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Abstract—Electric vehicles (EVs) have been widely acknowl-
edged as an effective solution to alleviate the fossil fuel shortage
and environmental pressure in modern metropolises. To foster
the large-scale integration of EVs, transportation electrification
is becoming an emerging trend. This paper proposes a compre-
hensive model for the expansion planning of urban electrified
transportation networks (ETNs), which determines the best
investment strategies for the transportation network (TN) and
the power distribution network (PDN) simultaneously, including
the sites and sizes of new lanes, charging facilities, distribution
lines, and local generators. The steady-state distribution of traffic
flow in the TN is characterized by the Nesterov user equilibrium
(NUE). The operating condition of the PDN is described by
linearized branch power flow (BPF) equations. To consider the
interdependency between the TN and PDN created by the charg-
ing behavior of EVs, the power demands of on-road charging
facilities is assumed to be proportional to the road traffic flow.
The expansion planning model is formulated as a mixed integer
nonlinear program (MINLP) with NUE constraints. In order to
retrieve a global optimal solution, it is further transformed into
an equivalent mixed integer convex program (MICP) without
exploiting approximation. Case studies on a test ETN corroborate
the proposed model and method.

Index Terms—electric vehicle, expansion planning, interde-
pendency, power distribution network, electrified transportation
network, Nesterov user equilibrium

NOMENCLATURE

The major symbols and notations used throughout the paper
are defined below for quick reference. Others are defined after
their first appearance as required.

A. Sets
Er Set of distribution lines in PDN.
Ep Set of electrical buses in PDN.
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Charging facilities served by bus i / En.
Set of child buses of bus i / E.
T Set of links (roads, or arcs) in TN.

TN Set of nodes (intersections) in TN.

TH Set of origin nodes, 75 < T.

Ty Set of destination nodes, Ty < Ty.

DZE‘S Set of origin-destination (O-D) pairs, which is
defined as DI = Y(r,s)r / TE s / Ty

K, Set of available paths between O-D pair (r, s).

B. Parameters

a;,b; Production cost parameters of generator at bus 7.

Ca Traffic flow capacity of existing link a.

nee Number of existing charging facilities on link a.

P Active power flow capacity of distribution line [.

Pr,, Cost of building one additional road on link a.

Pr Cost of building one charging facility on link a.

Pr? Cost of building one generator at bus 4.

Przj Cost of building one additional distribution line
between buses ¢ and j.

pde Traditional power demand at bus .

p;F Active power generation capacity at bus i.

qé Reactive power demand at bus .

q;r Reactive power generation capacity at bus i.

qts Traffic demand (trip rate) between O-D pair (7, s).

7t ; Resistance of line ! connecting buses 4 and j.

S Complex power flow capacity of line .

t0 Non-congested travel time on link a.

Vo Voltage magnitude at the slack bus.

V.- Lower bound of voltage magnitude at bus .

174 Upper bound of voltage magnitude at bus <.

Xt Reactance of line [ connecting buses 4 and j.
The link-path incidence matrix.
re Elements of A, if path k& between O-D pair (r, s)

passes link a, /7 = 1, otherwise d77 = 0.

a

K Discount factor, which leverages long-term invest-
ment cost and short-term operation cost.

w Monetary value of vehicle travel time.

n Charging rate of traffic flow.

p Contracted energy price.

Ac, Traffic flow capacity of the expanded link.

ApS Power capacity of the expanded charging facility.
Ap" Active generation capacity of the expanded unit.
Ag™ Reactive generation capacity of the expanded unit.



C. Variables
s Traffic flow on path k between O-D pair (r, s).

ng Positive integer which indicates how many charg-
ing facilities should be invested in on link a.

nd Positive integer which indicates how many gener-
ation units should be invested in at bus <.

pd Total active power demand at bus i.

p? Total active power generation at bus .

Pilj Active power flow in distribution line [.

q7 Total reactive power generation at bus 4.

ﬁj Reactive power flow in distribution line [.

Vi Voltage magnitude at bus <.

vt Additional continuous variable for linearizing the
total vehicle travel time function.

vffrll Additional continuous variable for linearizing bi-
linear terms in the voltage drop equation.

vfjlfb Additional continuous variable for linearizing bi-
linear terms in the voltage drop equation.

Tq Aggregated traffic flow on link a.

2t Binary variable of road expansion; the number of
new roads to be invested in on link a is expressed
by a binary expansion ZTIYEO nzt .

2 Binary variable of distribution line expansion be-
tween the head bus 7 and the tail bus j; the number
of new lines to be invested in is given by a binary
expansion Zﬁfio Z"Zflf.

m, pu, A Dual variables of the traffic assignment problem.

D. Abbreviations

BPR Bureau of Public Roads.

BPF Branch power flow.

ETN Electrified transportation network.
EV Electric vehicles.

KKT Karush-Kuhn-Tucker.

LMP  Locational marginal price.

LP Linear programming

MICP  Mixed integer convex program.

MINLP Mixed integer nonlinear program.

MPEC Mathematic program with equilibrium constraints.
NUE  Nesterov user equilibrium.

OPF Optimal power flow.

PDN Power distribution network.

SO Social optimum.

TAP Traffic Assignment Problem.

TN Transportation network.

UE User equilibrium.

I. INTRODUCTION

HE rapid commercialization of electric vehicles (EVs)

[1] has created an emerging trend of transportation elec-
trification [2]-[5], which calls for the installation of brand-
new battery charging/swapping infrastructures on the urban
transportation network (TN) to support the integration of
EVs. Coordinated charging of EVs also helps the power
system accommodate high penetration of renewable energy
[6]-[8]. However, the inappropriate placement and operation
of charging facilities may create negative impacts on the

power distribution network (PDN) [9], [10]. In this regard,
most existing research focuses on the optimal deployment of
charging or swapping stations, following either of the two
paradigms below.

In power system oriented studies, operating requirements
of the PDN are usually considered in detail. Along this line,
a two-stage procedure for planning EV charging stations in
distribution systems is proposed in [11], in which the candidate
sites for charging facilities are determined in the first stage
subject to their service radius and environmental considera-
tions, and the optimal capacity that minimizes the total life-
cycle cost is calculated. A multi-objective model for charging
station planning is suggested in [12]. By jointly optimizing a
maximal vehicle flow capturing problem and an optimal power
flow (OPF) problem, the resulting strategy is advantageous in
covering a larger service area and minimizing power losses
and voltage deviations. The model is further improved in
[13] by incorporating the Traffic Assignment Problem (TAP),
which captures the system-level vehicle flow distribution in
the transportation network (TN). Another optimization model
is devised in [14] for locating and sizing battery swapping
stations in distribution systems, and the charging control
strategy is also discussed. The charging station placement
problem is formulated as an MINLP in [15]. Taking the
special structure into account, four methods are suggested to
solve the proposed model. An agent-based model for cost-
effective siting of electric vehicle charging infrastructure is
presented in [16], in which the travel survey data and traffic
demand forecasts are used to produce specific mobility pat-
terns. Recently, simultaneous expansion planning of charging
stations and PDN infrastructures has been addressed in [17]
and [18] encompassing financial, technical, and environmental
considerations.

In transportation system oriented studies, monitoring the
vehicular flow going through each road is the main concern.
Along this line, a multi-period planning model is proposed in
[19] to expand EV charging stations, which incorporates topo-
logical dynamics of the TN, as well as the route choice of EVs
and their limited travel range. To capture the selfish behavior
when drivers choose their routes and recharging plans, a multi-
class network equilibrium model is proposed in [20], based on
which the charging station location problem is formulated as a
mathematical program with equilibrium constraints (MPEC).
Following a similar framework, the deployment of wireless
charging facilities for capturing the maximum traffic flow is
investigated in [21], in which the routing choice behavior of
EVs is modeled by a stochastic user equilibrium. Locating
multiple types of charging stations is studied in [22] using the
maximum coverage concept. In addition, road capacity expan-
sion planning is a classical problem in transportation research
and has been extensively discussed, such as in [23]-[25]. It
is usually formulated as a mathematical program subject to
traffic flow equilibrium constraints, which has already been
very challenging to solve. Joint planning of road and on-road
charging infrastructure is attracting more and more attention
in recent years, but published work is rare.

Most of the aforementioned research focuses on either the
PDN or the TN. In the former category, the traffic system



condition is usually simplified or ignored, and the driving
patterns of EVs are assumed to be exogenously given, either
in a deterministic or stochastic manner. Such an assump-
tion is reasonable for instances where the local charging
demand profile can be predicted accurately or its probability
distribution is known, such as residential and office areas.
However, this is may no longer be the case for the system-
level study of the on-road charging infrastructure of the ETN.
In transportation theory, although the origins and destinations
of vehicles can be specified, multiple routes may exist for
traveling between origins and destinations, leading to different
traffic flow patterns and different charging demand patterns,
and finally the power flow of the PDN as well as its operation
is affected. Such interdependency has been well recognized
and studied by the transportation community, but the operating
details of the power system are usually ignored. Recently, a
systematic modeling framework and a hybrid simulation plat-
form for the interdependent transportation and power systems
are developed in [26] to study the impacts of EV charging
facilities on both networks. Analytical models for designing,
operation and optimization of such coupled networks are
still in great need. A comprehensive study on the expansion
planning of the ETN calls for interdisciplinary research. Along
this line, the traffic equilibrium constrained deployment of
public charging stations is investigated in [27], where the
stable distribution of traffic flows in the TN is determined from
a combined distribution and assignment model, while the PDN
is modeled by the direct-current OPF and offers electricity at
the locational marginal price (LMP). A similar framework is
adopted in [28] and [29] to study the pricing issue in ETNs.

This interdisciplinary research aims to comprehensively
address the expansion planning problem of ETNs and close
the gap in existing methods in three aspects:

1) The system-level modeling of the ETN which consists
of coupled TN and PDN, and accounts for their in-
terdependency. The mathematical formulations of both
infrastructures are different from those in existing lit-
eratures, and more dedicated for the strategic planning
research. In urban transportation system research, Beck-
mann’s formulation [30] for the static TAP has been the
reference model since 1960’s [31], and widely adopted,
such as in [13], [21], [23]-[25], [27]-[29]. Nesterov
and de Palma have noticed that some assumptions in
Beckmann’s model may not be entirely consistent with
reality. They propose a new TAP formulation in [32]
and [33]. It is shown in [34] that Beckmann’s model
and Nesterov’s model provide similar results when the
TN is not heavily congested. In this paper, Nesterov’s
model is employed to describe the stable traffic flow in
TNs, which is more suitable for addressing the planning
issue, since it incorporates an explicit bound that the
traffic flow on each road cannot exceed, and is also
advantageous in computation because of its linearity.
As for the PDN, we use the linearized branch power
flow (BPF) model developed in [35]-[37] to determine
the steady-state distribution of the bus voltage and line
power flow. Unlike the direct-current power flow model

2)

3)

used in [27], which assumes the voltage magnitudes
at all buses are equal to 1 and is suitable for high-
voltage power transmission systems, BPF treats the
magnitudes of bus voltages as variables; this approach is
more realistic for low-voltage PDNs, in which the line
resistance is comparable to the line reactance in per unit
value. The linearized BPF model provides satisfactory
accuracy for PDN operation and planning applications,
which has been justified in [38]-[40].

The expansion planning model of the ETN. As men-
tioned before, most current research only focuses on
one, or at most a few, of the items which are in need of
upgrading, such as the charging stations or roads, while
neglects the interdependency between TN and PDN. It
has already been acknowledged that the on-road charg-
ing system can introduce notable interdependency across
TNs and PDNs [41], hence infrastructures of TN (roads
or lanes) and PDN (on-road charging facilities, local
generators and distribution lines) should be coordinately
expanded. However, coordination is usually ignored or
partly simplified in most existing research, in spite of the
fact that distributed generation and charging stations are
simultaneously modeled in [17], substation-feeder coor-
dination is considered in [18]. Moreover, although road
capacity planning and power system planning have long
been studied separately for decades, they have seldom
been considered together, except for the first attempt in
[27], in which a network equilibrium model that jointly
considers the interactions among charging opportunities,
energy prices, and route choices of EVs in a coupled
TN and PDN is proposed. More precisely speaking,
although the impact of power system operation and LMP
is considered in [27] for deploying charging stations, the
work does not model the expansion planning of roads or
other PDN facilities. This paper proposes a comprehen-
sive model for the simultaneous expansion planning of
ETN infrastructures, including roads, on-road charging
facilities, generation units, and distribution lines, in a
coordinated manner for the first time. Unlike [12], [13]
and [21], in which the deployment of charging stations
aims to cover the largest possible service area, this work
assumes that the charging facilities can be built at the
side of each road and meet the local charging demand
on that link, or at pre-specified candidate sites.

The solution algorithm. Because of the presence of
interdependency between TN and PDN, the traffic equi-
librium, which is determined from an optimization
problem, is incorporated as constraints in the proposed
expansion planning model, giving rise to an MPEC
which has a two-level optimization structure and is
challenging to solve. In fact, even the instances which
only consider charging station planning have proved to
be very difficult; for example, the model studied in [11]
is a non-convex programming problem, the proposed
primal-dual interior point algorithm only finds a local
optimal solution; the multi-objective models in [12]—
[14] is solved by intelligent algorithms; and the MINLP
model in [15] is solved by certain heuristic methods



that rely on the specific problem structure. The genetic
algorithm used in [17] and the ordinal optimization
approach adopted in [18] also rely on a large number of
samples and may miss the global optimal solutions. By
using the primal-dual optimality condition transforma-
tion and linearization techniques from integer algebra,
the lower level TAP will be reduced to traditional non-
linear constraints, and the proposed optimization model
will be further reformulated as an equivalent MICP
without exploiting approximation; thereby a global op-
timal solution can be found by commercial solvers with
affordable computational expense, since the time horizon
of a planning problem is long.

The rest of this paper is organized as follows. The mathe-
matical models of TN and PDN will be briefly introduced in
Section II. The MPEC model of ETN expansion planning will
be presented in Section III, where the traffic equilibrium of the
TN is modeled through the NUE in the lower level, while all
the investment strategies and BPF constraints are considered
in the upper level. Its equivalent MICP will be formulated in
Section IV. The effectiveness of the proposed method has been
demonstrated in Section V through case studies on a test ETN
consisting of a TN with 20 links and a PDN with 20 buses.
Conclusions are drawn in Section VI.

II. MATHEMATICAL MODEL OF THE TN AND PDN
A. Transportation System Model

A brief introduction to transportation network model is
presented here. More details can be found in textbook [31].
The TN is represented by a connected graph G = [T, T 4]
where Ty is the set of nodes (intersections) and 1’4 is the set
of links (roads or arcs). Each link @ / T4 is associated with
a capacity limit ¢, (the maximal number of vehicles that can
pass this link per unit time) and a non-congested travel time
t0 (the travel time across this link at the speed limit). Given
a set of O-D pairs DEY, we are aware of the total traffic flow
qL, (also called the trip rate) leaving from the origin r and
traveling to its destination s, but at the current stage it is not
clear which route will be used. Each O-D pair (r,s) / DES
is connected by a set of routes, which is denoted by K,.s. The
traffic flows on link @ / T4 and path k& / K,4 are denoted
by z, and f]°, respectively. We define the indicator variable
ore = 1if link a is a part of path k, otherwise 07 = 0;
then the link flow z, and path flow f!° have the following

relationship:
Ta =Y Y [r0, {a /Ta (1.1)
k

s

or, in a compact form,

z=Af (1.2)

where coefficient matrix A = [075], {k / Kys,{(r,s) / DES,
{a / T, is the link-path incidence matrix, if path k between
O-D pair (r,s) passes link a, /3 = 1, otherwise, §73 = 0;
vector = [xq], {a / Ty vector f = [fI*], {k / K,s,
{(r,5) / DJS.

t1:10 01:4

t,=15 c,=4

Fig. 1. A simple TN modified from [31].

Moreover, the path flow should meet the traffic demand, i.e.,

S =dly {rs (1.3)
k€K, s
or, in a compact form,
Ef =4 (1.4)

where ¢' = [¢L,], {(r,s) / DI*®, and E is a matrix consist of
0 and 1 corresponding to the coefficients in (1.3).

An example modified from [31] is used to explain above
concepts and notations more intuitively. A simple TN is shown
in Fig. 1. The network includes 4 nodes and 4 links. O-D pair

01-Dy4 is connected by paths = and = ; the

trip rate is q14 = 2. O-D pair O2-Dy is connected by paths

= and = ; the trip rate is g4 = 3. The link

flows can be expressed by path flows as
o= fit 4 ft
oy = fit 4+ £
zy = fi' + fi
wy = fyt + [
and the flow conservation equations are given by

U ft =2
B+ ft=3

In transportation engineering, road travel time is the most
important metrics to measure congestions. Let ¢, denote the
travel time on link a; it is a function of the traffic flow. The
different descriptions of road travel latency lead to completely
different TAP models: Beckmann’s model and Nesterov’s
model, which will be briefly introduced below.

Assumptions in Beckmann’s model

The travel time on link @ is assumed to be a strictly
increasing function that depends only on its own vehicle flow
Zq, such as the following most widely used BPR function [42]

4
140.15 (”Z“) ] {a /Ta

to(xy) =12

a

where ¢, is the vehicle flow on link @ when ¢, = 1.15t2.
In some literature, it is also called the capacity of link a.
However, the capacity limit is not a mandatory constraint,
but is penalized by a quickly growing travel time if such a
constraint is violated. Some inconsistencies between the BPR
function and the reality of traffic congestion have been pointed
out in [32], [33].



1) A less important criticism relates to the strictly increas-
ing assumption for the latency function ¢, (z,). Clearly,
the travel time is a constant when the road is not
congested and every vehicle can move at the maximal
allowed speed.

2) It is clear that the vehicle flow on link a cannot be
arbitrarily large. Ignoring the mandatory road capacity
constraint may lead to infeasible solutions when the
traffic flow on a link is greater than its capacity.

3) Most important of all, there is a physical contradiction to
the monotonicity of ¢,(x,). According to the definition
of traffic flow: flow = speed C density, if the flow z,
is large, neither the speed nor the density can be very
small (it is not realistic to compensate for the drop in
speed with a dramatic increase in the density, because
every vehicle in motion has to maintain a safe distance
from the vehicle in front of it). As a result, by assuming
a maximal density of vehicles, a further increment of z,
must lead to a rise in the speed, and in turn result in a
drop in the travel time.

Assumptions in Nesterov’s model

To mitigate the discrepancy in the road latency function,
Nesterov and de Palma abandon making further assumptions
on the functional form of ¢,. Instead, they establish a new
TAP model based on two weaker assumptions:

A1l Traffic flow on a link cannot exceed its capacity, i.e.,

Tq 2 Cq,s {CL / Ta 2.1)

It should be mentioned that the capacity parameter c,
in Nesterov’s model is not necessarily the same as that
in Beckmann’s model.
There is no delay on a link where the traffic flow does
not reach its capacity; slowdown only occurs when the
traffic flow reaches its capacity, i.e.

Ty < Cq € Tg = tg

A2

Ty =2Cq € tg = tg 22)

We say link a is congested if ¢, > 2. Congestion occurs

in the following manner: when the traffic flow x, on certain
link a reaches its capacity c¢,, any additional vehicle will
slow down the speed of existing vehicles, thus the travel time
t, increases, while the total flow remains the same (but car
density increases). Al and A2 are weaker than the functional
assumption on the link travel time in Beckmann’s model.

Before proceeding to Nesterov’s TAP model, we clarify two

important concepts in traffic theory:

1) Social Optimum (SO) [43]. A traffic flow pattern reaches
an SO if the total travel time is minimized (also re-
ferred to as the second Wardrop Principle). This setting
requires a central agency which is eligible to decide a
travel plan for every driver, while all the drivers are
required to behave cooperatively so as to guarantee
the most efficient utilization of the entire transportation
system. SO is an ideal state for theoretical study, but is
unlikely to happen or implement in reality.

2) User Equilibrium (UE) [43]. Each driver selects his route
in order to minimize his own travel time (also referred

to as the first Wardrop Principle). In the UE pattern,
no traveler has the incentive to change his current route
unilaterally. UE captures the selfish behavior of vehicles
in urban transportation systems, and will be used in the
proposed ETN expansion planning model, since it better
fits the reality.

Nesterov’s traffic assignment model

Define vectors ¢ = [c,], {a / Ta, t° = [t°], {a / Ta, and
t = [ta], {@ / Ta. Suppose there is a central coordinator who
can manage the behavior of vehicles to reach an SO pattern.
In accordance with the definition of SO, the traffic flow vector
z and travel time vector must solve the following nonlinear
programming problem

min 27t (3.1
@, f it

st.x Af=0 3.2)

Ef=¢ (3.3)

T >c 34

[0, t=~t° (3.5)

where 27t =} o Tata is the total travel time, constraints (3.2)
and (3.3) are the compact forms of (1.1) and (1.3), respectively.
Inequalities (3.4) and (3.5) are the boundary constraints of
decision variables. Constraints (1.1) and (3.5) naturally suggest
x ~ 0. Based on this fact, it is clear that at the optimal solution,
t* =t whatever x appears to be. In view of this, we arrive
at Nesterov’s SO model, which is a linear program (LP):

Ini}l zTt0 4.1)
st.x Af=0 4.2)
Ef =4 4.3)
r>c (4.4)
f~0 4.5)

LP (4) indicates that no congestion happens in the SO pattern.
Please keep in mind that if the traffic demand exceeds the
transit capacity of the TN, constraints (4.2)-(4.5) will be
contradictive, and TAP (4) will be infeasible. In this paper,
the associating TAP will be always feasible because the road
capacity can be enlarged.

Next, we associate the capacity constraint (4.4) with respect
to a dual variable A\ = [\,], {a / T4, which can be interpreted
as a delay that the user would experience when using a
congested road, and formulate the Lagrange relaxation of SO
4) as

T ATL0 | AT ,
S AT+ X (Af o (5.1
st.Ef =q", f~0 (5.2)

For fixed A = 0, problem (5.1)-(5.2) can be decoupled into the
subproblems shown in (5.3)-(5.4) with respect to each each O-
D pair (r, s), since the capacity limitation is relaxed. Moreover,
the constant term A7 ¢ in the objective function can be omitted,



then the relaxed SO problem for O-D pair (r,5) / RES can
be written as

I}lln (t(] + S\)TArs‘frs (53)
st. B frS =gl f5 ~0 (5.4)
where f7* = [f/*],{k / K,s, notations A"* and E"* represent

the sub-matrices in A and E corresponds to O-D pair (7, s);
Problem (5.3)-(5.4) can be interpreted as follows: when each
driver between O-D pair (7, s) makes his own decision given
the delay vector \ without a central coordinator, he must pick
up the path with minimal travel time, i.e., ;5 = qﬁs, where
K = ming[t}°, {k], and f;° = 0, {k ¥ K. The total travel
time between O-D pair (r,s) is t™ = (t° + \)TA". It is
apparent that SO and UE give the same traffic flow pattern in
the absence of capacity constraints. Now suppose the optimal
solution of LP (4.1)-(4.5) is =*, and the corresponding dual
variable of (4.4) is \*. Because strong duality holds for LPs,
which means the duality gap is O at the optimal primal-dual
pair (z*, \*), we can arrive at an important conclusion [32],
[33]:

(z*,°)
(@, 1"+ A")

is a traffic assignment at SO

is a traffic assignment at UE

Now we can see that the travel delay caused by congestion is
characterized by the Lagrange dual multipliers, which depends
on the traffic flow condition in the whole system, rather
than a univariate function ¢,(x,) which solely depends on
x, in a particular link. The way of defining travel latency
distinguishes Beckmann’s model and Nesterov’s model. It is
worth mentioning that the UE and SO in Nesterov’s model
share the same traffic flow pattern. The two states only differ
in the travel times, indicating different vehicle densities.

Comparing the Beckmann’s model and Nesterov’s model

The traffic flow distributions provided by the Beckmann’s
model and the Nesterov’s model are compared on the system
shown in Fig. 1. For simplicity, travel time functions on link
and link are constants; while those corresponding to
link and link are linear functions, as shown in Fig. 1.
The link capacity is also given in Fig. 1.

Owing to the flow conservation equations, there must be
7 = 2 and x5 = 3 for both models. The traffic flow solution
offered by Beckmann’s TAP satisfies the following condition
[31], which is equivalent to the definition of UE:

Wardrop UE condition [31], [43]: the travel times (be-
tween a certain O-D pair) on all used paths are equal, and no
greater than that would be experienced on any unused paths.

In this regard, in Beckmann’s model, the link flow x5 and
x4 must satisfy

204+ 23 = 16 + 224

$3+CI}4:5

which gives x5 = 2 and 2z = 3, so the corresponding path
travel time is given as

1t =t (x}) + t3(zh) = 32
4 =t (x7) + ta(z]) = 32
13 = to(wh) + ta(x}) = 37
124 = to(xh) + ta(x)) = 37

In accordance with LP (4), the link flow z3 and x4 offered
by Nesterov’s TAP must solve the following LP

min x3 + 214

st. x3+x4 =05
(E3222 )\3
174232 )\4

The optimal solution is x5 = 2, A\ = 0 and z} = 3, A} = 4,
indicating that link is congested. The link travel times at
the UE pattern are given by

=19+ 15+ A5 =104+2040 = 30
it =19 49+ N =104+ 16 +4 = 30
3 =19 +t3+ N\ =15+20+0=35
2 =9+t + N\ =154+ 16 +4 =35

which also meet the Wardrop principle: no road user can
reduce travel time by changing his route unilaterally.

In this particular case, Backmann and Nesterov TAPs offer
consistent UE in term of link traffic flow. Comparative studies
on well-studied TNs and real-world large-scale networks in
Switzerland suggest that both TAP models provide similar
UEs, especially when capacity constraints are imposed in
Backmann’s model [34]. It is also suggested in [34] that the
travel times of the two models are generally not comparable,
as they are based on different assumptions.

B. Distribution System Model

The charging facilities in the ETN are served by a PDN,
which is represented by a connected graph Gr = [En, Fr],
where Eny and Ep, represent the sets of electrical buses and
distribution lines, respectively. In power system engineering
practice, a PDN is intentionally operated with a tree topology.
Without loss of generality, we assume that each electrical bus
connects to one generator and serves one load with constant
traditional demand and possible EV charging requests which
may depend on the traffic flow pattern. In this regard, the
interface equation between TN and PDN can be expressed by

pl=pl+n Y . {i/Exn (6)
aeC (i)

where C'(7) denotes the set of charging facilities on link a that
are served by bus 7. We assume the average charging request
on link a is a linear function of the vehicle flow z,. The
charging rate n can be determined from an intuitive forecast
according to the penetration level of EV or the operating
experience from existing ETNs. It is a key parameter for
modeling the grid impact of the EV load. This assumption
is reasonable for a system-level study of the ETN and also
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Fig. 2. Typical topology in a radial distribution network.

adopted by [27] and [28], although it seems simple and
may be different from the vehicular arrive rate functions or
probability distributions for studying a single charging station.
Moreover, it provides a versatile and convenient way to model
the interdependency between TN and PDN.

The typical connection of distribution lines (each line is
denoted by a tuple (I,7,j), where ¢ is the head bus and j
is the tail bus) of a radial PDN is shown in Fig. 2. The
voltage magnitudes V; and V;, and the power flows Pfj and

ﬁj delivered through line /, are amenable to BPF equations
developed in [35]-[37]:

PL)? +(Q
1 1 (P
Pl +p] m-jj— > Pt (D)
kem(j)
(P5)? + (@
+al xéj”— Y Qu+dl (12
Vi kem(f)
ij2 = ‘/;2 (erle] + .’K )
1 \2 L \2
(Pi;)° +(Q3) (7.3)

K2

where 7(j) is the set of child buses of bus j; it contains more
than one element only when multiple distribution lines start
from bus j. The left-hand side of equation (7.1)/(7.2) is the
active/reactive power injected into bus j; the right-hand side
of equation (7.1)/(7.2) is the active/reactive power withdrawn
from bus j. In engineering practice, line losses account for
only a small part of the total delivered power. By ignoring
the loss terms in (7.1) and (7.2), we arrive at the following
simplified power balancing equations:

Pi+pl= > Phi+p] (8.1)
ken(j)

btd= > Qi+ (8.2)
ken(j)

It was justified in [35] that the third term on the right-
hand side of (7.3) should generally be much smaller than the
second term, and thus can be ignored. Moreover, since the
voltage magnitude at every bus is close to the reference voltage
at the slack bus, we have (V;  Vp)? — 0, indicating that

V? =V 2Vo(Vo V). Substituting it into (7.3) yields
rl. Pl +x
Vj =V M (8.3)
Vo

The linearized BPF equations (8.1)-(8.3) have been justified
and extensively used in distribution system studies, such as in

[38]-[40].

III. MATHEMATICAL FORMULATION
A. Expansion Planning Model

Some basic settings for ETN expansion planning are sum-
marized below.

1) New roads, whose number is given by ) '" Na 02"zt {a,
where z!,, / }0,1|, can be built in parallel w1th existing
links. They have the same capacity Ac,.

2) New distribution lines, whose number is expressed
by ZNL 2"z Zd]ln, {(i,4,1), where z
be built in parallel with existing dlstrlbutlon 11nes
For simplicity, we assume that every distribution line
between buses ¢ and j has the same parameter. In
this regard, the resistance and reactance are reduced
o 1/(1 + NNr 2n z,) compared to their original
values. Meanwhile, the maximal allowed active and
complex power flow become (1 + ZNL 2n2d yp

zyn

and (1 + Zf:]LO 2"z fljln)Sl, respectively. From another
perspective, the power flow in line [ is reduced to
1/(1+ ZNL 2" ffn) while the line parameters remain
the same.

3) New charging facilities, whose number is given by a
positive integer variable ng, and whose capacity is Apf,
can be built beside link a. Unlike existing studies which
aim to enlarge the service area of charging stations, we
assume these facilities can be built beside any link. This
assumption is suitable for main roads, such as the ring
expressway system of metropolitan areas. Nevertheless,
it can be relaxed by specifying candidate sites where the
charging facilities can be built.

4) New generators, whose number is given by a positive
integer variable nf , can be built at each electrical bus
of the PDN. We can also specify candidate locations for
generators. For example, in case study, the available site
for generators is a subset of Ep.

We use binary variables to represent the number of lanes
and distribution lines because these variables will be multi-
plied by other continuous variables. These nonlinear terms
involving the production of a binary variable and a contin-
uous variable will be linearized by using techniques from
integer algebra. More importantly, this expression uses only
a logarithmic number of binary variables. For example, if at
most 7 additional lanes can be invested in on link a, we use
log, (7 + 1) = 3 binary variables for link expansion.

Given the desired traffic and electrical demands to be
served, the mathematical model of ETN expansion planning
is presented as follows:

min Fry + Fppn
s.t. Cons-PDN

Cons-Couple
Y, Al solves (4)

9.1)

The first term Fr in the objective function is the total cost
of the TN, which is given by

. Nr
Pry = > |w(tatXa) 22" 9.2)
a€Ta n=0



where >, o, (ta+Aa)7, is the total vehicle travel time under
the UE pattern, w is the monetary value of time, the first term
in Fry is the equivalent travel cost of TN, the second term
represents the investment cost on new roads, and x is the
discount factor, which leverages long-term investment cost and
short-term operation cost.

The second term F'pp v in the objective function is the total
cost of the PDN, which is given by

Fppn = Z [ai(pi)® + bipi] +p Z Péj+

i€cER jem(0)
Pr¢ Pr?d ©-3)
DRLTEE g ST bt
a€Ta leEr, n=0 i€EEN

where the first term is the generator production cost, which is
a convex quadratic function; P} ; 1s the active power delivered
through distribution line [ that connects to the slack bus,
m(0) is the set of child buses of the slack bus, and such
that the second term is the purchasing cost paid to the power
market; the third to fifth terms represent investments on the
new charging facilities, distribution lines and generation units,
respectively, which are discounted into short-term operation
cost.
The operation constraint on the PDN is expressed as

Cons-PDN = Cons-BPF + Cons-BND

where Cons-BPF represents linearized BPF constraints, and is
given by

Cons-BPF =
Pl +pf = Z ok (5,0 (9.4.0)
ken(j
brd =) ij+qj, ((i,7,0)  (9.4.2)
kemn(j)
rt. Pl +:c
Vj =V ij* g z] ,{(i,j,l) (9.4.3)
Vo (1 + Z 2n ”n)

and Cons-BND represents physical limitations of decision
variables, which is defined as

Cons-BND =
0> p? >pf +Ap'nd, {i (9.4.4)
4 Ag'n!>q! >qf + Agyn?, {i (9.4.5)
Vo >Viz VT, {z‘ La0,{l (9.4.6)

1,

0> P, > <1 + Z il ,]n> v (9.4.7)
pL

H T =8 (1 + 22" djn> (9.4.8)
Qij 9

n=0
The active power generation boundaries and reactive power
generation boundaries of units, voltage magnitude boundaries
of buses, and power flow bounds of distribution lines are

included through (9.4.4)-(9.4.8), respectively. The coupling
constraints are given by

Cons-Couple =
=pf+n > xa {i
acC(1)
nta 2 Apg(ng +¢if), {a

9.5)

where the first constraint is the interface equation defined
by (6), and the second constraint requires that the charging
demand on each road does not exceed the service capability
that the charging facilities in service can offer.

The traffic flow x and possible delay A are determined by
the lower-level problem, which represents the Nesterov’s TAP
(4), where the road capacity is

Ngr

0 t
Cq = ¢, + Acy g 2"z, {a
n=0

9.6)

Therefore, expansion planning problem (9.1) with the UE
constraint, which is an embedded optimization problem, comes
down to an MPEC, which is challenging to solve. We will
leave the solution method to the next section. It should be
pointed out that the proposed modeling framework is readily
extendable to incorporate multiple demand scenarios and mul-
tiple horizons. For the purposes of clarity, we only consider a
fixed demand and a single period in the current version.

IV. AN MICP REFORMULATION

Three bottlenecks prevent problem (9.1) from being solved
efficiently:

1) The lower-level TAP (4) as a constraint.
2) The production term A\,x, in Frpy.
3) The nonlinear voltage drop equation (9.4.3).

We will derive equivalent linear expressions for them by
exploiting the special problem structure.

A. Linearizing the UE Constraints

Because the TAP (4) is an LP, its solution can be character-
ized by either the KKT optimality condition or the primal-
dual optimality condition. We adopt the latter because it
involves fewer constraints and a simpler structure without
complementarity-slackness conditions. The primal-dual opti-
mality condition of TAP (4) is given as follows:

r Af=0, Ef=¢", 2>¢, f~0 (10.1)
Ax0,p A=t ETn ATp>0 (10.2)
algt NTe=a2Tt0 (10.3)

where (10.1) and (10.2) are the feasible regions of primal and
dual variables, respectively, and (10.3) is the strong duality
condition, which enforces equal values on the primal and dual
objectives. The feasible solution of (10.1)-(10.3) is also the
UE of TN. In view of equation (9 6), the nonlinearity only
exists in the term AT = 30, Ao (0 + Ac, SONE 2728 ).

We introduce a matrix variable Vi = [vL,],{a,{n, and

define the vector of incremental capacity Ac = [Ac,], {a, the



vector of initial capacity ¢® = [c?], {a, and a constant vector
bl = [2"], {n. If the relationship

an - >‘ Zan7 {a {TL (104)
holds, then we have a linear expression
Me =21 4+ (Ac)T VD, (10.5)

Since v!,, represents the product of a binary variable z%,, and
a positive continuous variable \,, constraint (10.4) can be
replaced by the following linear constraints:

{a,n

V= Ut = Man, (10.6)
0 Z )‘(1 an > M( Zfzn)? {CL,TL .

where M is a big enough constant, which can be interpreted
as the maximal possible delay. When 2!, = 0, (10.6) enforces
v, =0and 0 > \, > M; otherwise, when 2!, = 1, (10.6)
enforces v}, = A\, and 0 > v{,, > M. This is equivalent to the
original expression in (10.4). The tightest value of M should
be M* = min,}A\%|, where A\* = [\,],{a is the optimal
dual variable of problem (9.1) and unknown in advance. Any
M ~ M* without causing numeric issue is valid for (10.6).
However, a smaller M will yield more efficient computation.
A possible value of M is the estimated maximal delay on the
link of TN from certain heuristic.
Now we can express the linearized UE constraints as

Cons-TAP-UE-Lin =
r Af=0, Ef=4q",f=0
x>+ ACZEY,, (10.6)
Ax0,p A=t"H'n ATp>o0
7lq" = a0 + NP + (Ac)TVEDE,
where AC' is a diagonal matrix whose elements are Ac,, and
the binary variable matrix Z4 is defined as Z% = [2¢,], {a,n.

(11)

B. Linearizing the Objective Function

The production term \,z, in Frry involves two continuous
variables. There is no general methodology for linearizing this
term without exploiting approximation. We derive an exact
linear reformulation based on the special structure of TAP (4).

Keep in mind that = and A should be the optimal primal and
dual solution for LP (4). Recall the KKT optimality condition,
complementarity and slackness hold for the inequality con-
straint and its dual variable, leading to the following equation:

Mz ¢)=0

Hence, we have ATz = AT'c. This equality is easy to under-
stand. Recall Nesterov’s assumption A2 and (2.2): if z, < c,,
indicating that road a is not congested, then we must have
te = t2 and A\, = 0, thus A\,z, = 0; if road a is congested
and A\, > 0, we must have =, = ¢, and A\,x, = A.Ce. In
summary, ATz = A\”¢ holds at the optimal solution.

Using (10.5) in the previous subsection, we can arrange
Fry as a linear form, i.e.,

10 1 AT+ (Ae)TVEDY)

+ZZ

ac€T s n=0

Fry =w(x

12)

N
a2n t

The expressions of Fpry in (9.2) and (12) are exactly
equivalent, as (10.6) has already been considered in (11), no
approximation error is involved.

C. Linearizing the Voltage Drop Constraint

Multiplying both sides of (9.4.3) by 1+Zf:[LO 2" Zdln gives
the following equation

Ny, N
V; <1+Z2” ;ﬁ) =V <1+22" djn>

rl. Pl o+ m
R ()

The production terms involving the continuous variable
V;/V; and the binary variable z¢! in can be linearized following
the method similar to that in subsection A. By introducing con-
tinuous variables vif} = Vizdl . ofi2 = vz {(i,5,1),{n,
constraint (9.4.3) is equivalent to

Np, Ny,
n=0

(13.1)

Pl pl
P;f {4
0> vffy > Vit {(i.4,D) (132)
0>V, ot >vit( =), {640 (13.3)
0> vin > V2, {(i,4.1) (134)
0>V, wia>via 2, {6410 (13.5)
Now we can express the convex PDN constraints as

(9.4.1), (9.4.2)
Cons-PDN-CVX = ¢ (13.1) (13.5) (14)

(9.44) (9.4.8)

When the integrality of binary variable is relaxed, Cons-PDN-
CVX yields linear and second-order cone constraints.

D. The Final MICP Formulation

On the basis of the previous discussion, the ETN expansion
planning problem can be cast as the following MICP with a
convex quadratic objective as well as mixed integer linear and
second-order cone constraints:

min Fpry + Fppn

s.t. Cons-PDN-CVX
Cons-TAP-UE-Lin
Cons-Couple

where Fryy is defined in (12), Fppy is defined in (9.3), Cons-
PDN-CVX is defined in (14), Cons-TAP-UE-Lin is defined in
(11), and Cons-Couple is defined in (9.5).

It should be pointed out that the MICP reformulation relies
on the linear models of the TAP and PDN. The linearized
BPF model for PDN is only appropriate for radial networks,
because radiality is crucial for constructing the voltage drop
equation (8.3). In current engineering practices, PDNs are
intentionally operated with a tree topology. However, there

15)



may be meshed distribution networks in the future. In such
circumstance, the proposed MICP algorithm is readily com-
patible if the network is weakly meshed and the power flow
direction in each distribution line can be easily determined
in advance. Otherwise we can use the direct current power
flow model [44] which preserves the model linearity, while
sacrificing the accuracy on bus voltage. Another choice is
to use the traditional bus injection based power flow model
[44], which is nonlinear and non-convex, and directly solve
an MINLP, at the expense of extremely high computational
burden.

Finally, the proposed method aims to help government
agency make better city planning decisions, and may be less
accurate for real-time operation of the transportation system
and power distribution system, which is not the main focus of
this paper.

V. CASE STUDIES
A. Basic settings

The proposed model and method are applied to a test ETN
in this section. The TN topology shown in the left of Fig. 3
with outer-loop ring expressways is highly emblematic among
modern metropolises. A radial PDN is contrivedly created just
for the purpose of study, whose topology is shown in the right
of Fig. 3. The nodes of the TN are denoted by circles and
numbered T1, T2, xxx T12; the electrical buses of the PDN
are represented by blue blocks and numbered El, E2, >xx
E20. The coupling structure is also illustrated in the TN part
of Fig. 3. The parameters of both TN and PDN infrastructures
are provided in Tables I-III (the values are given in p.u. without
particular mention). We simulate the scenario of evening rush
hour when the majority of traffic leaves from the northwest
and travels to the east and the south. Details of the O-D pairs
and their trip rates are given in Table II. The rest of the
system parameters are given separately below (in p.u. without
particular mention).

The active and complex power flow limit of existing distri-
bution lines are P = 1.0,{l and S; = 1.2, {I, respectively.
The capacity of new road is assumed to be Ac, = 0.5¢,, {a.
The capacity of every new charging facility and generator is
ApS = 0.1, {a and Apl" = 1.0, A¢/™ = 0.2, {i, respectively.
The discounted investment cost for each charging facility
and generation unit is Pr{ /k = $10 and Pr? /k = $100,
respectively. The fixed electrical demand at each bus of the
PDN is p® = 0.02 and ¢¢ = 0.01. Most of the active
power loads originates from the charging requests of EVs. This
corresponds to the situation in which the PDN only serves on-
road charging facilities. This setting highlights the role of EV
demand, which couples the TN and PDN, in this particular test.
The lower bound and upper bound of bus voltage magnitude
are Vij = 0.93 and V;" = 1.05, respectively, and the voltage
magnitude at the slack bus is V{y = 1.04. The electricity price
at the slack bus is p = $1600; the monetary value of unit
travel time is w = $0.3333/min; and the charging rate of
unit traffic flow is = 0.02. We assume that every existing
road of the TN and existing distribution line of the PDN can
be considered for expansion. The charging facilities can be

TABLE I
PARAMETERS OF THE LINKS

Link Ca Pr’ /k  t9 (min) nSe
T1-T3 18.0 50 6 2
T1-T2 20.0 80 10 4
T2-T6 17.0 50 6.5 4
T1-T4 9.8 35 5 1
T2-T5 7.9 35 5.5 1
T3-T4 8.5 35 6 2
T4-TS 13.5 70 12 3
T5-T6 8.2 40 6.5 2
T3-T7 19.0 80 10.2 4
T4-T8 14.0 75 11.5 3
T5-T9 13.8 75 12.5 2
T6-T10  20.0 80 10.5 3
T7-T8 8.9 35 5.8 1
T8-T9 13.2 70 11 2
T9-T10  9.15 35 5.9 2
T7-T11 17.5 50 6.3 4
T8-T11 9.76 35 5.7 2
T9-T12 8.97 35 5.8 1

T12-T10  18.2 50 6.1 0

T11-T12  20.0 80 9.8 3

TABLE 11
O-D PAIRS AND THEIR TRIP RATES

O-D pair  grs O-D pair  grs O-D pair  grs
T1-T6 5 T3-T6 7 T4-T9 6
T1-T10 6 T3-T10 7 T4-T10 7
T1-T12 6 T3-T12 6 T4-T12 5
T1-T11 5 T3-T11 5

built at the roadside and connected to one electrical bus of the
PDN. The available sites for generators are located at buses
E7,E10, E11, and E14. Four identical units, whose parameters
are pj' = 2.0, ¢ = 04, a; = 330, and b; = $400, have
already been connected to these buses. All simulations are
implemented on a laptop computer with Intel i5-3210M CPU
and 4 GB memory. MICP is coded in MATLAB environment
with YALMIP toolbox [45] and solved by calling CPLEX [46].

B. Results

The ETN expansion planning problem (15) is solved under
four traffic demand scenarios. The reference demand is given
in Table II. In each scenario, we increase the trip rates of all
the O-D pairs according to the same portion. More precisely,
parameter q',,{(r,s) / DI is increased by 25%, 50%,
75%, and 100%, respectively. The optimal expansion planning
strategies under different demand scenarios are given in Tables
IV-VIL

From Table IV and Table V we can see that more roads
and charging facilities are invested in when the traffic demand
increases. Table VI demonstrates that one generation unit will
be built at bus E10 in the last two scenarios; no generator will
be invested in for the other two scenarios with lower traffic



Electrified Transportation Network

1Y { E2 | (12
13 T4 {E7 ] (15
(=] (et (e1l]

11} {E20 |

Fig. 3. Topology of the test ETN.

TABLE III
PARAMETERS OF THE DISTRIBUTION LINES

Line r x Préj /K ($)
EO-E7 0.081  0.061 140.8
EO-E10  0.066  0.042 185.2
EO-E11 0.061  0.041 196.1
EO-E14  0.079  0.063 140.8
E7-E2 0.115  0.08 102.6
E7-E4 0.131  0.084 93.0
E7-ES 0.123  0.077 100.0
E10-E9  0.135  0.081 92.6
E10-E6  0.107  0.073 111.1
E10-E13  0.111  0.075 107.5
E6-El 0.127  0.083 95.2
E13-E16  0.119  0.078 101.5
El1-E12  0.132  0.079 94.8
E11-E8  0.105  0.07 114.3
El11-E15 0.115 0.082 101.5
E8-E3 0.122  0.083 97.6
EI5-E19  0.12 0.08 100.0
E14-E20 0.119  0.077 102.0
E14-E17 0.133  0.09 89.7
El14-E18  0.13  0.088 91.7

demands. Table VII shows that distribution lines E10-E13,
E13-E16, E11-E8, and E8-E3 are candidates for expansion in
this problem, while others remain unchanged. As a result, the
growing trends of expansion costs corresponding to different
components are plotted in Fig. 4, showing the dominant status
of road investments over others.

The reason can be explained by exploring the system
topology and the equilibrium traffic flow pattern shown in
Fig. 5. We can observe that links T4-T8, T7-T11, T2-T6,

Power Distribution Network
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Fig. 4. Investment costs for different load scenarios.

and T5-T6 are carrying heavy traffic flows, leading to higher
charging demands at buses E10, E16, E3 and E8. Moreover, E3
and E16 are the terminal buses of the PDN. Delivering power
to these buses introduces higher voltage drops on distribution
lines. In this regard, to enhance the voltage magnitude at
these buses, distribution lines E10-E13, E13-E16, E11-E8, and
E8-E3 should be given higher priorities for upgrading. It is
also interesting to notice that although the traffic demand is
increased by 50% in the second scenario, which is higher
than that in the first scenario, no generator or distribution
lines will be built from a social optimal perspective, while
one new distribution line is put into service in the first
scenario. This apparently shows the importance of considering
the interdependency in system planning.

To highlight the impact of EV charging request on both TN
and PDN, we assume the PDN solely serves on-road charging
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TABLE IV
ROAD EXPANSION STRATEGIES

Demand increase
50%  75%
0

Link

25% 100%

T1-T3
T1-T2
T2-T6
T1-T4
T2-T5
T3-T4
T4-T5
T5-T6
T3-T7
T4-T8
T5-T9
T6-T10
T7-T8
T8-T9
T9-T10
T7-T11
T8-T11
T9-T12
T12-T10
T11-T12
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facilities in this particular test. Certainly, the proposed method
can be applied to more general cases with growing traditional
power demands and EV charging loads. In such circumstance,
the investment in the PDN will have a larger share of the total
investment cost.

A few more observations can be made about upgrading
the generators and distribution lines. The ultimate goal of
ETN capacity expansion is to meet the charging demand
without violating operating constraints. There are two options
for acquiring electricity: producing it from local generators,
or purchasing it from the main grid. If the marginal cost of

TABLE V
CHARGING FACILITY EXPANSION STRATEGIES

Demand increase
50%  75%
0 0

Link

25% 100%

T1-T3
T1-T2
T2-T6
T1-T4
T2-T5
T3-T4
T4-T5
T5-T6
T3-T7
T4-T8
T5-T9
T6-T10
T7-T8
T8-T9
T9-T10
T7-T11
T8-T11
T9-T12
T12-T10
T11-T12
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TABLE VI
GENERATOR EXPANSION STRATEGIES

Demand increase

Link
25%  50%  75%  100%
E7 0 0 0 0
E10 0 0 1 1
Ell 0 0 0 0
El4 0 0 0 0
TABLE VII

DISTRIBUTION LINE EXPANSION STRATEGIES

Demand increase

Link
25% 50% 75%  100%
E10-E13 0 0 1 1
El13-El6 1 0 0 0
E11-E8 0 0 0 1
E8-E3 0 0 1 0
TABLE VIII
OTHER QUANTITIES
. Demand increase
Quantities
25% 50% 75% 100%
Composite total cost (p.u.) 34829 45369 58143  7030.0
Average travel time (min) 27.3 26.8 26.98 27.42
Computation time (s) 2.34 159 126.1 101.5

energy production is lower than the price in the market, and
the generators can be arbitrarily placed where they are needed,
then there is no need to build additional distribution lines. On
the other hand, when producing electricity is expensive and



more energy is delivered from the slack bus, or the available
sites for generators are restricted, additional distribution lines
may need upgrading to circumvent potential voltage or power
flow violation.

The composite total cost (defined as Fry + Fppp), the
average vehicle travel time of TN (defined as Y, x4 (2 +
Xa)/ D s rs), and the computation times in different scenar-
ios are provided in Table VIII. Table VIII shows that when the
traffic demand grows, the total cost increases, but the average
travel time is maintained at about 27 minutes per vehicle,
which indicates that the road expansion planning strategy is
reasonable. The congestion pattern shown in Fig. 5 associating
with the highest traffic demand scenario demonstrates that the
delay on each congested road is moderate and acceptable. In
general, the computation time increases as the traffic demand
grows. However, this will not become a critical limitation for
practical usage. On the one hand, the time scale of planning
problems is long, hence it is acceptable and desired to spend
a few hours or even a few days to seek a better solution
which may cut down the expense notably in the long run.
On the other hand, the infrastructures of the ETN should be
upgraded every few years; in this regard, the traffic demand
is unlikely to grow remarkably (usually less than 100%). A
multi-period model can also be used to tackle long term plan-
ning problems. Nevertheless, solving mixed integer programs
for realistic large-scale instances is still very challenging. In
such circumstances, one can accept the best solution found in
a pre-specified time limit.

VI. CONCLUSIONS

As one of the first few attempts in studying the inter-
dependent urban electrified transportation infrastructure, this
paper proposes a comprehensive model for the optimal ex-
pansion planning of roads, charging facilities, generators,
and distribution lines, which captures the interaction between
the TN and PDN. The proposed model minimizes the total
composite cost subject to the traffic equilibrium condition and
the power flow constraint. The traffic equilibrium is modeled
by Nesterov’s TAP, which does not depend on the particular
road latency function and defines the delay through Lagrangian
dual multipliers. It is suitable for the planning problem because
it incorporates explicit capacity limit on road traffic flow. The
linearized BPF model directly models bus voltage magnitudes
and line power flows, and is suitable for PDN with a tree
topology. An exact MICP for the proposed ETN expansion
planning model is developed without exploiting approxima-
tion. This approach is able to find the global optimal solution
for moderately sized ETNs with reasonable computation effort.

Future research will be focused on developing more sophis-
ticated models that incorporate multiple traffic patterns (repre-
senting several critical scenarios, such as morning rush hours
and evening rush hours, or potential uncertainties), as well as
suitable decomposition methods for solving this challenging
problem, such as the progressive hedging approach [47] and
the Benders decomposition algorithm [48]. More dedicated
description of the charging demand using link vehicular flow
is also worth studying. This may require developing distance

and battery status constrained UE model. Dynamic UE model
[49], [50], which allows the modeling of global positioning
system enabled dynamic rerouting behavior, is also one of our
on-going research. In summary, we believe the ETN in line
with the emerging trend of transportation electrification will
be a very promising research direction in the near future.
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