
Efficient Globally Convergent Stochastic

Optimization for Canonical Correlation Analysis

Weiran Wang1∗ Jialei Wang2∗ Dan Garber1 Nathan Srebro1

1Toyota Technological Institute at Chicago 2University of Chicago
{weiranwang,dgarber,nati}@ttic.edu jialei@uchicago.edu

Abstract

We study the stochastic optimization of canonical correlation analysis (CCA),
whose objective is nonconvex and does not decouple over training samples. Al-
though several stochastic gradient based optimization algorithms have been re-
cently proposed to solve this problem, no global convergence guarantee was pro-
vided by any of them. Inspired by the alternating least squares/power iterations
formulation of CCA, and the shift-and-invert preconditioning method for PCA, we
propose two globally convergent meta-algorithms for CCA, both of which trans-
form the original problem into sequences of least squares problems that need only
be solved approximately. We instantiate the meta-algorithms with state-of-the-art
SGD methods and obtain time complexities that significantly improve upon that
of previous work. Experimental results demonstrate their superior performance.

1 Introduction

Canonical correlation analysis (CCA, [1]) and its extensions are ubiquitous techniques in sci-
entific research areas for revealing the common sources of variability in multiple views of the
same phenomenon. In CCA, the training set consists of paired observations from two views, de-
noted (x1,y1), . . . , (xN ,yN ), where N is the training set size, xi ∈ R

dx and yi ∈ R
dy for

i = 1, . . . , N . We also denote the data matrices for each view2 byX = [x1, . . . ,xN ] ∈ R
dx×N and

Y = [y1, . . . ,yN ] ∈ R
dy×N , and d := dx + dy . The objective of CCA is to find linear projections

of each view such that the correlation between the projections is maximized:

max
u,v

u⊤Σxyv s.t. u⊤Σxxu = v⊤Σyyv = 1 (1)

whereΣxy = 1
NXY⊤ is the cross-covariance matrix,Σxx = 1

NXX⊤+γxI andΣyy = 1
NYY⊤+

γyI are the auto-covariance matrices, and (γx, γy) ≥ 0 are regularization parameters [2].

We denote by (u∗,v∗) the global optimum of (1), which can be computed in closed-form. Define

T := Σ
− 1

2
xx ΣxyΣ

− 1
2

yy ∈ R
dx×dy , (2)

and let (φ,ψ) be the (unit-length) left and right singular vector pair associated with T’s largest
singular value ρ1. Then the optimal objective value, i.e., the canonical correlation between the

views, is ρ1, achieved by (u∗, v∗) = (Σ
− 1

2
xx φ, Σ

− 1
2

yy ψ). Note that

ρ1 = kTk ≤







Σ
− 1

2
xx X

















Σ
− 1

2
yy Y








 ≤ 1.

Furthermore, we are guaranteed to have ρ1 < 1 if (γx, γy) > 0.

∗The first two authors contributed equally.
2We assume thatX andY are centered at the origin for notational simplicity; if they are not, we can center

them as a pre-processing operation.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Table 1: Time complexities of different algorithms for achieving η-suboptimal solution (u,v) to
CCA, i.e., min



(u⊤Σxxu
∗)2, (v⊤Σyyv

∗)2
�

≥ 1 − η. GD=gradient descent, AGD=accelerated
GD, SVRG=stochastic variance reduced gradient, ASVRG=accelerated SVRG. Note ASVRG pro-
vides speedup over SVRG only when κ̃ > N , and we show the dominant term in its complexity.

Algorithm Least squares solver Time complexity

AppGrad [3] GD Õ
�

dN κ̃
ρ2
1

ρ2
1−ρ2

2
· log

�

1
η

��

(local)

CCALin [6] AGD Õ
�

dN
√
κ̃

ρ2
1

ρ2
1−ρ2

2
· log

�

1
η

��

This work:
Alternating least
squares (ALS)

AGD Õ
�

dN
√
κ̃
�

ρ2
1

ρ2
1−ρ2

2

�2

· log2
�

1
η

�

�

SVRG Õ
�

d(N + κ̃)
�

ρ2
1

ρ2
1−ρ2

2

�2

· log2
�

1
η

�

�

ASVRG Õ
�

d
√
N κ̃

�

ρ2
1

ρ2
1−ρ2

2

�2

· log2
�

1
η

�

�

This work:
Shift-and-invert

preconditioning (SI)

AGD Õ
�

dN
√
κ̃
q

1
ρ1−ρ2

· log2
�

1
η

��

SVRG Õ
�

d
�

N + (κ̃ 1
ρ1−ρ2

)2
�

· log2
�

1
η

��

ASVRG Õ
�

dN
3
4

√
κ̃
q

1
ρ1−ρ2

· log2
�

1
η

��

For large and high dimensional datasets, it is time and memory consuming to first explicitly form
the matrixT (which requires eigen-decomposition of the covariance matrices) and then compute its
singular value decomposition (SVD). For such datasets, it is desirable to develop stochastic algo-
rithms that have efficient updates, converges fast, and takes advantage of the input sparsity. There
have been recent attempts to solve (1) based on stochastic gradient descent (SGD) methods [3, 4, 5],
but none of these work provides rigorous convergence analysis for their stochastic CCA algorithms.

The main contribution of this paper is the proposal of two globally convergent meta-algorithms for
solving (1), namely, alternating least squares (ALS, Algorithm 2) and shift-and-invert precondition-
ing (SI, Algorithm 3), both of which transform the original problem (1) into sequences of least
squares problems that need only be solved approximately. We instantiate the meta algorithms with
state-of-the-art SGD methods and obtain efficient stochastic optimization algorithms for CCA.

In order to measure the alignments between an approximate solution (u,v) and the optimum
(u∗,v∗), we assume that T has a positive singular value gap Δ := ρ1 − ρ2 ∈ (0, 1] so its top
left and right singular vector pair is unique (up to a change of sign).

Table 1 summarizes the time complexities of several algorithms for achieving η-suboptimal align-

ments, where κ̃ =
max

i
max(kxik2, kyik2)

min(σmin(Σxx),σmin(Σyy))
is the upper bound of condition numbers of least squares

problems solved in all cases.3 We use the notation Õ(·) to hide poly-logarithmic dependencies (see
Sec. 3.1.1 and Sec. 3.2.3 for the hidden factors). Each time complexity may be preferrable in certain
regime depending on the parameters of the problem.

Notations We use σi(A) to denote the i-th largest singular value of a matrix A, and use σmax(A)
and σmin(A) to denote the largest and smallest singular values ofA respectively.

2 Motivation: Alternating least squares

Our solution to (1) is inspired by the alternating least squares (ALS) formulation of CCA [7, Al-
gorithm 5.2], as shown in Algorithm 1. Let the nonzero singular values of T be 1 ≥ ρ1 ≥ ρ2 ≥
· · · ≥ ρr > 0, where r = rank(T) ≤ min(dx, dy), and the corresponding (unit-length) left and right
singular vector pairs be (a1,b1), . . . , (ar,br), with a1=φ and b1 = ψ. Define

C =

�

0 T

T⊤ 0

�

∈ R
d×d. (3)

3For the ALS meta-algorithm, its enough to consider a per-view conditioning. And when using AGD as the
least squares solver, the time complexities dependends on σmax(Σxx) instead, which is less than maxi �xi�

2.

2



Algorithm 1 Alternating least squares for CCA.

Input: Data matricesX ∈ R
dx×N ,Y ∈ R

dy×N , regularization parameters (γx, γy).

Initialize ũ0 ∈ R
dx , ṽ0 ∈ R

dy .
n

φ̃0, ψ̃0

o

u0 ← ũ0/
p

ũ⊤
0 Σxxũ0, v0 ← ṽ0/

q

ṽ⊤
0 Σyyṽ0

n

φ0 ← φ̃0/







φ̃0








 , ψ0 ← ψ̃0/







ψ̃0










o

for t = 1, 2, . . . , T do

ũt ← Σ−1
xxΣxyvt−1

n

φ̃t ← Σ
− 1

2
xx ΣxyΣ

− 1
2

yy ψt−1

o

ṽt ← Σ−1
yy Σ

⊤
xyut−1

n

ψ̃t ← Σ
− 1

2
yy Σ⊤

xyΣ
− 1

2
xx φt−1

o

ut ← ũt/
p

ũ⊤
t Σxxũt, vt ← ṽt/

q

ṽ⊤
t Σyyṽt

n

φt ← φ̃t/







φ̃t









, ψt ← ψ̃t/








ψ̃t










o

end for
Output: (uT ,vT ) → (u∗,v∗) as T → ∞. {(φT ,ψT ) → (φ,ψ)}

It is straightforward to check that the nonzero eigenvalues of C are:
ρ1 ≥ · · · ≥ ρr ≥ −ρr ≥ · · · ≥ −ρ1,

with corresponding eigenvectors 1√
2

�

a1
b1

�

, . . . , 1√
2

�

ar
br

�

, 1√
2

�

ar
−br

�

, . . . , 1√
2

�

a1
−b1

�

.

The key observation is that Algorithm 1 effectively runs a variant of power iterations onC to extract
its top eigenvector. To see this, make the following change of variables

φt = Σ
1
2
xxut, ψt = Σ

1
2
yyvt, φ̃t = Σ

1
2
xxũt, ψ̃t = Σ

1
2
yyṽt. (4)

Then we can equivalently rewrite the steps of Algorithm 1 in the new variables as in {} of each line.
Observe that the iterates are updated as follows from step t− 1 to step t:

�

φ̃t

ψ̃t

�

←
�

0 T

T⊤ 0

� �

φt−1
ψt−1

�

,

�

φt
ψt

�

←
�

φ̃t/||φ̃t||
ψ̃t/||ψ̃t||

�

. (5)

Except for the special normalization steps which rescale the two sets of variables separately, Algo-
rithm 1 is very similar to the power iterations [8].

We show the convergence rate of ALS below (see its proof in Appendix A). The first measure of
progress is the alignment of φt to φ and the alignment of ψt to ψ, i.e., (φ⊤

t φ)
2 = (u⊤

t Σxxu
∗)2

and (ψ⊤
t ψ)2 = (v⊤

t Σyyv
∗)2. The maximum value for such alignments is 1, achieved when the

iterates completely align with the optimal solution. The second natural measure of progress is the
objective of (1), i.e., u⊤

t Σxyvt, with the maximum value being ρ1.
Theorem 1 (Convergence of Algorithm 1). Let µ := min



(u⊤
0 Σxxu

∗)2, (v⊤
0 Σyyv

∗)2
�

> 0.4

Then for t ≥ ⌈ ρ2
1

ρ2
1−ρ2

2
log

�

1
µη

�

⌉, we have in Algorithm 1 thatmin


(u⊤
t Σxxu

∗)2, (v⊤
t Σyyv

∗)2
�

≥
1− η, and u⊤

t Σxyvt ≥ ρ1(1− 2η).

Remarks We have assumed a nonzero singular value gap in Theorem 1 to obtain linear conver-
gence in both the alignments and the objective. When there exists no singular value gap, the top
singular vector pair is not unique and it is no longer meaningful to measure the alignments. Nonethe-
less, it is possible to extend our proof to obtain sublinear convergence for the objective in this case.

Observe that, besides the steps of normalization to unit length, the basic operation in each iteration
of Algorithm 1 is of the form ũt ← Σ−1

xxΣxyvt−1 = ( 1
NXX⊤ + γxI)

−1 1
NXY⊤vt−1, which is

equivalent to solving the following regularized least squares (ridge regression) problem

min
u

1

2N





u⊤X− v⊤
t−1Y







2
+

γx
2

kuk2 ≡ min
u

1

N

N
X

i=1

1

2

�

�u⊤xi − v⊤
t−1yi

�

�

2
+

γx
2

kuk2 . (6)

In the next section, we show that, to maintain the convergence of ALS, it is unnecessary to solve the
least squares problems exactly. This enables us to use state-of-the-art SGD methods for solving (6)
to sufficient accuracy, and to obtain a globally convergent stochastic algorithm for CCA.

4One can show that µ is bounded away from 0 with high probability using random initialization (u0, v0).

3



Algorithm 2 The alternating least squares (ALS) meta-algorithm for CCA.

Input: Data matricesX ∈ R
dx×N ,Y ∈ R

dy×N , regularization parameters (γx, γy).
Initialize ũ0 ∈ R

dx , ṽ0 ∈ R
dy .

ũ0 ← ũ0/
p

ũ⊤
0 Σxxũ0, ṽ0 ← ṽ0/

q

ṽ⊤
0 Σyyṽ0, u0 ← ũ0, v0 ← ṽ0

for t = 1, 2, . . . , T do

Solve min
u

ft(u) :=
1

2N





u⊤X− v⊤
t−1Y







2
+

γx
2

kuk2 with initialization ũt−1, and output

approximate solution ũt satisfying ft(ũt) ≤ minu ft(u) + ǫ.

Solve min
v

gt(v) :=
1

2N





v⊤Y − u⊤
t−1X







2
+

γy
2

kvk2 with initialization ṽt−1, and output

approximate solution ṽt satisfying gt(ṽt) ≤ minv gt(v) + ǫ.

ut ← ũt/
p

ũ⊤
t Σxxũt, vt ← ṽt/

q

ṽ⊤
t Σyyṽt

end for
Output: (uT ,vT ) is the approximate solution to CCA.

3 Our algorithms

3.1 Algorithm I: Alternating least squares (ALS) with variance reduction

Our first algorithm consists of two nested loops. The outer loop runs inexact power iterations while
the inner loop uses advanced stochastic optimization methods, e.g., stochastic variance reduced
gradient (SVRG, [9]) to obtain approximate matrix-vector multiplications. A sketch of our algorithm
is provided in Algorithm 2. We make the following observations from this algorithm.

Connection to previous work At step t, if we optimize ft(u) and gt(v) crudely by a single batch
gradient descent step from the initialization (ũt−1, ṽt−1), we obtain the following update rule:

ũt ← ũt−1 − 2ξX(X⊤ũt−1 −Y⊤vt−1)/N, ut ← ũt/
q

ũ⊤
t Σxxũt

ṽt ← ṽt−1 − 2ξY(Y⊤ṽt−1 −X⊤ut−1)/N, vt ← ṽt/
q

ṽ⊤
t Σyyṽt

where ξ > 0 is the stepsize (assuming γx = γy = 0). This coincides with the AppGrad algorithm
of [3, Algorithm 3], for which only local convergence is shown. Since the objectives ft(u) and gt(v)
decouple over training samples, it is convenient to apply SGD methods to them. This observation
motivated the stochastic CCA algorithms of [3, 4]. We note however, no global convergence guar-
antee was shown for these stochastic CCA algorithms, and the key to our convergent algorithm is to
solve the least squares problems to sufficient accuracy.

Warm-start Observe that for different t, the least squares problems ft(u) only differ in their targets
as vt changes over time. Since vt−1 is close to vt (especially when near convergence), we may use
ũt as initialization for minimizing ft+1(u) with an iterative algorithm.

Normalization At the end of each outer loop, Algorithm 2 implements exact normalization of the
form ut ← ũt/

p

ũ⊤
t Σxxũt to ensure the constraints, where ũ⊤

t Σxxũt = 1
N (ũ⊤

t X)(ũ⊤
t X)⊤ +

γx kũtk2 requires computing the projection of the training set ũ⊤
t X. However, this does not in-

troduce extra computation because we also compute this projection for the batch gradient used by
SVRG (at the beginning of time step t+1). In contrast, the stochastic algorithms of [3, 4] (possibly
adaptively) estimate the covariance matrix from a minibatch of training samples and use the esti-
mated covariance for normalization. This is because their algorithms perform normalizations after
each update and thus need to avoid computing the projection of the entire training set frequently.
But as a result, their inexact normalization steps introduce noise to the algorithms.

Input sparsity For high dimensional sparse data (such as those used in natural language process-
ing [10]), an advantage of gradient based methods over the closed-form solution is that the former
takes into account the input sparsity. For sparse inputs, the time complexity of our algorithm depends
on nnz(X,Y), i.e., the total number of nonzeros in the inputs instead of dN .

Canonical ridge When (γx, γy) > 0, ft(u) and gt(v) are guaranteed to be strongly convex due
to the ℓ2 regularizations, in which case SVRG converges linearly. It is therefore beneficial to use

4



small nonzero regularization for improved computational efficiency, especially for high dimensional
datasets where inputs X and Y are approximately low-rank.

Convergence By the analysis of inexact power iterations where the least squares problems are
solved (or the matrix-vector multiplications are computed) only up to necessary accuracy, we pro-
vide the following theorem for the convergence of Algorithm 2 (see its proof in Appendix B). The
key to our analysis is to bound the distances between the iterates of Algorithm 2 and that of Algo-
rithm 1 at all time steps, and when the errors of the least squares problems are sufficiently small (at
the level of η2), the iterates of the two algorithms have the same quality.
Theorem 2 (Convergence of Algorithm 2). Fix T ≥ ⌈ ρ2

1

ρ2
1−ρ2

2
log

�

2
µη

�

⌉, and set ǫ(T ) ≤
η2ρ2

r

128 ·
�

(2ρ1/ρr)−1
(2ρ1/ρr)T−1

�2

in Algorithm 2. Then we have u⊤
TΣxxuT = v⊤

T ΣyyvT = 1,

min


(u⊤
TΣxxu

∗)2, (v⊤
T Σyyv

∗)2
�

≥ 1− η, and u⊤
TΣxyvT ≥ ρ1(1− 2η).

3.1.1 Stochastic optimization of regularized least squares

We now discuss the inner loop of Algorithm 2, which approximately solves problems of the form (6).
Owing to the finite-sum structure of (6), several stochastic optimization methods such as SAG [11],
SDCA [12] and SVRG [9], provide linear convergence rates. All these algorithms can be readily ap-
plied to (6); we choose SVRG since it is memory efficient and easy to implement. We also apply the
recently developed accelerations techniques for first order optimization methods [13, 14] to obtain
an accelerated SVRG (ASVRG) algorithm. We give the sketch of SVRG for (6) in Appendix C.

Note that f(u) = 1
N

PN
i=1 f

i(u) where each component f i(u) = 1
2

�

�u⊤xi − v⊤yi

�

�

2
+ γx

2 kuk2

is kxik2-smooth, and f(u) is σmin(Σxx)-strongly convex5 with σmin(Σxx) ≥ γx. We show in
Appendix D that the initial suboptimality for minimizing ft(u) is upper-bounded by constant when
using the warm-starts. We quote the convergence rates of SVRG [9] and ASVRG [14] below.
Lemma 3. The SVRG algorithm [9] finds a vector ũ satisfying6 E[f(ũ)]−minu f(u) ≤ ǫ in time

O


dx (N + κx) log


1
ǫ

��

where κx = maxikxik2

σmin(Σxx)
. The ASVRG algorithm [14] finds a such solution

in time O


dx
√
Nκx log



1
ǫ

��

.

Remarks As mentioned in [14], the acceleration version provides speedup over normal SVRG
only when κx > N and we only show the dominant term in the above complexity.

By combining the iteration complexity of the outer loop (Theorem 2) and the time
complexity of the inner loop (Lemma 3), we obtain the total time complexity of

Õ
�

d (N + κ)
�

ρ2
1

ρ2
1−ρ2

2

�2

· log2
�

1
η

�

�

for ALS+SVRG and Õ
�

d
√
Nκ

�

ρ2
1

ρ2
1−ρ2

2

�2

· log2
�

1
η

�

�

for

ALS+ASVRG, where κ := max
�

maxikxik2

σmin(Σxx)
, maxikyik2

σmin(Σyy)

�

and Õ(·) hides poly-logarithmic depen-

dences on 1
µ and 1

ρr
. Our algorithm does not require the initialization to be close to the optimum

and converges globally. For comparison, the locally convergent AppGrad has a time complexity

[3, Theorem 2.1] of Õ
�

dNκ′ ρ2
1

ρ2
1−ρ2

2
· log

�

1
η

��

, where κ′ := max
�

σmax(Σxx)
σmin(Σxx)

,
σmax(Σyy)
σmin(Σyy)

�

. Note,

in this complexity, the dataset size N and the least squares condition number κ′ are multiplied to-
gether because AppGrad essentially uses batch gradient descent as the least squares solver. Within
our framework, we can use accelerated gradient descent (AGD, [15]) instead and obtain a globally

convergent algorithm with a total time complexity of Õ
�

dN
√
κ′

�

ρ2
1

ρ2
1−ρ2

2

�2

· log2
�

1
η

�

�

.

3.2 Algorithm II: Shift-and-invert preconditioning (SI) with variance reduction

The second algorithm is inspired by the shift-and-invert preconditioning method for PCA [16, 17].
Instead of running power iterations on C as defined in (3), we will be running power iterations on

Mλ = (λI−C)
−1

=

�

λI −T

−T⊤ λI

�−1

∈ R
d×d, (7)

5We omit the regularization in these constants, which are typically very small, to have concise expressions.
6The expectation is taken over random sampling of component functions. High probability error bounds

can be obtained using the Markov’s inequality.

5



where λ > ρ1. It is straightforward to check thatMλ is positive definite and its eigenvalues are:
1

λ− ρ1
≥ · · · ≥ 1

λ− ρr
≥ · · · ≥ 1

λ+ ρr
≥ · · · ≥ 1

λ+ ρ1
,

with eigenvectors 1√
2

�

a1
b1

�

, . . . , 1√
2

�

ar
br

�

, . . . , 1√
2

�

ar
−br

�

, . . . , 1√
2

�

a1
−b1

�

.

The main idea behind shift-and-invert power iterations is that when λ − ρ1 = c(ρ1 − ρ2) with c ∼
O(1), the relative eigenvalue gap of Mλ is large and so power iterations on Mλ converges quickly.
Our shift-and-invert preconditioning (SI) meta-algorithm for CCA is sketched in Algorithm 3 (in
Appendix E due to space limit) and it proceeds in two phases.

3.2.1 Phase I: shift-and-invert preconditioning for eigenvectors of Mλ

Using an estimate of the singular value gap Δ̃ and starting from an over-estimate of ρ1 (1 + Δ̃
suffices), the algorithm gradually shrinks λ(s) towards ρ1 by crudely estimating the leading eigen-
vector/eigenvalues of each Mλ(s)

along the way and shrinking the gap λ(s) − ρ1, until we reach
a λ(f) ∈ (ρ1, ρ1 + c(ρ1 − ρ2)) where c ∼ O(1). Afterwards, the algorithm fixes λ(f) and runs
inexact power iterations on Mλ(f)

to obtain an accurate estimate of its leading eigenvector. Note

in this phase, power iterations implicitly operate on the concatenated variables 1√
2

"

Σ
1
2
xxũt

Σ
1
2
yyṽt

#

and

1√
2

"

Σ
1
2
xxut

Σ
1
2
yyvt

#

in Rd (but without ever computing Σ
1
2
xx and Σ

1
2
yy).

Matrix-vector multiplication The matrix-vector multiplications in Phase I have the form
�

ũt

ṽt

�

←
�

λΣxx −Σxy

−Σ⊤
xy λΣyy

�−1 �
Σxx

Σyy

� �

ut−1

vt−1

�

, (8)

where λ varies over time in order to locate λ(f). This is equivalent to solving
�

ũt

ṽt

�

← min
u,v

1

2

�

u⊤v⊤�
�

λΣxx −Σxy

−Σ⊤
xy λΣyy

� �

u
v

�

− u⊤Σxxut−1 − v⊤Σyyvt−1.

And as in ALS, this least squares problem can be further written as finite-sum:

min
u,v

ht(u,v) =
1

N

N
X

i=1

hi
t(u,v) where (9)

hi
t(u,v) =

1

2

�

u⊤v⊤�
�

λ


xix
⊤
i + γxI

�

−xiy
⊤
i

−yix
⊤
i λ



yiy
⊤
i + γyI

�

� �

u
v

�

− u⊤Σxxut−1 − v⊤Σyyvt−1.

We could directly apply SGD methods to this problem as before.

Normalization The normalization steps in Phase I have the form
�

ut

vt

�

←
√
2

�

ũt

ṽt

��

q

ũ⊤
t Σxxũt + ṽ⊤

t Σyyṽt,

and so the following remains true for the normalized iterates in Phase I:

u⊤
t Σxxut + v⊤

t Σyyvt = 2, for t = 1, . . . , T. (10)
Unlike the normalizations in ALS, the iterates ut and vt in Phase I do not satisfy the original CCA
constraints, and this is taken care of in Phase II.

We have the following convergence guarantee for Phase I (see its proof in Appendix F).
Theorem 4 (Convergence of Algorithm 3, Phase I). Let Δ = ρ1 − ρ2 ∈ (0, 1], and µ̃ :=
1
4



u⊤
0 Σxxu

∗ + v⊤
0 Σyyv

∗�2 > 0, and Δ̃ ∈ [c1Δ, c2Δ] where 0 < c1 ≤ c2 ≤ 1. Set

m1 = ⌈8 log
�

16
µ̃

�

⌉, m2 = ⌈ 5
4 log

�

128
µ̃η2

�

⌉, and ǫ̃ ≤ min

�

1
3084

�

Δ̃
18

�m1−1

, η4

410

�

Δ̃
18

�m2−1
�

in

Algorithm 3. Then the (uT ,vT ) output by Phase I of Algorithm 3 satisfies (10) and

1

4
(u⊤

TΣxxu
∗ + v⊤

T Σyyv
∗)2 ≥ 1− η2

64
, (11)

and the number of calls to the least squares solver of ht(u,v) isO
�

log
�

1
µ̃

�

log


1
Δ

�

+ log
�

1
µ̃η2

��

.

6



3.2.2 Phase II: final normalization

In order to satisfy the CCA constraints, we perform a last normalization

û ← uT /
q

u⊤
TΣxxuT , v̂ ← vT /

q

v⊤
T ΣyyvT . (12)

And we output (û, v̂) as our final approximate solution to (1). We show that this step does not cause
much loss in the alignments, as stated below (see it proof in Appendix G).
Theorem 5 (Convergence of Algorithm 3, Phase II). Let Phase I of Algorithm 3 outputs (uT ,vT )
that satisfy (11). Then after (12), we obtain an approximate solution (û, v̂) to (1) such that
û⊤Σxxû = v̂⊤Σyyv̂ = 1,min



(û⊤Σxxu
∗)2, (v̂⊤Σyyv

∗)2
�

≥ 1−η, and û⊤Σxyv̂ ≥ ρ1(1−2η).

3.2.3 Time complexity

We have shown in Theorem 4 that Phase I only approximately solves a small number of instances
of (9). The normalization steps (10) require computing the projections of the traning set which are
reused for computing batch gradients of (9). The final normalization (12) is done only once and
costs O(dN). Therefore, the time complexity of our algorithm mainly comes from solving the least
squares problems (9) using SGD methods in a blackbox fashion. And the time complexity for SGD
methods depends on the condition number of (9). Denote

Qλ =

�

λΣxx −Σxy

−Σ⊤
xy λΣyy

�

=

"

Σ
1
2
xx

Σ
1
2
yy

#

�

λI −T

−T⊤ λI

�

"

Σ
1
2
xx

Σ
1
2
yy

#

. (13)

It is clear that σmax(Qλ) ≤ (λ+ ρ1) ·max (σmax(Σxx),σmax(Σyy)) ,

σmin(Qλ) ≥ (λ− ρ1) ·min (σmin(Σxx),σmin(Σyy)) .

We have shown in the proof of Theorem 4 that λ+ρ1

λ−ρ1
≤ 9

Δ̃
≤ 9

c1Δ
throughout Algorithm 3 (cf.

Lemma 10, Appendix F.2), and thus the condtion number for AGD is σmax(Qλ)
σmin(Qλ)

≤ 9/c1
ρ1−ρ2

κ̃′, where

κ̃′ := max(σmax(Σxx),σmax(Σyy))
min(σmin(Σxx),σmin(Σyy))

. For SVRG/ASVRG, the relevant condition number depends on the
gradient Lipschitz constant of individual components. We show in Appendix H (Lemma 12) that the

relevant condition number is at most 9/c1
ρ1−ρ2

κ̃, where κ̃ :=
maxi max(kxik2, kyik2)

min(σmin(Σxx),σmin(Σyy))
. An interesting

issue for SVRG/ASVRG is that, depending on the value of λ, the independent components hi
t(u,v)

may be nonconvex. If λ ≥ 1, each component is still guaranteed to by convex; otherwise, some
components might be non-convex, with the overall average 1

N

PN
i=1 h

i
t being convex. In the later

case, we use the modified analysis of SVRG [16, Appendix B] for its time complexity. We use warm-
start in SI as in ALS, and the initial suboptimality for each subproblem can be bounded similarly.

The total time complexities of our SI meta-algorithm are given in Table 1. Note that κ̃ (or κ̃′)
and 1

ρ1−ρ2
are multiplied together, giving the effective condition number. When using SVRG as

the least squares solver, we obtain the total time complexity of Õ
�

d(N + κ̃ 1
ρ1−ρ2

) · log2
�

1
η

��

if all components are convex, and Õ
�

d(N + (κ̃ 1
ρ1−ρ2

)2) · log2
�

1
η

��

otherwise. When us-

ing ASVRG, we have Õ
�

d
√
N
√
κ̃
q

1
ρ1−ρ2

· log2
�

1
η

��

if all components are convex, and

Õ
�

dN
3
4

√
κ̃
q

1
ρ1−ρ2

· log2
�

1
η

��

otherwise. Here Õ(·) hides poly-logarithmic dependences on 1
µ̃

and 1
Δ . It is remarkable that the SI meta-algorithm is able to separate the dependence of dataset size

N from other parameters in the time complexities.

Parallel work In a parallel work [6], the authors independently proposed a similar ALS algorithm7,
and they solve the least squares problems using AGD. The time complexity of their algorithm for ex-
tracting the first canonical correlation is Õ

�

dN
√
κ′ ρ2

1

ρ2
1−ρ2

2
· log

�

1
η

��

, which has linear dependence

on ρ2
1

ρ2
1−ρ2

2
log

�

1
η

�

(so their algorithm is linearly convergent, but our complexity for ALS+AGD has

quadratic dependence on this factor), but typically worse dependence on N and κ′ (see remarks in
Section 3.1.1). Moreover, our SI algorithm tends to significantly outperform ALS theoretically and

empirically. It is future work to remove extra log
�

1
η

�

dependence in our analysis.

7Our arxiv preprint for the ALS meta-algorithm was posted before their paper got accepted by ICML 2016.

7



γx = γy = 10−5 γx = γy = 10−4 γx = γy = 10−3 γx = γy = 10−2

κ′ = 53340, δ = 5.345 κ′ = 5335, δ = 4.924 κ′ = 534.4, δ = 4.256 κ′ = 54.34, δ = 2.548

M
ed
ia
m
il
l

S
ub
op
tim

al
it
y

0 100 200 300 400 500 600

10
-6

10
-4

10
-2

10
0

AppGrad

S-AppGrad

CCALin

ALS-VR

ALS-AVR

SI-VR

SI-AVR

0 100 200 300 400 500 600

10
-15

10
-10

10
-5

10
0

AppGrad

S-AppGradCCALin

ALS-VR

ALS-AVR

SI-VR

SI-AVR

0 100 200 300 400 500 600

10
-15

10
-10

10
-5

10
0

AppGrad

S-AppGrad

CCALin

ALS-VR

ALS-AVR

SI-VR

SI-AVR

0 100 200 300 400 500 600

10
-15

10
-10

10
-5

10
0

AppGrad

S-AppGrad

CCALin

ALS-VR

ALS-AVR

SI-VR

SI-AVR

κ′ = 2699000, δ = 11.22 κ′ = 332800, δ = 11.10 κ′ = 34070, δ = 10.58 κ′ = 3416, δ = 9.082

JW
11

S
ub
op
tim

al
it
y

0 100 200 300 400 500 600

10
-4

10
-3

10
-2

10
-1

10
0

AppGrad

S-AppGrad

CCALin

ALS-VR

ALS-AVR

SI-VR

SI-AVR

0 100 200 300 400 500 600

10
-6

10
-4

10
-2

10
0

AppGrad

S-AppGrad
CCALin

ALS-VR
ALS-AVR

SI-VR

SI-AVR

0 100 200 300 400 500 600

10
-10

10
-5

10
0

AppGrad

S-AppGrad

CCALin

ALS-VR

ALS-AVR

SI-VR

SI-AVR

0 100 200 300 400 500 600

10
-15

10
-10

10
-5

10
0

AppGrad

S-AppGrad

CCALin
ALS-VR

ALS-AVR

SI-VR

SI-AVR

κ′ = 2235000, δ = 12.82 κ′ = 223500, δ = 12.75 κ′ = 22350, δ = 12.30 κ′ = 2236, δ = 9.874

M
N
IS
T

S
ub
op
tim

al
it
y

0 100 200 300 400 500 600

10
-6

10
-4

10
-2

10
0

AppGrad

S-AppGradCCALin

ALS-VR

ALS-AVR

SI-VR

SI-AVR

0 100 200 300 400 500 600

10
-15

10
-10

10
-5

10
0

AppGrad

S-AppGrad

CCALin

ALS-VR

ALS-AVR

SI-VR

SI-AVR

0 100 200 300 400 500 600

10
-15

10
-10

10
-5

10
0

AppGrad

S-AppGradCCALin

ALS-VR

ALS-AVR

SI-VR
SI-AVR

0 100 200 300 400 500 600

10
-15

10
-10

10
-5

10
0

AppGradS-AppGrad

CCALin

ALS-VR

ALS-AVR

SI-VR SI-AVR

# Passes # Passes # Passes # Passes

Figure 1: Comparison of suboptimality vs. # passes for different algorithms. For each dataset and

regularization parameters (γx, γy), we give κ′ = max
�

σmax(Σxx)
σmin(Σxx)

,
σmax(Σyy)
σmin(Σyy)

�

and δ =
ρ2
1

ρ2
1−ρ2

2
.

Extension to multi-dimensional projections To extend our algorithms to L-dimensional projec-
tions, we can extract the dimensions sequentially and remove the explained correlation from Σxy

each time we extract a new dimension [18]. For the ALS meta-algorithm, a cleaner approach is
to extract the L dimensions simultaneously using (inexact) orthogonal iterations [8], in which case
the subproblems become multi-dimensional regressions and our normalization steps are of the form
Ut ← Ũt(Ũ

⊤
t ΣxxŨt)

− 1
2 (the same normalization is used by [3, 4]). Such normalization involves

the eigenvalue decomposition of a L × L matrix and can be solved exactly as we typically look
for low dimensional projections. Our analysis for L = 1 can be extended to this scenario and the
convergence rate of ALS will depend on the gap between ρL and ρL+1.

4 Experiments

We demonstrate the proposed algorithms, namely ALS-VR, ALS-AVR, SI-VR, and SI-AVR, abbre-
viated as “meta-algorithm – least squares solver” (VR for SVRG, and AVR for ASVRG) on three
real-world datasets: Mediamill [19] (N = 3 × 104), JW11 [20] (N = 3 × 104), and MNIST [21]
(N = 6 × 104). We compare our algorithms with batch AppGrad and its stochastic version
s-AppGrad [3], as well as the CCALin algorithm in parallel work [6]. For each algorithm, we
compare the canonical correlation estimated by the iterates at different number of passes over the
data with that of the exact solution by SVD. For each dataset, we vary the regularization parameters
γx = γy over {10−5, 10−4, 10−3, 10−2} to vary the least squares condition numbers, and larger
regularization leads to better conditioning. We plot the suboptimality in objective vs. # passes for
each algorithm in Figure 1. Experimental details (e.g. SVRG parameters) are given in Appendix I.

We make the following observations from the results. First, the proposed stochastic algorithms sig-
nificantly outperform batch gradient based methods AppGrad/CCALin. This is because the least
squares condition numbers for these datasets are large, and SVRG enable us to decouple depen-
dences on the dataset size N and the condition number κ in the time complexity. Second, SI-VR
converges faster than ALS-VR as it further decouples the dependence onN and the singular value gap
of T. Third, inexact normalizations keep the s-AppGrad algorithm from converging to an accurate
solution. Finally, ASVRG improves over SVRG when the the condition number is large.

Acknowledgments

Research partially supported by NSF BIGDATA grant 1546500.

8



References

[1] H. Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321–377, 1936.

[2] H. D. Vinod. Canonical ridge and econometrics of joint production. J. Econometrics, 1976.

[3] Z. Ma, Y. Lu, and D. Foster. Finding linear structure in large datasets with scalable canonical
correlation analysis. In ICML, 2015.

[4] W. Wang, R. Arora, N. Srebro, and K. Livescu. Stochastic optimization for deep CCA via
nonlinear orthogonal iterations. In ALLERTON, 2015.

[5] B. Xie, Y. Liang, and L. Song. Scale up nonlinear component analysis with doubly stochastic
gradients. In NIPS, 2015.

[6] R. Ge, C. Jin, S. Kakade, P. Netrapalli, and A. Sidford. Efficient algorithms for large-scale
generalized eigenvector computation and canonical correlation analysis. arXiv, April 13 2016.

[7] G. Golub and H. Zha. Linear Algebra for Signal Processing, chapter The Canonical Correla-
tions of Matrix Pairs and their Numerical Computation, pages 27–49. 1995.

[8] G. Golub and C. van Loan. Matrix Computations. third edition, 1996.

[9] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In NIPS, 2013.

[10] Y. Lu and D. Foster. Large scale canonical correlation analysis with iterative least squares. In
NIPS, 2014.

[11] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Technical Report HAL 00860051, École Normale Supérieure, 2013.

[12] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research, 2013.

[13] R. Frostig, R. Ge, S. Kakade, and A. Sidford. Un-regularizing: Approximate proximal point
and faster stochastic algorithms for empirical risk minimization. In ICML, 2015.

[14] H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In NIPS,
2015.

[15] Y. Nesterov. Introductory Lectures on Convex Optimization. A Basic Course. Springer, 2004.

[16] D. Garber and E. Hazan. Fast and simple PCA via convex optimization. arXiv, 2015.

[17] C. Jin, S. Kakade, C. Musco, P. Netrapalli, and A. Sidford. Robust shift-and-invert precondi-
tioning: Faster and more sample efficient algorithms for eigenvector computation. 2015.

[18] D. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposition, with applications
to sparse principal components and canonical correlation analysis. Biostatistics, 2009.

[19] C. Snoek, M. Worring, J. van Gemert, J. Geusebroek, and A. Smeulders. The challenge prob-
lem for automated detection of 101 semantic concepts in multimedia. InMULTIMEDIA, 2006.

[20] J. Westbury. X-Ray Microbeam Speech Production Database User’s Handbook, 1994.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proc. IEEE, 86(11):2278–2324, 1998.

[22] M. Warmuth and D. Kuzmin. Randomized online PCA algorithms with regret bounds that are
logarithmic in the dimension. Journal of Machine Learning Research, 2008.

[23] R. Arora, A. Cotter, K. Livescu, and N. Srebro. Stochastic optimization for PCA and PLS. In
ALLERTON, 2012.

[24] A. Balsubramani, S. Dasgupta, and Y. Freund. The fast convergence of incremental PCA. In
NIPS, 2013.

[25] O. Shamir. A stochastic PCA and SVD algorithm with an exponential convergence rate. In
ICML, 2015.

[26] F. Yger, M. Berar, G. Gasso, and A. Rakotomamonjy. Adaptive canonical correlation analysis
based on matrix manifolds. In ICML, 2012.

9


