
Genome analysis

H-PoP and H-PoPG: Heuristic Partitioning
Algorithms for Single Individual Haplotyping of
Polyploids
Minzhu Xie 1,∗, Qiong Wu 2, Jianxin Wang 3 and Tao Jiang 4,5

1Key Laboratory of Internet of Things Technologies and Application, College of Physics and Information Science, Hunan Normal
University, Changsha 410081, China, 2State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese
Academy of Sciences, Beijing 100093, China, 3School of Information Science and Engineering, Central South University, Changsha
410083, China, 4Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA and 5MOE
Key Lab of Bioinformatics and Bioinformatics Division, TNLIST / Department of Computer Science and Technology, Tsinghua
University, Beijing, China

∗To whom correspondence should be addressed.

Abstract

Motivation: Some economically important plants including wheat and cotton have more than two copies
of each chromosome. With the decreasing cost and increasing read length of next-generation sequencing
technologies, reconstructing the multiple haplotypes of a polyploid genome from its sequence reads
becomes practical. However, the computational challenge in polyploid haplotyping is much greater than
that in diploid haplotyping, and there are few related methods.
Results: This paper models the polyploid haplotyping problem as an optimal poly-partition problem of
the reads, called the Polyploid Balanced Optimal Partition (PBOP) model. For the reads sequenced from
a k -ploid genome, the model tries to divide the reads into k groups such that the difference between
the reads of the same group is minimized while the difference between the reads of different groups is
maximized. When the genotype information is available, the model is extended to the Polyploid Balanced
Optimal Partition with Genotype constraint (PBOPG) problem. These models are all NP-hard. We propose
two heuristic algorithms, H-PoP and H-PoPG, based on dynamic programming and a strategy of limiting
the number of intermediate solutions at each iteration, to solve the two models, respectively. Extensive
experimental results on simulated and real data show that our algorithms can solve the models effectively,
and are much faster and more accurate than the recent state-of-the-art polyploid haplotyping algorithms.
The experiments also show that our algorithms can deal with long reads and deep read coverage effectively
and accurately. Furthermore, H-PoP might be applied to help determine the ploidy of an organism.
Availability: https://github.com/MinzhuXie/H-PoPG
Contact: xieminzhu@hotmail.com
Supplementary information: Supplementary data are available at Bioinformatics online.

∗to whom correspondence should be addressed

1 Introduction
It is widely believed that domestication of wild plants was a key factor

leading to human population expansion about 10 thousand years ago,

and crops are still the most important source of human foods nowadays.

Therefore, crop breeding is very important for the world food security.

Most widely cultivated species of some economically important crops

1

© The Author (2016). Published by Oxford University Press. All rights reserved. For Permissions, please email:
journals.permissions@oup.com

Associate Editor: Dr. Inanc Birol

Bioinformatics Advance Access published August 16, 2016
 by guest on A

ugust 17, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

2

such as wheat, sugarcane, apple and banana are polyploids (Leitch

and Leitch, 2008), i.e. they possess more than two copies of each

chromosome. Polyploidy has long been regarded as an important feature

to drive plant phenotypic diversification and hence, the investigation of

polyploid genomic compositions will help understand plant evolution and

crop improvement (Renny-Byfield and Wendel, 2014). With the recent

rapid development of sequencing technologies, the read length of next-

generation DNA sequencers has increased significantly and the sequencing

cost has dropped enormously. Therefore, reconstructing the multiple

haplotypes of a polyploid genome from its DNA reads is becoming a

reality in practice.

There has been extensive research on the computational problem of

reconstructing a pair of haplotypes from the DNA reads of a diploid

genome, and many combinatorial optimization models (Xie et al., 2010a;

Browning and Browning, 2011) have been proposed, including MEC

(minimum error correction) (Lippert et al., 2002), MFR (minimum

fragment removal), MSR (minimum SNP removal) (Lancia et al., 2001),

and two recent models MFC (maximum fragments cut) (Duitama et al.,
2010) and BOP (balanced optimal partition) (Xie et al., 2012). Most of the

above models and their extended versions are NP-hard (Bafna et al., 2005;

Cilibrasi et al., 2007; Duitama et al., 2010), and their exact algorithms

run in time exponential in at least one input parameter (Bafna et al., 2005;

He et al., 2010; Xie et al., 2010b, 2008; Wang et al., 2010; Bonizzoni

et al., 2015; Patterson et al., 2015; Pirola et al., 2015). Therefore, a

large number of heuristic algorithms have been designed to deal with the

problem (Panconesi and Sozio, 2004; Wang et al., 2005; Genovese et al.,
2008; Duitama et al., 2010; Xie et al., 2012). In particular, integer linear

programming has been adopted recently to solve MEC, but additional

heuristic methods were also needed to process difficult blocks (Chen et al.,
2013). However, the computational complexity of polyploid haplotyping

is much higher than that of diploid haplotyping. As shown in Figure 1,

with two heterozygous bi-allelic loci, there are only two possible haplotype

phasings for a diploid while there are eight possible haplotype phasings for

a triploid. Generally speaking, withn heterozygous loci, there are (k−1)n

different genotypes and at least2n−1(k−1)n different haplotype phasings

for a k-ploid. Simple extensions of current diploid haplotyping algorithms

are usually inefficient in solving the polyploid haplotyping problem.

Recently, three polyploid haplotyping algorithms HapCompass (Aguiar

and Istrail, 2013), HapTree (Berger et al., 2014) and SDhaP (Das and

Vikalo, 2015) have been introduced in the literature. The HapCompass

algorithm converts a haplotype phasing as a spanning tree of the graph

built from DNA reads, where the nodes represent single nucleotide

polymorphisms (SNPs) and the edges indicate the evidence of co-occurring

SNP alleles in a haplotype as supported by the reads. HapCompass tries to

find a spanning tree with the minimum weighted edges removed from the

graph based on cycle basis local optimization. HapTree uses a maximum-

likelihood estimation framework and aims to find a haplotype phasing

solution with the maximal likelihood explanation of the reads. To reduce

computation complexity, HapTree adopts a strategy similar to dynamic

programming, i.e. it finds a collection of high-likelihood phases of the

first n SNP loci and then extends the phases to the next n + 1th SNP

locus. SDhaP formulates the problem as a semi-definite program (SDP),

and employs a low-rank Lagrangian scheme followed by randomized

projections and a greedy refinement of the k-ploid haplotypes to solve

the SDP (Das and Vikalo, 2015).

In this paper, we try to partition the DNA reads sequenced from a k-

ploid organism into k groups such that the reads of the same group share the

same alleles on as many SNP loci as possible and the reads from different

groups are different on as many loci as possible. We balance both factors by

proposing the Polyploid Balanced Optimal Partition (PBOP) model. Since

genotype information is easy to obtain and the genotype information may

help improve the accuracy of polyplotyping, we extend PBOP to PBOPG

Fig. 1. The genotypes and corresponding haplotype phasings on two heterozygous loci.

(the Polyploid Balanced Optimal Partition with Genotype constraint) to

make use of available genotype information. Both models are NP-hard. By

limiting the number of intermediate solutions at each iteration of a dynamic

programming, we designs two heuristic algorithms to solve the models.

Extensive tests on simulated and real data show that our algorithms are

much faster and more accurate than the recent state-of–the-art polyploid

haplotyping algorithms, especially on data with long reads and deep read

coverage.

2 Methods

2.1 Formulation and Problem

The input of the polyploid haplotyping problem consists of aligned DNA

reads sequenced from a k-ploid organism. In our approach, we try to divide

the reads into k different groups according to their original haplotypes.

Since it is trivial to determine the alleles of thek-haplotypes at homozygous

loci, and only loci where the reads have different alleles can be used

to partition the reads into different groups, we will only keep alleles of

the aligned reads on heterozygous SNP loci. The input aligned reads are

denoted by an m×n SNP matrix M as in previous work (Xie et al., 2008,

2012; Aguiar and Istrail, 2013; Berger et al., 2014), wherem is the number

of reads and n the number of heterozygous SNP loci. M [i, j], the entry of

M at the ith row and jth column, encodes the allele of the ith read at the

jth heterozygous SNP loci. M [i, j] takes a value from {0, 1,−}, where

‘0’ (or ‘1’) represents the major allele (or the minor allele, respectively)

at the locus in the population and ‘−’ represents an unknown allele. The

ith row (read) of M is denoted as ri and the jth allele of r is denoted as

r[j]. Similarly, a haplotype is denoted as a sequence of ‘0’, ‘1’ and ‘−’,

and the jth allele of a haplotype H is denoted as H[j].

For two alleles a1, a2 ∈ {0, 1,−}, we define a similarity function

s(a1, a2) and dissimilarity function d(a1, a2) as follows:

s(a1, a2) =

{
1, if a1, a2 �= − and a1 = a2;

0, otherwise.
(1)

d(a1, a2) =

{
1, if a1, a2 �= − and a1 �= a2;

0, otherwise.
(2)

Given a set R = {r1, ..., rp} of p rows (reads), a k-partition function

P of R is defined as a map P : {1, ..., p} → {1, ..., k}, which means that

ri is put into the P (i)th group (subset) GP (i) according to the function

P . Since every row in R has a unique index, the row with the smallest

index in a group is called the representative row of the group, and the

smallest index of the rows in a group G is denoted by I(G). If G = ∅,

let I(G) = p + 1. Let the groups obtained by applying P on R be

GP
1 , ..., GP

k . A k-partition function P is called a canonical k-partition

function if the following condition holds: for any two groups GP
i and GP

j

with 1 ≤ i < j ≤ k, I(GP
i) < I(GP

j).

The consensus haplotype Hi of the ith group Gi is defined as the

haplotype that maximizes the sum of similarities between the reads in the

 by guest on A
ugust 17, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

3

group Gi and the haplotype, i.e.

Hi = argmax
H

∑
r∈Gi

n∑
j=1

s(r[j], H[j]). (3)

Assume that the consensus haplotypes are the original haplotypes, and

the difference between the consensus haplotypes and the reads can be

regarded as sequencing errors. Given a k-partition function P on a set

of reads (rows), the corrected error measure C(P) is defined as the total

difference between the reads and the consensus haplotypes of their groups,

i.e.

C(P) =
k∑

i=1

∑
r∈Gi

n∑
j=1

d(r[j], Hi[j]). (4)

Since we only consider heterozygous loci, any two of the k haplotypes

should not be identical when several consecutive heterozygous loci are

considered together, and it is desirable that the k consensus haplotypes are

distinctively different. We introduce another measure D(P) as follows,

which is called the diversity measure:

D(P) =
∑

i1,i2=1,...,k;i1 �=i2

⎛
⎝ n∑

j=1

d(Hi1 [j], Hi2 [j])

⎞
⎠ . (5)

We would like to find an ideal partition P that makes the difference

between the reads of a same group minimized and the difference between

the reads of different groups maximized, i.e. one that minimizes C(P)

and maximizes D(P). However, this may be impossible in most cases,

since a partition function P minimizing C(P) may not ensure that D(P)

is maximized and vice versa. Therefore, we combine both measures into

a weighted partition score:

s(P) = (1− w)D(P)− wC(P), (6)

where w is a weighting parameter with 0 ≤ w ≤ 1. In the following, we

propose a new optimization model for the polyploid haplotyping problem.

Polyploid Balanced Optimal Partition (PBOP): Given an SNP matrix

M and weight w, find a k-partition function P of the rows in M such that

s(P) = (1− w)D(P)− wC(P) is maximized.

Note that when w = 1 and k = 2, PBOP becomes the MEC model

for the diploid haplotype assembly problem. MEC is known to be NP-

hard (Lippert et al., 2002). In fact, it has been recently shown not to

be in APX under the Unique Games Conjecture (Bonizzoni et al., 2015).

Therefore, PBOP is also NP-hard, and not in APX under the Unique Games

Conjecture. In the next subsection, we introduce a heuristic algorithm

called H-PoP.

When the genotype G of the polyploid is known, we will also consider

the genotype constrained version of PBOP. Since we do not consider

homozygous loci, for each locus j, G[j] ∈ {1, ..., k − 1}. G[j] = t

means that at the jth locus, there are t haplotypes taking the allele ‘1’ and

the other k − t haplotypes taking the allele ‘0’.

Let Ii(x) be an indicator function, i.e. Ii(x) = 1 if x = i; otherwise

0. Given a k-partition function P on a set of rows R = {r1, ..., rp},

the consensus haplotypes H′
1, ..., H

′
k with genotype constraint G are the

haplotypes that satisfy the following conditions: (i)H′
i[j] = −when there

are no reads in group Gi covering the jth locus (i.e. the alleles at locus

j of the reads in group Gi are all unknown), (ii)
∑k

i=1 I1(H′
i[j]) ≤

G[j],∑k
i=1 I0(H′

i[j]) ≤ k − G[j] for each locus j ∈ {1, ..., n} and

(iii)
∑k

i=1

∑
r∈Gi

∑n
j=1 s(r[j], H

′
i[j]) is maximized.

The genotype constrained corrected error measureC′(P) and partition

score s′(P) are defined as:

C′(P) =
k∑

i=1

∑
r∈Gi

n∑
j=1

d(r[j], H′
i[j]). (7)

Similarly, the genotype constrained diversity measure D′(P) and

partition score s′(P) are defined as follows:

D′(P) =
∑

i1,i2=1,...,k;i1 �=i2

⎛
⎝ n∑

j=1

d(H′
i1
[j], H′

i2
[j])

⎞
⎠ ; (8)

s′(P) = (1− w)D′(P)− wC′(P). (9)

Polyploid Balanced Optimal Partition with Genotype constraint
(PBOPG): Given an SNP matrix M , the genotype G of the polyploid

and weight w, find a k-partition function P of the rows in M such that

s′(P) = (1− w)D′(P)− wC′(P) is maximized.

2.2 Algorithm

Given an m × n SNP matrix M , the number of ways to partition m

different rows r1, ..., rm into k non-empty groups is a Stirling number

of the second kind, which is denoted as S(m, k). Since S(m, k) =
1
k!

∑k
i=0 (−1)i

(k
i

)
(k − i)m, when m is large, it is impractical to

enumerate all possible partitions and choose one with the maximum

partition score. To solve the PBOP model of M efficiently, we propose

a heuristic dynamic programming algorithm in the subsection. In other

words, we will consider solutions for a number of rows of M then extend

the solutions to the next row, and so on until all rows of M have been

considered.

We first introduce some definitions and notations similar to those in

(Xie et al., 2012), but some of which have different meanings. Let b(i)

(e(i)) denote the first (the last) column at which the ith row of M takes

non-‘−’ values. If and only if b(i) ≤ j ≤ e(i), row i spans column j.

R(j) denotes the set of rows that contain the rows in M spanning the jth

column.

In the following, we assume that M has been sorted such that for two

rows i1 and i2 of M with i1 < i2, b(i1) < b(i2), or b(i1) = b(i2) and

e(i1) ≤ e(i2).

Let P be a canonical k-partition function on a set of rows R and P ′

a canonical k-partition function on a subset R′ of R. If for any two rows

i, j ∈ R′, P ′(i) = P ′(j) if and only if P (i) = P (j), P ′ is called the

projection of P on R′ and P an extension of P ′ on R. It is easy to verify

that given a partition P of R and a subset R′, the projection of P on R′ is

unique, but not vice verse. The projection of P on R′ is denoted by P [R′]
for convenience.

Let P be a canonical k-partition function of the subset R = {

ri1 , ..., riq } of the rows of M with iq as the largest row index in R,

and R′ = {r1, ..., riq} (i.e. the set of all rows from the first row to row

riq). P ′ is an optimal extension of P if the following conditions hold: (i)

P ′ is an extension of P on R′ and (ii) for any possible extension P ′′ of

P on R′, s(P ′) ≥ s(P ′′).
Similarly, when the genotype G is available, P ′ is a genotype

constrained optimal extension of P if the following conditions hold: (i)

P ′ is an extension of P on R′ and (ii) for any possible extension P ′′ of

P on R′, s′(P ′) ≥ s′(P ′′).
Given a partition P of R, let E(P) denote an optimal extension of

P and E′(P) a genotype constrained optimal extension of P . We call

s(E(P)) (or s′(E′(P))) the global (or the genotype constrained global)

 by guest on A
ugust 17, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

4

Fig. 2. An illustration of F(4, 3), the set of all 15 canonical functions that partition 4 rows

into at most 3 groups. A partition function is represented by a path from the root node to

a leaf node. For example, the path from the root node F(4, 3) to the leaf node S(3, 1)

represents such a function P with P (4) = 2 and P (i) = 1 for i = 1 to 3.

score ofP and denote it as se(P) (or s′e(P), respectively) for convenience.

The following theorem is straightforward.

Theorem 1. Let P be a canonical k-partition function of R(n) for an
m × n SNP matrix M . E(P) is a solution to PBOP (or PBOPG) of M
if and only if the following condition holds: for any possible canonical
k-partition function P ′ of R(n), se(P) ≥ se(P ′) (or s′e(P) ≥ s′e(P ′),
respectively).

We consider the set of canonical k-partition functions that partition a

set of i rows into at most k groups, and denote the function set as F(i, k).

Let S(p, q) denote the set of canonical functions that partition p rows into

q non-empty groups. It is obvious that F(i, k) = ∪q=1..tS(i, q), where t

is the maximum of i and k.

Let p and q be positive integers. To enumerate all canonical functions

that partition p rows into q non-empty groups, we consider the following

cases:

• p < q: Such functions do not exist, i.e. S(p, q) = ∅.

• p = q:It is easy to verify that S(p, q) contains only one partition

function, i.e. P (i) = i for i = 1 to p (denoted by P (1..p) = 1..p).

• p > q: If q = 1, there is only one partition function in S(p, q), i.e.
P (i) = 1 for i = 1 to p (denoted by P (1..p) = 1). If q > 1, we may

construct S(p, q) using the following recursive process. Considering

the last row p, the group containing row p either has only one row, i.e.
row p, or two or more rows. We denote the set of partition functions

that put row p into a group by itself (labeled as group q) and partition

the first p−1 rows into the other q−1 non-empty groups as {(P (p) =

q) ·S(p− 1, q− 1)}, and denote the the set of partition functions that

partition the first p − 1 rows into q non-empty groups and put row p

into one of the q groups as {(P (p) = 1, ..., q) · S(p− 1, q)}. Then,

we have the following recurrence:

S(p, q) = {(P (p) = q) · S(p− 1, q − 1)} ∪
{(P (p) = 1, ..., q) · S(p− 1, q)}.

Figure 2 illustrates F(4, 3), the set of all 15 different functions

partitioning 4 rows into at most 3 groups. In the graph, the values S(p, q)

with p = q or q = 1 are represented as the leaf nodes and a partition

function is represented by a path from the root node to a leaf node.

Please note that there may be more than one path from the root to a

leaf node. For example, there are three different paths from the root

F(4, 3) to the node S(3, 3), corresponding to three different functions:

(i) P (4) = 1, P (1..3) = 1..3, (ii) P (4) = 2, P (1..3) = 1..3 and (iii)

P (4) = 3, P (1..3) = 1..3.

Given an m×n SNP matrix M , our algorithm considers the set R(1)

of rows spanning column 1 first. To make the algorithm scalable, we will be

able to enumerate all the partition functions on a small number of rows. Let

q be the maximum integer such that | F(q, k) |≤ 1000 and q ≤| R(1) |.
Let Rf be the set of the first q rows in R(1) and Rb contain the rest

of the rows in R(1). When R(1) contains no more than q rows, Rf =

R(1) and Rb = ∅. Since the number of rows in Rf is at most q and

| F(q, k) |≤ 1000, it is practical to enumerate all partition functions of

Rf by the above method.

For each group G obtained by partitioning Rf according to some

function P , let b(G) = minr∈G b(r) and e(G) = maxr∈G e(r). We

use a 2 × n matrix to record a profile P(G) for G, where the element

P(G)[v, j] counts the number of rows of G whose values at column j is v

for v = 0, 1 and j = b(G), ..., e(G). The set of the profiles for all groups

incurred by P is denoted as PP .

Based on P(G), we obtain a consensus haplotype HG of G easily:

HG[j] =

⎧⎪⎨
⎪⎩

0, if P(G)[0, j] > P(G)[1, j]

1, if P(G)[0, j] < P(G)[1, j]

−, otherwise

for j = b(G), ..., e(G).

(10)

Using equations (4) - (6) and (10), the score s(P) of a k−partition

function P on Rf can be calculated in time O(lm(q + k2)), where

lm = maxi∈Rf
e(i)−mini∈Rf

b(i) + 1.

Recall that at the very beginning of the algorithm, Rf = {r1, ..., rq},

and both the optimal extension and the genotype constrained optimal

extension of a partition function P of Rf are P itself, i.e. E(P) = P

and E′(P) = P . Therefore, se(P) = s(P) and s′e(P) = s′(P).

For an optimal partition function P of the set of the rows in M , the

projection of P on Rf is likely a suboptimal partition function of Rf . In

the following extension from Rf to rows in Rb, we will only consider

the top 10k2 partition functions of Rf , which is denoted by F , based on

empirical experience.

If Rb is not empty, let r be the row with the smallest index in Rb and

R′
f = Rf ∪ {r}. We construct all possible extensions of the functions

in F to R′
f and record (at most) 10k2 extensions with the highest global

scores in F ′.
For a partition function P on Rf , there are at most k extensions of P

on R′
f . Let the number of rows in Rf be qf and g = maxi=1..qf P (i),

i.e. P partitions the qf rows of Rf into g nonempty groups G1, ..., Gg .

Since the row r can be put into any one of the g groups, there are at least

g extensions P ′
1, ..., P

′
g of P on R′

f . When g < k, r can be put into a

new group and hence there is an additional extension P ′
g+1 of P . For each

extension P ′
t ,

P ′
t (i) =

{
P (i), 1 ≤ i ≤ qf ;

t, i = qf + 1.
(11)

Let the nonempty groups obtained by applying P ′
t on R′

f be

G′
1, ..., G

′
g′ . Since the difference Δs between the global scores of P ′

t

and P is due to putting r in G′
t, it is easy to compute by considering two

cases below.

• t ≤ g: In this case, g′ = g. For i = 1, ..., g except i = t, G′
i =

Gi, P(G
′
i) = P(Gi) and HG′

i
= HGi

. Moreover, G′
t = Gt ∪

{r}, P(G′
t)[v, j] = P(Gt)[v, j] + Ir[v, j] for v = 0, 1 and j =

b(G′
t), ..., e(G

′
t), where Ir[v, j] = 1 when r takes value v at column

j; otherwise Ir[v, j] = 0. Use Equation (10) to compute HG′
t
. Let the

set of columns where HGt �= HG′
t

be C. Then

ΔC =
∑
j∈C

| P(Gt)[0, j]− P(Gt)[1, j] | +
e(r)∑

j=b(r)

d(HG′
t
[j], r[j])

ΔD =
∑
j∈C

∑
i �=t

(
d(HG′

t
[j], HGi

[j])− d(HGt [j], HGi
[j])

)

Δs = (1− w)ΔD − wΔC (12)

 by guest on A
ugust 17, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

5

• t > g: In this case, g < k and g′ = t = g + 1. For i = 1, ..., g,

G′
i = Gi, P(G

′
i) = P(Gi) andHG′

i
= HGi

. Moreover, G′
t = {r},

P(G′
t)[v, j] = Ir[v, j] for v = 0, 1 and j = b(r), ..., e(r), where

Ir[v, j] = 1 when r takes value v at column j; otherwise Ir[v, j] = 0.

HG′
t

can be obtained easily using Equation (10). Then

Δs = (1− w)ΔD = (1− w)

e(r)∑
j=b(r)

g∑
i=1

(
d(HG′

t
[j], HGi

[j])
)

(13)

The global score of P ′
t is

se(P
′
t) = se(P) + Δs, (14)

which can be calculated in time O(lk), where l = e(r)− b(r) + 1.

Once all possible extensions of the functions in F to R′
f have been

enumerated, we set F = F ′, Rf = Rf ∪{r} and Rb = Rb −{r}. The

above process is repeated until Rb becomes empty and Rf = R(1).

After obtaining the top 10k2 partition functions of R(j) for some j,

which are again stored in F , we consider the next column j+1. Let Rd =

R(j)−R(j+1), Rr = R(j)∩R(j+1) and Rb = R(j+1)−R(j).

We first compute the projections of the functions in F on Rr , and then

extend them to R(j + 1).

Let F ′ be the set of the projections of all functions in F on Rr . It

is obvious that | F ′ |≤| F |. For a function P in F , we can easily

compute its projection P ′ on Rr . If Rd = ∅, i.e. Rr = R(j), then

P ′ = P andF ′ = F ; otherwise, we compute its projectionP ′ as follows.

Let the rows in Rr be ri1 , ri2 , ..., and riz , and P ′′ be such a partition

function of Rr that P ′′(ri) = P (ri) for i = i1, ..., iz . Suppose that P ′′

partitions Rr into t non-empty groups G′′
1 , ..., G

′′
t . Sort these groups by

their representative row indices in the ascending order and let rank(g) be

the rank of G′′
g in the sorted groups, i.e. if the representative row index of

G′′
g is the p smallest then rank(g) = p. Set P ′(ri) = rank(P ′′(ri)) for

i = i1, ..., iz , and then P ′ is the projection of P on Rr .

For each function P ′ in F ′, we can calculate its global score se(P ′)
using the equation below:

se(P
′) = max

P∈F and P ′ is a projection of P
se(P). (15)

The time complexity of computing F ′ and the scores is O(|F |(k log k+

|R(j)|)). Once F ′ and the corresponding scores have been computed, set

F = F ′ and Rf = Rr , and extend the functions in F to R(j + 1)

by deleting a row from Rb and adding it to Rf , one at a time, until

Rf = R(j + 1) as done above by using Equation (11).

The above iteration continues until R(j) contains the last row of M .

Finally, an extension of the function in F with the highest global score is

output as a solution to the PBOP problem of M . A pseudo code for this

algorithm, called H-PoP, is presented at Figure S1 in the Supplementary

Materials.

For the PBOPG model, a similar heuristic algorithm H-PoPG can be

easily devised. All we need is a simple modification of H-PoP to make

use of the provided genotype information. Please see the Supplementary

Materials for the details of H-PoPG.

3 Results
We use both real data and simulated data to compare the performance

of our algorithms H-PoP, H-PoPG and three recent single individual

polyplotyping algorithms HapCompass (Aguiar and Istrail, 2013),

HapTree (Berger et al., 2014) and SDhaP (Das and Vikalo, 2015). Besides

aligned SNP reads, all algorithms except H-PoP and SDhaP require

genotype information as an additional input. The weight w is set as 0.9 for

H-PoP and H-PoPG unless otherwise specified. All tests are conducted on

some 64 bit nodes with 2.6GHz CPU and 128GB RAM of a Linux cluster,

and each result on simulated data is the average of 100 repeated tests with

the same parameters.

3.1 Results on Real Data

Using 454 GS FLX Titanium sequencing, Curtin et al. (Curtin et al., 2012)

obtained a 12.7 Mb assembly of AWRI1499, a prevalent wine spoilage

strain of the yeast species Dekkera bruxellensis. The assembly is comprised

of 324 contigs (N50 = 68 kb) in 99 scaffolds, at median read coverage of

26-fold and it was found that AWRI1499 is a triploid (Curtin et al., 2012).

We downloaded the read data from the SRA database of NCBI under

the accessions SRX327045 and SRX327033, and the 14 contigs of the

first scaffold from the Assembly database of NCBI under the accession

AHIQ01. After cleaning adapters and low quality bases from the reads,

BWA-MEM (Li and Durbin, 2009) was used to align the reads against

the contigs with default parameters, and the SAMtools package (Li et al.,
2009; Li, 2011a,b) was used to call SNPs based on the aligned reads. The

genotype of an SNP locus is determined by the proportion of the alleles 0

and 1 on the locus. Keeping only alleles at the heterozygous SNP loci of

the aligned reads, we obtained 14 SNP matrices, one for each contig.

We tested H-PoPG, H-PoP, HapTree, HapCompass and SDhaP on

these real data. AWRI1499 is a triploid, but its three true haplotypes

are unavailable. Instead, there are only consensus contigs. Since the true

haplotypes are unknown, we use the MEC score (Lippert et al., 2002)

to evaluate the accuracy of the reconstructed haplotypes. More precisely,

given an m × n SNP matrix M , let the reconstructed k haplotypes be

H = (H1,..., Hk). The MEC score sc(H,M) is the minimum number

of sequencing errors in the SNP matrix if H is considered as the true

haplotypes. That is,

sc(H,M) =
∑

i=1,...,m

min
p=1,..,k

(∑
j=1,...,n

d(M [i, j], Hp[j])
)
, (16)

where d(., .) is the dissimilarity function given in Equation 2. The MEC

rate ec(H,M) is the minimum sequencing error rate of the corresponding

DNA reads at the SNP loci if H is considered as the true haplotypes, i.e.
ec(H,M) = sc(H,M)/ the number of non- ‘-’ elements of M .

The detailed test results on all 14 individual contigs are given in Tables

S1-S14 of the Supplementary Materials. H-PoPG, H-PoP, HapCompass

and SDhaP were able to reconstruct the haplotypes from the SNP matrices

for all contigs, but the performance of HapCompass was clearly inferior to

the other algorithms. H-PoPG and HapTree achieved similar MEC rates.

Without the genotype constraint, SDhaP had less MEC rates while H-PoP

obtained the least MEC rates. However, HapTree aborted with run-time

errors on the data of contigs 6, 8, 15, 17, and 21, and failed to terminate in

seven days on the data of contig 19. The SNP matrices of contigs 6, 8, 15,

17, 19 and 21 consist of 64223 rows and 12226 columns (i.e. SNPs). The

total number of non-‘-’ elements is 448619, the average read coverage of

each SNP is 36.7, and the average number of non-‘-’ elements in a row

(i.e. an SNP read) is 7.0. All algorithms except HapTree reconstructed

20 disjoint blocks of haplotypes on these contigs, with the average block

length being 611.3 SNPs. The test results on the 6 contigs are summarized

in Table 1.

The SNP matrices of the remaining 8 contigs (contigs 1, 2, 4, 7, 10,

12, 16 and 18) consist of 13943 rows and 4096 columns (SNPs). The total

number of non-‘-’ elements is 115371, the average read coverage of each

SNP is 28.2, and the average number of non-‘-’ elements in a row (an SNP

read) is 8.3. All algorithms reconstructed 98 disjoint blocks of haplotypes

on these contigs, with the average block length being 41.8 SNPs. The test

results on the 8 contigs are presented in Table 2.

 by guest on A
ugust 17, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

6

Table 1. Comparison of the performance of H-PoPG, H-PoP, HapCompass

(HapC in the table) and SDhaP on the real data corresponding to contigs 6, 8,

15, 17, 19 and 21 of triploid AWRI1499.

k = 3 k = 2

H-PoPG H-PoP HapC SDhaP H-PoP

MEC 8867 3891 22822 8186 28400

MEC rate (%) 1.98 0.87 5.08 1.82 6.33

Phased SNPs 12223 12160 12226 12226 12210

Time (s) 19.1 13.9 25237.9 41425.9 7.5

Memory (GB) 8.2 8.2 43.5 32.4 4.3

Table 2 shows that when regarding AWRI1499 as a diploid (i.e. set

k = 2), the MEC rate of H-PoP was 4.33%, which is much larger than the

raw single base sequencing error rate of 2.23% shown in the Supplementary

Figure 8 of Margulies et al. (2005). This suggests that we could perhaps use

H-PoP to help determine the ploidy of an organism by trying differentk and

comparing the MEC rate and DNA sequencing error rate. When regarding

AWRI1499 a triploid, without applying the genotype constraint, the MEC

rate 0.43% achieved by H-PoP was the least, about a half of that of SDhaP.

With the genotype constraint, the MEC rate 1.28 of H-PoPG was a little

better than that of HapTree. The MEC rate 3.25 of HapCompass was the

largest, which suggests that the reconstructed haplotypes of HapCompass

may be inaccurate. The phased SNPs of HapTree, HapCompass and SDhaP

are 4096, while two of these SNPs were not phased by H-PoPG since

it does not perform phasing at loci that are not covered by reads in the

corresponding groups. As for running time, H-PoP and H-PoPG were

more than 40 times faster than HapTree, HapCompass and SDhaP. The

maximum run-time (resident) memory used by HapCompass and SDhap

was more than 20GB, while the other algorithms needed only less than

3GB memory.

3.2 Results on Simulated Data

We generated aligned SNP reads of a polyploid genome as follows. First,

k genomes were generated based on the real contigs and VCF files of

AWRI1499. Given a contig as the haplotype template and a corresponding

VCF file, we generated k copies of the contig as the initial k genomes.

For each heterozygous SNP in the VCF file, a genotype g (the number

of alternative alleles) of the SNP was generated randomly following a

uniform distribution from 1 to k − 1. Then g genomes were randomly

selected from the k genomes and their alleles at the SNP locus were set as

the alternative alleles, while the other genomes were set as the reference

alleles. The generatedk genomes were saved in a FASTA format file named

k-ploid.fa. Second, we used ART (Huang et al., 2012), a next-generation

sequencing read simulator, to generate simulated reads from the the k

genomes.

To simulate the real data of AWRI1499, we ran ART with the 454 GS

FLX Titanium platform profile that came with the simulator to generate

single-end reads and paired-end reads. ART requires a parameter, the

coverage c of each haplotype, to generate single-end reads, and three

parameters, the coverage c of each haplotype, the mean insert length f

and the standard deviation σ of insert length, to generate paired-end reads.

In the following tests without explicit specification, f was set as 800 and

σ was set as 150 according to the distribution of the reads in the real data.

The single-end and paired-end reads in the same dataset were generated

by ART with the same coverage parameter.

Correct phasing rate (Rc), and perfect solution rate (Rp) will be used

to measure the phasing accuracy of the k haplotypes reconstructed by an

algorithm. When the genotype of the reconstructed haplotypes equals to

the original genotype, another measure vector error rate (Rv) (Berger

et al., 2014) is used too. Let the set of k haplotypes reconstructed by an

algorithm be H = {H1, H2, ..., Hk} and the set of true haplotypes be

Table 2. Comparison of the performance of H-PoPG (H-PG in the table), H-PoP,

HapTree (HapT in the table), HapCompass (HapC in the table) and SDhaP on

the real data corresponding to contigs 1, 2, 4, 7, 10, 12, 16 and 18 of triploid

AWRI1499.

k = 3 k = 2

H-PG H-PoP HapT HapC SDhaP H-PoP

MEC 1471 497 1487 3748 1085 4991

MEC rate (%) 1.28 0.43 1.29 3.25 0.94 4.33

Phased SNPs 4094 4061 4096 4096 4096 4082

Time (s) 6.5 4.4 371.5 575.8 345.3 4.4

Memory (GB) 2.2 2.2 1.3 39.1 25.6 0.8

H∗ = {H∗
1 , H

∗
2 , ..., H

∗
k}. Let H be a one-to-one mapping from H to

H∗. Define M(H) =
∑k

i=1

∑n
j=1 s(Hi[j],H(Hi)[j]), where s is the

similarity function given in Equation (1). The correct phasing rate Rc is

defined as follows:

Rc(H) = max
H

M(H)/nk,

where n is the number of phased SNPs. For the example, in Figure 3,

the correct phasing rate Rc(H) = 10/12. The perfect solution rate is

Rp = nc/k, wherenc is the number of haplotypes correctly reconstructed

(i.e. they are exactly the same as the true ones) by the algorithm. For

example, the perfect solution rate of H in Figure 3 is 1/3.

The vector error measure is a generalization of the switch error measure

for diploid haplotype assembly to polyploid phasing. The vector errors

in k reconstructed haplotypes are defined in (Berger et al., 2014) as the

minimum number of segments on all chromosomes for which a switch

must occur. To make it easy to understand, we give another equivalent

definition of the measure here. A one-to-one mapping H from H to H∗

is called a matching at locus j if
∑k

i=1 d(Hi[j],H(Hi)[j]) = 0. The

distance d(H1,H2) between two mappings H1 and H2 is defined as∑k
i=1 I(H1(Hi) �= H2(Hi)), where I is an indicator function (i.e. I(a)

= 1 if a is a true statement and I(a) = 0 otherwise). When the genotypes

of H and H∗ are equal, there exist a series of one-to-one mappings M =

{H1, ...,Hn} such that Hj is a matching at locus j for j = 1, ..., n, and

such a sequence is called a matching sequence. For a matching sequence

M, the total number of changes between adjacent matchings is Tc(M) =∑n−1
j=1 d(Hj ,Hj+1). The number of vector errors ev in H against H∗

are defined as:

ev(H) = min
M is a matching sequence

Tc(M).

The number of vector errors ev can be calculated by a dynamic

programming algorithm in time O(n(k − 1)!2), which is faster than the

method used in (Berger et al., 2014) with time complexity O(kn2), when

k is small andn is big. Please see Figure S3 of the Supplementary Materials

for the the pseudocode of the dynamic programming algorithm.

The vector error rate Rv is defined as ev/n. For example, in Figure

3, there is a matching sequence M = {H1,H2,H3,H4}, where H1 =

{H1 → H∗
2 , H2 → H∗

1 , H3 → H∗
3 } and H2 = H3 = H4 = {H1 →

H∗
3 , H2 → H∗

1 , H3 → H∗
2 }. It is easy to see that Tc(M) = 2, the

number of vector errors in H is 2 and the vector error rateRv = 2/4 = 0.5.

To choose an appropriate weight w for H-PoPG, we tested its

performance with different w from 0.8 to 1.0, and compared it with

HapTree and HapCompass. We used the first contig of AWRI1499 as

the haplotype template and ran ART with c = 2 to generate 100 triploid

read data sets (each consisting of a set of single-end reads and a set of

paired-end reads). After alignment to the contig and deleting alleles at

homozygous SNP loci and reads that cover fewer than 2 heterozygous

SNP loci, we obtained 100 SNP matrices, each of which has 449 columns

 by guest on A
ugust 17, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

7

Fig. 3. An simple illustration of correct phasing rate, perfect solution rate and vector error

rate. In this example, the correct phasing rate Rc of the reconstructed haplotypes H is

10/12, the perfect solution rate Rp = 1/3 and the vector error rate Rv = 2/4.

(a) Vector error rate (b) Perfect solution rate

(c) Correct phasing rate (d) Phased SNP rate

(e) Running time (f) Max resident memory

Fig. 4. Comparison of the performance of H-PoPG, HapTree and HapCompass on

simulated triploid (k = 3) 454 GS FLX Titanium sequencing data. Various weights from

0.8 to 1.0 were considered for the parameter w in H-PoPG.

(heterozygous SNPs). The average number of rows (SNP reads) of an SNP

matrix is 394.08, the average number of non-‘-’ values of each row (called

the SNP read average length) is 13.4, and the average number of non-‘-’

values of each column (regarded as the SNP read coverage) is 11.7.

The test results are showed in Figure 4. When the weight w was set

as 0.9, H-PoPG reached the best performance among the three algorithms

according to Figure 4 (a) in vector error rate, Figure 4 (b) in perfect solution

rate and Figure 4 (c) in correct phasing rate. Figure 4 (d) shows that the

rate of phased SNPs (i.e. the phased SNPs to total SNPs ratio) of HapTree

and HapCompass is the best at 99.3%, while the phased SNP rates of H-

PoPG with different weights are near 98.5%. Figures 4 (e) and (f) show

that the running time and memory of H-PoPG varied little as the weight

changes and H-PoPG used much less time and memory than HapTree and

HapCompass. In the following experiments, w was set as 0.9 for H-PoPG

and H-PoP as the default value. Since HapCompass ran very slow and

its performance was clearly inferior to H-PoPG and HapTree, it was not

included in the tests.

(a) Vector error rate (b) Perfect solution rate

(c) Correct phasing rate (d) Phased SNP rate

(e) Running time (f) Max resident memory

Fig. 5. Comparison of the performance of H-PoPG, HapTree and SDhaP on simulated

triploid (k = 3) 454 GS FLX Titanium sequencing data. The SNP read coverage increased

from 11.7 to 23.7, 35.4 and 47.1, and the average SNP length was about 13.5.

We increased c from 2 to 4, 6 and 8, and generated SNP matrices

with SNP read coverage changing from 11.7 to 23.7, 35.4 and 47.1 to

test H-PoPG, H-PoP, HapTree and SDhaP. Figure 5 presents the test

results. Without genotype information, the genotypes of the k haplotypes

reconstructed by SDhaP and H-PoP were often different from that of the

real k-haplotypes and hence vector error rate could not be used to measure

the performance of SDhaP and H-PoP. When the coverage increased, the

vector error rates, the perfect solution rates and the correct phasing rate of

all algorithms improved. The vector error rates of H-PoPG are less than

a half of those of HapTree, and the perfect solution rates of H-PoPG and

H-PoP are clearly higher than those of HapTree and SDhaP. In the test with

SNP read coverage 47.1, HapTree reached the highest correct phasing rate,

while in the other tests H-PoPG performed best in term of correct phasing

rate. HapTree and SDhaP phased the most SNPs, while the phased SNPs

of H-PoPG were a little fewer than those of HapTree and SDhaP. In the

test with SNP read coverage 11.7, the phased SNP rate of H-PoP was the

lowest. However, even in the worst case, H-PoP phased more than 96%

of the SNPs. In terms of efficiency, the average running times of H-PoPG

and H-PoP were less than 2 seconds, which is obviously less than those

of HapTree and SDhaP. H-PoPG and H-PoP used much less memory than

HapTree and SDhaP when the coverage was 11.7, and HapTree used the

least amount of memory in the other three cases. The memory requirement

of SDhaP was about 26 GB, and it did not change much in different tests

(including the tests below), while the memory required by H-PoPG and

H-PoP was less than 3 GB in all four cases. It is interesting to observe that

HapTree spent much more time and memory to handle the test data with

coverage 11.7 than other data with deeper coverages.

We varied k from 4 to 6 to test the performance of the algorithms

on reconstructing the haplotypes of a tetraploid, pentaploid or hexaploid

 by guest on A
ugust 17, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

8

� � �
��

��

��
��

��
��

��
��

�������

����	
���

�
�
�
��
��
��
��
�
��
��
��

�

(a) Vector error rate

� � �

���

���

���
��������

�������

����	
��

��
���

�
�
��
�
�
��
�
	

�
��
	

��
�
��

�

(b) Perfect solution rate

� � �
���

���

���

���

	��

�������� ������� ����	
��� ��
���

�
�
��
�
�
��
�
	

�
�

�
��

��

�

(c) Correct phasing rate

� � �
���

���

���

�
�
�
�
�
�
��
	
�
�
�

�
��

�

(d) Phased SNPrate

� � �
��

��

��
�

��
�

��
�

��
� ��������

�������

����	
��

��
���

�
�
�
�
��
�
��
��

	
�

�
�

�

(e) Running time

� � �
��

��

��
�

��
�

��
�

��������� �������

����	
���� ��
���

�
�
�
��

�
�
�
�	
�

�
�

�

(f) Max resident memory

Fig. 6. Comparison of the performance of H-PoPG, H-PoP, HapTree, and SDhaP on

simulated tetraploid (k = 4), pentaploid (k = 5) and hexaploid (k = 6) data. The

number of SNPs was 449, and the average SNP read length was 13.5. The SNP read

coverage of the simulated data with k = 4(5, 6) was 47.1 (58.9, 70.8, respectively).

genome. Figure 6 illustrates the test results on simulated data generated

by ART with c = 6. When k = 5, H-PoPG was superior to the other

algorithms in terms of vector error rate, perfect solution rate and correct

phasing rate. When k = 4 and 6, HapTree was the best in terms of vector

error rate and correct phasing rate, but H-PoPG was not far behind. On

the other hand, the running time and memory requirement of HapTree

increased at a significantly faster rate than those of the other algorithms

when k increased. When k = 6, HapTree ran for 1301 seconds and used

63 GB memory, while H-PoPG used only 23 seconds and 4 GB memory.

As for the phased SNP rate, there is very little difference between the

algorithms, and it was above 99.3% for all algorithms.

Figure 7 shows the test results on triploid data when we changed

the haplotype template from the first contig of AWRI1499 to the

concatenations of the first two contigs or the first four contigs. The number

of heterozygous SNPs of the haplotype template increased from 449 to

1145 and 1739, respectively. Figure 7 illustrates that H-PoPG had the best

performance in terms of vector error rate, perfect solution rate and correct

phasing rate, while SDhaP was the worst in terms of perfect solution rate

and correct phasing rate. The phased SNP rates of HapTree and SDhaP

are a little higher than those of H-PoPG. The running time of HapTree

increased significantly with the increased haplotype template length, while

the running time of H-PoPG and H-PoP increased slowly. The running

times and memories of H-PoPG and H-PoP are much less than those of

HapTree and SDhaP.

The length of reads generated by ART is limited by the build-

in sequencing platform quality profile. To test the performance of the

algorithms on long reads that future sequencing technologies might

produce, we concatenated multiple copies of the Illumina HiSeq 2500

platform quality profile contained in the ART package and generated a

simulated future sequencer quality profile file to avoid the read length limit

of ART. We concatenated all 14 contigs of the first scaffold of AWRI1499

into a template haplotype consisting of 22178 heterozygous SNPs, and

using the new quality profile, we ran ART to generate reads with parameters

r (the length of reads to be simulated), f (the mean length of inserts for

paired-end reads), σ (the standard deviation of DNA fragment sizes), and

c (the read coverage of each haplotype). We fixed c as 12, σ as 50, and

varied (r, f) from (500, 2000) to (1000, 3000) and (2000, 6000), and the

average length l of the generated SNP reads changed from 40 to 80 and

160.

Figure 8 shows the test results. Since HapTree ran slowly when tested

on the data with l = 80 and l = 160, in each case we divided 100 test

datasets into 10 subsets and tested HapTree on 10 different nodes of the

(a) Vector error rate (b) Perfect solution rate (c) Correct phasing rate

(d) Phased SNP rate (e) Running time (f) Max resident memory

Fig. 7. Comparison of performance of H-PoPG, H-PoP, HapTree and SDhaP on simulated

triploid (k = 3) 454 GS FLX Titanium sequencing data with the number of SNPs changed.

The average SNP read length and coverage of the simulated data with 449 (1145, 1739)

SNPs were 13.4 (14.1, 14.7) and 11.7 (11.9, 11.9), respectively.

�� �� ���
��

��

��
��

��
��

�������� ����	
��

�
�
�
��
��
��
��
�
��
��
��

�
�������������

(a) Vector error rate

�� �� ���
���

���

���

���

���

���

�������� ������� ����	
��� ��
���

�
�
��
�
�
��
�
	

�
��
	

��
�
��

���������������

(b) Perfect solution rate

�� �� ���
���

���

���

���

���

�
�
��
�
�
��
�
	

�
�

�
��

��

���������	�
��

(c) Correct phasing rate

�� �� ���
���

���

�
�
�
�
�
�
��
	
�
�
�

�
��

���������	�
��

(d) Phased SNP rate

�� �� ���
��

�

��
�

��
�

��
�

��
�

��
�

��������� �������� ����	
���� ��
���

�
�
�
�
��
�
��
��

	
�

�
�

���������������

(e) Running time

�� �� ���
�

��

��

��

��

���

�
�
�
��

�
�
�
�	
�

�
�

���������	�
��

(f) Max resident memory

Fig. 8. Comparison of performance of H-PoPG, H-PoP, HapTree and SDhaP on simulated

triploid (k = 3) sequencing data with different SNP read lengths. Each haplotype contained

22178 heterozygous SNPs. When the average SNP read length was 40 (80, 160), the average

number of SNP reads and the SNP read coverage were 19719.2 (9827.7, 4877.3) and 35.6

(35.5, 35.2), respectively.

Linux cluster, each with a subset. As for the test with l = 80, since HapTree

could only finish 4 subsets in 7 days, the results of HapTree in Figure 8

are the averages of its results on the 4 subsets. As for the test with l =

160, HapTree was unable to terminate on any subset in 7 days and hence

its results are missing in Figure 8. Figure 8 shows again that H-PoPG is

the best in terms of vector error rate and perfect phasing rate. The correct

phasing rates of H-PoPG, H-PoP and HapTree were all more than 99.8%,

while those of SDhaP were less than 94%. With regard to running time and

memory, H-PoPG and H-PoP were clearly more efficient than the other

two algorithms.

4 Conclusion
With the rapid development of sequencing technologies, reconstructing

the multiple haplotypes of a polyploid from DNA sequencing reads is

becoming more and more practical. In this paper, we modeled polyploid

haplotyping as a combinatorial optimization problem to partition the input

reads, called the Polyploid Balanced Optimal Partition (PBOP) problem.

Since the problem is NP-hard, we developed a heuristic algorithm H-

PoP for it. When the genotype information is available, we also proposed

a genotype constrained version, called PBOPG, of the problem and

designed a corresponding heuristic algorithm H-PoPG. Note that these

 by guest on A
ugust 17, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

9

methods are very different from our previous methods for dealing with

diploids (Xie et al., 2012) since they consider the distance between the

consensus haplotypes of different groups while the previous methods

for diploids calculates the distance between reads belonging to different

groups. We compared our algorithms with three recent state-of-the-art

polyploid haplotyping algorithms SDhaP, HapTree and HapCompass on

both simulated and real data. Our extensive test results showed that H-

PoPG was generally more accurate in reconstructing haplotypes than

SDhaP, HapTree and HapCompass, and H-PoP was able to achieve

comparable (though slightly worse) performance without the genotype

information. Furthermore, H-PoPG and H-PoP ran much faster than

SDhaP, HapTree and HapCompass, and could effectively handle long reads

and deep read coverage.

Our experiments on real data also showed that H-PoP could be used

to infer the number of chromosomes of an organism (i.e. its ploidy), since

when the parameter k is set smaller than the ploidy of the organism, the

MEC rate of H-PoP would be much larger than the sequencing error rate.

Funding
This work has been supported in part by the National Natural Science

Foundation of China under grant NO. 61370172 and US National Science

Foundation grant DBI-1262107.

References
Aguiar, D. and Istrail, S. (2013). Haplotype assembly in polyploid genomes and

identical by descent shared tracts. Bioinformatics, 29(13), i352–60.

Bafna, V., Istrail, S., Lancia, G., and Rizzi, R. (2005). Polynomial and APX-

hard cases of the individual haplotyping problem. Theoretical Computer Science,

335(1), 109–125.

Berger, E., Yorukoglu, D., Peng, J., and Berger, B. (2014). HapTree: a novel Bayesian

framework for single individual polyplotyping using NGS data. PLoS Comput Biol,
10(3), e1003502.

Bonizzoni, P., Dondi, R., Klau, G. W., Pirola, Y., Pisanti, N., and Zaccaria, S. (2015).

On the fixed parameter tractability and approximability of the minimum error

correction problem. volume 9133 of LNCS, pages 100–113. Springer International

Publishing.

Browning, S. R. and Browning, B. L. (2011). Haplotype phasing: existing methods

and new developments. Nat Rev Genet, 12(10), 703–14.

Chen, Z. Z., Deng, F. and Wang, L. (2013). Exact algorithms for haplotype assembly

from whole-genome sequence data. Bioinformatics, 29(16), 1938–45.

Cilibrasi, R., van Iersel, L., Kelk, S., and Tromp, J. (2007). The complexity of the

single individual SNP haplotyping problem. Algorithmica, 49(1), 13–36.

Curtin, C. D., Borneman, A. R., Chambers, P. J., and Pretorius, I. S. (2012). De-novo

assembly and analysis of the heterozygous triploid genome of the wine spoilage

yeast Dekkera bruxellensis AWRI1499. PLoS One, 7(3), e33840.

Das, S. and Vikalo, H. (2015). SDhaP: haplotype assembly for diploids and polyploids

via semi-definite programming. BMC Genomics, 16, 260.

Duitama, J., Huebsch, T., McEwen, G., Suk, E.-K., and Hoehe, M. R. (2010).

ReFHap: a reliable and fast algorithm for single individual haplotyping. In

Proceedings of the First ACM international Conference on Bioinformatics and
Computational Biology, pages 160–169, Niagara Falls, New York. ACM.

Genovese, L. M., Geraci, F., and Pellegrini, M. (2008). SpeedHap: an accurate

heuristic for the single individual SNP haplotyping problem with many gaps, high

reading error rate and low coverage. IEEE/ACM Trans Comput Biol Bioinform,

5(4), 492–502.

He, D., Choi, A., Pipatsrisawat, K., Darwiche, A., and Eskin, E. (2010).

Optimal algorithms for haplotype assembly from whole-genome sequence data.

Bioinformatics, 26(12), i183–90.

Huang, W., Li, L., Myers, J. R., and Marth, G. T. (2012). ART: a next-generation

sequencing read simulator. Bioinformatics, 28(4), 593–4.

Lancia, G., Bafna, V., Istrail, S., Lippert, R., and Schwartz, R. (2001). SNPs

problems, complexity and algorithms. In F. M. auf der Heide, editor, Proc. Ann.
European Symp. on Algorithms (ESA), volume 2161 of Lecture Notes in Computer
Science, pages 182–193, Berlin/Heidelberg. Springer.

Leitch, A. R. and Leitch, I. J. (2008). Genomic plasticity and the diversity of polyploid

plants. Science, 320(5875), 481–3.

Li, H. (2011a). Improving SNP discovery by base alignment quality. Bioinformatics,

27(8), 1157–8.

Li, H. (2011b). A statistical framework for SNP calling, mutation discovery,

association mapping and population genetical parameter estimation from

sequencing data. Bioinformatics, 27(21), 2987–93.

Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics, 25(14), 1754–60.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,

Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and

samtools. Bioinformatics, 25(16), 2078–9.

Lippert, R., Schwartz, R., G.Lancia, and Istrail, S. (2002). Algorithmic strategies

for the single nucleotide polymorphism haplotype assembly problem. Brief.
Bioinform, 3(1), 1–9.

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., et al. (2005). Genome

sequencing in microfabricated high-density picolitre reactors. Nature, 437(7057),

376–80.

Panconesi, A. and Sozio, M. (2004). Fast hare: a fast heuristic for single

individual SNP haplotype reconstruction. In I. Jonassen and J. Kim, editors,

Proc. WABI , volume 3240 of Lecture Notes in Computer Science, pages 266–277,

Berlin/Heidelberg. Springer.

Patterson, M., Marschall, T., Pisanti, N., van Iersel, L., Stougie, L., Klau, G. W.,

and Schonhuth, A. (2015). WhatsHap: weighted haplotype assembly for future-

generation sequencing reads. J Comput Biol, 22(6), 498–509.

Pirola, Y., Zaccaria, S., Dondi, R., Klau, G. W., Pisanti, N., and Bonizzoni, P.

(2015). HapCol: accurate and memory-efficient haplotype assembly from long

reads. Bioinformatics, 10.1093/bioinformatics/btv495.

Renny-Byfield, S. and Wendel, J. F. (2014). Doubling down on genomes: polyploidy

and crop plants. Am J Bot.
Wang, J., Xie, M., and Chen, J. (2010). A practical exact algorithm for the individual

haplotyping problem MEC/GI. Algorithmica, 56(3), 283–296.

Wang, R. S., Wu, L. Y., Li, Z. P., and Zhang, X. S. (2005). Haplotype reconstruction

from SNP fragments by minimum error correction. Bioinformatics, 21(10), 2456–

2462.

Xie, M., Wang, J., and Chen, J. (2008). A model of higher accuracy for the individual

haplotyping problem based on weighted SNP fragments and genotype with errors.

Bioinformatics, 24(13), i105–13.

Xie, M., Wang, J., Chen, J., Wu, J., and Liu, X. (2010a). Computational models and

algorithms for the single individual haplotyping problem. Current Bioinformatics,

5(1), 18–28.

Xie, M., Wang, J., and Chen, J. (2010b). A practical parameterised algorithm for

the individual haplotyping problem MLF. Mathematical Structures in Computer
Science, 20(5), 851–863.

Xie, M., Wang, J., and Jiang, T. (2012). A fast and accurate algorithm for single

individual haplotyping. BMC Systems Biology, 6(Suppl 2), S8.

 by guest on A
ugust 17, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

