity surrounding the shocking
event.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work, while Section 3 presents the problem
formulation with the essential background. We introduce
multiple solutions to the tensor factorization problem, in-
cluding a novel algorithm that automatically learns the dis-
criminative weights of the components in Section 4. Section
5 shows detailed quantitative results on synthetic data sets,
while Section 6 presents the Paris attack case study appli-
cation of PairFac. Finally, Section 7 concludes our work.

2. RELATED WORK

In this section we briefly introduce relevant literature to our
methodology as well as to event and urban analytics.

2.1 Shared and discriminative subspace learn-
ing

The increasing availability of data from a diverse set of
sources has given rise to the study of joint analysis of het-
erogeneous data. There exist studies for simultaneously
discovering shared and discriminative subspace, using Non-
Negative Matrix Factorization (NNMF'). For example, Gupta
et al. [7] propose a joint NNMF on two data sources through
a shared subspace, while maintaining their unique varia-
tions through individual subspaces. Gupta et al. [8] fur-
ther impose mutually orthogonal regularizations to separate
the common and discriminative subspaces, ensuring that the
shared subspace and the discriminative subspaces are mutu-
ally exclusive. Following the same idea, Kim et al. [11] relax
the framework by requiring the shared subspaces to be sim-
ilar while not necessarily being strictly identical. Regarding
the shared and discriminative subspace learning in the con-
text of tensor factorization, the framework by Liu et al. [14]
- similar to [7] - separates the subspace into shared and in-
dividual subspaces. To the best of our knowledge, there has
not been any work to date imposing regularization on the
shared and discriminative spaces or extending a more flex-
ible framework to the factorization of higher dimensional
data sources.

2.2 Event Analytics

With the growing volume of social media that become rapidly
available, there has been a rising interest in the area of event
analytics through microblogs (e.g., Twitter). Researchers
have approached this field from three perspectives. One line
of research is geared towards event detection. A common
technique is to monitor the frequency of all words and look
for a sudden burst in the frequency of (a subset of) them
[15]. The other line of research is to make sense of the event
storyline through statistical or visual analytics. Diakopoulos
et al. [6] design a visual analytic tool to help journalists and
media professionals to extract news-worthy content from a
large volume of social media around the events. Our work

falls into a third category, which aims at studying the im-
pact of an event on the affected population. Related work
includes Lin and Margolin [13] that explores the response
of Twitter users in different cities to the bombing attacks
in Boston. However, the authors are particular focused on
the emotional response towards the attacks. Furthermore,
Bagrow et al. [4] provide a quantitative view of the behav-
ioral changes in human activity under extreme conditions,
such as bomb attacks and earthquakes, through the analy-
sis of the mobile phone records. Also, Song et al. [18] mine
the GPS records of 1.6 million users and build a system to
automatically discover, analyze, and simulate the mobility
of large population in severe disasters in Japan. The short-
coming of using cell phone and GPS data is that the activity
context is absent. The latter significantly complicates the
analysis through the increased dimensionality of the data.

2.3 Urban Computing

During the last years, there has been a significant rise in the
attention to the research of urban computing and informat-
ics. For instance, Zhang et al. [26] propose a data-driven sys-
tem that reveals the real-time sensing of individual refueling
behavior as well as the city-wide petrol consumption, using
the GPS data from taxis. Kaltenbrunner et al. [10] use the
amount of bikes available in the stations in the Barcelona to
detect temporal and geographical mobility patterns within
the city. One closely related work is that of Wang and Tay-
lor [21] that uses Twitter data to study the perturbation
and resilience of human mobility patterns in New York City
during and after the hurricane Sandy.

Our study contributes in the urban computing area since
PairFac is a generic framework that can be used to study
the impact of various exogenous events — them being natu-
rally or imposed by the local government. For example, the
impact of a long-term construction project on the dwellers’
mobility and activities can be quantified using PairFac.

3. PRELIMINARIES AND PROBLEM FOR-
MULATION

In this section, we provide some basic background and pre-
liminaries for the study, followed by the problem formula-
tion. In particular, we provide the notations and essential
background on tensors and their basic operations.

3.1 Preliminaries

3.1.1 Tensors

A tensor is a mathematical representation of a multidimen-
sional array, i.e., an extension of concepts such as scalars,
vectors and matrices to higher dimensions. Table 1 presents
the notation we use in the rest of the paper. We use x to
represent a scalar, x a vector, X a matrix, and X a tensor.
We use x; to denote the i-th entry of vector x, X;; to denote
the element of matrix X at position {7,j} and X, to de-
note the element of tensor X at position {i, j, k}. The order
of a tensor is the number of dimensions (modes, or ways).
The dimensionality of a mode is the number of elements in
that mode. We use I; to denote the dimensionality of the g-
th mode. For example, the three-way tensor X € Rt *72*1s
has three modes with dimensionality of I1, I2, and I3, re-
spectively. R4 indicates that all the elements of X obtain
nonnegative values.



3.1.2  Basic Operations

Symbol Description
x a scalar (lower-case letter)
x a vector (boldface lower-case letter)
X a matrix (boldface capital letter)
X a tensor (boldface Euler script letter)
Xi,j the scalar at the {4, j} position of matrix X
X jk,... thescalar at the {¢,j, k...} position of X
X(ng mode-n unfolding of tensor X
ur mode-n factor matrix of tensor X
U£n) the r-th column in mode-n factor matrix of tensor X
I,..., Ipy  the dimensionality of mode 1, ..., M
R the desired rank (boldface captial letter)
K # of shared components (boldface captial letter)

Table 1: Description of Notations.

Mode-n matricization or unfolding: Matricization is the
process of reordering the elements of an M-way array into a
matrix. A mode-n matricizataion of a tensor X € Rft*12x

is denoted by X, € RI”XH#H fa,

Mode-n product: The mode-n matrix product of a ten-
sor X € RIvxI2xXIm with a matrix U € R7*" is de-
noted by X X, U and is a new tensor of size I; X -+ X
[n,1 x J X In+1 XX IN with (X XnU)i1<~in,1jin+1~-iN =
Zj::l Liqig-in Wjip -

Tensor Decomposition: Given an input tensor, tensor fac-
torization decomposes it into a smaller/core tensor multi-
plied by a matrix along each mode. For the case of a three-
way tensor X € RT*7*E e have X ~ Z x1 A x5 B x5 C.
Matrices A € R™*F, B € R7*? and C € KX* are called
factor matrices, or factors, while tensor Z € RIXIXE jg
called the core tensor. In this process, each element of
the tensor X is the product of the corresponding factor
matrix elements multiplied by a weight 2,4, i€., i ~

P Q R
Zp:l q=1 ZT:1 ZijkQipbjqChr-

CP Decomposition: CANDECOMP /PARAFAC [9] decom-

position is often referred as CP. The CP decomposition of
tensor X could be expressed as x;jir ~ Zfll Zr@irbjrClr.
Let [z] denote a superdiagonal tensor, where [-] is the op-
eration that transforms vector z to a superdiagonal tensor
by setting tensor element zp. . = zr and other elements
as 0. Thus the CP decomposition of a three-way tensor
can be written as X =~ [z] x1 A X2 B x3 C. Following
Kolda [12], the CP model can be concisely expressed as
X ~[A,B,C]= Zle a,ob,oc,.

3.2 Problem Formulation

Simultaneous Discovery of Common and Discrimi-
native Mobility Patterns: The central problem in this
paper can be formally expressed as follows. Given two non-
negative input tensors, Xp € R™*7*X and X4 € R™*/*K
representing the sets of urban activities Before and After
an exogenous shock, where each entry in the tensors rep-
resents the Location, Time and Venue of each activity, we
seek to obtain a nonnegative tensor factorization (NTF) to
approximate both input tensors, as:

xp~ U Ul vl
and
XA ~ HUSAL)v UE4T)7U54V)]]7

X Ipnr

8

© m,
Location N | UB r UB,vi
Before \
After o m ey oA
| | NP3 ]
| T, ‘:' eni o AE
I cu
l o * u m “ss <
A i
£ X T |— U(V) I - oF
S . | Br ¢
o U(L) T ' R h -
N A
| L Q@Q |
Location b NE
- post-attack mobility patterns oR

Figure 1: Problem illustration of the proposed dis-
criminant tensor analysis. X'p and X 4 represents the
data tensor Before and After a terrorist attack event. Ma-
trix U, U™, and UMW) represent the three factor matri-
ces, Location, Time, and Venue, respectively. The corre-
sponding column in each factor matrix jointly represents a
behavioral pattern. The goal is to find similar and discrim-
inative behavioral patterns across the event.

respectively, where Uq<L) € R‘IFXR, UéT) € RiXR, Uém €
RIfR, q € {A, B}, represent the factor matrices correspond-
ing to location, time, and venue, respectively, for X and
X 4. Note that in this work we focus on three-mode tensors
but the proposed tensor analysis framework can be used to
deal with data with higher dimensions.

As shown in Fig.1, the corresponding column (red) of each
factor matrix together define a mobility pattern that asso-
ciates specific areas, time, and types of venues. Given our
interest in disastrous events, such as terrorist attacks that
inject an intense psychological instability in the targeted
population, the mobility or behavior patterns of this popu-
lation are likely to change after the event. The goal here is
to discover the shared and discriminative components of the
tensors describing urban activities before and after an event
of interest. Each component here represents a coherent set
of mobility pattern before and/or after the event of interest.

4. SOLUTIONS

In this section, we describe our solution for the problem
described in Section 3.2.

4.1 Shared and Discriminative Subspace ap-
proach

To learn the shared and discriminative subspace, Liu et
al. [14] proposed the Common and Discriminative subspace
Non-negative Tensor Factorization (CDNTF) which takes
a set of labeled tensor as its input and computes both their
common and discriminative subspaces simultaneously as the
output. Following their work, the objective of CDNTF can
be re-written as the following simultaneous factorization of
two input tensors:

L L T \%
xp~ U US,, U, uy)]

and (L) 1 (E) 1 11(T) £1(V)
XA%[HUC |UD;A}»UA 7UA ]]:



where the columns of matrix Ug) and Uff) are segmented
into two parts: U,(SL> represents the common subspace, while
U(Ef:)B and Ug:)A represents the discriminative components
to each tensor X and X 4. The above common and dis-
criminative subspace discovery is the solution to the mini-
mization of the following objective function:

1 2
X
1

1 2
+ o |2 - o e v

where U®), U™ and UY) are defined as above. na and
np are the Frobenius norm of each tensor, and |-||* stands
for the Frobenious norm.

4.2 Regularized Shared and Discriminative Sub-

space approach

Shared and discriminative subspace learning have also been
explored in the context of nonnegative matrix factorization.
In fact, CDNTF can be thought of as the extension of non-
negative shared subspace learning (JSNMF [7]) to higher
dimensions. Under this framework, Gupta et al. [8] pro-
pose regularized nonnegative shared subspace learning that
further imposes a mutual orthogonality constraint on the
constituent subspace, which segregates the common pat-
terns from those that are source-specific. In the context of
discovering common and discriminative mobility patterns,
we extend the framework to Regularized Joint Subspace
Nonnegative Tensor Factorization (RJSNTF) and derive
the following minimization problem:

h=Jo+ Y

me{L,V,T}

JR1(U(C7"), Ug’f;, Ugr;)‘% @)

where Jgri(-) is a regularization function used to penalize
the “similarity” between subspaces spanned in {Ugn)} and

{Ui‘m)}. Following [8], the mutually orthogonal constraints
are defined as:

2
IO, UG, UG = a[u "o
T 2 T 2 3)
eo oo+ o og|
where «, # and 7 are the regularization parameters. When
JRl(U(Cm),Ugf})B,Ugf‘A) = 0, the model is reduced to CD-
NTF.

RJSNTF enforces the shared components to be strictly iden-
tical, which is a hard constraint. This might result in distor-
tion when factorizations the tensors. Kim et al. [11] have
proposed the simultaneous discovery of common and dis-
criminative topics via joint nonnegative matrix factorization
where this constraint is relaxed by redefining the regulariza-
tion term. The definition enforces the similar components
to be even more similar while the discriminative parts even

more so as well. Following the same idea and replacing U<Cm)

with Ug'f}g and U(C@, to represent the similar components
of tensors X' g and X 4 respectively we derive Simultaneous

Discovery of Common and Discriminative Nonnegative Tensor

Factorization (SDCDNTF) as the following minimization
function:

(m) 17(m) ¢7(m) 5(m)
JrR2(Ug.5: U4, Up.5:Up.a)s (4)

Jo = Jo+ Z

me{L,V,T}
and

(m) ¢3(m) 5(m)  5(m)
L]RQ(UC’:B’ UC:A’ UD:B’ UD:A)

()

oz v+ 5 o og]|

where ||-||, , denotes the absolute sum of all the matrix
entries.

4.3 Automatic Discovery of Discriminative Com-

ponents

The above approaches fall under the same framework that
splits the tensors’ components into common and discrimina-
tive parts in advance, learning them with different regular-
ization. These approaches require the number of shared (or
distinct) components to be determined beforehand, which is
difficult in practice. In this paper, we propose a novel fac-
torization method, which we term PairFac, that does not
require a manual input for the distinction between these two
parts. In a nutshell, we assign a weight to each component
that reflects the discriminative coefficient or score of the
corresponding component.

To do so, we introduce two auxiliary data tensors Zp and
Z 4 that represent the aggregated unique patterns found
in each tensor respectively. We first define the following
function to compute these auxiliary tensors.

Definition 4.1. Given a data tensor X € R™*/*¥G(x)
is a clamping function that finds a tensor Z € RI*7*X that
restricts the entries in X to a given range, so that we have
Z = G(X), where G(X) is defined as:

_ | Xk, if Xk > e
G(X) = { 0, otherwise, (6)

and ¢ is a constant that defines the minimum entry in the
tensor Z. € can be empirically chosen to control the sparse-
ness of the auxiliary tensors (we use ¢ = 0 in this work).
Note that the clamping function G(-) can also work with
vectors and matrices. Then we compute Zp that captures
the unique variance in X g from X 4 and Z 4 that captures
the unique variance in X 4 from X p as:

Z4=G(Xa—XB), (7)
and

Zp=G(Xp—X4). (8)
We also use the weight vectors wg € Rf and wa € Rf to
capture the discriminative coefficient of each corresponding
component. Our intuition is that while factorizing the orig-
inal tensors into its latent patterns (mobility in our case),
we want to find a discriminative score for each pattern that
corresponds to its unique contribution in each tensor. With
the notations presented, we formally derive the minimiza-
tion problem as:

J3 = J(; + JR3, 9)

where J(; differs from Jy in that it does not require the
manual split of common and discriminative parts in the fac-
tor matrix, and Jgs is a function to factorize the auxiliary
tensors, defined as:



2

Jrs = a st - [[wB;U;L),U;T),U;”]]H
@) (™ | (10)
+ﬁHZA_|IWA§UA 7UA 7UA ]]H .

To solve Eq. 9 we use the block coordinate descent method.
At each iteration, we only update one factor matrix while
fixing the others. Therefore, a factor matrix Ul(lm) where
qg € {A,B} and m € {L,V,T} in Eq. 9 can be obtained
through the following minimization problem:

1" !’ 2
a(my = UFP (O o Um)T H

1
min — HX
M ) (11)
Zym) — U A (U 0 U )T ’ ’
where ©® denotes the Khatri-Rao product, Aw, is a diagonal
matrix with w, as its diagonal entries while m’ and m”’ are

+a‘

used to index factor matrices other than U§m>. Similarly, we
update each factor matrix alternatively until convergence.
The optimization of the factor matrices is a nonnegative
least squares problem in the context of NMF and several
methods have been extensively studied, including the multi-
plicative updating (MU) method, the hierarchical alternat-
ing least squares method, the active-set methods, and the
alternating proximal gradient method (APG) [23]. While
all of these algorithms do not require searching for the step
size at each iteration, APG-based methods have shown the
superiority in the convergence speed and quality. In fact,
APG can be regarded as a special case of the block coordi-
nate descent method (BCD) with two blocks [24]. In this
paper, we adopt the same framework as in [24] to solve our
problem.

The BCD method solves the following generic optimization
problem:

min F(z1,...,2n) = f(z1,...,2Zn), (12)

where variable z is partitioned into n blocks z1,..., z, and
f(+) is differentiable and convex for each ¢ while keeping the
others fixed. Let s7f;(z;) is the block-partial gradient of f
at x;. Then, for any =} and z?, the following property holds:
2

|V fi(z}) — Vi) o) —
for a suitably chosen L as the Lipschitz constant. Applying
the acceleration technique [23, 5], we keep two sequences ¥

and 2" alternatively updated during each iteration k:

<z

|F F’ (13)

_ g, Lk _
z® = arg min <(Vlf(:rlf b, @ — mf by 4 71 i — :E’f 1||F )
Zq
(14)
and L
A — —
=gl Tk gk, (15)
Qg1
where (-,-) denotes the inner product and z’;: is the ex-

trapolation weight. The update step size ay is chosen the
same as in [5]:

14 \/4ai +1

- (16)

QAp41 =

Eq. 14 has the following closed form for nonnegative factor-
ization:

Algorithm 1: PairFac algorithm for discovering the
shared and discriminative subspace from tensor pairs.

Input : original tensors X' g and X 4, and R.
Output: {w,}, {U™} for q € {A, B} and
m e {L,V,T}
1 Compute Zp5 and Z4 by Eq. 7 and Eq. §;

2 Randomly initialize Uf;g), Vq and Vm;

(m)
Set zéjq = Uf:g), Vq and Vm;

3
4 Set z(‘)"q =wgo= [%], Vq;
5 Set a;y =1 and k = 1;

6 while not converged do
U™ 1

7 u™ =g z

ok = 2| Vg and Vm;

T T om Hutm
E:’q 8U‘1

_ w 1 of .
8 wor =G <2kjl % awq>7 vq;
k

144 /4ai+1.

9 Qp+1 = — 5
U(Tn) m . — m m
0 | 50 =00+ el —uln) ), vg and vim;
1|5 = Wok + 2 (Wok — Woko1), Vs
12 k=k+1;
13 end
1
=G (zf—l -V fi(xf_l)) ) (17)

In this paper, we extend the above for PairFac. We can
think of each block z; as each factor matrix Uflm>. Then,

the gradient of Eq. 11 with respect to U((Im> can be computed
as:

O~ Lgmu Rz, w0
ouy nq (18)

m m T m m
- a(w ORGTEG 2, )
where , .,
F{ =ui™ o ul™”), (19)
and )
(m) -
£V = HFEI A S )H (20)

is the Lipschitz constant with respect to ¢ and m. The
gradient of Eq. 11 with respect to w, can be written as:

of

T
owy WoFuw, " Fug, = Zq(m)Fug; (21)
where , ,
Fv =u™oul™ oulm), (22)
and )
LVa = HFWQTFWQ H (23)

is the Lipschitz constant with respect to ¢q. Our complete
PairFac algorithm that uses the above updating rules for
solving Eq. 9 is presented in Algorithm 1.

S. EVALUATION

In this section, we use a synthetic dataset to evaluate the
performance of our proposed method. As discussed in sec-
tion 4, there are three existing models that we adopt for
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Figure 2: Illustration of the output from our ap-
proach. We reorder the components of each output factor
matrix by its associated weight in increasing order from left
to right. The weight vector w4 = [.001,.023,.005, .485, .485]
and the weight vector wp = [.001,.022,.004, .487, .487].

comparisons, including CDNTF[14], and our extension of
RSINMF[8] to RSINTF, and our extension of SDCDNMF[11]
to SDCDNTF.

5.1 Synthetic Data Setup
We generated two three-way tensors Xp € R7*7*F and
X4 € RIXK aecording to the equation Xp = SO0 | UEBL)T

U)oU) and x4 =38 UP oUY) oUY), where X5
and X 4 shared the first K components in the ﬁrst factor
matrix and have exactly the same columns in the second
and third factor matrices. Our generation rules of the syn-
thetic dataset follow the idea of [11] with an additional set
of parameters so that the process can be adapted for the
synthetic dataset with more flexibility in the dimensional
settings. The shared parts in the first factor matrix are
generated as:

v _ {1s><r <r<sx(r+1),

C r | 0,otherwise,
, where s = m. We generate the discriminative parts

in the first factor matrix as:

UL _{15><K+s><r <r<sxK+sx(r+1),

D:B,r = | 0, otherwise
and
Ul I,sxR+sxr<r<sxR+4sx(r+1),
D:A,r 0, otherwise.

In addition, each row of U™ and UM is set to be a unit
vector with only one non-zero entry at a randomly selected
dimension. We further add sparse Gaussian noise N(0, o)
with different amounts of variance to 20% of the entries in

L) (L)
and U,

5.2 Results
5.2.1 Algorithm Output Illustration

We first provide the illustration of the output from our ap-
proach with the synthetic dataset generated by setting I =
J=K=20R=5K=3,02=01land a=p=1e—4.
Fig. 2 shows an example of the factor matrices obtained
from our method in comparison with the ground truth fac-
tor matrices. Each column of the output factor matrices

is associated with a discriminative score, where a higher
score represents a greater discriminative power of this com-
ponent in comparison with the corresponding factor matrix
in the second tensor. We observe that our method nicely
segments each output factor into two parts based on the
learned weights. The weights of the common components
are almost zero while the discriminative components equally
shared the discriminative power.

5.2.2  Performance Evaluation:

We include three baselines and one modification of our method
for comparative studies:

e CDNTF [14] takes an input K and splits the factor matrix
into K common components and (R — K) discriminative
components by solving Eq. 1 with multiplicative updating
rules.

e RSINTF is our tensor extension of RSJNMF[8]. It also
requires the input K and shares the similar framework
with CDNTF with additional mutually orthogonal con-
straints on the common and discriminative components.
We develop multiplicative updating rules to solve Eq. 2.

e SDCDNTF is our tensor extension of SDCDNMF [11],
which also requires the input K. It is under the same
framework with RSINTF with relaxed constraints on the
shared components. We extend the block coordinate de-
scent framework to SDCDNTF to solve Eq. 4.

e PairFac does not require the specification of K. Instead,
it learns two weight vectors that represent the discrimi-
native scores for each of its components. We use a matrix-
wise alternating proximal descent framework to solve Eq. 9.

e PairFacC solves the same optimization problem as in Eq. 9,
however it adopts a column-wise alternating proximal de-
scent framework.

Performance Metrics To quantitatively evaluate the per-
formance of our proposed approach in comparison with ex-
isting literature, we use three measures, namely, (a) the rel-
ative reconstruction error, (b) the quality of the recovered
discriminative components and (c¢) the quality of the recov-
ered the recovered common components. To measure the
quality of the reconstruction, we compute the relative re-
construction error as:

A P R R
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The quality of the recovered discriminative part of factor
matrix is computed as the similarity between the output
factor matrix and the ground truth factor matrix, which
follows simp(U,U) = ﬁ Zf;K cos(U,, U,) = %,
where U, is the r-th discriminative component in the ground
truth and U, is the output r-th discriminative component.
Because there is an ambiguity in the column orderings [1], we
try out all possible permutations of R — K components and
we compute the maximum similarity. Similarly, we compute
the maximum smularlty score on the common components
as: simg(U,U) = " Z <K cos(Uy, Uy) = m
Experiment Setup: Following the setup introduced in
section 5.1, we generate another synthetic dataset by set-
ting I = 100, J = 10, K = 20, ¢ = 0.5, R = 10, and
K = 5. For SDCDNTF, we experiment with o and S in
[107°,107*,1073,.01, .1,.3]. For RSINTF, following [8], we



0.75/ * RSINTF 4 PairFacC = PairFac + CDNTF = SDCDNTF [ ]
4
70 A

o2}
a

Quality of Recovered Common Comgonents
<] o ) o <
o (2]
o o

o
S

0.4 0.5 0.6 0.7 0.8
Quality of Recovered Discriminative Components

Figure 3: Comparison of our approach with existing
methods. FEach point represents the average score of 30
runs. The size of points represents the reconstruction error.

set a super parameter « from the same range. Finally, we
set a = (B from the same range for PairFac and PairFacC.
We plot the average reconstruction error versus average sim-
ilarity score on the discriminative components as well as on
the common components from 30 runs for each set of pa-
rameters.

Fig. 3 presents the comparison of the various methods. Our
approach has comparable reconstruction quality with that of
SDCDNTF. However, it has superior performance in terms
of both the quality of recovered discriminative and common
components.

5.2.3 Parameter Sensitivity

In our approach, parameters a and S control the weight
placed on identifying the discriminative components, with
the trade-off of potentially jeopardizing the reconstruction
quality.

We vary the parameter « in PairFac as defined in Section
5.2.2. As we increase o, we place more weights on learning
the discriminative components. Fig. 4 shows that with the
increase of «, although the quality of the recovered discrim-
inative increases, the reconstruction error increases as well.
As PairFac learns the discriminative weights we label the
components with their discriminative power so that we can
distinguish the common components and the discriminative
components. During this process, we need to identify a cut-
off point for the (ranked) weights. The components that
have discriminative power higher than this cutoff would be
regarded as unique patterns to each tensor data.

There can be different approaches to segment a one-dimensional

vector, most of which rely on how well the two sets of data
points can be separated. Fig. 5 (a) shows the distribution of
the weight vectors in different evaluation environment. As
a becomes smaller, there is a more clear separation in the
bimodal distribution. To check the degree of separation, we
computed Ashman’s D, which is commonly used to quantify
the separation from a mixture of two normal distributions
as [3]:

|1 — peo|
w/a’%+o§

From Fig. 5 (b) we can observe that as a becomes larger,
D initially increases and reaches its peak before it starts
decreasing. This is likely because for a small o the weight
term in the regularization does not make a substantial im-
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Figure 4: The effect of o on the reconstruction error
and the recover quality. As « increases, the reconstruc-
tion error increases as well, while the recover quality on the
discriminative components increases up to a certain point
after which it deteriorates.

pact on learning the unique patterns. However, when o
becomes very large, the two distributions are more difficult
to separate.
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Figure 5: (a) Weights distribution (b) o vs D (Sepa-
rability). (a) shows that as o chooses a smaller value, the
distribution of the weights are more close to a bimodal dis-
tribution; (b) shows that as a increases, the bimodal distri-
bution are more separable, while the separability decreases
after a certain point.

6. CASE STUDIES

In this section, we illustrate the application of our method in
a real case study. In particular, we use PairFac to analyze
the effects of the Paris terrorist attacks in the surrounding
urban space. We collect Twitter check-ins and traffic sensor
data in Paris and apply our approach to the tensors con-
structed based on the two datasets respectively.

6.1 Dataset

Table 1 summarizes the data sources we used for our case
study. The first dataset is the geo-tagged tweets from Paris
collected through Twitter API between the period of Oct
6th, 2015 and Nov 20, 2015. The region is defined by a
rectangle boundary ' that covers the Paris area. 75,982
geo-located tweets were extracted during the period cov-
ered. The second dataset includes approximately 2.5 million
records of traffic sensor data [20]. It provides the hourly oc-
cupancy rate of 2,889 road segments in the area of Paris
and covers the same period as above. Our third dataset is
from Foursquare collected by Yang et al. [25] and it contains
86,033 check-ins from 15,375 POlIs in the area of Paris area
between April 2012 and September 2013.

IN 48° 54’ 32.6118”, E 2° 24’ 33.7104”, N 48° 48’ 56.361",
E 2° 14’ 36.7794" .




Data Source Type of Data

Dimensions extracted

Volume of raw data extracted

Twitter Geo-tagged Tweets

Location, Time

75,982 tweets

Service des Déplacements Traffic Sensor databases

Location, Time

2,492,640 hourly occupancy rate
from 2,885 road sensors

Foursquare Checkins and POI database

Location, Time, Activity

86,033 checkins with 15,375 POI information

Table 2: Data fusion from heterogeneous data sources in Paris.
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Figure 6: Pair-wise Cosine similarity of the components from traffic sensor data (left) and from Twitter
check-ins (right). We re-order the components from each tensor by its associated weight in an increasing order so that the
bottom-left places the component with the highest discriminative weight. The size of the point represents the cosine similarity
between each pair of components. The color is filled as by the joint discriminative score as computed by wa; * wg;, where
points with high joint discriminative scores are colored in red and ones with low scores are colored in blue.

6.2 Experiment Setup

We construct three-mode tensors, where the three dimen-
sions are location, time, and venue type, respectively. For
the location dimension, we overlay the city of Paris with
a grid including 646 square cells, where each cell’s side is
1000 meters. For the temporal dimension, we segment a
week into 24 x 7 = 168 hourly intervals. Finally, for the
venue dimension, we extract the nine primary categories in
the Foursquare venue hierarchy that includes Professional
& Other Places (POP), Travel & Transport (TT), Food (F),
Outdoors & Recreation (OR), Nightlife Spot (NS), Shop &
Service (SS), Residence (R), Arts & Entertainment (AE),
and College & University (CU). For the data tensor of geo-
tagged Tweets, we first construct a matrix LT, where LT;;
is the number of geo-located tweets that fall in i-th grid cell
at the j-th hour in the week. Similarly, we construct the LT
matrix based on the traffic sensor data, where LT;; is the
average occupancy rate in ¢-th grid cell at the j-th hour in
the week. Then, we construct a matrix FT'V, where FTVji
is the probability of Foursquare check-ins in k-th venue cat-
egory that falls in é-th grid cell at the j-th hour in the week.
Thus, for each cell at a given hour in the week, we know
from the matrix F'T'V the probability distribution of activi-
ties over the nine categories. Finally, the entries in the data
tensor are computed as:

LTij X FTVijk

Yigk = Fon
23

) (24)
ijk
for both X5 and X 4. X B contains the normalized aggre-
gated values over four weeks between Oct 16th, 2015 (Fri-
day) and Nov 12th, 2015, and X 4 is constructed based on
the normalized values in the following week, between Nov
13th, 2015 (Friday) and Nov 20th, 2015.
In our experiments we set @ = 8 = 107° and include spa-
tial similarity regularization to enforce the contagious areas

to share the same components. Finally R = 20 for both
datasets.

6.3 Results

The output of PairFac is the mobility patterns as compo-
nents learned from the tensor factorization along with their
discriminative weights. To interpret these patterns in a com-
parative analysis, we first align similar components in two
periods together. The similarity between j-th component
before the attacks and i-th component after the attacks is
computed as:

: L) L) , (T (T . A% (v
cosme(USBj ,Ui‘i )- cosme(UBj>, UAi)) . coszne(USBj), UAi))'

For each component pair of (j,7), we also compute the joint
discriminative score as wa; - Wg;.

Fig. 6 lists all the pair-wise components from each dataset.
We re-order the components in each arxis so that the one
with the highest discriminative score falls onto the bottom-
left in each figure. The size of each point represents the
similarity score of the components, and the color represents
the joint discriminative score. As we observe from Fig. 6,
the similar yet discriminative components nicely locate in
the bottom-left region, while the similar ones - but with low
discriminative scores - are pinpointed on the top-right corner
in each figure. Due space limitations, we only show a subset
of the top-ranked common and discriminative components
from each dataset.

Nightlife: Fig. 7 shows the component with the largest joint
discriminative score among all. It corresponds to the 14-th
component before the attacks and 14-th component after
the attacks (the point at the position of (14,14) in the left
part of Fig. 6). This turns out to be the one that represents
the night life activities in the neighborhoods near to the at-
tack sites. We can see from Fig. 7 that before the attacks
more traffic is observed during the late night on Fridays and
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Figure 7: Nightlife Spot pattern from the traffic sen-
sor data (NS). 14—th component before the attacks and
14—th component after the attacks. Two maps show the
probability distribution of traffic in different areas of Paris
before (left) and after (right), where dark red stands for
higher probability. The bottom-left figure shows the distri-
bution of traffic over the week (24 x7), where blue dotted line
represents the distribution before the attacks and solid red
line for the one after. The radar chart on the bottom-right
shows the traffic in areas with different distributions over the
venue categories (defined in section 6.2) from Foursquare,
where blue dots represents the distribution before the at-
tacks and red dots as the one after.

Saturdays. The volume of traffic decreased on the Saturday
and Sunday after the attacks. This might be due to the re-
strictions of movements on the vehicles in some parts of the
city. The Twitter check-ins (as pointed at (14,14) location
in the right part of Fig. 6), are depicted in Fig. 8 and show
a larger volume of activities on Friday midnight. In retro-
spect, this is expected since this is the time that the attacks
happened and hence, there might be a spike of Twitter ac-
tivities. What is interesting and contrasting to the pattern
from the traffic data is that we observe a much higher prob-
ability of activities on the second day of the attacks, while
much less over the next week. This combined could explain
the situation of the streets in the regions close to the attack
sites; they are fueled with fewer than normal vehicles, but
angered citizens are in the area to commemorate the victims
from the attacks or to just protest against violence towards
the civilians expressing their opinions on Twitter.

Shop & Services: The pair of components from the traffic
data with the least discriminative score are the patterns for
shops. As shown in Fig. 9 (corresponds to point at the
position of (18,15) in Fig. 6 on the left), while there is a slight
decrease of the traffic on Saturday and Sunday, the patterns
before and after are almost the same otherwise. This might
be because the primary driving region of this pattern falls
in the southeast part of the city, which is relatively further
away from the attack sites.

Transportation: The mobility pattern that represents the
way people move around the city through public transporta-
tion is presented in Fig. 10 (point (11, 7) in Fig. 6 on the
right). We observe a spike of activities on Friday from Twit-
ter data. This is possibly due to the international friendly
match between France and Germany in Stade de France in
North Paris, which is accessible via public transport. The
distribution of the locations for this component is more con-
centrated in areas where Paris Metro stations are located.
This is also reflected in the activities distribution (bottom-
right in Fig. 10), where the activity is more focused on Travel
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Figure 8: Nightlife Spot (NS) pattern from Twitter
check-ins. 14—th component before the attacks and 14—th
component after the attacks. We observe that on the follow-
ing day of the attacks (Saturday), there is a spike of activ-
ities in the areas that are populated with nightlife venues,
while the activities in this region decrease to a much smaller
volume afterwa{egs.
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Figure 9: Shop & Services (SS) pattern from traffic
data. The pattern is almost identical before and after the
attacks.
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Figure 10: Pattern of Travel & Transportation (TT)
from Twitter data. It stays relatively the same while
being more concentrated towards the use of public trans-
portation.

& Transportation venue types. This observation might be
explained by the fact that public transportation stations
function as hubs of the city to commute to different areas.

7. CONCLUSION

In this work, we provide a novel method to quantitatively
evaluate the impact of a disastrous outbreak on the human
mobility in the city. We propose a novel analytic approach



that aims to automatically discover the impact of an exoge-
nous event on multiple aspects of human activities in the
urban environment. We apply our model to traffic sensor
data and Twitter check-ins data in Paris surrounding the
period of Terrorist attacks in Nov 2015. We find that the
mobility pattern that represents the city’s nightlife is the
one with the most changes across the time while the pattern
for public transportation stays relatively stable.

Finally, we acknowledge the limitations of this study. Cur-
rently, the discriminative score captures both the changes
in the volume of a certain mobility pattern as well as in the
distribution of this mobility pattern in either location, time,
or venue. This helps to ensure that the factorization can re-
veal the patterns that are mostly close to the ones underline.
However, it suffers the problem of being less interpretable.
In our future work, we plan to add regularizations to the
current framework so that the discovery of the changes can
be more targeted in particular dimensions. Besides, in this
work, we only consider the immediate changes in one week
in the mobility patterns, using the terrorist attacks in Paris
as a case study. In the future, we plan to explore the pos-
sibility of characterizing a risk scenario based on the results
of various case studies. We hope through this, the analysis
could shed predictability insights for what the city might go
through in the wake of disastrous events.
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