IOPScience

Home

Search  Collections Journals About Contactus My IOPscience

Scaling limits of a model for selection at two scales

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2017 Nonlinearity 30 1682
(http://iopscience.iop.org/0951-7715/30/4/1682)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 152.3.102.254
This content was downloaded on 01/06/2017 at 10:54

Please note that terms and conditions apply.

You may also be interested in:

Stochastic switching in biology: from genotype to phenotype
Paul C Bressloff

Ergodicity in randomly forced Rayleigh—Bénard convection
J Foéldes, N E Glatt-Holtz, G Richards et al.

Regularity of invariant densities for 1D systems with random switching
Yuri Bakhtin, Tobias Hurth and Jonathan C Mattingly

Cusping, transport and variance of solutions to generalized Fokker—Planck equations
Sean Carnaffan and Reiichiro Kawai

Anomalous diffusion for a class of systems with two conserved quantities
Cédric Bernardin and Gabriel Stoltz

Feynman—Kac equation for anomalous processes with space- and time-dependent forces
Andrea Cairoli and Adrian Baule

Mixing rates of particle systems with energy exchange
A Grigo, K Khanin and D Szasz

Ergodicity of a collective random walk on a circle
Michael Blank

Stochastic partial differential equations with quadratic nonlinearities
D Blomker, M Hairer and G A Pavliotis

iopscience.iop.org


http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0951-7715/30/4
http://iopscience.iop.org/0951-7715
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1751-8121/aa5db4
http://iopscience.iop.org/article/10.1088/0951-7715/29/11/3309
http://iopscience.iop.org/article/10.1088/0951-7715/28/11/3755
http://iopscience.iop.org/article/10.1088/1751-8121/aa6f67
http://iopscience.iop.org/article/10.1088/0951-7715/25/4/1099
http://iopscience.iop.org/article/10.1088/1751-8121/aa5a97
http://iopscience.iop.org/article/10.1088/0951-7715/25/8/2349
http://iopscience.iop.org/article/10.1088/0951-7715/27/5/953
http://iopscience.iop.org/article/10.1088/0951-7715/20/7/009

IOP Publishing | London Mathematical Society Nonlinearity

Nonlinearity 30 (2017) 1682-1707 https://doi.org/10.1088/1361-6544/aa5499

Scaling limits of a model for selection
at two scales

Shishi Luo' and Jonathan C Mattingly?

! Computer Science Division and Department of Statistics, University of California -
Berkeley, Berkeley, CA 94720, United States of America

2 Department of Mathematics and Department of Statistical Science, Duke University,
Durham, NC 27708, United States of America

E-mail: shishi.luo@berkeley.edu

Received 3 July 2015, revised 24 August 2016
Accepted for publication 19 December 2016
Published 15 March 2017

CrossMark

Recommended by Professor Leonid Bunimovich

Abstract

The dynamics of a population undergoing selection is a central topic in
evolutionary biology. This question is particularly intriguing in the case
where selective forces act in opposing directions at two population scales. For
example, a fast-replicating virus strain outcompetes slower-replicating strains
at the within-host scale. However, if the fast-replicating strain causes host
morbidity and is less frequently transmitted, it can be outcompeted by slower-
replicating strains at the between-host scale. Here we consider a stochastic
ball-and-urn process which models this type of phenomenon. We prove the
weak convergence of this process under two natural scalings. The first scaling
leads to a deterministic nonlinear integro-partial differential equation on
the interval [0,1] with dependence on a single parameter, \. We show that
the fixed points of this differential equation are Beta distributions and that
their stability depends on A and the behavior of the initial data around 1. The
second scaling leads to a measure-valued Fleming—Viot process, an infinite
dimensional stochastic process that is frequently associated with a population
genetics.
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1. Introduction

We study the model, introduced in [15], of a trait that is advantageous at a local or individual
level but disadvantageous at a larger scale or group level. For example, an infectious virus
strain that replicates rapidly within its host will outcompete other virus strains in the host.
However, if infection with a heavy viral load is incapacitating and prevents the host from
transmitting the virus, the rapidly replicating strain may not be as prevalent in the overall host
population as a slow replicating strain.

A simple mathematical formulation of this phenomenon is as follows. Consider a popula-
tion of m € N groups. Each group contains n € N individuals. There are two types of indi-
viduals: type I individuals are selectively advantageous at the individual (I) level and type
G individuals are selectively advantageous at the group (G) level. Replication and selection
occur concurrently at the individual and group level according to the Moran process [8] and
are illustrated in figure 1. Type I individuals replicate at rate 1 + s, s > 0 and type G individu-
als at rate 1. When an individual gives birth, another individual in the same group is selected
uniformly at random to die. To reflect the antagonism at the higher level of selection, groups
replicate at a rate which increases with the number of type G indivduals they contain. As a
simple case, we take this rate to be w(l + r%), where S is the fraction of indivduals in the
group that are type G, r 2> 0 is the selection coefficient at the group level, and w > 0 is the ratio
of the rate of group-level events to the rate of individual-level events. As with the individual
level, the population of groups is maintained at m by selecting a group uniformly at random to
die whenever a group replicates. The offspring of groups are assumed to be identical to their
parent.

As illustrated in figure 1, this two-level process is equivalent to a ball-and-urn or particle
process, where each particle represents a group and its position corresponds to the number of
type G individuals that are in it. We note that similar, though more general, particle models of
evolutionary and ecological dynamics at multiple scales have been studied and we mention
several particularly relevant works here. Dawson and Hochberg [6] also consider a population
at multiple levels, albeit with one type per level, not two. In [4], Dawson and Greven consider
a more general model, allowing for infinitely many hierarchical levels and for migration,
selection, and mutation. Méléard and Roelly [16], in a study also inspired by host-pathogen
interactions, investigate a model that allows for non-constant host and pathogen populations
as well as mutation. In these more general contexts, determining long-term behavior is less
straightforward than in our specific setting.

We now define the stochastic process that is the focus of this work. Let X be the number
of type G individuals in group i at time ¢. Then

1 m
mn ,__ .
e = ZéX;/n
m i

is the empirical measure at time ¢ for a given number of groups m and individuals per group
n. 8(y) = 1if x = y and zero otherwise. The X’ are divided by n so that p"" is a probability
measure on E,, := {0, %, S

For fixed T > 0, u1;"" € D([0, T1, P(E,))), the set of cadlag processes on [0, T] taking values
in P(E,), where P(S) is the set of probability measures on a set S. With the particle process
described above, p;"" has generator

L™"p)(v) = D (R + wR), vip) [ (vy) — (V)] )

ij
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Figure 1. Schematic of the particle process. (a) Left: a population of m = 3 groups,
each with n = 3 individuals of either type G (filled small circles) or type I (open small
circles). Middle: a type I individual replicates in group 3 and a type G individual is
chosen uniformly at random from group 3 to die. Right: group 1 replicates and produces
group 2'. Group 2 is chosen uniformly at random to die. (b) The states in (a) mapped
to a particle process. Left: group 2 has no type G individuals, represented by ball 2 in
urn 0. Similarly, group 3 is represented by ball 3 in urn 2 and group 1 by ball 1 in urn
3. Middle: the number of type G individuals in group 3 decreases from two to one,
therefore ball 3 moves to urn 1. Right: a group with zero type G individuals dies, while
a group with three type G individuals is born. Therefore ball 2 leaves urn 0 and appears
inurn 3 as ball 2.

where v;:=v+ l(6 —6; ) P € Cp(P([0, 1])) are bounded continuous functions, and
v e P(E, C PO, 1]). The transmon rates (R + wR,) are given by

mv(i)i(l - i)(l +s) ifj=i—li<n
n n

R(v,v;) = ] ]
10V, %) mv(i)i(l—i) ifj=i+1,i>0
n n
0 otherwise

and
Ro(v,vy) = mv(i)v(l)(l + rl).
n n n

R, represents individual-level events while R, represents group-level events.

2. Main results

We prove the weak convergence of this measure-valued process as m, n — oo under two natu-
ral scalings. The first scaling leads to a deterministic partial differential equation. We derive
a closed-form expression for the solution of this equation and study its steady-state behavior.
The second scaling leads to an infinite dimensional stochastic process, namely a Fleming—Viot
process.

Let us briefly introduce some notation. By m, n — oo we mean a sequence {(my, ng) }x such

that for any N, there is an ng such that if k > ng, my, ny > N. We define (f,v) = folf(x)v(dx)
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where f'is a test function and v a measure. Lastly, 6, will denote the delta measure for both
continuous and discrete state spaces.

To provide intuition for the two scalings and the corresponding limits, take ¢/ to be of the
form ¢(v) = F({g, v)), where g is some suitable function on [0,1], and apply the generator in
(1) toit:

S RO RO E D

2
) GG L)) @
2 i\ \n n)) n \n n m n
This suggests two natural scalings. The first is to take m, n — oo without rescaling any
parameters. The g” and F” terms vanish and we have a deterministic process. The second is to
lets = % r= %, and % — 6. The terms F” and g” no longer vanish and the process converges
to a limit that is stochastic. The precise statement of the weak convergence of the finite state

space system to the deterministic limit is in terms of a weak measure-valued solution to a
partial differential equation:

Theorem 1. Suppose the particles in the system described by p"" are initially indepen-
dently and identically distributed according to the measure ,ug"", where ugl’" = o € P[0, 17)
as m,n — oo. Then, as m,n — oo, u:”’" - u, € D([0, T1, P[0, 1])) weakly, where p, solves the
differential equation

%(f, p) = —(x(1 = x)f", ) + N[OF s 1) — (F s ), )] 3)

for any positive-valued test function f€ CY([0, 1]) and with initial condition {f, ji,). Here,
A= % and time has been sped up by a factor of s.

Throughout we will denote the measure-valued solutions to (3) by p,(dx). We note that
strong, density-valued solutions, denoted by 7,(x), solve:

1
%n, = % [x(1 = x)m,] + A7, - (x - fo yn,(y)dy) 4
with initial density 77,(x). In this more transparent form one can see that the first term on the
right is a flux term that transports density towards x = O whereas the second term is a forcing
term that increases the density at values of x above the mean of the density. The flux cor-
responds to the individual-level moves: nearest neighbor moves in the particle system. The
forcing term corresponds to group-level moves: moves to occupied sites in the particle system.

We will see that if we start with an initial measure p, which is the sum of delta measures,
then the solution y, retains the same form. More explicitly, if
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po(dx) = Zai(o)(sxi(O)(dx)

where x;(0) € [0, 1], a;,(0) > 0, and 3" a;(0) = 1, then we will see (from lemma 5) that the solu-
tion y, to (3) has the form

f(dx) = Zai(l )0x,(dx).

Moreover, the parameters (a;(t), x;(t)) satisfy the following set of coupled equations

L - )

dr )
da;

d_tl = Aai(xi — (v, 1) = /\ai(xi - § jajxj)-

Notice that the positions of the delta masses change according to a negative logistic function,
independently of the other masses and the density. The weight a; increases at time ¢ if the posi-
tion of the particle x; is above the mean, 3~ a;x;, and decreases if it is below the mean. To build
intuition, it is instructive to consider some simple examples of this form.

Example 1. According to (5), if 1, = 6), then p, = p,. This can also be seen directly from
(3). In the case of an initial condition containing some delta mass at 1, all of the rest of the
mass will migrate towards zero. Eventually all of the mass will be below the mean as the mass
at one will not move and will ever be increasing its mass as it is always above the mean. Once
this happens it is clear that all of the mass will drain from all of the points not at one and hence
i, = 61 as t = oo. This reasoning holds in a more general setting and is included in theorem 3.

Example 2. According to (5), if pq = o, then g, = 1. This too can be seen directly from
(3). In the case of an initial condition containing no mass at one and only finite number of
masses total, the mass will eventually all move towards zero and hence hence p, = 0o as
t — oo. If an infinite number of masses are allowed the situation is not as simple. Theorem 3
hints at the possible complications by giving an example of a density which is invariant.

These simple examples correspond to similarly straightforward biological scenarios: once
the population is entirely composed of type I individuals or of type G individuals, it stays in
that state. Though 6y is a fixed point of the system attracting many initial configurations, it is
not Lyapunov stable. This means that even small perturbations of §; can lead to an arbitrary
large excursion away from &y even though the system eventually returns to dy. Rather than
making a precise statement which would require quantifying the size of a perturbation, con-
sider the example of p, = (1 — )6y + €01 _q4. As € — 0, the distance between 1, and § goes to
zero in any reasonable metric. If we write i, = (1 — a,)d¢ + a;0,, then as o — 0 one can ensure

that the system spends arbitrarily long time with x, > % and hence a, will grow to as close to

one as one wants in this time. Thus the system could be described as making an an arbitrarily
big excursion away from §yp even though 1, — 6p as t = oo.
It natural to ask if there are other fixed points beyond 6y and 0.

Lemma 2 (Fixed points). The measures delta 6, 6, and densities in the Beta(\ — «, @)
Sfamily of distributions:
1

7)6)\7&71(1 7)6)0[71
B\ — a, )
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with o € (0, N), are fixed points of (3). B(A — «, ) is the normalizing constant that makes the
density integrate to 1 over the interval [0, 1].

For measure-valued initial data, we show that the basins of attraction for the fixed points are
determined by whether they charge the point x = 1 and their Holder exponent around x = 1.

Theorem 3 (Steady state behavior). Consider measure valued solution p,(dx) to (3)
with initial probability measure [io(dx). If 1o({1}) > 0 then

= 6 as t—> o0

and if po([1 — €, 11) = O for some € > 0 then

= 6o as t— 00.

Alternatively, suppose that for some o >0 and C > 0

xpe([l =x, 1) = C as x—0.

If a < \ then

1,(dx) = Beta(\ — o, ) as t— 00.

Otherwise, if a 2 A,
1,(dx) — dp(dx) as t— o0

The o < X case in the above theorem is particularly relevant to theoretical evolutionary
biology because it implies that coexistence of the two types is possible in this infinite popula-
tion limit.

The results of theorem 3 should be contrasted with the original Markov chain before tak-
ing the limit m, n — co. In the Markov chain, all individuals eventually become either entirely
type G or type 1. These two homogeneous states are absorbing states for the individual level
dynamics. The population level state made of individuals that are all either homogeneous of
type G or I is absorbing for the group level dynamics. Hence, the state of the system eventually
becomes composed entirely of homogeneous groups of solely G or I and stays in that state
for all future times. These two absorbing states of the Markov chain, with finite m and n, cor-
respond to the states 6y and ¢; in the scaling limit. Hence the natural discretization for the Beta

distribution to the lattice {S : 0 <k <n}, given by

1 k A—a—1 I_E a—1
Zm,n, \,a)\ n n ’

cannot be invariant. (Here Z is the normalization constant which ensures the probabilities sum
to one.) However for large m and n, it is reasonable to expect it to be nearly invariant in the
sense that if the initial states {X;(0) : 1 <i < m} are independent and distributed as the discrete
Beta distribution then the Markov chain dynamics will keep the distribution close to the prod-
uct of discretized Beta distributions for a long time. The expectation of this time will grow
to infinity as m, n — oc. In the context of evolutionary biology, this suggests that although a
large finite population ultimately becomes fixed in one of two homogeneous states, it may be
trapped for a long time in a state where both types coexist. Furthermore, this nearly invariant
state should be similar to the discretization of the Beta distribution above.
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We will not pursue a rigorous proof of this near or quasi invariance here. Nonetheless, we
now briefly sketch the argument as we understand it, giving the central points. If the distri-
bution of the Markov chain is close to a product of discretized Beta distributions, then the
empirical mean will be highly concentrated around the mean of continuous Beta when m and
n are large. Hence the generator projected on to any X; is nearly decoupled from the other
particles and close to being Markovian. More precisely, the dynamics of any fixed X; is well
approximated in this setting by the one-dimensional Markov chain obtained by replacing the
mean of the empirical measure in the full generator with the mean of the Beta distribution. It
is straightforward to see that for m and n large the discretized Beta distribution is an approxi-
mate left-eigenfunction of this one-dimensional generator with an eigenvalue which goes to
Zero as m, n — oQ.

All of these observations can be combined to show that if the systems starts in the product
discretized Beta distribution then it will say close to the product discretized Beta distribution
for a long time if m and n are large.

We now turn to the second scaling. Let s = % r=2 and % — 0, and let 1/:”’" denote the
empirical measure under this scaling. The terms F” and g” in the generator (1) no longer
vanish and the process converges to a limit that is stochastic. Our weak convergence result is
proved and stated in terms of a martingale problem.

Theorem 4. Suppose % ->0,w=0(1),s = % r= ﬁ and we speed up time by a factor of
n. Suppose the particles in the rescaled V™" process are initially independently and identically
distributed according to the measure vy™" where vy — v as m,n — oc. Then the rescaled
process converges weakly to v; as m,n — oo, where v, satisfies the following martingale
problem:

NP = (fou) = (o) = [ (Af. 1)z

t 1 1
— wlp fo { fo fo f(X)V(Z,Vz,y)Q(Vz;dx,dy)}dZ ©6)

is a martingale with conditional quadratic variation
t 1 pl
= 2 .
(NCH) =2w0 | [ | [ reromowsax dy)] dr ™
where

d? d
Af(x) = x(1 —x) @f(x) - Uaf(X)

Vit,v,x) =x
O(v; dx, dy) = v(dx)(6:(dy) — v(dy))

and fe CX([0, 1]).

The drift part of the martingale (6) comprises a second order partial differential operator
A and the centering term from the global jump dynamics (the expression in curly brackets).
Note that A is in fact the generator of the Wright—Fisher diffusion with selection [8]. The
entire process is a Fleming—Viot process [11]. Fleming—Viot processes frequently arise in
models of population genetics (for example [3, 12]; see [10] for a review). In these contexts,
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the variable x can represent the geographical location of an individual, or as in the original
paper of Fleming and Viot [11], the genotype of an individual (where genotype is a continuous
instead of a discrete variable).

As an aside, it may be helpful to mention an alternative characterization of this Fleming—
Viot process as an infinite system of ordinary stochastic differential equations. Instead of a
martingale problem, where both m, n have been taken to oo, we consider the n — oo limit
first. In this case, we have a finite collection of delta masses (each of mass i) moving on the
interval [0, 1]. The positions of these delta masses can be represented by a coupled system
of stochastic differential equations (SDEs). From the generator equation (2), one can see that
each SDE comprises a diffusion part (corresponding to the individual-level dynamics) and a
jump process (corresponding to the group-level dynamics). Specifically, a delta mass jumps
to the position of another delta mass according to a Poisson process with rates dependent on
the positions of the delta masses. Donnelly and Kurtz [7] characterize a population process in
terms of such a system of SDES and show that the infinite population limit corresponds to a
martingale problem for the Fleming—Viot process.

We briefly discuss other scalings one might obtain from the particle system and their bio-
logical significance. The two scalings studied here correspond, respectively, to what is called
‘strong’ selection and ‘weak’ selection occurring at both levels. (In the field of theoretical
evolutionary biology, strong selection is defined as the selection parameter being constant
in the population size whereas weak selection has the selection parameter scaling with the
inverse of the population size). One can also use the same techniques to characterize the limit-
ing system when selection is strong at one level and weak at the other. The dynamics of these
limiting systems are more straightforward. For example, if selection is weak at the individual
level (s = 0(%)) and strong at the group level (no rescaling of r), one can see from the genera-
tor equation (2) that the highest order term corresponds to selection at the group level. The
limit is therefore deterministic and the steady-state is a population homogeneous in the group
type with the largest proportion of type G individuals present in the initial state. Note that it is
possible, by further rescaling w, to obtain a limit from a mixture of weak and strong selection.
A biological interpretation of these observations is that for selection to manifest itself at two
biological levels, the selective forces must be comparable in some sense: either both levels
undergo the same type of selection (weak or strong), or if weak selection acts on one level but
not the other, this weak selection must be compensated by a faster timescale.

The dynamical properties of the deterministic partial differential equation (3) are the
focus of the next section. The proofs of weak convergence (theorems 1 and 4) are deferred to
section 4.

3. Properties of the deterministic limit

We begin with a closed-form expression for solutions to the deterministic partial differential
equation (3).

Lemma 5. The solution to the deterministic partial differential equation (3) with initial
measure [y is given by

11,(dx) = (Gipag)(dx) = (g, N(dx) - wix) (®)

where

1689



Nonlinearity 30 (2017) 1682 S Luo and J C Mattingly

X

71 _
O S g

' A
wi(x) = [(e" +x(1 — e—l))e’*fo h(Z)dz]

and h(t) satisfies h(t) = (x, f,)

Remark 1. (uy¢, N(dx) := uo(qb;l(dx)) captures the changes in the initial data that are sole-
ly due to the flux term. This expression is also known as the push-forward measure of yt, under
the dynamics of ¢. As we will see in the proof, ¢,(x) is precisely the characteristic curve for
the spatial variable x and includes a normalizing constant. The multiplication by w,(x) captures
the changes in the initial data that are due to the forcing term in (3) and includes a normalizing
factor.

Remark 2. Density-valued solutions are given by
) = 097 ')y () - wilx)

B x . 2 (Afl)tf/\flh(z)dz )
=p| ————— e "+ x(1 —¢ e
770( el x(1—e™) )[ X ) ’

To see this, suppose f(dx) = 1y(x)dx. Then for any test function f,

1 1 1
[ e, daw = [ (o dp@m@n = [ Gy, (0dys; (dy
0 0 0

The first equality follows from the change-of-variable property of push-forward measures
and the second from a standard change of variables. The limits of integration do not change

because 0 and 1 are fixed points of both ¢, and qS;l.

Proof of lemma 5. We apply the method of characteristics (see for example [17]) to obtain
a formula for a density-valued solution. We then prove that the weak, measure-valued analog
of this solution satisfies (3). Consider the following modification of (4):

Dttt = L1 — 001 + AL [ — h(0)] (10)
ot ox

where h(?) is a general function in time and &, € C!([0, 1]). Note that when h(t) = fo : yE(t, y)dy,

this differential equation is equivalent to (4). To be clear about which equation we are solving,
we use £(t, x) to denote solutions when /(f) is unspecified.

Rewriting (10):

(25’ 257 1) (1, =x(1 = x), [(1 = 2x) + Mx — h(£))]§) = 0
ot~ Ox

The second vector is therefore tangent to the solution surface and gives the rates of change for the
t,x, and £ coordinates. Let the initial condition be parameterized as (0, x, {,(x)) = (0, p, {y(p)).
The ¢, x, and ¢ coordinates change according to the characteristic equations
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dr

E =1 t(O,p) =0
L 2(0.p) = p

dg

d

d—j =[(1 — 2x(q,p)) + Mx(q,p) — M(t(q.pI)) & £0,p) = &o(p)

where ¢ is the parameter as we move through the solutions in time. The first two ordinary
differential equations have solutions

tq.p) =q

x(g.p) = —— =0 (p) (11)

p—(p—1)

From this, the third differential equation can be solved exactly:

dé p
S liy—f2 - 2-w
i [ Py 1)eq( ) (q)]§

£.p) = &(p)exp {q ez o) [T dZ}

q
= y(pe M O e — 1y 4 1N

Next, make the substitutions g = tand p = (;St_l(x) from (11) to obtain £ in terms of 7 and x:

£(t,x) = (€90 & N +x(1 — e IO e()\fl)tf)\folh(z)dz
= (&0 ¢, N, (x) - wi(x) (12)

If h(z) satisfies h(t) = J; : ¥&(t, y)dy, then by definition, (¢, x) solves the partial differential
equation (4). Conversely, if £(, x) solves the partial differential equation (4), it also solves the
differential equation (10) with h(t) = j(; ! y&(t,y)dy. Therefore this above expression, along
with the condition A(t) = fo ! v&(t, y)dy, are equivalent to solutions of (4).

To extend this result to measures, suppose we have a strong solution 7,(x) with initial condi-
tion 7,

nx) = (190 ¢, ), (x) - wix)

Using a similar calculation as that in remark 2, the measure y,(dx) corresponding to 7,(x) is
given by

11,(dx) = (pro; H(dx) - wi(x)

It remains to check that this satisfies the weak deterministic partial differential equation (3),
with h(t) = (x, pt,). The left hand side of the equation is
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d d . dop
a(f NIVES a fo M) (po9, H(dx) = & fo F(@,CNwi( (%)) p(dx)

Differentiating under the integral sign, expanding out the expressions for d;¢, and 9,(wi(¢,(x))),
and applying change of variables for push-forward measures again, we obtain

1 1
Sif == [ w0 =0 @6, @ + A [ = O w6, )
dr 0 0

This matches right hand side of the weak deterministic partial differential equation (3). [

In practice, the condition A(t) = (x, ,) is difficult to use. The following provides an equiv-
alent and simpler condition.

Lemma 6 (Conservation of measure condition). Suppose £ is a weak measure-
valued solution to the deterministic partial differential equation (10) with initial condition

I\ '¢,(dx) = L Then

h(t) = fo 'ye(t.dy)  ifand only if fo e(tdy) =1V £>0

Proof. (= direction) Suppose h(t) = fo ] y&(t, dy). Then £ is a weak measure-valued solution
to (3). Taking the test function f= 1, we obtain

%a,@ =0+ A, &) — (LE(.E] =0

Thus, if the initial data has total measure 1, (1, £) remains constant at 1 for all £ > 0.

(<= direction) Suppose j(‘) : &(t,dx) = 1for all £ > 0. Again take the test function f=1 but
this time with unspecified A(7):

0= %a,a = 04 AL(r. &) — (L ERD] = ALx, &) — (D).

For this to hold, we must have h(t) = fol x&(t, dx). [l

The above lemmas imply that solutions y,(dx) to (3) can be obtained by using formula (8)
from lemma 5 and imposing the conservation of measure condition (1, y¢,) = 1 from lemma 6.
We illustrate this with some examples of exactly solvable solutions for special choices of
initial data. We will see that the long time behavior of the examples is consistent with results
stated in theorem 3.

Example 3. Initial measure concentrated at xg € [0, 1], i.e. ps, = 0, Using formula (8),
Jreom@o = [Feomees, @) = £
= [P 8500

Thus p1,(dx) = wy(x)dg,xy)(dx). Imposing the conservation of measure condition gives
1,(dx) = 64, (xp)(dx). In other words, an initial delta measure at xo moves as a delta measure
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along the x axis with position given by ¢,(xo), the solution to the negative logistic equa-
tion with initial position xj.

Example 4. Initial uniform density: n,(x) = 1, i.e py(dx) = dx Using formula (9),
() = O [THD ot 4y _ ety a2
Imposing conservation of measure:

t 1 -1
e()\—l)t—)\j; h@)dz _ [f [ + x(1 — e A2 dx]
0

A=D1 —e) .
—1_67()\71” ifA=1
- At
1—e if ) =1
t
Thus,
_ _ a—t
%[e” Tl —e DD ifA=1
— €
n,(x) = e
e +x(1 —e )2 ifA=1

t

Note that 7= 1 corresponds to an initial condition satisfying the hypothesis of theorem
3 with o = 1. As predicted when \ > 1, we obtain 7(t,x) = (A — Dx*~2 = Beta(\ — 1, 1) as
t— 00.

The following is an example with a > 1.
Example 5. If n,(x) = 2(1 — x), i.e. po([1 — x, 1]) = x% then the corresponding o from
theorem 3 is o = 2.
Using formula (9)
) = 260D ety (1 - 0D

Imposing the condition in lemma 6 to solve for the A(z) term

t r 1 —1
(DA [l _ | f (1 —x)e +x(1 —e > dx]
0

A—2)(1 —e™ 1 e ] iiaen
.y 2 A=Dd—-e’ (A-D-e
_ a2
“zt—e_t) if A =2
c

As predicted by theorem 3 for A >2 = a,
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7,(x) = %()\ —2)(A — D(1 — x)x* 3 = Beta(\ — 2,2)

as t — 00.

Example 6. 1,(x) = l - Tjo.¢(x) with ¢ < 1.

Using formula (9)

o) = %l{x <O, ')

Since ¢,(c) = % — 0 as t — oo, 7,(x) = 0 for any x > 0. Since 7 must have total mass

1, it follows that regardless of the value of A, 7,(x)dx — 6op(dx) for any ¢ < 1. This can also be
seen by applying theorem 3 and noting that p,([1 — ¢, 1]) = L/1‘ 176 Np(x)dx = 0.

We end these examples with solutions for g, that are mixtures of delta measures
and densities. First, note that it is straightforward to extend example 3 to the case where
to(dx) = 3" a;6,,(dx) is a linear combination of delta measures, a; > 0 for all i. Applying (8),
we obtain

p(t,dx) = Zain(x)5¢,(x,~)(dx) = Zai(l )6, (dx)

where x;(f) = ¢,(x;) and a;(t) = aw(x)|,_,
from this and the definitions of ¢,(x) and w(x).
Second, we consider a combination of a delta measure and a density

to(dx) = ady,(dx) + (1 — a)vp(x)dx

Our earlier system of equation (5) is obtained

Notice that the formula for the solution (8) at first seems linear in the initial condition:
[rem@n = [1eGugiax)
= [P Nasy (@) + (1 = awo(e; )0, ]
= [F@IaGo)@) + (1 = a)XGro)dv)]

This gives (Gyy)(dx) = a(Giby,)(dx) + (1 — a)(Gvo)(dx). However, this notation is mislead-
ing because implicit in the G, operator is the function /(f), the mean of the overall process over
time. Here, A(?) involves both the delta measure and the density. The solution operator G; is
therefore not linear for this reason.

Nevertheless, we can still use this formula to obtain expressions for solutions. We illustrate
this with a concrete example.

Example 7. Take xo = 0 and vy(x) the density function for Beta(A — a, o) with v € (0, \).
Using the solution formula and direct calculation, we obtain

p(dx) = awi(0)8p(dx) + (1 — @)wi(x)(vo 0 ¢, Nx)Dxgs, '(x)dx

e fo ML 4 50(dx) + (1 — @)eP =Dy (x)dx)
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Note in particular that y, remains a linear combination of 6y and the Beta distribution. The
Beta distribution ultimately dominates because A > a.

We now use lemma 5 to show that Beta distributions, 8, and ¢; are fixed points for the
deterministic partial differential equation and thus provide a proof of lemma 2 announced
earlier in this note.

Proof of lemma 2. Note that we could prove this lemma by substituting 6o, 61, and the Beta
distribution into the deterministic partial differential equation (3) and showing the right-hand
side equals zero. Instead, we will show that these distribution are fixed points of the solution
operator. Let v be the density of the Beta distribution,

= ; A—a—1r1 _ a—1
v(x) = BOr— . a)x (1 —x)>"

The mean of v is A_Ta Using (9)

X

(G)x) = V(m

)[et +X(1 _ eft)])\72e()\71)lf(/\fa)t — V()C)

v is therefore a fixed point of the solution operator and hence is a fixed point of the determin-
istic partial differential equation.

For 69 and 6;, we use example 3 above to obtain (G;6,,)(dx) = 6,x,)(dx). Since xo = 0 and
xo = 1 are fixed points of ¢, it follows that 6y and ¢, are fixed points of G,. O

We now prove when the fixed points are stable. We begin with a lemma which gives more
general conditions than those given in theorem 3 for the delta measure at zero to attract a given
initial condition.

Lemma7 Ifforsomea> \>0,

Limx™“pg([1 — x, 1) < 00
x—0

then p, — 6o as t — oo. In particular, this condition holds if pu([1 — €, 11) = 0 for some € > 0.
To prove this and subsequent results, we will need the following technical lemma.

Lemma 8. Setting h(t) = (x, p,), the following two implications hold:
[ hwydr< oo = h)=0 as t—cx.
0

foo[l—h(t)]dt<oo —  h)>1 as 1 oo
0

Proof of lemma 8. Since i(¢) >0 and 1 — h(r) > 0, the only obstruction to the implication
is that A(z) (or 1 — h(f)) could have ever shorter and shorter intervals were they return to an
order one value before returning to a value close to zero. This would require /(f) to have un-
bounded derivatives. However this is not possible since

Iy = = 2 )+ AR 1) — )
dr

1695



Nonlinearity 30 (2017) 1682 S Luo and J C Mattingly

from which one easily see that —1 < %(t) <Asince0<h — (x%, p) < land 0 < (x%, ) — W2 < L
O
Proof of lemma 7. As usual let i(f) = (x, p,). We begin by observing that if

f " h()de < oo
0

then h(t) - 0 as t — oo by lemma 8 and p, — 6y as we wish to prove. Thus, we henceforth
assume that fo > h(t)dt = oco. Under this assumption, we will show that for any continuous
function f

1
fo FOdn) =f©0)  as 1 o0,

Since f'is continuous, given any ¢ > 0, there exists a § > 0 so that | f(x) — f(0)| < € whenever
x < 6. Hence

1 1 1
‘ [ @m@n 10| < [ 1@ —fOludn <e+ [ 170 = )] (13)
0 0 )

Now setting
1 1
L1700 =7 Oln@e) = [ (£ 6)06) = FO)] 01 6)x) o)
6 &, ()

<2l [

o,

N Wy 0 @)(y) po(dy).

Since for all y € [qﬁ;l(é), 1]and r > 0, we have

(w,o¢t)(y)<eA’_Afo h(s)ds

we see that
l t
[ 160 = r@ I < 2™ MO (1676, 1D,

Now using the assumptions on i, and that ¢t_1(6) >1— De™" for some D > 0 and all 7 > 0,
one has that

e/\tf/\fo h(s)dsuo([(b;](é)’ 1) sDAef(“”)Hfo h(s)ds

for some constant D and all ¢ > 0. Since « > Aand j(‘) . h(s)ds = oo, this bound converges to
zero as t — oo and the proof is complete as the ¢ in (13) was arbitrary. [
Proof of theorem 3. We start with the setting when f,({1}) > 0 and begin by writing
p,(dx) = a,6,(dx) + (1 — a,)y(dx) for some time dependent process a, € [0, 1] with ap > 0 and
some probability measure valued process 1;(dx). As usual we define h(t) = (x, ,) and using
the representation given in (8), one sees that a, solves
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% — (1 — h(t) = a,= aoexp()\ L [— h(s)]ds).

Since 1 — A(t) = 0, we know that J(; t[l — h(s)]ds converges as t — oo. If it converges to co
then a, also converges to co since ay > 0. However this is impossible since a; € [0, 1] for all
t > 0. Thus, we conclude that fot[l — h(s)]ds < co. Then lemma 8 implies that () — 1 which

in turn implies that y, - 6; as t — oco.

We know turn to the setting when x~“p([1 — x,1]) = C >0 as x — 0. The case when
A< ais already handled by lemma 7 leaving only the case when A > « > 0 to be proven. For
x €[0,1], define U(x) = po([0, x]). Since p is a probability measure we know that U has finite
variation and is regular in the sense that both the right limit U(x") and the left limit U(x")
exist, where U(x*) = lim U(y) as y —F x. At the extreme points, only the limit obtained by
staying in [0,1] is defined.

Now for any smooth function f of [0, 1], we have from (8) that

1 1 1 1
[ @) =z, [ fgus, a0 =2 [ 1(fg)© 6100 pglco)
0 0 0

where wy(x) has been written as the product of g(x) = (™" +x(1 — e ™))" and Z, some posi-
tive, time dependent normalizing constant. It is enough to show that for some time positive,
dependent constant K;,

1 1
Ko [ 108D 610 = [ fet el =0 dx as 100, (14)
0 0

Since x — f(x)g,(x) is continuous on [0,1], even if U(x) has discontinuities the integration
by parts formula for Lebesgue—Stieltjes integrals produces

1 1
L [(f8) © $,1(x) po(dx) = (fgU)(I7) — (fgU)(O0F) — fo Oul(f8) © ¢1(x) U(x) dx
1
= [fg(U — DI(I) + [ fg(1 — U)I(0") +f0 Al (fg) © ¢l
x (x)[1 = Ul(x)dx.

Here we have used that ¢, is continuous with ¢,(1) = 1and ¢,(0) = 0.
First observe that 1 — U(17) = 0 since po([1 — x, 1]) = 0 as x — 0 by assumption and that

g,(0%) = e~ Hence

[fg,(1 = DI + [fg (U — DIOF) = [UOF) — 11£(0)e . 15)

Now turning to the integral term, applying the chain rule and changing variables to y = ¢,(x)
produces

1 1
j; (1) © ¢ 1) [1 — Ul(x) dx :fo [0:(fg) © &, 1(x) [1 — Ul(x) (Ox)(x) dx

1
- fo [0:(f2)I() [ — U) 0 ¢ 1(y)dy
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For any fixed x € (0, 1) by direct calculation and use of the assumption on f,, one sees that
Dfg)(x) = D) (x)
at 1 ot 1 1 —x\¢ as t—oo.
(1 = U, (1) =e"puy(lo, ), 1) - C

X

Combining these facts with (15) and the fact that e=*~®" — ( as  — oo since A > a produces

1 ! _\e
e f [(fg) o §,]1(x) po(dx) — Cf ax(x’\f)(x)(—l x) dx as - oo.
0 0 X

for some new positive constant C. Now since integration by parts implies that

1 ! A 1—x)* _ ! Aa—11 _ a—1
- fo ax(xfxx)( )dx— fo FX =11 — x)2~1dx

X

the last part of the proof is complete. O

4. Proofs of weak convergence

The proofs of theorems 1 and 4 follow a standard procedure [3, 12, 13]. Both proofs require:
(1) tightness of the sequence of stochastic processes—which implies a subsequential limit,
and (ii) uniqueness of this limit. For the tightness of { ,u;"’"}m,n on D([0, T, P([0, 1])), it is suf-
ficient, by theorem 14.26 in Kallenberg [14] to show that {(f, 11;"")} is tight on D([0, T], R)
for any test function f from a countably dense subset of continuous, positive functions on
[0, 1]. For the uniqueness of solutions to the partial differential equation in theorem 1, we
apply Gronwall’s inequality. For uniqueness of solutions to the martingale problem in theo-
rem 4, we apply a Girsanov theorem by Dawson [5].

4.1. Semimartingale property of multilevel selection process

It will be useful for what follows to treat  f, j1/"") as a semimartingale. Below, D f is the first
order difference quotient of ftaken from the right, D f is the first order difference quotient of
ftaken from the left, and D, f'is the second order difference quotient.

Lemma9. For fe CX[0,1]) and " with generator L™" defined in (1),
(for™"y = (fopg™y = AP () + M (f) (16)

where A" (f) is a process of finite variation, A]""(f) := fot ar""(f)dz, with

T O o R e )
e o L S 3 [ ol O B

J
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and M""(f) is a cadlag martingale with (conditional) quadratic variation

s - [ R - o) -]

; . ; . S \\2
W u?’”(i)u?’”(i)(l + ri)(f(i) —f(i)) }dz (18)
i n n n n n
Proof. By Dynkin’s formula (see, for example, lemma 17.21 in [14]),
t
Y =™ = [ @
where 1) € dom(L"™"), is a cadlag martingale. In particular, this is true for

Y™ = F(f, p"")

where f€ C2([0,1]) and F : R — R. Setting F(x) = x and plugging this finto (1):

it =)o (1 2 [Lmus(s) o[

1

e A 2 M ()

J J

Thus,

o™y = Fopg™ = [z = M) (19)

where M;""(f) is some martingale and a;""(f) = (L™"(f, -)(u;""). A«(f) is a process of finite
variation because for a given f, a;""(f) is uniformly bounded in 7.
Next, setting F(x) = x> and plugging this 1) into (1):

o= L - ol

S22 ()
Thus,
fo ™™ = (g™ — fo t ¢?""(f)dz = martingale (20)

where ¢i"(f) = (L™"(f, -y (p;"").
Alternatively, take ¥; = (f, i1;"") and apply Ito’s formula (for example, p78 in [18]) to Y,2
to obtain
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(o™ = (fopg™"y =2 j;l (f pya"(f)dz + [M™"(f)], + martingale 2D

where [M™"(f)], is the quadratic variation process of M;"". Since (M""(f)), is the compensa-
tor of [M"™"(f)]s,

[M™" ()] = (M™"()),

is a martingale. Thus,
t
(For™"V = fomg ™Y =2 fo (f 1""a " (f)dz = (M™"(f)), = martingale (22)

The compensator (M™"(f)), is a predictable process of finite variation (see p118 in [18]).
By the Doob—Meyer inequality (p103 in [18]), the martingale in (22) is the same as the mar-
tingale in (20) . Equating these martingale parts we obtain

2 [ (rna )z 4+ My, = [z (23)

Substituting in the expressions for a;"" and ¢;"" then gives the explicit expression for the con-
ditional quadratic variation (18) in the statement of the lemma. O

4.2. Proof of deterministic limit

To prove theorem 1, we need the two following lemmas. The first uses criteria in Billingsley
[2] to show tightness of the sequence of processes (f,x;""). The second uses Gronwall’s
inequality to show uniqueness of solutions to the limiting system.

Lemma 10. The processes f, q;""), as a sequence in {(m, n)}, is tight for all positive-
valued test functions f C'([0, 1]).

Proof. By theorem 13.2 in [2], a sequence of probability measures {P,} on D([0, T], R") s
tight if and only if (i) for all 7 > 0, there exists a such that

Plx: sup |x(t)|Za|<nforn>1
1€10,T]

and (ii) for all € > 0 and 7 > 0, there exists § € (0, 1) and ng such that

P(x:w(8)=¢e)<nforalln>ng

where w' is the modulus of continuity for cadlag processes and is defined

wi(§) ;= inf max sup |x(s) — x(t)|
{ti} 1<igy S,ZE[[,;],[,‘)

where {#;} is a partition of [0,7] such that max {f; — #;_1} < and x € D([0, T], R") is distrib-
uted according to P,,.
First, note that since ;" is a probability measure, we have

[ < 1 f Tl
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for all 7, m, and n. Thus, (i) holds.
For (ii), we have by Markov’s inequality:

PunW'(®) > ) < éEm,n(w'w)) (24)

where w/(6) := w( f ﬂ,"”">(6 ). We will use the fact that (£, 11/*") is a pure jump process to bound
the right-hand side. The process ( f, 11;"") has two types of jumps: nearest-neighbor, and occu-
pied-site jumps. Nearest-neighbor jumps occur at rate

Zmu;"’”(i)i(l - i)(z +9< ™24
; n n 4
and have magnitude

n

8 = = |{ e+ (g = ) ) = (e
m n

1 o
< — max|D, f(=)
mn i n

Occupied-site jumps occur at rate
> muf”’”(i)ui"’"(i)(l + ri) <m(l+7r)
ij n n n

and have magnitude

P = )] = ‘ O TR R

n

2
<=1/l
m

Putting this together,

Einn(W'(6)) < By n[number of nearest — neighbor jumps in time 6] - € max|Dy f| (L)\
mn i n

+ E, ,[number of occupied — site jumps in time 6] - 2i I oo
m

1 _ 2
<M+ 55— maXIDxf( )|+m<1 + 1= flle
4 mn i m

i
n

= {2 - maxlD;f( )|+2<1 + r)IIflloo}(S

i
n

Because f& C'([0, 1]), the expression in curly brackets is uniformly bounded by Ct, a constant

that depends on f but not on m nor n. Substituting the above into (24) we get that for § < EC—”,
f

Pn,(W(0)Ze)<n

for all m and n. Thus, both conditions for tightness are satisfied and (f, 11;"") is tight. O

Lemma 11. The integro-partial differential equation (3) in theorem 1 has a unique solution.

1701



Nonlinearity 30 (2017) 1682 S Luo and J C Mattingly

Proof. Suppose y, satisfies (3). Fix r > 0 and let ¢/,(x) be a function of time 7 and space x. By
the chain rule and the differential equation (3),

d d
5(77[%’ :u’z> - d_Z<wz’ Mz>

d
+d_z<¢t’ /u'z>

z=t z=t

0
= (D)~ (5201 - x)a—f, )+ wr [ 1) — (W )06 )]

.0
(Wi ) = (W 10) + [ (50200 + G0, 1)

+wr fot (xth, )y — (W, p)(x, i )dz 03)

where Gf = —sx(1 — x)%f . Let P, be the semigroup operator associated with G. In fact, using
the method of characteristics (or lemma 5 with A = 0),

P,f—f(Lﬁ) 26)

1 — x4 xe™

Now, set ¢»(x) = B_.f(x) for 0 < z < t, where f€ C'([0, 1]) is some test function. Substitut-
ing this into (25), we have

(Pof, 1) = (Rf, o) + ft <2Pt—zf(x) + GE_.f(x), uz>dz
0 \ 0z
b [ wr[R ) = B
(o) = (Bf o) + [ wr[Bfo ) — (B fop) ey ]dz @D

since O%B,Zf: —GP__ f. Thus, any p, that satisfies (3) also satisfies (27). We show that (27)

has a unique solution, which in turn implies that (3) has a unique solution.
Suppose 1, and ; both satisfy (27), with g = 1. Let £ > 0.

I, — villey = sup (f, ) — (f, 1)
I/l <1

= Ssup {Lt wr(th,Zf, /’(’z - VZ> + wr [(x’ ,U/Z><B,7f, :U/z> - <x’ VZ)(B*Zf’ VZ)] dZ}

Il flloo <1
(28)
We can bound the first term in the integrand by

wr|(xP,,Zf, M, — Vz>| < WV||MZ — Vllrv

because ||[XP—; flloo < 1B—zflloo < Il fllo < 1, where the first inequality follows from x € [0, 1]
and the second from (26). For the second term in the integrand of (28), add and subtract

(v (B f, Mz>:
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Wr|(x’ :L"Z)(Ptfzf’ ,U'z> - <x’ Vz)(Ptfzf’ Vz)| = Wr|(x’ .LLZ - Vz><Ptfzf’ .U'Z> + (x’ Vz><Ptfzf’ .U'Z - Vz>|
< wr(I1B—: fllsoll, — v2llrv + N, — w2l )
< wr(ll flloo + Dl e, — w2llzv

again, the inequalities follow from x € [0, 1], ||F fll < || fllc @and also that i, and v are prob-
ability measures. Substituting this back into (28),

t
e, — villry < fo 3wrllp, — wellry dz

By Gronwall’s inequality, || ¢, — v|lrv = 0, so we have uniqueness. [

Proof of theorem 1. The uniqueness of the limit is given by lemma 11 and the tightness
of the process by lemma 10. It remains to show that {{f, 1/"") }s,» converges to the solution
of (3). Recall from lemma 9 that

(fom™) = (fomg ™)y = A" () + M (f)

Since tightness implies relative compactness (Prohorov’s theorem), there exists a subse-
quence of x;"" that converges to a limit, call it y,. Thus, (f, u;"") = (f, y1,). We also have
(fs1g™"y = (f o) by assumption. In addition,

o= [z (-2 [rols) - ool)

l

oz A2 S

J
= [ =05 . - . w] e
=:A(f)

The factor ofi in the quadratic variation (18) implies that M;"" — 0 as m, n — oc. Therefore,

<f’ :U’t> - <f’ .u’0> :Al(f)

or,

di<f, 1) = (—x(1— 05 1) 4 wr L @ ) — (LG 1) 0x )]

4.3. Proof of Fleming—Viot limit

The elementary proof for tightness in theorem 1 does not easily carry over for the case of
theorem 4. We thus use a criterion by Aldous [1] to prove tightness for the martingale part of
the stochastic process.
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First, consider the semimartingale formulation of (f, z/"") (16) with the rescaled param-
eters s = % and p = i Let E/"(f) := Ot e7""(f)dz and Ny""(f) denote the drift and martin-
gale parts of {( f, v;""), the rescaled process. Then

S R B Y R
oA AN AR

J

and

o= [z G- e G e ()]
L 0 I (OC) | S

Lemma 12. The processes{f, V"), as a sequence in {(m, n)}, is tight for all & C*([0, 1]).

+o

Proof. Since (f,v;"") = E""(f) + N;""(f), it suffices, by the triangle inequality applied
to Billingsley’s tightness criterion (theorem 13.2 in [2]), to show tightness of E"™"(f) and
N™"(f) separately.
For the tightness of the finite variation term E;™"(f):
e (2o o)
! T4 ~ “ \n A\ n “A\n
n ARV of 1 i o J)J
+wp— vil=1=I1= |+ v,|— - v, | = |-
pm{zj: Z(n)n |f(n)| ; Z(n)|f(n)|%: Z(n)n}

For a given v> 0, we can choose n and m sufficiently large such that % el —~,04+7),
1D f N llso+ 7. and [ D £ < N1 f o+ 7. We thus obtain

1
e"(NI < 7 UL Moot =+ o1 e 11 4 2wp(0 + NI fllo

There are only a finite number of m and n for which this condition is not satisfied. Taking the
maximum of the right-hand side of the above equation with the value of |e/""(f)| for such m
and n, we obtain that for all m and n,

e (NOI< Gy

and therefore

sup |E""(f)| < GT
te[0,7T]
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where Gy is a constant that depends on f. Using the same conditions for tightness as in the
proof of theorem 1, condition (i) is satisfied because E;""(f) is bounded uniformly in ¢, m,
and n. Condition (ii) is satisfied because |E[}s — E{""| < 6Gy for all ¢, m, and n and therefore
we can always choose ¢ to be sufficiently small so that|E;}s — E{""| < e for some prescribed e.

We will show tightness for the martingale part (N;""(f)), using Aldous’ tightness condition
(we use the result as stated in [9]). First, note that by equation (30),

(NI, < Ipt

for fe C%([0, 1]), where Jris a constant that depends on f. Thus for fixed ¢,

m,n 1 m,n
Pm,n(|Nt ’ (f)| >(1) < ;Em,nvvt ’ (f)|

N7

1 1
< = BN (N2 = =Bl NP ()} <

Given € > 0, choose a > N and we have that N}""(f) is tight for each 7. Next, let 7 be a stop-

&€

ping time, bounded by 7, and let € > 0. For x > 0,
m,n m,n 1 m,n m,n
Pm,n(lN‘r:kn(f) - NT’ (f)' 2 E) < ;Em,n|NT:kh(f) - NT’ (f)'

Now (suppressing subscripts on expected value for clarity),

BIN™"(f) — N™(f)| < [BN™".(f) — N™"(£)1"*
= [BON"" ()2 = NP(F)2 + 2NT"(F)NT"(F) — N ()]
= [EN™"())ry . — (NI

< sk

Hence,
1
Bun(INTIL(F) = N ()| 2 ) < Z\/Jf“
By taking k < j_—;, we satisfy the conditions of Aldous’ stopping criterion. O
4

Lemma 13. The martingale problem (6) and (7) has a unique solution.

Proof. The martingale problem with V (¢, v, x) = 0 corresponds to a neutral Fleming—Viot
with linear mutation operator. Its uniqueness has previously been established (see for example
[5]). To show uniqueness for nontrivial V, we use a Girsanov-type transform by Dawson [5].
It suffices to check that

sup|V (¢, 1, x)| € Vp (a constant) 31

1,1, X

In our case, V(¢, 1, x) = x and since x € [0, 1], the condition is satisfied and the martingale
problem has a unique solution. O
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Proof of theorem 4. The uniqueness of the limit is given by lemma 13 and the tightness
of the process by lemma 12. To see that the limit is the martingale problem stated in theorem
4, note that for a fixed ¢,

. ¢l 0? 9
E(f) — fo fo 51— 05 () = 0 (Ole()
1 1 1
xwpe{ J e - [ e [ qudx)}dz
as n,m — oo and
t 1 1
m,n N _ 2
(N™1(F)), fo wo j; fo (f@) = F(3)Pra(dn)r(dy)dz
Finally, notice that
1 1
fO fo (f(x) — F()Pra(dr)re(dy)
1 1 1 1
_ 2 _
=2 fo fo FOPr(dn)r(dy) — 2 fo fo FOOF((d)z(dy)

1 1
=2 fo fo FOFDIOE(y) — 2(dy)]
and

1 1 1 1 1
j; Xf () (dx) — fo FCor(dr) fo xu(dx) = j; j; Fy(dn)[6,(dy) — 1(dx))]

satisfying the form of the martingale problem in the theorem. |
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