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Abstract—Electric vehicles (EVs) have been widely acknowl-
edged as an effective solution to alleviate the fossil fuel shortage
and environmental pressure in modern metropolises. To foster
the large-scale integration of EVs, transportation electrification
is becoming an emerging trend. This paper proposes a compre-
hensive model for the expansion planning of urban electrified
transportation networks (ETNs), which determines the best
investment strategies for the transportation network (TN) and
the power distribution network (PDN) simultaneously, including
the sites and sizes of new lanes, charging facilities, distribution
lines, and local generators. The steady-state distribution of traffic
flow in the TN is characterized by the Nesterov user equilibrium
(NUE). The operating condition of the PDN is described by
linearized branch power flow (BPF) equations. To consider the
interdependency between the TN and PDN created by the charg-
ing behavior of EVs, the power demands of on-road charging
facilities is assumed to be proportional to the road traffic flow.
The expansion planning model is formulated as a mixed integer
nonlinear program (MINLP) with NUE constraints. In order to
retrieve a global optimal solution, it is further transformed into
an equivalent mixed integer convex program (MICP) without
exploiting approximation. Case studies on a test ETN corroborate
the proposed model and method.

Index Terms—electric vehicle, expansion planning, interde-
pendency, power distribution network, electrified transportation
network, Nesterov user equilibrium

NOMENCLATURE

The major symbols and notations used throughout the paper

are defined below for quick reference. Others are defined after

their first appearance as required.

A. Sets

EL Set of distribution lines in PDN.

EB Set of electrical buses in PDN.
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C(i) Charging facilities served by bus i � EN .

π(i) Set of child buses of bus i � EN .

TA Set of links (roads, or arcs) in TN.

TN Set of nodes (intersections) in TN.

TR
N Set of origin nodes, TR

N ≤ TN .

TS
N Set of destination nodes, TS

N ≤ TN .

DRS
T Set of origin-destination (O-D) pairs, which is

defined as DRS
T = }(r, s) r � TR

N , s � TS
N |

Krs Set of available paths between O-D pair (r, s).

B. Parameters

ai, bi Production cost parameters of generator at bus i.
ca Traffic flow capacity of existing link a.

nce
a Number of existing charging facilities on link a.

Pu
l Active power flow capacity of distribution line l.

Prra Cost of building one additional road on link a.

Prca Cost of building one charging facility on link a.

Prgi Cost of building one generator at bus i.
Prlij Cost of building one additional distribution line

between buses i and j.

pdci Traditional power demand at bus i.
p+i Active power generation capacity at bus i.
qdi Reactive power demand at bus i.
q+i Reactive power generation capacity at bus i.
qtrs Traffic demand (trip rate) between O-D pair (r, s).
rlij Resistance of line l connecting buses i and j.

Sl Complex power flow capacity of line l.
t0a Non-congested travel time on link a.

V0 Voltage magnitude at the slack bus.

V −i Lower bound of voltage magnitude at bus i.
V +
i Upper bound of voltage magnitude at bus i.

xl
ij Reactance of line l connecting buses i and j.

Λ The link-path incidence matrix.

δrsak Elements of Λ, if path k between O-D pair (r, s)
passes link a, δrsak = 1, otherwise δrsak = 0.

κ Discount factor, which leverages long-term invest-

ment cost and short-term operation cost.

ω Monetary value of vehicle travel time.

η Charging rate of traffic flow.

ρ Contracted energy price.

Δca Traffic flow capacity of the expanded link.

Δpca Power capacity of the expanded charging facility.

Δpmi Active generation capacity of the expanded unit.

Δqmi Reactive generation capacity of the expanded unit.

y
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C. Variables

frs
k Traffic flow on path k between O-D pair (r, s).
nc
a Positive integer which indicates how many charg-

ing facilities should be invested in on link a.

ng
i Positive integer which indicates how many gener-

ation units should be invested in at bus i.
pdi Total active power demand at bus i.
pgi Total active power generation at bus i.
P l
ij Active power flow in distribution line l.

qgi Total reactive power generation at bus i.
Ql

ij Reactive power flow in distribution line l.
Vi Voltage magnitude at bus i.
vtan Additional continuous variable for linearizing the

total vehicle travel time function.

vdl1ijn Additional continuous variable for linearizing bi-

linear terms in the voltage drop equation.

vdl2ijn Additional continuous variable for linearizing bi-

linear terms in the voltage drop equation.

xa Aggregated traffic flow on link a.

ztan Binary variable of road expansion; the number of

new roads to be invested in on link a is expressed

by a binary expansion
∑NR

n=0 2
nztan.

zdlijk Binary variable of distribution line expansion be-

tween the head bus i and the tail bus j; the number

of new lines to be invested in is given by a binary

expansion
∑NL

n=0 2
nzdlij .

π, µ, λ Dual variables of the traffic assignment problem.

D. Abbreviations

BPR Bureau of Public Roads.

BPF Branch power flow.

ETN Electrified transportation network.

EV Electric vehicles.

KKT Karush-Kuhn-Tucker.

LMP Locational marginal price.

LP Linear programming

MICP Mixed integer convex program.

MINLP Mixed integer nonlinear program.

MPEC Mathematic program with equilibrium constraints.

NUE Nesterov user equilibrium.

OPF Optimal power flow.

PDN Power distribution network.

SO Social optimum.

TAP Traffic Assignment Problem.

TN Transportation network.

UE User equilibrium.

I. INTRODUCTION

THE rapid commercialization of electric vehicles (EVs)

[1] has created an emerging trend of transportation elec-

trification [2]–[5], which calls for the installation of brand-

new battery charging/swapping infrastructures on the urban

transportation network (TN) to support the integration of

EVs. Coordinated charging of EVs also helps the power

system accommodate high penetration of renewable energy

[6]–[8]. However, the inappropriate placement and operation

of charging facilities may create negative impacts on the

power distribution network (PDN) [9], [10]. In this regard,

most existing research focuses on the optimal deployment of

charging or swapping stations, following either of the two

paradigms below.

In power system oriented studies, operating requirements

of the PDN are usually considered in detail. Along this line,

a two-stage procedure for planning EV charging stations in

distribution systems is proposed in [11], in which the candidate

sites for charging facilities are determined in the first stage

subject to their service radius and environmental considera-

tions, and the optimal capacity that minimizes the total life-

cycle cost is calculated. A multi-objective model for charging

station planning is suggested in [12]. By jointly optimizing a

maximal vehicle flow capturing problem and an optimal power

flow (OPF) problem, the resulting strategy is advantageous in

covering a larger service area and minimizing power losses

and voltage deviations. The model is further improved in

[13] by incorporating the Traffic Assignment Problem (TAP),

which captures the system-level vehicle flow distribution in

the transportation network (TN). Another optimization model

is devised in [14] for locating and sizing battery swapping

stations in distribution systems, and the charging control

strategy is also discussed. The charging station placement

problem is formulated as an MINLP in [15]. Taking the

special structure into account, four methods are suggested to

solve the proposed model. An agent-based model for cost-

effective siting of electric vehicle charging infrastructure is

presented in [16], in which the travel survey data and traffic

demand forecasts are used to produce specific mobility pat-

terns. Recently, simultaneous expansion planning of charging

stations and PDN infrastructures has been addressed in [17]

and [18] encompassing financial, technical, and environmental

considerations.

In transportation system oriented studies, monitoring the

vehicular flow going through each road is the main concern.

Along this line, a multi-period planning model is proposed in

[19] to expand EV charging stations, which incorporates topo-

logical dynamics of the TN, as well as the route choice of EVs

and their limited travel range. To capture the selfish behavior

when drivers choose their routes and recharging plans, a multi-

class network equilibrium model is proposed in [20], based on

which the charging station location problem is formulated as a

mathematical program with equilibrium constraints (MPEC).

Following a similar framework, the deployment of wireless

charging facilities for capturing the maximum traffic flow is

investigated in [21], in which the routing choice behavior of

EVs is modeled by a stochastic user equilibrium. Locating

multiple types of charging stations is studied in [22] using the

maximum coverage concept. In addition, road capacity expan-

sion planning is a classical problem in transportation research

and has been extensively discussed, such as in [23]–[25]. It

is usually formulated as a mathematical program subject to

traffic flow equilibrium constraints, which has already been

very challenging to solve. Joint planning of road and on-road

charging infrastructure is attracting more and more attention

in recent years, but published work is rare.

Most of the aforementioned research focuses on either the

PDN or the TN. In the former category, the traffic system
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condition is usually simplified or ignored, and the driving

patterns of EVs are assumed to be exogenously given, either

in a deterministic or stochastic manner. Such an assump-

tion is reasonable for instances where the local charging

demand profile can be predicted accurately or its probability

distribution is known, such as residential and office areas.

However, this is may no longer be the case for the system-

level study of the on-road charging infrastructure of the ETN.

In transportation theory, although the origins and destinations

of vehicles can be specified, multiple routes may exist for

traveling between origins and destinations, leading to different

traffic flow patterns and different charging demand patterns,

and finally the power flow of the PDN as well as its operation

is affected. Such interdependency has been well recognized

and studied by the transportation community, but the operating

details of the power system are usually ignored. Recently, a

systematic modeling framework and a hybrid simulation plat-

form for the interdependent transportation and power systems

are developed in [26] to study the impacts of EV charging

facilities on both networks. Analytical models for designing,

operation and optimization of such coupled networks are

still in great need. A comprehensive study on the expansion

planning of the ETN calls for interdisciplinary research. Along

this line, the traffic equilibrium constrained deployment of

public charging stations is investigated in [27], where the

stable distribution of traffic flows in the TN is determined from

a combined distribution and assignment model, while the PDN

is modeled by the direct-current OPF and offers electricity at

the locational marginal price (LMP). A similar framework is

adopted in [28] and [29] to study the pricing issue in ETNs.

This interdisciplinary research aims to comprehensively

address the expansion planning problem of ETNs and close

the gap in existing methods in three aspects:

1) The system-level modeling of the ETN which consists

of coupled TN and PDN, and accounts for their in-

terdependency. The mathematical formulations of both

infrastructures are different from those in existing lit-

eratures, and more dedicated for the strategic planning

research. In urban transportation system research, Beck-

mann’s formulation [30] for the static TAP has been the

reference model since 1960’s [31], and widely adopted,

such as in [13], [21], [23]–[25], [27]–[29]. Nesterov

and de Palma have noticed that some assumptions in

Beckmann’s model may not be entirely consistent with

reality. They propose a new TAP formulation in [32]

and [33]. It is shown in [34] that Beckmann’s model

and Nesterov’s model provide similar results when the

TN is not heavily congested. In this paper, Nesterov’s

model is employed to describe the stable traffic flow in

TNs, which is more suitable for addressing the planning

issue, since it incorporates an explicit bound that the

traffic flow on each road cannot exceed, and is also

advantageous in computation because of its linearity.

As for the PDN, we use the linearized branch power

flow (BPF) model developed in [35]–[37] to determine

the steady-state distribution of the bus voltage and line

power flow. Unlike the direct-current power flow model

used in [27], which assumes the voltage magnitudes

at all buses are equal to 1 and is suitable for high-

voltage power transmission systems, BPF treats the

magnitudes of bus voltages as variables; this approach is

more realistic for low-voltage PDNs, in which the line

resistance is comparable to the line reactance in per unit

value. The linearized BPF model provides satisfactory

accuracy for PDN operation and planning applications,

which has been justified in [38]–[40].

2) The expansion planning model of the ETN. As men-

tioned before, most current research only focuses on

one, or at most a few, of the items which are in need of

upgrading, such as the charging stations or roads, while

neglects the interdependency between TN and PDN. It

has already been acknowledged that the on-road charg-

ing system can introduce notable interdependency across

TNs and PDNs [41], hence infrastructures of TN (roads

or lanes) and PDN (on-road charging facilities, local

generators and distribution lines) should be coordinately

expanded. However, coordination is usually ignored or

partly simplified in most existing research, in spite of the

fact that distributed generation and charging stations are

simultaneously modeled in [17], substation-feeder coor-

dination is considered in [18]. Moreover, although road

capacity planning and power system planning have long

been studied separately for decades, they have seldom

been considered together, except for the first attempt in

[27], in which a network equilibrium model that jointly

considers the interactions among charging opportunities,

energy prices, and route choices of EVs in a coupled

TN and PDN is proposed. More precisely speaking,

although the impact of power system operation and LMP

is considered in [27] for deploying charging stations, the

work does not model the expansion planning of roads or

other PDN facilities. This paper proposes a comprehen-

sive model for the simultaneous expansion planning of

ETN infrastructures, including roads, on-road charging

facilities, generation units, and distribution lines, in a

coordinated manner for the first time. Unlike [12], [13]

and [21], in which the deployment of charging stations

aims to cover the largest possible service area, this work

assumes that the charging facilities can be built at the

side of each road and meet the local charging demand

on that link, or at pre-specified candidate sites.

3) The solution algorithm. Because of the presence of

interdependency between TN and PDN, the traffic equi-

librium, which is determined from an optimization

problem, is incorporated as constraints in the proposed

expansion planning model, giving rise to an MPEC

which has a two-level optimization structure and is

challenging to solve. In fact, even the instances which

only consider charging station planning have proved to

be very difficult; for example, the model studied in [11]

is a non-convex programming problem, the proposed

primal-dual interior point algorithm only finds a local

optimal solution; the multi-objective models in [12]–

[14] is solved by intelligent algorithms; and the MINLP

model in [15] is solved by certain heuristic methods
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that rely on the specific problem structure. The genetic

algorithm used in [17] and the ordinal optimization

approach adopted in [18] also rely on a large number of

samples and may miss the global optimal solutions. By

using the primal-dual optimality condition transforma-

tion and linearization techniques from integer algebra,

the lower level TAP will be reduced to traditional non-

linear constraints, and the proposed optimization model

will be further reformulated as an equivalent MICP

without exploiting approximation; thereby a global op-

timal solution can be found by commercial solvers with

affordable computational expense, since the time horizon

of a planning problem is long.

The rest of this paper is organized as follows. The mathe-

matical models of TN and PDN will be briefly introduced in

Section II. The MPEC model of ETN expansion planning will

be presented in Section III, where the traffic equilibrium of the

TN is modeled through the NUE in the lower level, while all

the investment strategies and BPF constraints are considered

in the upper level. Its equivalent MICP will be formulated in

Section IV. The effectiveness of the proposed method has been

demonstrated in Section V through case studies on a test ETN

consisting of a TN with 20 links and a PDN with 20 buses.

Conclusions are drawn in Section VI.

II. MATHEMATICAL MODEL OF THE TN AND PDN

A. Transportation System Model

A brief introduction to transportation network model is

presented here. More details can be found in textbook [31].

The TN is represented by a connected graph GT = [TN , TA]
where TN is the set of nodes (intersections) and TA is the set

of links (roads or arcs). Each link a � TA is associated with

a capacity limit ca (the maximal number of vehicles that can

pass this link per unit time) and a non-congested travel time

t0a (the travel time across this link at the speed limit). Given

a set of O-D pairs DRS
T , we are aware of the total traffic flow

qtrs (also called the trip rate) leaving from the origin r and

traveling to its destination s, but at the current stage it is not

clear which route will be used. Each O-D pair (r, s) � DRS
T

is connected by a set of routes, which is denoted by Krs. The

traffic flows on link a � TA and path k � Krs are denoted

by xa and frs
k , respectively. We define the indicator variable

δrsak = 1 if link a is a part of path k, otherwise δrsak = 0;

then the link flow xa and path flow frs
a have the following

relationship:

xa =
∑
rs

∑
k

frs
k δrsak, {a � TA (1.1)

or, in a compact form,

x = Λf (1.2)

where coefficient matrix Λ = [δrsak], {k � Krs, {(r, s) � DRS
T ,

{a � TA is the link-path incidence matrix, if path k between

O-D pair (r, s) passes link a, δrsak = 1, otherwise, δrsak = 0;

vector x = [xa], {a � Ta; vector f = [frs
k ], {k � Krs,

{(r, s) � DRS
T .

Fig. 1. A simple TN modified from [31].

Moreover, the path flow should meet the traffic demand, i.e.,∑
k∈Krs

frs
k = qtrs, {r, s (1.3)

or, in a compact form,

Ef = qt (1.4)

where qt = [qtrs], {(r, s) � DRS
T , and E is a matrix consist of

0 and 1 corresponding to the coefficients in (1.3).

An example modified from [31] is used to explain above

concepts and notations more intuitively. A simple TN is shown

in Fig. 1. The network includes 4 nodes and 4 links. O-D pair

O1-D4 is connected by paths 1 ⇒ 3 and 1 ⇒ 4 ; the

trip rate is q14 = 2. O-D pair O2-D4 is connected by paths

2 ⇒ 3 and 2 ⇒ 4 ; the trip rate is q24 = 3. The link

flows can be expressed by path flows as

x1 = f14
1 + f14

2

x2 = f24
1 + f24

2

x3 = f14
1 + f24

1

x4 = f14
2 + f24

2

and the flow conservation equations are given by

f14
1 + f14

2 = 2

f24
1 + f24

2 = 3

In transportation engineering, road travel time is the most

important metrics to measure congestions. Let ta denote the

travel time on link a; it is a function of the traffic flow. The

different descriptions of road travel latency lead to completely

different TAP models: Beckmann’s model and Nesterov’s

model, which will be briefly introduced below.

Assumptions in Beckmann’s model
The travel time on link a is assumed to be a strictly

increasing function that depends only on its own vehicle flow

xa, such as the following most widely used BPR function [42]

ta(xa) = t0a

[
1 + 0.15

(
xa

ca

)4
]
, {a � TA

where ca is the vehicle flow on link a when ta = 1.15t0a.

In some literature, it is also called the capacity of link a.

However, the capacity limit is not a mandatory constraint,

but is penalized by a quickly growing travel time if such a

constraint is violated. Some inconsistencies between the BPR

function and the reality of traffic congestion have been pointed

out in [32], [33].
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1) A less important criticism relates to the strictly increas-

ing assumption for the latency function ta(xa). Clearly,

the travel time is a constant when the road is not

congested and every vehicle can move at the maximal

allowed speed.

2) It is clear that the vehicle flow on link a cannot be

arbitrarily large. Ignoring the mandatory road capacity

constraint may lead to infeasible solutions when the

traffic flow on a link is greater than its capacity.

3) Most important of all, there is a physical contradiction to

the monotonicity of ta(xa). According to the definition

of traffic flow: flow = speed ⊆ density, if the flow xa

is large, neither the speed nor the density can be very

small (it is not realistic to compensate for the drop in

speed with a dramatic increase in the density, because

every vehicle in motion has to maintain a safe distance

from the vehicle in front of it). As a result, by assuming

a maximal density of vehicles, a further increment of xa

must lead to a rise in the speed, and in turn result in a

drop in the travel time.

Assumptions in Nesterov’s model
To mitigate the discrepancy in the road latency function,

Nesterov and de Palma abandon making further assumptions

on the functional form of ta. Instead, they establish a new

TAP model based on two weaker assumptions:

A1 Traffic flow on a link cannot exceed its capacity, i.e.,

xa ≥ ca, {a � TA (2.1)

It should be mentioned that the capacity parameter ca
in Nesterov’s model is not necessarily the same as that

in Beckmann’s model.

A2 There is no delay on a link where the traffic flow does

not reach its capacity; slowdown only occurs when the

traffic flow reaches its capacity, i.e.

xa < ca ∈ ta = t0a

xa = ca ∈ ta ≈ t0a
(2.2)

We say link a is congested if ta > t0a. Congestion occurs

in the following manner: when the traffic flow xa on certain

link a reaches its capacity ca, any additional vehicle will

slow down the speed of existing vehicles, thus the travel time

ta increases, while the total flow remains the same (but car

density increases). A1 and A2 are weaker than the functional

assumption on the link travel time in Beckmann’s model.

Before proceeding to Nesterov’s TAP model, we clarify two

important concepts in traffic theory:

1) Social Optimum (SO) [43]. A traffic flow pattern reaches

an SO if the total travel time is minimized (also re-

ferred to as the second Wardrop Principle). This setting

requires a central agency which is eligible to decide a

travel plan for every driver, while all the drivers are

required to behave cooperatively so as to guarantee

the most efficient utilization of the entire transportation

system. SO is an ideal state for theoretical study, but is

unlikely to happen or implement in reality.

2) User Equilibrium (UE) [43]. Each driver selects his route

in order to minimize his own travel time (also referred

to as the first Wardrop Principle). In the UE pattern,

no traveler has the incentive to change his current route

unilaterally. UE captures the selfish behavior of vehicles

in urban transportation systems, and will be used in the

proposed ETN expansion planning model, since it better

fits the reality.

Nesterov’s traffic assignment model
Define vectors c = [ca], {a � TA, t0 = [t0a], {a � TA, and

t = [ta], {a � TA. Suppose there is a central coordinator who

can manage the behavior of vehicles to reach an SO pattern.

In accordance with the definition of SO, the traffic flow vector

x and travel time vector must solve the following nonlinear

programming problem

min
x,f,t

xT t (3.1)

s.t. x Λf = 0 (3.2)

Ef = qt (3.3)

x ≥ c (3.4)

f ≈ 0, t ≈ t0 (3.5)

where xT t =
∑

a xata is the total travel time, constraints (3.2)

and (3.3) are the compact forms of (1.1) and (1.3), respectively.

Inequalities (3.4) and (3.5) are the boundary constraints of

decision variables. Constraints (1.1) and (3.5) naturally suggest

x ≈ 0. Based on this fact, it is clear that at the optimal solution,

t∗ = t0 whatever x appears to be. In view of this, we arrive

at Nesterov’s SO model, which is a linear program (LP):

min
x,f

xT t0 (4.1)

s.t. x Λf = 0 (4.2)

Ef = qt (4.3)

x ≥ c (4.4)

f ≈ 0 (4.5)

LP (4) indicates that no congestion happens in the SO pattern.

Please keep in mind that if the traffic demand exceeds the

transit capacity of the TN, constraints (4.2)-(4.5) will be

contradictive, and TAP (4) will be infeasible. In this paper,

the associating TAP will be always feasible because the road

capacity can be enlarged.

Next, we associate the capacity constraint (4.4) with respect

to a dual variable λ = [λa], {a � TA, which can be interpreted

as a delay that the user would experience when using a

congested road, and formulate the Lagrange relaxation of SO

(4) as

max
λ≥0

min
f

fTΛT t0 + λT (Λf c) (5.1)

s.t. Ef = qr, f ≈ 0 (5.2)

For fixed λ̄ ≈ 0, problem (5.1)-(5.2) can be decoupled into the

subproblems shown in (5.3)-(5.4) with respect to each each O-

D pair (r, s), since the capacity limitation is relaxed. Moreover,

the constant term λ̄T c in the objective function can be omitted,
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then the relaxed SO problem for O-D pair (r, s) � RRS
T can

be written as

min
frs

(t0 + λ̄)TΛrsfrs (5.3)

s.t. Ersfrs = qtrs, f
rs ≈ 0 (5.4)

where frs = [frs
k ], {k � Krs, notations Λrs and Ers represent

the sub-matrices in Λ and E corresponds to O-D pair (r, s);
Problem (5.3)-(5.4) can be interpreted as follows: when each

driver between O-D pair (r, s) makes his own decision given

the delay vector λ̄ without a central coordinator, he must pick

up the path with minimal travel time, i.e., frs
K = qtrs, where

K = mink[t
rs
k , {k], and frs

k = 0, {k ∀= K. The total travel

time between O-D pair (r, s) is trs = (t0 + λ̄)TΛrs. It is

apparent that SO and UE give the same traffic flow pattern in

the absence of capacity constraints. Now suppose the optimal

solution of LP (4.1)-(4.5) is x∗, and the corresponding dual

variable of (4.4) is λ∗. Because strong duality holds for LPs,

which means the duality gap is 0 at the optimal primal-dual

pair (x∗, λ∗), we can arrive at an important conclusion [32],

[33]:

(x∗, t0) is a traffic assignment at SO

(x∗, t0 + λ∗) is a traffic assignment at UE

Now we can see that the travel delay caused by congestion is

characterized by the Lagrange dual multipliers, which depends

on the traffic flow condition in the whole system, rather

than a univariate function ta(xa) which solely depends on

xa in a particular link. The way of defining travel latency

distinguishes Beckmann’s model and Nesterov’s model. It is

worth mentioning that the UE and SO in Nesterov’s model

share the same traffic flow pattern. The two states only differ

in the travel times, indicating different vehicle densities.

Comparing the Beckmann’s model and Nesterov’s model
The traffic flow distributions provided by the Beckmann’s

model and the Nesterov’s model are compared on the system

shown in Fig. 1. For simplicity, travel time functions on link

1 and link 2 are constants; while those corresponding to

link 3 and link 4 are linear functions, as shown in Fig. 1.

The link capacity is also given in Fig. 1.

Owing to the flow conservation equations, there must be

x∗1 = 2 and x∗2 = 3 for both models. The traffic flow solution

offered by Beckmann’s TAP satisfies the following condition

[31], which is equivalent to the definition of UE:

Wardrop UE condition [31], [43]: the travel times (be-

tween a certain O-D pair) on all used paths are equal, and no

greater than that would be experienced on any unused paths.

In this regard, in Beckmann’s model, the link flow x3 and

x4 must satisfy

20 + x3 = 16 + 2x4

x3 + x4 = 5

which gives x∗3 = 2 and x∗4 = 3, so the corresponding path

travel time is given as

t141 = t1(x
∗
1) + t3(x

∗
3) = 32

t142 = t1(x
∗
1) + t4(x

∗
4) = 32

t241 = t2(x
∗
2) + t3(x

∗
3) = 37

t242 = t2(x
∗
2) + t3(x

∗
4) = 37

In accordance with LP (4), the link flow x3 and x4 offered

by Nesterov’s TAP must solve the following LP

min x3 + 2x4

s.t. x3 + x4 = 5

x3 ≥ 2 : λ3

x4 ≥ 3 : λ4

The optimal solution is x∗3 = 2, λ∗3 = 0 and x∗4 = 3, λ∗4 = 4,

indicating that link 4 is congested. The link travel times at

the UE pattern are given by

t141 = t01 + t03 + λ∗3 = 10 + 20 + 0 = 30

t142 = t01 + t04 + λ∗4 = 10 + 16 + 4 = 30

t241 = t02 + t03 + λ∗3 = 15 + 20 + 0 = 35

t242 = t02 + t04 + λ∗4 = 15 + 16 + 4 = 35

which also meet the Wardrop principle: no road user can

reduce travel time by changing his route unilaterally.

In this particular case, Backmann and Nesterov TAPs offer

consistent UE in term of link traffic flow. Comparative studies

on well-studied TNs and real-world large-scale networks in

Switzerland suggest that both TAP models provide similar

UEs, especially when capacity constraints are imposed in

Backmann’s model [34]. It is also suggested in [34] that the

travel times of the two models are generally not comparable,

as they are based on different assumptions.

B. Distribution System Model

The charging facilities in the ETN are served by a PDN,

which is represented by a connected graph GE = [EN , EL],
where EN and EL represent the sets of electrical buses and

distribution lines, respectively. In power system engineering

practice, a PDN is intentionally operated with a tree topology.

Without loss of generality, we assume that each electrical bus

connects to one generator and serves one load with constant

traditional demand and possible EV charging requests which

may depend on the traffic flow pattern. In this regard, the

interface equation between TN and PDN can be expressed by

pdi = pdci + η
∑

a∈C(i)

xa, {i � EN (6)

where C(i) denotes the set of charging facilities on link a that

are served by bus i. We assume the average charging request

on link a is a linear function of the vehicle flow xa. The

charging rate η can be determined from an intuitive forecast

according to the penetration level of EV or the operating

experience from existing ETNs. It is a key parameter for

modeling the grid impact of the EV load. This assumption

is reasonable for a system-level study of the ETN and also
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Fig. 2. Typical topology in a radial distribution network.

adopted by [27] and [28], although it seems simple and

may be different from the vehicular arrive rate functions or

probability distributions for studying a single charging station.

Moreover, it provides a versatile and convenient way to model

the interdependency between TN and PDN.

The typical connection of distribution lines (each line is

denoted by a tuple (l, i, j), where i is the head bus and j
is the tail bus) of a radial PDN is shown in Fig. 2. The

voltage magnitudes Vi and Vj , and the power flows P l
ij and

Ql
ij delivered through line l, are amenable to BPF equations

developed in [35]–[37]:

P l
ij + pgj rlij

(P l
ij)

2 + (Ql
ij)

2

V 2
i

=
∑

k∈π(j)
P l
jk + pdj (7.1)

Ql
ij + qgj xl

ij

(P l
ij)

2 + (Ql
ij)

2

V 2
i

=
∑

k∈π(j)
Ql

jk + qdj (7.2)

V 2
j = V 2

i 2(rlijP
l
ij + xl

ijQ
l
ij)

+
[
(rlij)

2 + (xl
ij)

2
] (P l

ij)
2 + (Ql

ij)
2

V 2
i

(7.3)

where π(j) is the set of child buses of bus j; it contains more

than one element only when multiple distribution lines start

from bus j. The left-hand side of equation (7.1)/(7.2) is the

active/reactive power injected into bus j; the right-hand side

of equation (7.1)/(7.2) is the active/reactive power withdrawn

from bus j. In engineering practice, line losses account for

only a small part of the total delivered power. By ignoring

the loss terms in (7.1) and (7.2), we arrive at the following

simplified power balancing equations:

P l
ij + pgj =

∑
k∈π(j)

P l
ik + pdj (8.1)

Ql
ij + qgj =

∑
k∈π(j)

Ql
ik + qdj (8.2)

It was justified in [35] that the third term on the right-

hand side of (7.3) should generally be much smaller than the

second term, and thus can be ignored. Moreover, since the

voltage magnitude at every bus is close to the reference voltage

at the slack bus, we have (Vj V0)
2 → 0, indicating that

V 2
j →V 2

0 2V0(V0 Vj). Substituting it into (7.3) yields

Vj = Vi

rlijP
l
ij + xl

ijQ
l
ij

V0
(8.3)

The linearized BPF equations (8.1)-(8.3) have been justified

and extensively used in distribution system studies, such as in

[38]–[40].

III. MATHEMATICAL FORMULATION

A. Expansion Planning Model

Some basic settings for ETN expansion planning are sum-

marized below.

1) New roads, whose number is given by
∑NR

n=0 2
nztan, {a,

where ztan � }0, 1| , can be built in parallel with existing

links. They have the same capacity Δca.

2) New distribution lines, whose number is expressed

by
∑NL

n=0 2
nzdlijn, {(i, j, l), where zdlijn � }0, 1| , can

be built in parallel with existing distribution lines.

For simplicity, we assume that every distribution line

between buses i and j has the same parameter. In

this regard, the resistance and reactance are reduced

to 1/(1 +
∑NL

n=0 2
nzdlijn) compared to their original

values. Meanwhile, the maximal allowed active and

complex power flow become (1 +
∑NL

n=0 2
nzdlijn)P

u
l

and (1 +
∑NL

n=0 2
nzdlijn)Sl, respectively. From another

perspective, the power flow in line l is reduced to

1/(1+
∑NL

n=0 2
nzdlijn), while the line parameters remain

the same.

3) New charging facilities, whose number is given by a

positive integer variable nc
a, and whose capacity is Δpca,

can be built beside link a. Unlike existing studies which

aim to enlarge the service area of charging stations, we

assume these facilities can be built beside any link. This

assumption is suitable for main roads, such as the ring

expressway system of metropolitan areas. Nevertheless,

it can be relaxed by specifying candidate sites where the

charging facilities can be built.

4) New generators, whose number is given by a positive

integer variable ng
i , can be built at each electrical bus

of the PDN. We can also specify candidate locations for

generators. For example, in case study, the available site

for generators is a subset of EB .

We use binary variables to represent the number of lanes

and distribution lines because these variables will be multi-

plied by other continuous variables. These nonlinear terms

involving the production of a binary variable and a contin-

uous variable will be linearized by using techniques from

integer algebra. More importantly, this expression uses only

a logarithmic number of binary variables. For example, if at

most 7 additional lanes can be invested in on link a, we use

log2(7 + 1) = 3 binary variables for link expansion.

Given the desired traffic and electrical demands to be

served, the mathematical model of ETN expansion planning

is presented as follows:

min FTN + FPDN

s.t. Cons-PDN

Cons-Couple

}x, λ| solves (4)

(9.1)

The first term FTN in the objective function is the total cost

of the TN, which is given by

FTN =
∑
a∈TA

[
ω(ta+λa)xa +

Prra
κ

NR∑
n=0

2nztan

]
(9.2)
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where
∑

a∈TA
(ta+λa)xa is the total vehicle travel time under

the UE pattern, ω is the monetary value of time, the first term

in FTN is the equivalent travel cost of TN, the second term

represents the investment cost on new roads, and κ is the

discount factor, which leverages long-term investment cost and

short-term operation cost.

The second term FPDN in the objective function is the total

cost of the PDN, which is given by

FPDN =
∑
i∈EB

[
ai(pi)

2 + bipi
]
+ ρ

∑
j∈π(0)

P l
0j+

∑
a∈TA

Prca
κ

nc
a +

∑
l∈EL

NL∑
n=0

Prlij
κ

2nzdlijn +
∑
i∈EN

Prgi
κ

ng
i

(9.3)

where the first term is the generator production cost, which is

a convex quadratic function; P l
0j is the active power delivered

through distribution line l that connects to the slack bus,

π(0) is the set of child buses of the slack bus, and such

that the second term is the purchasing cost paid to the power

market; the third to fifth terms represent investments on the

new charging facilities, distribution lines and generation units,

respectively, which are discounted into short-term operation

cost.

The operation constraint on the PDN is expressed as

Cons-PDN = Cons-BPF + Cons-BND

where Cons-BPF represents linearized BPF constraints, and is

given by

Cons-BPF =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P l
ij + pgj =

∑
k∈π(j)

P l
jk + pdj , {(i, j, l) (9.4.1)

Ql
ij + qgj =

∑
k∈π(j)

Ql
jk + qdj , {(i, j, l) (9.4.2)

Vj = Vi

rlijP
l
ij + xl

ijQ
l
ij

V0

(
1 +

NL∑
n=0

2nzdlijn

) , {(i, j, l) (9.4.3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and Cons-BND represents physical limitations of decision

variables, which is defined as

Cons-BND =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≥ pgi ≥ p+i +Δpmi ng
i , {i (9.4.4)

q+i Δqmi ng
i ≥ qgi ≥ q+i +Δqmi ng

i , {i (9.4.5)

V −i ≥ Vi ≥ V +
i , {i, Ql

ij ≈ 0, {l (9.4.6)

0 ≥ P l
ij ≥

(
1 +

NL∑
n=0

2nzdlijn

)
Pu
l (9.4.7)

∥∥∥∥∥ P l
ij

Ql
ij

∥∥∥∥∥
2

≥ Sl

(
1 +

NL∑
n=0

2nzdlijn

)
, {l (9.4.8)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The active power generation boundaries and reactive power

generation boundaries of units, voltage magnitude boundaries

of buses, and power flow bounds of distribution lines are

included through (9.4.4)-(9.4.8), respectively. The coupling

constraints are given by

Cons-Couple =⎧⎪⎨
⎪⎩

pdi = pdci + η
∑

a∈C(i)

xa, {i

ηxa ≥ Δpca(n
c
a + ccea ), {a

⎫⎪⎬
⎪⎭

(9.5)

where the first constraint is the interface equation defined

by (6), and the second constraint requires that the charging

demand on each road does not exceed the service capability

that the charging facilities in service can offer.

The traffic flow x and possible delay λ are determined by

the lower-level problem, which represents the Nesterov’s TAP

(4), where the road capacity is

ca = c0a +Δca

NR∑
n=0

2nztan, {a (9.6)

Therefore, expansion planning problem (9.1) with the UE

constraint, which is an embedded optimization problem, comes

down to an MPEC, which is challenging to solve. We will

leave the solution method to the next section. It should be

pointed out that the proposed modeling framework is readily

extendable to incorporate multiple demand scenarios and mul-

tiple horizons. For the purposes of clarity, we only consider a

fixed demand and a single period in the current version.

IV. AN MICP REFORMULATION

Three bottlenecks prevent problem (9.1) from being solved

efficiently:

1) The lower-level TAP (4) as a constraint.

2) The production term λaxa in FTN .

3) The nonlinear voltage drop equation (9.4.3).

We will derive equivalent linear expressions for them by

exploiting the special problem structure.

A. Linearizing the UE Constraints

Because the TAP (4) is an LP, its solution can be character-

ized by either the KKT optimality condition or the primal-

dual optimality condition. We adopt the latter because it

involves fewer constraints and a simpler structure without

complementarity-slackness conditions. The primal-dual opti-

mality condition of TAP (4) is given as follows:

x Λf = 0, Ef = qt, x ≥ c, f ≈ 0 (10.1)

λ ≈ 0, μ λ = t0, ETπ ΛTμ ≥ 0 (10.2)

πT qt λT c = xT t0 (10.3)

where (10.1) and (10.2) are the feasible regions of primal and

dual variables, respectively, and (10.3) is the strong duality

condition, which enforces equal values on the primal and dual

objectives. The feasible solution of (10.1)-(10.3) is also the

UE of TN. In view of equation (9.6), the nonlinearity only

exists in the term λT c =
∑

a λa(c
0
a +Δca

∑NR

n=0 2
nztan).

We introduce a matrix variable V t
R = [vtan], {a, {n, and

define the vector of incremental capacity Δc = [Δca], {a, the
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vector of initial capacity c0 = [c0a], {a, and a constant vector

btR = [2n], {n. If the relationship

vtan = λaz
t
an, {a, {n (10.4)

holds, then we have a linear expression

λT c = λT c0 + (Δc)TV t
Rb

t
R (10.5)

Since vtan represents the product of a binary variable ztan and

a positive continuous variable λa, constraint (10.4) can be

replaced by the following linear constraints:

0 ≥ vtan ≥Mztan, {a, n

0 ≥ λa vtan ≥M(1 ztan), {a, n
(10.6)

where M is a big enough constant, which can be interpreted

as the maximal possible delay. When ztan = 0, (10.6) enforces

vtan = 0 and 0 ≥ λa ≥ M ; otherwise, when ztan = 1, (10.6)

enforces vtan = λa and 0 ≥ vtan ≥M . This is equivalent to the

original expression in (10.4). The tightest value of M should

be M∗ = mina}λ
∗
a| , where λ∗ = [λa], {a is the optimal

dual variable of problem (9.1) and unknown in advance. Any

M ≈ M∗ without causing numeric issue is valid for (10.6).

However, a smaller M will yield more efficient computation.

A possible value of M is the estimated maximal delay on the

link of TN from certain heuristic.
Now we can express the linearized UE constraints as

Cons-TAP-UE-Lin =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x Λf = 0, Ef = qr, f ≈ 0

x ≥ c0 +ΔCZt
Rb

t
R, (10.6)

λ ≈ 0, μ λ = t0, HTπ ΛTμ ≥ 0

πT qr = xT t0 + λT c0 + (Δc)TV t
Rb

t
R

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(11)

where ΔC is a diagonal matrix whose elements are Δca, and

the binary variable matrix Zt
R is defined as Zt

R = [ztan], {a, n.

B. Linearizing the Objective Function
The production term λaxa in FTN involves two continuous

variables. There is no general methodology for linearizing this

term without exploiting approximation. We derive an exact

linear reformulation based on the special structure of TAP (4).
Keep in mind that x and λ should be the optimal primal and

dual solution for LP (4). Recall the KKT optimality condition,

complementarity and slackness hold for the inequality con-

straint and its dual variable, leading to the following equation:

λT (x c) = 0

Hence, we have λTx = λT c. This equality is easy to under-

stand. Recall Nesterov’s assumption A2 and (2.2): if xa < ca,

indicating that road a is not congested, then we must have

ta = t0a and λa = 0, thus λaxa = 0; if road a is congested

and λa > 0, we must have xa = ca and λaxa = λaca. In

summary, λTx = λT c holds at the optimal solution.
Using (10.5) in the previous subsection, we can arrange

FTN as a linear form, i.e.,

FTN = ω(xT t0 + λT c0 + (Δc)TV t
Rb

t
R)

+
∑
a∈TA

NR∑
n=0

Prra
κ

2nztan
(12)

The expressions of FTN in (9.2) and (12) are exactly

equivalent, as (10.6) has already been considered in (11), no

approximation error is involved.

C. Linearizing the Voltage Drop Constraint

Multiplying both sides of (9.4.3) by 1+
∑NL

n=0 2
nzdlijn gives

the following equation

Vj

(
1 +

NL∑
n=0

2nzdlijn

)
= Vi

(
1 +

NL∑
n=0

2nzdlijn

)

rlijP
l
ij + xl

ijQ
l
ij

V0
, {(i, j, l)

The production terms involving the continuous variable

Vi/Vj and the binary variable zdlijn can be linearized following

the method similar to that in subsection A. By introducing con-

tinuous variables vdl1ijn = Viz
dl
ijn, vdl2ijn = Vjz

dl
ijn, {(i, j, l), {n,

constraint (9.4.3) is equivalent to(
Vj +

NL∑
n=0

2nvdl2ijn

)
=

(
Vi +

NL∑
n=0

2nvdl1ijn

)

rlijP
l
ij + xl

ijQ
l
ij

V0
, {(i, j, l)

(13.1)

0 ≥ vdl1ijn ≥ V +
i zdlijn, {(i, j, l) (13.2)

0 ≥ Vi vdl1ijn ≥ V +
i (1 zdlijn), {(i, j, l) (13.3)

0 ≥ vdl2ijn ≥ V +
j zdlijn, {(i, j, l) (13.4)

0 ≥ Vj vdl2ijn ≥ V +
j (1 zdlijn), {(i, j, l) (13.5)

Now we can express the convex PDN constraints as

Cons-PDN-CVX =

⎧⎪⎨
⎪⎩

(9.4.1), (9.4.2)

(13.1) (13.5)

(9.4.4) (9.4.8)

⎫⎪⎬
⎪⎭ (14)

When the integrality of binary variable is relaxed, Cons-PDN-

CVX yields linear and second-order cone constraints.

D. The Final MICP Formulation

On the basis of the previous discussion, the ETN expansion

planning problem can be cast as the following MICP with a

convex quadratic objective as well as mixed integer linear and

second-order cone constraints:

min FTN + FPDN

s.t. Cons-PDN-CVX

Cons-TAP-UE-Lin

Cons-Couple

(15)

where FTN is defined in (12), FPDN is defined in (9.3), Cons-

PDN-CVX is defined in (14), Cons-TAP-UE-Lin is defined in

(11), and Cons-Couple is defined in (9.5).

It should be pointed out that the MICP reformulation relies

on the linear models of the TAP and PDN. The linearized

BPF model for PDN is only appropriate for radial networks,

because radiality is crucial for constructing the voltage drop

equation (8.3). In current engineering practices, PDNs are

intentionally operated with a tree topology. However, there
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may be meshed distribution networks in the future. In such

circumstance, the proposed MICP algorithm is readily com-

patible if the network is weakly meshed and the power flow

direction in each distribution line can be easily determined

in advance. Otherwise we can use the direct current power

flow model [44] which preserves the model linearity, while

sacrificing the accuracy on bus voltage. Another choice is

to use the traditional bus injection based power flow model

[44], which is nonlinear and non-convex, and directly solve

an MINLP, at the expense of extremely high computational

burden.

Finally, the proposed method aims to help government

agency make better city planning decisions, and may be less

accurate for real-time operation of the transportation system

and power distribution system, which is not the main focus of

this paper.

V. CASE STUDIES

A. Basic settings

The proposed model and method are applied to a test ETN

in this section. The TN topology shown in the left of Fig. 3

with outer-loop ring expressways is highly emblematic among

modern metropolises. A radial PDN is contrivedly created just

for the purpose of study, whose topology is shown in the right

of Fig. 3. The nodes of the TN are denoted by circles and

numbered T1, T2, ×××, T12; the electrical buses of the PDN

are represented by blue blocks and numbered E1, E2, ×××,
E20. The coupling structure is also illustrated in the TN part

of Fig. 3. The parameters of both TN and PDN infrastructures

are provided in Tables I-III (the values are given in p.u. without

particular mention). We simulate the scenario of evening rush

hour when the majority of traffic leaves from the northwest

and travels to the east and the south. Details of the O-D pairs

and their trip rates are given in Table II. The rest of the

system parameters are given separately below (in p.u. without

particular mention).

The active and complex power flow limit of existing distri-

bution lines are Pu
l = 1.0, {l and Sl = 1.2, {l, respectively.

The capacity of new road is assumed to be Δca = 0.5ca, {a.

The capacity of every new charging facility and generator is

Δpca = 0.1, {a and Δpmi = 1.0, Δqmi = 0.2, {i, respectively.

The discounted investment cost for each charging facility

and generation unit is Prca /κ = $10 and Prga /κ = $100,

respectively. The fixed electrical demand at each bus of the

PDN is pdci = 0.02 and qdi = 0.01. Most of the active

power loads originates from the charging requests of EVs. This

corresponds to the situation in which the PDN only serves on-

road charging facilities. This setting highlights the role of EV

demand, which couples the TN and PDN, in this particular test.

The lower bound and upper bound of bus voltage magnitude

are V f
i = 0.93 and V r

i = 1.05, respectively, and the voltage

magnitude at the slack bus is V0 = 1.04. The electricity price

at the slack bus is ρ = $1600; the monetary value of unit

travel time is ω = $0.3333/min; and the charging rate of

unit traffic flow is η = 0.02. We assume that every existing

road of the TN and existing distribution line of the PDN can

be considered for expansion. The charging facilities can be

TABLE I
PARAMETERS OF THE LINKS

Link ca Prra /κ t0a (min) nce
a

T1-T3 18.0 50 6 2

T1-T2 20.0 80 10 4

T2-T6 17.0 50 6.5 4

T1-T4 9.8 35 5 1

T2-T5 7.9 35 5.5 1

T3-T4 8.5 35 6 2

T4-T5 13.5 70 12 3

T5-T6 8.2 40 6.5 2

T3-T7 19.0 80 10.2 4

T4-T8 14.0 75 11.5 3

T5-T9 13.8 75 12.5 2

T6-T10 20.0 80 10.5 3

T7-T8 8.9 35 5.8 1

T8-T9 13.2 70 11 2

T9-T10 9.15 35 5.9 2

T7-T11 17.5 50 6.3 4

T8-T11 9.76 35 5.7 2

T9-T12 8.97 35 5.8 1

T12-T10 18.2 50 6.1 0

T11-T12 20.0 80 9.8 3

TABLE II
O-D PAIRS AND THEIR TRIP RATES

O-D pair qrs O-D pair qrs O-D pair qrs

T1-T6 5 T3-T6 7 T4-T9 6

T1-T10 6 T3-T10 7 T4-T10 7

T1-T12 6 T3-T12 6 T4-T12 5

T1-T11 5 T3-T11 5

built at the roadside and connected to one electrical bus of the

PDN. The available sites for generators are located at buses

E7, E10, E11, and E14. Four identical units, whose parameters

are p+i = 2.0, q+i = 0.4, ai = $30, and bi = $400, have

already been connected to these buses. All simulations are

implemented on a laptop computer with Intel i5-3210M CPU

and 4 GB memory. MICP is coded in MATLAB environment

with YALMIP toolbox [45] and solved by calling CPLEX [46].

B. Results

The ETN expansion planning problem (15) is solved under

four traffic demand scenarios. The reference demand is given

in Table II. In each scenario, we increase the trip rates of all

the O-D pairs according to the same portion. More precisely,

parameter qtrs, {(r, s) � DRS
T is increased by 25%, 50%,

75%, and 100%, respectively. The optimal expansion planning

strategies under different demand scenarios are given in Tables

IV-VII.

From Table IV and Table V we can see that more roads

and charging facilities are invested in when the traffic demand

increases. Table VI demonstrates that one generation unit will

be built at bus E10 in the last two scenarios; no generator will

be invested in for the other two scenarios with lower traffic
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Fig. 3. Topology of the test ETN.

TABLE III
PARAMETERS OF THE DISTRIBUTION LINES

Line r x Prlij /κ ($)

E0-E7 0.081 0.061 140.8

E0-E10 0.066 0.042 185.2

E0-E11 0.061 0.041 196.1

E0-E14 0.079 0.063 140.8

E7-E2 0.115 0.08 102.6

E7-E4 0.131 0.084 93.0

E7-E5 0.123 0.077 100.0

E10-E9 0.135 0.081 92.6

E10-E6 0.107 0.073 111.1

E10-E13 0.111 0.075 107.5

E6-E1 0.127 0.083 95.2

E13-E16 0.119 0.078 101.5

E11-E12 0.132 0.079 94.8

E11-E8 0.105 0.07 114.3

E11-E15 0.115 0.082 101.5

E8-E3 0.122 0.083 97.6

E15-E19 0.12 0.08 100.0

E14-E20 0.119 0.077 102.0

E14-E17 0.133 0.09 89.7

E14-E18 0.13 0.088 91.7

demands. Table VII shows that distribution lines E10-E13,

E13-E16, E11-E8, and E8-E3 are candidates for expansion in

this problem, while others remain unchanged. As a result, the

growing trends of expansion costs corresponding to different

components are plotted in Fig. 4, showing the dominant status

of road investments over others.

The reason can be explained by exploring the system

topology and the equilibrium traffic flow pattern shown in

Fig. 5. We can observe that links T4-T8, T7-T11, T2-T6,

Fig. 4. Investment costs for different load scenarios.

and T5-T6 are carrying heavy traffic flows, leading to higher

charging demands at buses E10, E16, E3 and E8. Moreover, E3

and E16 are the terminal buses of the PDN. Delivering power

to these buses introduces higher voltage drops on distribution

lines. In this regard, to enhance the voltage magnitude at

these buses, distribution lines E10-E13, E13-E16, E11-E8, and

E8-E3 should be given higher priorities for upgrading. It is

also interesting to notice that although the traffic demand is

increased by 50% in the second scenario, which is higher

than that in the first scenario, no generator or distribution

lines will be built from a social optimal perspective, while

one new distribution line is put into service in the first

scenario. This apparently shows the importance of considering

the interdependency in system planning.

To highlight the impact of EV charging request on both TN

and PDN, we assume the PDN solely serves on-road charging
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Fig. 5. Distribution of traffic flows and delay at the UE.

TABLE IV
ROAD EXPANSION STRATEGIES

Link
Demand increase

25% 50% 75% 100%

T1-T3 0 0 0 0

T1-T2 0 1 1 1

T2-T6 0 0 1 1

T1-T4 0 0 0 1

T2-T5 0 0 0 0

T3-T4 1 1 1 2

T4-T5 1 2 2 2

T5-T6 1 1 3 3

T3-T7 1 1 2 2

T4-T8 0 1 2 4

T5-T9 0 1 0 0

T6-T10 0 0 0 0

T7-T8 0 1 0 0

T8-T9 0 0 0 2

T9-T10 0 2 0 2

T7-T11 1 0 2 1

T8-T11 0 2 2 3

T9-T12 0 0 0 0

T12-T10 0 0 0 0

T11-T12 0 0 1 1

facilities in this particular test. Certainly, the proposed method

can be applied to more general cases with growing traditional

power demands and EV charging loads. In such circumstance,

the investment in the PDN will have a larger share of the total

investment cost.

A few more observations can be made about upgrading

the generators and distribution lines. The ultimate goal of

ETN capacity expansion is to meet the charging demand

without violating operating constraints. There are two options

for acquiring electricity: producing it from local generators,

or purchasing it from the main grid. If the marginal cost of

TABLE V
CHARGING FACILITY EXPANSION STRATEGIES

Link
Demand increase

25% 50% 75% 100%

T1-T3 1 0 0 0

T1-T2 0 1 2 2

T2-T6 0 1 1 2

T1-T4 0 1 1 2

T2-T5 0 0 0 0

T3-T4 0 1 1 1

T4-T5 1 3 3 2

T5-T6 1 1 3 3

T3-T7 2 2 3 4

T4-T8 0 2 3 6

T5-T9 0 2 0 0

T6-T10 1 1 2 2

T7-T8 0 1 0 1

T8-T9 0 1 1 4

T9-T10 0 2 0 2

T7-T11 1 0 2 2

T8-T11 0 2 2 3

T9-T12 0 0 0 0

T12-T10 0 0 0 0

T11-T12 0 0 2 2

TABLE VI
GENERATOR EXPANSION STRATEGIES

Link
Demand increase

25% 50% 75% 100%

E7 0 0 0 0

E10 0 0 1 1

E11 0 0 0 0

E14 0 0 0 0

TABLE VII
DISTRIBUTION LINE EXPANSION STRATEGIES

Link
Demand increase

25% 50% 75% 100%

E10-E13 0 0 1 1

E13-E16 1 0 0 0

E11-E8 0 0 0 1

E8-E3 0 0 1 0

TABLE VIII
OTHER QUANTITIES

Quantities
Demand increase

25% 50% 75% 100%

Composite total cost (p.u.) 3482.9 4536.9 5814.3 7030.0

Average travel time (min) 27.3 26.8 26.98 27.42

Computation time (s) 2.34 15.9 126.1 101.5

energy production is lower than the price in the market, and

the generators can be arbitrarily placed where they are needed,

then there is no need to build additional distribution lines. On

the other hand, when producing electricity is expensive and
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more energy is delivered from the slack bus, or the available

sites for generators are restricted, additional distribution lines

may need upgrading to circumvent potential voltage or power

flow violation.

The composite total cost (defined as FTN + FPDN ), the

average vehicle travel time of TN (defined as
∑

a xa(t
0
a +

λa)/
∑

rs q
r
rs), and the computation times in different scenar-

ios are provided in Table VIII. Table VIII shows that when the

traffic demand grows, the total cost increases, but the average

travel time is maintained at about 27 minutes per vehicle,

which indicates that the road expansion planning strategy is

reasonable. The congestion pattern shown in Fig. 5 associating

with the highest traffic demand scenario demonstrates that the

delay on each congested road is moderate and acceptable. In

general, the computation time increases as the traffic demand

grows. However, this will not become a critical limitation for

practical usage. On the one hand, the time scale of planning

problems is long, hence it is acceptable and desired to spend

a few hours or even a few days to seek a better solution

which may cut down the expense notably in the long run.

On the other hand, the infrastructures of the ETN should be

upgraded every few years; in this regard, the traffic demand

is unlikely to grow remarkably (usually less than 100%). A

multi-period model can also be used to tackle long term plan-

ning problems. Nevertheless, solving mixed integer programs

for realistic large-scale instances is still very challenging. In

such circumstances, one can accept the best solution found in

a pre-specified time limit.

VI. CONCLUSIONS

As one of the first few attempts in studying the inter-

dependent urban electrified transportation infrastructure, this

paper proposes a comprehensive model for the optimal ex-

pansion planning of roads, charging facilities, generators,

and distribution lines, which captures the interaction between

the TN and PDN. The proposed model minimizes the total

composite cost subject to the traffic equilibrium condition and

the power flow constraint. The traffic equilibrium is modeled

by Nesterov’s TAP, which does not depend on the particular

road latency function and defines the delay through Lagrangian

dual multipliers. It is suitable for the planning problem because

it incorporates explicit capacity limit on road traffic flow. The

linearized BPF model directly models bus voltage magnitudes

and line power flows, and is suitable for PDN with a tree

topology. An exact MICP for the proposed ETN expansion

planning model is developed without exploiting approxima-

tion. This approach is able to find the global optimal solution

for moderately sized ETNs with reasonable computation effort.

Future research will be focused on developing more sophis-

ticated models that incorporate multiple traffic patterns (repre-

senting several critical scenarios, such as morning rush hours

and evening rush hours, or potential uncertainties), as well as

suitable decomposition methods for solving this challenging

problem, such as the progressive hedging approach [47] and

the Benders decomposition algorithm [48]. More dedicated

description of the charging demand using link vehicular flow

is also worth studying. This may require developing distance

and battery status constrained UE model. Dynamic UE model

[49], [50], which allows the modeling of global positioning

system enabled dynamic rerouting behavior, is also one of our

on-going research. In summary, we believe the ETN in line

with the emerging trend of transportation electrification will

be a very promising research direction in the near future.
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